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Abstract The Hirsch conjecture was posed in 1957 in a question from Warren M.
Hirsch to George Dantzig. It states that the graph of a d-dimensional polytope with
n facets cannot have diameter greater than n − d . The number n of facets is the min-
imum number of closed half-spaces needed to form the polytope and the conjecture
asserts that one can go from any vertex to any other vertex using at most n− d edges.

Despite being one of the most fundamental, basic and old problems in polytope
theory, what we know is quite scarce. Most notably, no polynomial upper bound
is known for the diameters that are conjectured to be linear. In contrast, very few
polytopes are known where the bound n − d is attained. This paper collects known
results and remarks both on the positive and on the negative side of the conjecture.
Some proofs are included, but only those that we hope are accessible to a general
mathematical audience without introducing too many technicalities.
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1 Introduction

Convex polytopes generalize convex polygons (of dimension two). More precisely,
a convex polyhedron is any intersection of finitely many affine closed half-spaces
in R

d . A polytope is a bounded polyhedron. The long-standing Hirsch conjecture
is the following very basic statement about the structure of polytopes. Besides its
implications in linear programming, which motivated the conjecture in the first place,
it is one of the most fundamental open questions in polytope theory.

Conjecture 1.1 (Hirsch conjecture) Let n > d ≥ 2. Let P be a d-dimensional poly-
tope with n facets. Then diam(G(P )) ≤ n − d .

Facets are the faces of dimension d − 1 of P , so that the number n of them is the
minimum number of half-spaces needed to produce P as their intersection (assum-
ing P is full-dimensional). The number diam(G(P )) ∈ N is the diameter of the graph
of P . Put differently, the conjecture states that we can go from any vertex of P to any
other vertex traversing at most n − d edges.

Consider the following examples; all of them satisfy the inequality strictly, except
for the cube where it is tight:

P n d diam(G(P ))

Polygon n 2 �n/2�
Cube 6 3 3

Icosahedron 20 3 3

Soccer-ball 32 3 9

Polytopes and polyhedra are the central objects in the area of geometric combi-
natorics, but they also appear in diverse mathematical fields: From the applications’
point of view, a polyhedron is the feasibility region of a linear program [14]. This is
the context in which the Hirsch conjecture was originally posed (see below). In toric
geometry, to every (rational) polytope one associates a certain projective variety (see,
e.g., [50]). The underlying interaction between combinatorics and algebraic geome-
try has proved extremely fruitful for both areas, leading for example to a complete
characterization of the possible numbers of faces (vertices, edges, facets, . . . ) that a
simplicial polytope can have. The same question for arbitrary polytopes is open in
dimension four and higher [60]. Polytopes with special symmetries, such as regular
ones and variations of them arise naturally from Coxeter groups and other algebraic
structures [6, 25]. Last but not least, counting integer points in polytopes with integer
vertex coordinates has applications ranging from number theory and representation
theory to cryptography, integer programming, and statistics [5, 16].

In this paper we review the current status of the Hirsch conjecture and related
questions. Some proofs are included, and many more appear in an appendix which
is available electronically [38]. Results whose proof can be found in [38] are marked
with an asterisk. An earlier survey of this topic, addressed to a more specialized
audience, was written by Klee and Kleinschmidt in 1987 [40].
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1.1 A Bit of Polytope Theory

We now review several concepts that will appear throughout this paper. For further
discussion, we refer the interested reader to [18, 59].

A polyhedron is the intersection of a finite number of closed half-spaces and a
polytope is a bounded polyhedron. A polytope is, equivalently, the convex hull of
a finite collection of points. Although the geometric objects are the same, from a
computational point of view it makes a difference whether a certain polytope is rep-
resented as a convex hull or via linear inequalities: the size of one description cannot
be bounded polynomially in the size of the other, if the dimension d is not fixed. The
dimension of a polytope is the dimension of its affine hull aff(P ). A d-dimensional
polytope is called a d-polytope.

If H is a closed half-space containing P , then the intersection of P with the bound-
ary of H is called a face of P . Every non-empty face is the intersection of P with a
supporting hyperplane. Faces are themselves polyhedra of lower dimension. A face
of dimension i is called an i-face. The 0-faces are the vertices of P , the 1-faces are
edges, the (d − 2)-faces are ridges, and the (d − 1)-faces are called facets. In its irre-
dundant description, a polytope is the convex hull of its vertices, and the intersection
of its facet-defining half-spaces.

For a polytope P , we denote by G(P ) its graph or 1-skeleton, consisting of the
vertices and edges of P : the vertices of the graph G(P ) are indexed by the vertices
of the polytope P , and two vertices in the graph G(P ) are connected by an edge
exactly when their corresponding vertices in P are contained in a 1-face. The distance
between two vertices in a graph is the minimum number of edges needed to go from
one to the other, and the diameter of a graph is the maximum distance between its
vertices. (For an unbounded polyhedron, the graph contains only the bounded edges.
The unbounded 1-faces are called rays.)

Example 1.2 Examples of polytopes one can build in every dimension are the fol-
lowing:

1. The d-simplex. The convex hull of d +1 points in R
d that do not lie on a common

hyperplane is a d-dimensional simplex. It has d + 1 vertices and d + 1 facets. Its
graph is complete, so its diameter is 1.

2. The d-cube. The vertices of the d-cube, the product of d segments, are the 2d

points with ±1 coordinates. Its facets are given by the 2d inequalities −1 ≤ xi ≤ 1.
Its graph has diameter d : the number of steps needed to go from a vertex to another
equals the number of coordinates in which the two vertices differ.

3. Cross polytope. This is the convex hull of the d standard basis vectors and their
negatives, which generalizes the 3-dimensional octahedron. It has 2d facets, one
in each orthant of R

d . Its graph is almost complete: the only edges missing from
it are those between opposite vertices.

See Fig. 1.
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Their numbers m of vertices, n of facets, dimension d and diameter are:

P m n d diam(G(P ))

d-Simplex d + 1 d + 1 d 1

d-Cube 2d 2d d d

d-Crosspolytope 2d 2d d 2

Of special importance are the simple and simplicial polytopes. A d-polytope is
called simple if every vertex is the intersection of exactly d facets. Equivalently,
a d-polytope is simple if every vertex in the graph G(P ) has degree exactly d . We
note that the d-simplices and d-cubes are simple, but cross-polytopes are not sim-
ple starting in dimension three. Any polytope or polyhedron P , given by its facet-
description, can be perturbed to a simple one P ′ by a generic and small change in the
coefficients of its defining inequalities. This will make non-simple vertices “explode”
and become clusters of new vertices, all of which will be simple. This process can
not decrease the diameter of the graph, since we can recover the graph of P from that
of P ′ by collapsing certain edges. Hence, to study the Hirsch conjecture, one only
needs to consider the simple polytopes:

Lemma 1.3 The diameter of any polytope P is bounded above by the diameter of
some simple polytope P ′ with the same dimension and number of facets.

