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ABSTRACT OF THE DISSERTATION

An Interface-Fitted Mesh Generator and Numerical Methods for Elliptic Interface Problems

By

Min Wen

Doctor of Philosophy in Mathematics

University of California, Irvine, 2018

Professor Long Chen, Chair

In this thesis, we propose different numerical methods for solving elliptic interface problems in

three dimensions and moving boundary problems in two dimensions. In the first part, a simple and

efficient interface-fitted mesh algorithm which can produce a semi-unstructured interface-fitted

mesh in two and three dimensions quickly is developed in this thesis. Elements in such interface-

fitted meshes are not restricted to simplices but can be polygons or polyhedra. Especially in 3D, the

polyhedra instead of tetrahedra can avoid slivers, which are the major difficulty in finite element

methods. Virtual element methods are applied to solve elliptic interface problems with solutions

and flux jump conditions. Algebraic multigrid solvers are used to solve the resulting linear al-

gebraic system. In the second part, we impose the interface-fitted meshes to moving boundary

problems and present the applications in biology simulation. Static interface problems with peri-

odic conditions are considered at first, then the higher order accuracy algorithm is also developed.

Finally moving interface problems are discussed. We couple the interface Poisson equation and

the transport equation for the level set function together to simulate the tissue and tumor growth

phenomenon. Numerical results are presented to illustrate the effectiveness of our methods.
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Chapter 1

Introduction

We consider finite element methods for solving elliptic interface problems which have a variety of

applications in different research fields, including fluid dynamics, material science and biological

systems, etc. [23, 63, 73, 83]. The importance of the coupling of the complex geometry of the

interface with the numerical methods has been recognized and received rapidly increasing interest

in recent years. In this thesis, we discuss the elliptic interface problems at first, and then consider

moving boundary problems arising from applications in biology.

1.1 Elliptic Interface Problems

Let Ω be an open and bounded domain in Rd(d = 2, 3), and Γ be a continuous interface embedded

in Ω. The interface Γ separates the domain Ω into disjoint regions Ω+ and Ω−, where Ω+ denotes

the exterior domain and Ω− is the interior domain enclosed by Γ. We consider numerical methods

for solving the following elliptic interface problems:

−∇ · (β(x)∇u(x)) = f(x), x ∈ Ω\Γ (1.1)

1



with prescribed jump conditions across the interface Γ:

[u]Γ = u+ − u− = q0, (1.2)

[βun]Γ = β+u+
n − β−u−n = q1, (1.3)

and boundary condition:

u = g on ∂Ω. (1.4)

Here un denotes the normal derivative (∇u) ·nwith n being the unit norm direction of the interface

Γ pointing outward (from Ω− to Ω+). The superscripts + and − stand for the restriction of a

function on Ω+ and Ω−, respectively. The diffusion coefficient β(x) is assumed to be uniformly

positive and smooth on each subdomain, but may be discontinuous across the interface. Because

of that, the solution u is piecewise smooth but the global regularity is low [33, 65, 66].

Numerical methods for elliptic interface problems can be roughly classified into two categories by

using either an interface-fitted (also known as body-fitted or interface conforming) mesh or an un-

fitted mesh (e.g. a uniform Cartesian mesh) in the discretization of the domain. In the unfitted mesh

approach, a popular way to enforce the jump conditions is to modify the finite difference stencils or

the finite element basis near the interface. A lot of numerical methods in this direction have been

proposed such as the immersed boundary method [108], the immersed interface method [78, 79],

immersed finite element methods [49, 57, 72, 84], ghost fluid methods [87], matched interface and

boundary (MIB) methods [134, 140, 147], multiscale finite element methods [33], extended finite

element methods (XFEM) [44, 93, 95], and many others [51, 62, 61, 67, 86, 133]. The jump con-

dition can be also imposed based on the Nitsche’s method [99] by introducing penalty terms across

interfaces, see, for example, the earlier work by Babuška [5], Barrett and Elliott [8], unfitted FEM

by Hansbo and Hansbo [53], hp-discontinuous Galerkin method [92], CutFEM [19, 55], and many

others [9, 19, 20, 21, 53, 54, 55, 71, 127, 128]. The most attractive feature of the unfitted mesh
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approach is the easiness of the mesh generation. Indeed, if the background mesh is Cartesian, there

is no need of meshing which is very convenient, especially when the interface is moving in time.