Graphs of simple polytopes are better behaved than graphs of arbitrary polytopes.
Their main property in the context of the Hirsch conjecture is that if u and v are
vertices joined by an edge in a simple polytope then there is a single facet containing
u and not v, and a single facet containing v and not u. That is, at each step along the
graph of P we enter a single facet and leave another one.

Every polytope P (containing the origin in its interior, which can always be as-
sumed by a suitable translation) has a polar polytope P ∗ whose vertices (respectively
facets) correspond to the facets (respectively vertices) of P . More generally, every
(d − i)-face of P ∗ corresponds to a face of P of dimension i − 1, and the incidence
relations are reversed.

The polars of simple polytopes are called simplicial, and their defining property is
that every facet is a (d−1)-simplex. As an example, the d-dimensional cross polytope
is the polar of the d-cube. Since cubes are simple polytopes, cross polytopes are
simplicial. The polar of a simplex is a simplex, and simplices are the only polytopes

Fig. 1 Basic examples of
polytopes
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of dimension greater than two which are at the same time simple and simplicial. Since
all faces of a simplex are themselves simplices, all faces of a simplicial polytope are
simplices. From this viewpoint, one can forget the geometry of P ∗ and look only at
the combinatorics of the simplicial complex formed by its faces, the boundary of P ∗.
Topologically, this simplicial complex is a sphere of dimension d − 1.

For simplicial polytopes we can state the Hirsch conjecture as asking how many
ridges do we need to cross in order to walk between two arbitrary facets, if we are
only allowed to move from one facet to another via a ridge. This suggests defining the
dual graph G�(P ) of a polytope: The undirected graph having as nodes the facets of
P and in which two nodes are connected by an edge if and only if their corresponding
facets intersect in a ridge of P . In summary, G�(P ) = G(P ∗).

1.2 Relation to Linear Programming

The original motivation for the Hirsch conjecture comes from its relation to the sim-
plex algorithm for linear programming. In linear programming, one is given a system
of linear equalities and inequalities, and the goal is to maximize (or minimize) a cer-
tain linear functional. Every such problem can be put in the following standard form,
where A is an m × n real matrix A, and b ∈ R

m and c ∈ R
n are two real vectors:

Maximize c · x, subject to Ax = b and x ≥ 0.

Suppose the matrix A has full row rank m ≤ n. Then, the equality Ax = b defines
a d-dimensional affine subspace (d = n − m), whose intersection with the linear in-
equalities x ≥ 0 gives the feasibility polyhedron P :

P := {x ∈ R
n : Ax = b and x ≥ 0}.

One typically desires not only the maximum value of c · x but also (the actual coordi-
nates of) a vector x ∈ P where the maximum is attained. It is easy to prove that such
an x, if it exists, can be found among the vertices of P . If P is unbounded and c · x
does not have an upper bound on it one considers the problem “solved” by describing
a ray of P where the value c · x goes to infinity.

In 1979, Hačijan [30] proved that linear programming problems can be solved in
polynomial time via the so-called ellipsoid method. In 1984, Karmarkar [37] devised
a different approach, the interior point method. Although the latter is more applicable
(easier to implement, better complexity) than the former, still to this day the most
commonly used method for linear programming is the simplex method devised by G.
Dantzig in 1947. For a complete account of the complexity of linear programming,
see the survey [48] by Megiddo.

In geometric terms, the simplex method first finds an arbitrary vertex in the fea-
sibility polyhedron P . Then, it moves from vertex to adjacent vertex in such a way
that the value c · x of the linear functional increases at every step. These steps are
called pivots and the rule used to choose one specific adjacent vertex is called the
pivot rule. When no pivot step can increase the functional, convexity implies that we
have arrived to the global maximum.

Clearly, a lower bound for the performance of the simplex method under any pivot
rule is the diameter of the polyhedron P . The converse is not true, since knowing that
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P has a small graph diameter does not in principle tell us how to go from one vertex
to another in a small number of steps. In particular, many of the results on diameters
of polyhedra do not help for the simplex method.

In fact, the complexity of the simplex method depends on the local rule (the pivot
rule) chosen to move from vertex to vertex. The a priori best pivot rule, the one
originally proposed by Dantzig, is “move along the edge with maximum gradient”,
but Klee and Minty [41] showed in 1972 that this can lead to paths of exponential
length, even in polytopes combinatorially equivalent to cubes. The same worst-case
exponential behavior has been proved for essentially every deterministic rule devised
so far, although there are subexponential, but yet not polynomial, randomized pivot
algorithms (see Theorem 2.8). However, the simplex algorithm is highly efficient in
practice on most linear optimization problems.

There is another reason why investigating the complexity of the simplex method
is important, even if we already know polynomial time algorithms. The algorithms
of Khachiyan and Karmarkar are polynomial in the bit length of the input; but it is
of practical importance to know whether a polynomial algorithm for linear program-
ming in the real number machine model of Blum, Cucker, Shub, and Smale [7] exists.
That is, is there an algorithm that uses a number of arithmetic operations that is poly-
nomial on the number of coefficients of the linear program, rather than on their total
bit-length; or, better yet, a strongly polynomial algorithm, i.e., one that is polynomial
both in the arithmetic sense and the bit sense? These two related problems were in-
cluded by Smale in his list of “mathematical problems for the next century” [54].
A polynomial pivot rule for the simplex method would solve them in the affirmative.

In this context, the following polynomial version of the conjecture is relevant, if
the linear one turns out to be false. See, for example, [35]:

Conjecture 1.4 (Polynomial Hirsch conjecture) Is there a polynomial function
f (n, d) such that for any polytope (or polyhedron) P of dimension d with n facets,
diam(G(P )) ≤ f (n, d)?

1.3 Overview of This Paper

Our initial purpose with this paper was two-fold: on the one hand, we thought it is
about time to have in a single source an overview of the state of the art concerning the
Hirsch conjecture and related issues, putting up to date the 20 year old survey by Klee
and Kleinschmidt [40]. On the other hand, since there seems to be agreement on the
fact that the Hirsch conjecture is probably false (with opinions about the polynomial
version of it being divided) we wanted to give a fresh look at the past attempts to
disprove the conjecture.

These two goals turned out to be in conflict, or at least too ambitious, so the first
version of the paper was too long and too technical for the intended readership. After
wise comments from our editor Jörg Rambau and an anonymous referee, we decided
to take most of the proofs out of the main paper, and compiled them in the companion
paper [38]. Results whose proof can be found in [38] are marked with an asterisk.

Our two-fold intentions are still reflected in the two quite distinct parts that the
paper has, Sects. 2 and 3. The first one is devoted to positive results, comprising gen-
eral upper bounds for polytope diameters, special cases where the Hirsch conjecture
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is known, etc., and the second one contains mainly constructions and results aimed at
disproving the Hirsch conjecture.

The two sections differ in several respects: Sect. 2 is written in an informative
style. No proofs are included (although some appear in [38]) since this section covers
quite different topics and the techniques and ideas used are too technical and, more
importantly, too diverse. In Sect. 3, on the contrary, we provide proofs for essentially
all the results (some here and some in [38]); on the one hand the tools needed are more
homogeneous and elementary; on the other hand, in this section we feel that having
a new look at old results is useful. We have tried to identify the basic ingredients in
each construction, obtaining in some cases much simpler (to our taste) proofs and
expositions than the original ones. In particular, the main novelty in this survey, if
any, is probably in our descriptions of the non-Hirsch polyhedron and Hirsch-sharp
polytope found by Klee and Walkup in 1967 (Sect. 3.3) and of the non-Hirsch sphere
found by Mani and Walkup in 1980 (Sect. 3.6).

Another difference between the two sections is that Sect. 2 contains several very
recent developments, while all of Sect. 3, with the single exception of Theorem 3.11,
refers to results that are at least 25 years old.

Let us now give a brief roadmap for the paper.
Section 2.1 lists the pairs of parameters (n, d) such that the Hirsch Conjecture

is known to hold for all d-polytopes with n facets. That is, denoting H(n,d) the
maximum diameter of d-polytopes with n facets, we list all pairs for which the
Hirsch inequality H(n,d) ≤ n − d is known to hold. This comprises the cases d ≤ 3
(Klee [39]), n − d ≤ 6 (Bremner and Schewe [11]), and (n, d) ∈ {(11,4), (12,4)}
(Bremner et al. [10]).

The next section lists general upper bounds on H(n,d): a linear one in fixed di-
mension (Barnette and Larman) [4, 44] and a quasi-polynomial one of nlog2(d)+1

(Kalai-Kleitman [36]). These bounds hold not only for diameters of polytopes but
also for much more abstract and general objects. A very recent development by Eisen-
brand, Hähnle, Razborov and Rothvoß [24] is the identification of one such class for
which the proofs of these two bounds work but which admit objects with quadratic
diameter. This may be considered evidence against the Hirsch conjecture.

In Sect. 2.3 we concentrate on algorithmic aspects. For example, we state two al-
gorithmic analogues of the two bounds mentioned above: the proof by Meggido [47]
that linear programming can be done in linear time if the dimension is fixed, and
randomized pivot rules for the simplex method in arbitrary dimension that finish in
O(exp(K

√
d logn)) (Kalai [34], Matoušek, Sharir and Welzl [46]).

We then turn our attention to special polytopes for which good bounds are known.
Polytopes with 0-1 coordinates and linear programming duals of transportation poly-
topes are known to satisfy the Hirsch conjecture (Naddef [49], Balinski [3]). Di-
ameters of network-flow polytopes, which include transportation polytopes, have
quadratic bounds [13, 28, 51].

Section 2 finishes with an account of recent work of Deza, Terlaky and Zinchenko
[20–22] on a continuous analogue of the Hirsch conjecture that arises in the context
of interior point methods for linear programming.

Almost all of the results in Sect. 3 revolve around two basic ingredients. The first
one is the wedge operation, which we describe in Sect. 3.1. Wedging is a very simple
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operation that increases both the dimension and number of facets of a polytope by one
maintaining (or increasing) its diameter. Using this, it is easy to prove the following
fundamental result:

Theorem 1.5 (Klee and Walkup [42]) H(d + k, d) ≤ H(2k, k), with equality if (but
not only if) k < d .

In particular, to prove (or disprove) the Hirsch conjecture one can concentrate
on the case where the number of facets equals twice the dimension. This case is
sometimes referred to as the d-step Conjecture, since the Hirsch conjecture is saying
that we can go from any vertex to any other vertex in d-steps. Via wedging, the Hirsch
conjecture is also equivalent to the following non-revisiting Conjecture: If u and v are
two arbitrary vertices of a simple polytope P , then there is a path from u to v which
at every step enters a facet of P that was not visited before. We prove the equivalence
of the three conjectures (Hirsch, d-step and non-revisiting) in Sect. 3.2.

The second ingredient is the construction by Klee and Walkup [42] of a 4-
dimensional polytope with 9 facets that meets the Hirsch bound with equality (that
is, whose diameter equals 9 − 4 = 5). Polytopes with this property are called Hirsch-
sharp. They are easy to construct with a number of facets not exceeding twice their
dimension (e.g., cubes). Klee and Walkup’s Hirsch-sharp polytope is the smallest
“non-trivial” Hirsch-sharp polytope, with more facets than twice its dimension. In
fact, it is also the starting block to the construction of every other Hirsch-sharp poly-
tope with n > 2d known to date. In Sect. 3.3 we give our own description and coor-
dinatization (much smaller than the original one) of the Klee-Walkup polytope.

In Sect. 3.4 we recount the state of the art on the existence of Hirsch-sharp poly-
topes, following work of Fritzsche, Holt and Klee [26, 31, 32]. Their results, com-
bined with what is known for small dimension or number of facets, are summarized in
Table 1, which gives a “plot” of the function H(n,d)− (n− d). The horizontal coor-
dinate is n− 2d , so that the column labeled “0” corresponds to the polytopes relevant
to the d-step conjecture. The cases where we know H(n,d) exactly are marked “=”
or “<” depending on whether Hirsch-sharp polytopes exist or not. The cases where
Hirsch-sharp polytopes are known to exist but for which the Hirsch conjecture is not
proved are marked “≥”. Cases where we neither know the Hirsch conjecture nor the
existence of Hirsch-sharp polytopes are marked “?” and appear only in dimensions 4,
5 and 6. The diagonal dots in the left column reflect the equality case of Theorem 1.5.

The Klee-Walkup polytope is also instrumental in the construction by Klee,
Walkup and Todd [42, 56] of counter-examples to two generalizations of the Hirsch
conjecture that are quite natural in the context of linear programming: the case of
perhaps-unbounded polyhedra (which was the original conjecture by Hirsch) and a
monotone version in which we look at the maximum number of monotone steps with
respect to a given linear function that are needed to go from any vertex of a poly-
tope P to an optimal vertex. We show these constructions in Sect. 3.5, and show in
Sect. 3.6 a counter-example, by Mani and Walkup [45] to a third, topological, version
of the conjecture.
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Table 1 H(n,d) versus n − d , the state of the art

n − 2d · · · 0 1 2 3 4 5 6 7 · · ·
d

2 = < < < < < < < · · ·
3 ... = < < < < < < < · · ·
4 ... = = < < < ? ? ? · · ·
5 ... = = ? ? ? ? ? ? · · ·
6 ... = ? ? ? ? ? ? ? · · ·
7 ... ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ · · ·
8 ... ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ · · ·
.
.
.

...

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .

2 Bounds and Algorithms

In this section, we present special cases for which the Hirsch conjecture holds, up-
per bounds for diameters of polytopes and subexponential complexity results for the
simplex method. We also summarize recent work on analogues of the conjecture for
hyperplane arrangements and for paths of interior point methods.

2.1 Small Dimension or Few Facets

The following statements exhaust all pairs (n, d) for which the maximum diameter
H(n,d) of d-polytopes with n facets is known. We omit the cases n < 2d , because
H(d + k, d) = H(2k, k) for all k < d (see Theorem 1.5), and the trivial case d ≤ 2.
Remember that an asterisk in front of a statement denotes the proof can be found
in [38].

∗Theorem 2.1 (Klee [39]) H(n,3) = � 2n
3 � − 1.

Theorem 2.2

• H(8,4) = 4 (Klee [39]).
• H(9,4) = H(10,5) = 5 (Klee-Walkup [42]).
• H(10,4) = 5, H(11,5) = 6 (Goodey [29]).
• H(11,4) = H(12,6) = 6 (Bremner-Schewe [11]).
• H(12,4) = 7 (Bremner et al. [10]).

Since maxd H(d + k, d) = H(2k, k) (see Theorem 1.5 again), the results for
H(8,4), H(10,5) and H(12,6) imply:

Corollary 2.3 The Hirsch conjecture holds for polytopes with at most six facets more
than their dimension.

It is easy to generalize one direction of Theorem 2.1, giving the following lower
bound for H(n,d). Observe that the formula gives the exact value of H(n,d) for
d ∈ {1,2,3}.
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∗Proposition 2.4

H(n,d) ≥
⌊

d − 1

d
n

⌋
− (d − 2).

2.2 General Upper Bounds on Diameters

Diameters of polytopes admit a linear upper bound when the dimension d is fixed.
This was first noticed by Barnette [4] and then improved by Larman [44]:

∗Theorem 2.5 (Larman [44]) For every n > d ≥ 3, H(n,d) ≤ n2d−3.

But when the number of facets is not much bigger than d , a much better upper
bound was given by Kalai and Kleitman [36], with a surprisingly simple and elegant
proof (the paper is just two pages!).

∗Theorem 2.6 (Kalai-Kleitman [36]) For every n > d , H(n,d) ≤ nlog2(d)+1.

The proofs of Theorems 2.6 and 2.5 use very limited properties of graphs of poly-
topes. For example, Klee and Kleinschmidt (see Sect. 7.7 in [40]) show that Theo-
rem 2.5 holds for the ridge-graphs of all pure simplicial complexes, and even more
general objects. In the same vein, Eisenbrand, Hähnle, Razborov and Rothvoß [24]
have recently shown the following generalization of Theorems 2.6 and 2.5:

Theorem 2.7 (Eisenbrand et al. [24]) Let G be a graph whose vertices are certain
subsets of size d of an n-element set. Assume that between every pair of vertices u

and v in G there is a path using only vertices that contain u ∩ v.
Then, diam(G) ≤ min{n1+logd , n2d−1}.

The novelty in [24] is that the authors show that there are graphs with the hy-
potheses of Theorem 2.7 and with diam(G) ≥ cn2/ logn, for arbitrarily large n and a
certain constant c. It is not clear whether this is support against the Hirsch conjecture
or it simply indicates that the arguments in the proofs of Theorems 2.6 and 2.5 do not
take advantage of properties that graphs of polytopes have and which prevent their
diameters from growing. For example, observe that any connected graph is valid for
the case d = 1 of Theorem 2.7.

2.3 Subexponential Simplex Algorithms

Since the Hirsch conjecture is strongly motivated by the simplex algorithm of linear
programming, it is natural to ask about the number of iterations needed under par-
ticular pivot rules. Most of the proofs for the upper bounds in the previous sections
do not give a clue on how to find a short path towards the vertex maximizing a given
functional, or even an explicit path between any pair of given vertices.

Kalai [34] and, independently, Matoušek, Sharir and Welzl [46] proved the exis-
tence of randomized pivot rules for the simplex method with subexponential running
time for arbitrary linear programs.
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Theorem 2.8 (Kalai [34], Matoušek, Sharir and Welzl [46]) There exist randomized
simplex algorithms where the expected number of arithmetic operations needed in
the worst case is at most exp(K

√
d logn), where K is a fixed constant.

If we consider Theorem 2.8 as an algorithmic analogue of Theorem 2.6, then the
following result of Megiddo is the analogue of Theorem 2.5. It says that linear pro-
gramming can be performed in linear time in fixed dimension:

Theorem 2.9 (Meggido [47]) There are pivot rules for the simplex algorithm that
run in O(22d

n) time.

It is also known that random polytopes have polynomial diameter, which explains
why the simplex method seems to work well in practice. The first results in this di-
rection were proved by Borgwardt [8] and, independently, Smale [53], who analyzed
the “average case” complexity of the simplex method. Average case means that we
are looking at a linear program

Maximize c · x, subject to Ax = b and x ≥ 0,

but the entries of A, b and c are considered random variables with respect to certain
spherically symmetric probability distributions. In Borgwardt’s model the simplex
method runs in expected polynomial time in the size of the input. Smale shows that
in his model, if one of the parameters d and n − d is fixed and the other is allowed to
grow, the expected running time is only polylogarithmic. The latter was improved to
constant by Megiddo, see [48] for details.

Even more surprising is the fact that every linear program can be slightly perturbed
to one that can be solved in polynomial time. Let us formalize this. Let P be the
feasibility polyhedron

P = {x ∈ R
d | 〈ai,x〉 ≤ b, (i = 1, . . . , n)}

of a certain linear program. If we replace the vectors ai ∈ R
d and b ∈ R

n with inde-
pendent Gaussian random vectors with means μi = ai and μ = b (respectively), and
standard deviations σ maxi ‖(μi,μ)‖ we say that we have perturbed P randomly
within a parameter σ . In [55], Spielman and Teng proved that the expected diam-
eter of a linear program that is perturbed within a parameter σ is polynomial in d ,
n, and σ−1. In [57], Vershynin improved the bound to be polylogarithmic in n and
polynomial only in d and σ−1.

Theorem 2.10 (Vershynin [57]) If a linear program is perturbed randomly within
a parameter σ , then its expected diameter of its feasibility polyhedron is in
O(log7n(d9 + d3σ−4)).

As mentioned above, this result is not only structural. The simplex method can
find a path of that expected length in the perturbed polyhedron.
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2.4 Some Polytopes from Combinatorial Optimization

There are some classes of polytopes of special interest and for the diameters of which
we know polynomial upper bounds.

2.4.1 Small Integer Coordinates

Of special importance in combinatorial optimization are the 0-1 polytopes, in which
every vertex has coordinates 0 or 1.They satisfy the Hirsch conjecture.

∗Theorem 2.11 (Naddef [49]) If P is a 0-1 polytope then

diam(P ) ≤ #facets(P ) − dim(P ).

As a generalization, Kleinschmidt and Onn [43] prove the following bound on the
diameter of lattice polytopes in [0, k]d . A polytope is called a lattice polytope if every
coordinate of every vertex is integral.

Theorem 2.12 (Kleinschmidt and Onn [43]) The diameter of a lattice polytope con-
tained in [0, k]d cannot exceed kd .

However, existence of a polynomial pivot rule for the simplex method in 0-1 poly-
topes is open. The proof of Theorem 2.11 constructs a short path from u to v only
assuming that we know the coordinates of both.

2.4.2 Network-Flow Polytopes

A network flow polytope is defined by an arbitrary directed graph G = (V ,E)

with weights given to its vertices. Negative weights represent demands and positive
weights represent supplies. A flow is an assignment of non-negative numbers to the
edges so as to cancel all the demands and supplies. See [13], [28], and [51] for details.

For any network G with e edges and v vertices, every sufficiently generic set of
vertex weights produces a simple (e − v + 1)-dimensional polytope with at most 2e

facets. Its diameter has the following almost quadratic upper bound. The proof yields
a polynomial time pivot rule for the simplex method on these polytopes.

Theorem 2.13 [13, 28, 51] The diameter of the network flow polytope on a directed
graph G = (V ,E) is in O(ev logv). This, in turn, is in O(n2 logn), where n is the
number of facets of the polytope.

The matrices defining network flow polytopes are examples of totally unimodular
matrices, meaning that all its subdeterminants are 0, 1, or −1. Polytopes defined by
these matrices still have polynomially bounded diameters, although the degree in the
bound is much worse than the one for network flow polytopes:

Theorem 2.14 (Dyer and Frieze [23]) For any totally unimodular n × d matrix A

the diameter of the polyhedron {x ∈ R
d : Ax ≤ c} is in O(d16n3(log(dn))3).
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2.4.3 Transportation and Dual Transportation Polytopes

Given vectors a ∈ R
p and b ∈ R

q , the p ×q transportation polytope defined by a and
b is the set of all p × q non-negative matrices with row sums given by a and column
sums given by b:

Tp,q(a, b) =
{
(xij ) ∈ R

p×q
∣∣∣ ∑

j

xij = ai,
∑

i

xij = bj , xij ≥ 0

}
.

As an example, the Birkhoff polytope, whose vertices are the permutation matrices,
is the transportation polytope obtained with p = q and a = b = (1, . . . ,1).

It is easy to show that (generically) Tp,q(a, b) is a (p − 1)(q − 1)-dimensional
polytope with at most pq facets. Thus, the Hirsch conjecture translates to its diameter
being at most p + q − 1.

Transportation polytopes are a special case of network flow polytopes; they arise
when the network is a complete bipartite graph on p and q nodes with all edges
directed in the same direction. In particular, Theorem 2.13 gives an almost quadratic
bound for their diameters. But Brightwell et al. [12] have recently proved a linear
bound, with a multiplicative factor of eight. This has now been improved to:

Theorem 2.15 (Hurkens [33]) The diameter of any p × q transportation polytope is
at most 3(p + q − 1).

In the context of linear programming, for every d-polyhedron with n facets there is
a dual (n− d)-polyhedron with the same number of facets. Every linear program can
be solved in its “primal” or “dual” polyhedron. The optimum achieved is the same in
both, but the complexity of the algorithm may not.

The linear programming duals of p × q transportation polytopes are (p + q − 1)-
polyhedra with pq facets. Balinski [3] proved the Hirsch conjecture for them.

Theorem 2.16 (Balinski [3]) Let C be a p × q matrix. The diameter of the dual
transportation polytope Dp,q(C) is at most (p − 1)(q − 1). This bound is the best
possible and it yields a polynomial time dual simplex algorithm.

2.4.4 3-Way Transportation Polytopes

Another seemingly harmless generalization of transportation polytopes comes from
considering 3-way tables (xijk)ijk ∈ R

p×q×r instead of matrices. In fact, there are
two different such generalizations. An axial 3-way transportation polytope consists
of all non-negative tables with fixed sums in 2-d slices. A planar 3-way transporta-
tion polytope consists of all non-negative tables with fixed sums in 1-d slices. (The
names seem wrong, but they reflect the fact that an axial transportation polytope is
defined by three vectors of sizes p, q and r , and a planar one by three matrices of
sizes p × q , p × r , and q × r .)

Despite their definition being so close to that of transportation polytopes, 3-way
transportation polytopes are universal in the following sense:
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Theorem 2.17 (De Loera and Onn [17]) Let P be a rational convex polytope.

• There is a 3-way planar transportation polytope Q isomorphic to P .
• There is a 3-way axial transportation polytope Q which has a face F isomorphic

to P .

In both cases there is a polynomial time algorithm to construct Q (and F ).

Isomorphic here means affinely (and rationally) equivalent. In particular, that the
polytope Q or its face F have the same edge-graph as P . Thus, it was interesting to
try to apply to the 3-way case the methods that gave polynomial upper bounds for the
graphs of transportation polytopes. This was attempted in [15], where a quadratic up-
per bound was obtained but only for axial transportation polytopes. A generalization
of this result to faces of them or to planar transportation polytopes would prove the
polynomial Hirsch conjecture.

Theorem 2.18 (De Loera, Kim, Onn, Santos [15]) The diameter of every 3-way axial
p × q × r transportation polytope is at most 2(p + q + r − 3)2.

2.5 A Continuous Hirsch Conjecture

Here we summarize some recent work of Deza, Terlaky and Zinchenko [20–22] in
which they propose continuous analogues of the Hirsch and d-step conjectures related
to the central path method—a variant of interior point methods—of linear program-
ming. (For a complete description of the method we refer the reader to [9, 52].) The
analogy comes from analyzing the total curvature λc(P ) of the central path with re-
spect to a certain cost function c for the polyhedron P . By analogy with H(n,d), let
�(n,d) denote the largest total curvature of the central path over all polytopes P of
dimension d defined by n inequalities and over all linear objective functions c.

It had been conjectured that λc(P ) is bounded by a constant for each dimension
d , and that it grows at most linearly with varying d . Deza et al. have disproved both
statements: in [20], they construct polytopes for which λc(P ) grows exponentially
with d . More strongly, in [22] they construct a family of polytopes that show that λc

cannot be bounded only in terms of d :

Theorem 2.19 [22] For every fixed dimension d ≥ 2, lim infn→∞ �(n,d)
n

≥ π .

Deza et al. consider this result a continuous analogue of the existence of Hirsch-
sharp polytopes. Motivated by this they pose the following conjecture:

Conjecture 2.20 (Continuous Hirsch conjecture) �(n,d) ∈ O(n). That is, there is a
constant K such that �(n,d) ≤ Kn for all n and d .

Theorem 2.19 says that if the continuous Hirsch conjecture is true, then it is tight,
modulo a constant factor. Deza et al. also conjecture a continuous variant of the d-
step conjecture, and show it to be equivalent to the continuous Hirsch conjecture, thus
providing an analogue of Theorem 3.2:
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Conjecture 2.21 (Continuous d-step conjecture) The function �(2d, d) grows lin-
early in its input. That is to say, �(2d, d) is in O(d).

Theorem 2.22 [21] The continuous Hirsch conjecture is equivalent to the continuous
d-step conjecture. That is, if �(2d, d) ∈ O(d) for all d , then �(n,d) ∈ O(n) for all
d and n.

The best upper bound known for �(n,d) is a bound in O(nd), derived from The-
orem 2.23 below. This theorem refers to the central path curvature for hyperplane
arrangements, as studied by Dedieu, Malajovich and Shub [19].

An arrangement A of n hyperplanes in dimension d is called simple if every n

hyperplanes intersect at a unique point. It is easy to show that any simple arrange-
ment of n hyperplanes in R

d has exactly s = (
n−1
d

)
bounded full-dimensional cells.

For a simple arrangement A with bounded cells P1, . . . ,Ps and a given objective
function c, Dedieu et al. consider the quantity: λc(A) = 1

s

∑s
i=1 λc(Pi). That is, the

average total curvature of central paths of all bounded cells in the arrangement. They
prove:

Theorem 2.23 [19] λc(A) ≤ 2πd , for every simple arrangement.

Put differently, even if individual cells can give total curvature linear in n by The-
orem 2.19, the average over all cells of a given arrangement is bounded by a function
of d alone.

Turning the analogy back to polytope graphs, Deza et al. [22] consider the aver-
age diameter of the graphs of all bounded cells in a simple arrangement A. Denote
it diam(A) and let H(n, d) be the maximum of diam(A) over all simple arrange-
ments defined by n hyperplanes in dimension d . They relate H(n, d) to the Hirsch
conjecture, as follows:

Proposition 2.24 [22] The Hirsch conjecture implies H(n, d) ≤ d + 2d
n−1 .

3 Constructions

We now move to interesting constructions of polytopes motivated by or related to the
Hirsch conjecture. All the proofs that are not included in this section, plus additional
comments, can be found in [38].

3.1 The Wedge Operation

Wedging is a very basic, yet extremely fruitful, operation that one can do to a poly-
tope. Its simplicial counter-part is the one-point suspension (see [18, 38]).

Roughly speaking, the wedge of P at a facet F of it is the polytope, of one di-
mension more, obtained gluing two copies of P along F . See Fig. 2 for an example.
More formally, let f (x) ≤ b be an inequality defining the facet F . The wedge of P

over F is the polytope

WF (P ) := P × [0,∞) ∩ {(x, t) ∈ R
d × R : f (x) + t ≤ b}.
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Fig. 2 A 5-gon and a wedge on
its top facet

Put differently, WF (P ) is formed by intersecting the half-cylinder C := P × [0,∞)

with a closed half-space J in R
d+1 such that:

• the intersection J ∩ C is bounded and has nonempty interior, and
• ∂J ∩ C = F .

Lemma 3.1 Let P be a d-polytope with n facets. Let WF (P ) be its wedge on a
certain facet F . Then, WF (P ) has dimension d + 1, n + 1 facets, and

diam(WF (P )) ≥ diam(P ).

Proof The wedge increases both the dimension and the number of facets by one.
Indeed, WF (P ) has a vertical facet projecting to each facet of P other than F , plus
the two facets that cut the cylinder P × R, and whose intersection projects to F . The
diameter of WF (P ) is at least that of P , since every edge of WF (P ) projects either
to an edge of P or to a vertex of P . �

In particular, if P is Hirsch-sharp then WF (P ) is either Hirsch-sharp or a coun-
terexample to the Hirsch conjecture. The properties that P would need for the latter
to be the case will be made explicit in Remark 3.5.

As a corollary of Lemma 3.1 we get that in order to prove (or disprove) the Hirsch
conjecture it is sufficient to restrict attention to the case when the number of facets
equals twice the dimension:

Theorem 3.2 (Klee-Walkup [42]) H(k + d, d) ≤ H(2k, k), with equality if (but not
necessarily only if) k < d .

Proof By Lemma 3.1,

H(n,d) ≤ H(n + 1, d + 1), ∀n,d (1)

so we only need to show that

H(n,d) ≤ H(n − 1, d − 1) ∀n < 2d. (2)

Let P be a polytope with n < 2d and let u and v be vertices of it. Since each
vertex is incident to at least d facets, u and v lie in a common facet. This facet F has
dimension d − 1, and each facet of it is the intersection of F with another facet of P .
Hence, F has at most n − 1 facets itself. Since every path on F is also a path on P ,
we get (2). �
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Fig. 3 The pentagon P and the
wedge P ′ = WF (P ) over its
facet F : the upper pentagonal
facet of P ′ is F1 and the lower
pentagonal facet is F2

3.2 The d-Step and Non-revisiting Conjectures

The intuition behind the Hirsch conjecture is that to go from vertex u to vertex v of
a polytope P , one does not expect to have to enter and leave the same facet several
times. This suggests the following conjecture:

Conjecture 3.3 (The non-revisiting conjecture) Let P be a simple polytope. Let u

and v be two arbitrary vertices of P . Then, there is a path from u to v which at every
step enters a facet of P that was not visited before.

Paths with the conjectured property, that they do not revisit any facet, are called
non-revisiting paths. (In the literature, they are also called Wv paths and Conjec-
ture 3.3 is also known as the Wv conjecture.) Non-revisiting paths are never longer
than n − d : at each step, we must enter a different facet, and the d facets that the ini-
tial vertex lies in cannot be among them. Thus, the non-revisiting conjecture implies
the Hirsch conjecture. It turns out both are equivalent. A first step in the proof is the
following analogue of Theorem 3.2 for the non-revisiting conjecture:

Theorem 3.4 If all k-polytopes with 2k facets has the non-revisiting property, then
the same holds for all d-polytopes with d + k facets, for all d .

Proof Let P be a polytope with n �= 2d and suppose it does not have the non-
revisiting property. That is, there are vertices u and v such that every path from u

to v revisits some facet that it previously abandons. We will construct another poly-
tope P ′ without the non-revisiting property and with:

• One less facet and dimension than P if n < 2d , and
• One more facet and dimension than P if n > 2d .

In the first case, u and v lie in a common facet F and we simply let P ′ = F . In
the second case, let F be a facet not containing u nor v and let P ′ = WF (P ) be the
wedge over F . Let F1 and F2 be the two facets of P ′ whose intersection projects
to F . Let u1 and v2 be the vertices of P ′ that project to u and v and lie, respectively,
on F1 and F2 (see Fig. 3). Now, consider a path from u1 to v2 on P ′ and project it to
a path from u to v on P :

• If the path on P revisits a facet (call it G) other than F , then the path on P ′ revisits
the facet that projects to G.

• If the path on P revisits F , then the path on P ′ revisits either F1 or F2.
�
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Remark 3.5 In the proof of Lemma 3.1 we noted that, applied to a Hirsch-sharp
polytope P the wedge operator produced either another Hirsch-sharp polytope or a
counterexample to the Hirsch conjecture. The last proof shows that the latter can
happen only if P does not have the non-revisiting property.

Theorems 3.2 and 3.4 say that both in the Hirsch and the non-revisiting conjectures
the crucial case is that of n = 2d . It is not surprising then that they are equivalent,
since in this case they both almost restrict to the following:

Conjecture 3.6 (The d-step conjecture) Let P be a simple d-polytope with 2d facets
and let u and v be two complementary vertices (i.e., vertices not lying in a common
facet). Then, there is a path of length d from u to v.

There is still something to be proved, though. If u and v are not complementary
vertices in a d-polytope with 2d facets then the d-step conjecture does not directly
imply the other two. But in this case u and v lie in a common facet, so the proof of
equivalence is not hard to finish via induction:

∗Theorem 3.7 (Klee-Walkup [42]) The Hirsch, non-revisiting, and d-step Conjec-
tures 1.1, 3.3, and 3.6 are equivalent.

3.3 The Klee-Walkup Polytope Q4

In their seminal 1967 paper [42] on the Hirsch conjecture and related issues, Klee and
Walkup describe a 4-polytope Q4 with nine facets and diameter five. Innocent as this
might look, this first “non-trivial” Hirsch-sharp polytope is at the basis of the con-
struction of every remaining Hirsch-sharp polytope known to date (see Sect. 3.4.2). It
is also instrumental in disproving the unbounded and monotone variants of the Hirsch
conjecture, which we will discuss in Sect. 3.5. Moreover, its existence is something
of an accident: Altshuler, Bokowski and Steinberg [2] list all combinatorial types of
simplicial spheres with nine vertices (there are 1296, 1142 of them polytopal); among
them, the polar of Q4 is the only one that is Hirsch-sharp.

Here we describe Q4 in the polar view. That is, we will describe a simplicial 4-
polytope Q∗

4 with nine vertices and show that its ridge-diameter is five. The vertices
of Q∗

4 are:

a := (−3,3,1,2),

b := (3,−3,1,2),

c := (2,−1,1,3),

d := (−2,1,1,3),

w := (0,0,0,−2).

e := (3,3,−1,2),

f := (−3,−3,−1,2),

g := (−1,−2,−1,3),

h := (1,2,−1,3),

[The simple polytope Q4 is obtained converting each vertex v of Q∗
4 into an in-

equality v · x ≤ 1. For example, the inequality corresponding to vertex a above is
−3x1 + 3x2 + x3 + 2x4 ≤ 1.]

The key property of this polytope is that:
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Fig. 4 The dual graph of the subcomplex K

Theorem 3.8 (Klee-Walkup [42]) Any path in Q∗
4 from the tetrahedron abcd to the

tetrahedron efgh needs at least five steps.

To prove this, you may simply input these coordinates into any software able to
compute the (dual) graph of a polytope. Our suggestion for this is polymake [27].
But we believe that fully understanding this polytope can be the key to the construc-
tion of counter-examples to the Hirsch conjecture, so it is worth presenting a hybrid
computer-human proof. It is worth mentioning that the coordinates we use for Q∗

4,
much smaller than the original ones in [42], were obtained as a by-product of the
description of Q∗

4 contained in this proof.

Proof Paths through some intermediate tetrahedron containing the vertex w neces-
sarily have at least five steps: apart of the step that introduces w, four more are needed
to introduce, one by one, the four vertices e, f , g and h.

This means we can concentrate on the subcomplex K of ∂Q∗
4 consisting of tetra-

hedra that do not use w. This subcomplex is called the anti-star of w in ∂Q∗
4. We

claim (without proof, here is where you need your computer) that this subcomplex
consists of the 15 tetrahedra in Fig. 4.

Figure 4 shows adjacencies among tetrahedra; that is, it shows the dual graph of K .
The two tetrahedra abcd and efgh that we want to join are in boldface and appear
repeated in the figure, to better reflect symmetry. The proof finishes by noticing that
there is no intermediate tetrahedron that can be reached in two steps from both abcd

and efgh. Hence, five steps are needed to go from one to the other. �

3.4 Many Hirsch-Sharp Polytopes?

Recall that we call a d-polytope (or polyhedron) with n facets Hirsch-sharp if its
diameter is exactly n − d , as happens with the Klee-Walkup polytope of the previous
section. Here we describe several ways to construct them.

3.4.1 Trivial Hirsch-Sharp Polytopes

Constructing Hirsch-sharp d-polytopes with any number of facets not exceeding 2d

is easy. For this reason we call such Hirsch-sharp polytopes trivial:

1. Product. If P and Q are Hirsch-sharp, then so is their Cartesian product P × Q.
Indeed, the dimension, number of facets, and diameters of P × Q are the sum of
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those of P and Q. For the diameter, if we want to go from vertex (u1, v1) to vertex
(u2, v2) we can do so by going from (u1, v1) to (u2, v1) along P × {v1} and then
to (u2, v2) along {u2} × Q; there is no better way.

In particular, any product of simplices of any dimension is Hirsch-sharp. The
dimension of �i1 × · · · × �ik , where �i denotes the i-simplex, is

∑k
j=1 ij , its

number of facets is
∑k

j=1(ij + 1), and its diameter is k.

Corollary 3.9 For every d < n ≤ 2d there are simple d-polytopes with n facets
and diameter n − d .

Proof Let k = n − d ≤ d and let i1, . . . , ik be any partition of d into k positive
integers (that is, i1 + · · · + ik = d). Let P = �i1 × · · · × �ik . �

2. Intersection of two affine orthants. Let k = n−d ≤ d and let u be the origin in R
d .

Let v = (1, . . . ,1,0, . . . ,0) be the point whose first k coordinates are 1 and whose
remaining d − k coordinates are 0.

Consider the polytope P defined by the following d + k inequalities:

xi ≥ 0, ∀i; ψj (x) ≥ 0, j = 1, . . . , k,

where the ψi are affine linear functionals that vanish at v and are positive at u. No
matter what choice we make for the ψj ’s, as long as they are sufficiently generic
to make P simple, P will have diameter (at least) k; to go from v to u we need to
enter the k facets xj = 0, j = 1, . . . , k, and each step gets you into at most one of
them. In principle, P may be an unbounded polyhedron; but if one of the ψj ’s is,
say, k − ∑

xi , then it will be bounded.

Hirsch-sharp unbounded polyhedra with any number of facets are also easy to
obtain: setcounterpropositionn9

∗Proposition 3.10 For every n ≥ d there are simple d-polyhedra with n facets and
diameter n − d .

3.4.2 Non-trivial Hirsch-Sharp Polytopes

∗Theorem 3.11 (Fritzsche-Holt-Klee [26, 31, 32]) Hirsch-sharp d-polytopes with n

facets exist in at least the following cases: (1) n ≤ 3d − 3; and (2) d ≥ 7.

Both parts are proved using the Klee-Walkup polytope Q4 as a starting block, from
which more complicated polytopes are obtained. In a sense, Q4 is the only non-trivial
Hirsch-sharp polytope we know.

The case n ≤ 3d − 3 was first proved in 1998 [32], and follows from the iterated
application of the next lemma to the Klee-Walkup polytope Q4. Part 2 was proved
in [26] for d ≥ 8 and was improved to d ≥ 7 in [31]. We sketch its proof in [38].

Lemma 3.12 (Holt-Klee [32]) If there are Hirsch-sharp d-polytopes with n > 2d

facets, then there are also Hirsch-sharp (d + 1)-polytopes with n + 1, n + 2, and
n + 3 facets.
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Fig. 5 After wedging in a
Hirsch-sharp polytope, we can
truncate twice

Proof Let u and v be vertices at distance n − d in a simple d-polytope with n-facets.
Let F be a facet not containing any of them, which exists since n > 2d . When we
wedge on F we get two edges u1u2 and v1v2 with the properties that the distance
from any ui to any vi is again (at least) d . We can then truncate one or both of
u1 and v1 to obtain one or two more facets in a polytope that is still Hirsch-sharp.
See Fig. 5. �

Hirsch-sharp polytopes of dimensions two and three exist only when n ≤ 2d (see
Sect. 2.1). Existence of Hirsch-sharp polytopes with many facets in dimensions four
to six remains open. We do know that they do not exist in dimension four with 10, 11
or 12 facets (see Theorem 2.2), which may well indicate that Q4 is the only Hirsch-
sharp 4-polytope.

3.5 The Unbounded and Monotone Hirsch Conjectures

In the Hirsch conjecture as we have stated it, we only consider bounded polytopes.
However, in the context of linear programming the feasible region may well not be
bounded, so the conjecture is equally relevant for unbounded polyhedra. In fact, that
is how W. Hirsch originally posed the question.

Moreover, for the simplex method in linear programming one follows monotone
paths: starting at an initial vertex u one does pivot steps (that is, one crosses edges) al-
ways increasing the value of the linear functional φ to be maximized, until one arrives
at a vertex v where no pivot step gives a greater value to φ. Convexity then implies
that v is the global maximum for φ in the feasible region. This raises the question
whether a monotone variant of the Hirsch conjecture holds: given two vertices u and
v of a polyhedron P and a linear functional that attains its maximum on P at v, is
there a φ-monotone path of edges from u to v whose length is at most n − d?

Both the unbounded and monotone variants of the Hirsch conjecture fail, and both
proofs use the Klee-Walkup Hirsch-sharp polytope Q4 described in Sect. 3.3. In fact,
knowing the mere existence of such a polytope is enough. The proofs do not use any
property of Q4 other than the fact that it is Hirsch-sharp, simple, and has n > 2d .
Simplicity is not a real restriction since it can always be obtained without decreasing
the diameter (Lemma 1.3). The inequality n > 2d , however, is essential.

Theorem 3.14 (Klee-Walkup [42]) There is a simple unbounded polyhedron Q̃4 with
eight facets and dimension four and whose graph has diameter 5.

Proof Let Q4 be the simple Klee-Walkup polytope with nine facets, and let u and
v be vertices of Q4 at distance five from one another. By simplicity, u and v lie in
(at most) eight facets in total and there is (at least) one facet F not containing u

nor v. Let Q̃4 be the unbounded polyhedron obtained by a projective transformation
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Fig. 6 Disproving the
unbounded Hirsch conjecture

that sends this ninth facet to infinity. The graph of Q̃4 contains both u and v, and
is a subgraph of that of Q̃4, hence its diameter is still at least five. See Fig. 6 for a
schematic rendition of this idea. �

Remark 3.15 The “converse” of the above proof also works: from any non-Hirsch
unbounded 4-polyhedron Q̃ with eight facets, one can build a bounded 4-polytope
with nine facets and diameter five, as follows:

Let u and v be vertices of Q̃ at distance five from one another. Construct the
polytope Q by cutting Q̃ with a hyperplane that leaves all the vertices of Q̃ on the
same side. This adds a new facet and changes the graph, by adding new vertices and
edges on that facet. But u and v will still be at distance five: to go from u to v either
we do not use the new facet F that we created (that is, we stay in the graph of Q̃4)
or we use a pivot to enter the facet F and at least another four to enter the four facets
containing v.

We now turn to the monotone variant of the Hirsch conjecture:

∗Theorem 3.16 (Todd [56]) There is a simple 4-polytope P with eight facets, two
vertices u and v of it, and a linear functional φ such that:

1. v is the only maximal vertex for φ.
2. Any edge-path from u to v and monotone with respect to φ has length at least five.

In both the constructions of Theorems 3.14 and 3.16 one can glue several copies of
the initial block Q4 to one another, increasing the number of facets by four and the
diameter by five, per Q4 glued:

Theorem 3.17 (Klee-Walkup, Todd)

1. There are unbounded 4-polyhedra with 4 + 4k facets and diameter 5k, for every
k ≥ 1.

2. There are bounded 4-polyhedra with 4 + 4k facets and vertices u and v of them
with the property that any monotone path from u to v with respect to a certain
linear functional φ maximized at v has length at least 5k.

This leaves the following open questions:

• Improve these constructions so as to get the ratio “diameter versus facets” bigger
than 5/4. A ratio bigger than two for the unbounded case would probably yield
counter-examples to the bounded Hirsch conjecture.
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• Ziegler [59, p. 87] poses the following strict monotone Hirsch conjecture: “for
every linear functional φ on a d-polytope with n facets there is a φ-monotone path
of length at most n − d from the minimal to the maximal vertex”. Put differently,
in the monotone Hirsch conjecture we add the requirement that not only v but also
u has a supporting hyperplane where φ is constant.

3.6 The Topological Hirsch Conjecture is False

Another natural variant of the Hirsch conjecture is topological. Since (the bound-
ary of) every simplicial d-polytope is a topological triangulation of the (d − 1)-
dimensional sphere, we can ask whether the simplicial version of the Hirsch con-
jecture, the one where we walk from simplex to simplex rather than from vertex to
vertex, holds for arbitrary triangulations of spheres. The first counterexample to this
statement was found by Walkup in 1979 (see [58]), and a simpler one was soon con-
structed by Walkup and Mani [45].

Both constructions are based on the equivalence of the Hirsch conjecture to the
non-revisiting conjecture (Theorem 3.7). The proof of the equivalence is purely com-
binatorial, so it holds true for topological spheres. Walkup’s initial example is a 4-
sphere without the non-revisiting property, and Mani and Walkup’s is a 3-sphere:

∗Theorem 3.18 (Mani-Walkup [45]) There is a triangulated 3-sphere with 16 ver-
tices and without the non-revisiting property. Wedging on it eight times yields an
11-sphere with 24 vertices and with ridge-graph diameter at least 13.

This triangulated 3-sphere would give a counterexample to the Hirsch conjecture
if it were polytopal. That is, if it were combinatorially isomorphic to the boundary
complex of a four-dimensional simplicial polytope. Altshuler [1] has shown that (for
the explicit completion of the subcomplex K given in [45]) this is not the case. As
far as we know, it remains an open question to show that no completion of K ∪
{abcd,mnop} to the 3-sphere is polytopal, but we believe that to be the case. Even
more strongly, we believe that K ∪ {abcd,mnop} cannot be embedded in R

3 with
linear tetrahedra, a necessary condition for polytopality by the well-known Schlegel
construction [59].

As in the monotone and bounded cases, several copies of the construction can be
glued to one another. Doing so provides triangulations of the 11-sphere with 12+12k

vertices and diameter at least 13k, for any k.

Note Added in Proof

On May 10, 2010, while this paper was already in press, the second author has an-
nounced a counter-example to the Hirsch Conjecture: there is a 43-dimensional poly-
tope with 86 facets and whose graph has diameter at least 44. See http://gilkalai.
wordpress.com/2010/05/10/ for the announcement. By the time this paper is pub-
lished a preprint will most probably be available at http://www.arxiv.org.

http://gilkalai.wordpress.com/2010/05/10/
http://gilkalai.wordpress.com/2010/05/10/
http://www.arxiv.org
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