On the other hand, using unfitted mesh approach, it is difficult to capture the complex geometry of

the interface and to enforce jump conditions across the interface accurately, and the resulting linear

system may not be always symmetric which could cause problems for fast solvers. Furthermore

a rigorous error analysis is difficult. Recent progress on immersed finite element methods can be

found in [52, 142].

In this work, we focus on the interface-fitted mesh approach. Provided a mesh fitted to the interface,

one can use conforming finite element methods and get a symmetric system which can be solved

efficiently by fast solvers such as algebraic multi-grid. Rigorous error analysis is possible. Optimal

a priori estimates of linear finite element is given in [137, 16, 29] and in [80] for high order finite

elements. Recent work using hybridized discontinuous Galerkin (HDG) [68] and weak Galerkin

(WG) [98] method is also based on a shape regular and body-fitted triangulation. The challenge of

this approach is quickly generating an interface-fitted mesh, especially in three dimensions (3D),

which is the topic of this study.

There is a lot of work on the unstructured interface-fitted mesh generation [88, 105, 143]. The

unstructured mesh generator is, however, time consuming as it needs to modify the mesh for the

whole domain, not just near the interface. For example, extensive and non-trivial computational

effort are needed to generate a high quality 3D finite element mesh from biomedical image data or

geological image data etc [4, 35].

We are interested in the semi-structured and body-fitted mesh generation methods [12, 14, 110]

and will develop a simple and effective mesh generation algorithm. As an illustrative example,

to generate an interface-fitted mesh in two dimensions (2D), we start from a uniform Cartesian

mesh with N -grid points, and apply three steps: 1) find all the intersection points, the grid points

near the interface, and add few auxiliary points; 2) generate a Delaunay triangulation of these

3



points; 3) remove the unnecessary triangles and merge the regular meshes away from the interface.

The resulting triangulations can preserve the interface and the maximal angle is bounded by 135◦.

Since the Delaunay triangulations are only on a local region near the interface, the dominant cost is

reduced to O(N1/2 logN). Due to the semi-unstructured mesh and localization near the interface,

some nice properties of structured grids are still preserved such as superconvergence in the energy

norm and fast convergence of algebraic multigrid methods [129].

The main restriction of this approach is the quality of the generated mesh especially in 3D. Most

finite element methods require discretizing a domain into a set of shape regular tetrahedra in three

dimensions. The accuracy of the simulations and the efficiency of the solvers could deteriorate by

the presence of badly-shaped elements. The problematic tetrahedra are so-called slivers, which are

a type of flat tetrahedra without small edges, but with nearly zero volume. Namely, four vertices

of a sliver are almost coplanar. Due to the presence of slivers, three-dimensional mesh generation

is much harder than the two-dimensional case, and removing slivers from a 3D tetrahedral mesh is

one of the major tasks in the field of mesh generation [39, 81, 97].

We propose a new way to solve this difficulty. We choose polyhedral meshes rather than tetrahedral

meshes. Then silvers will be merged into a polyhedron. The shape of the polyhedron or other

tetrahedron could be still degenerate but the maximal angle is bounded uniformly away from π.

Notice that finite element approximation retains accurate if the maximal angle condition [6] is

satisfied. Namely tetrahedra with small volumes are allowed as long as the four vertices are non-

planar [1, 38]. Similar results can be established for polyhedral meshes and theoretical justification

will be reported somewhere else.

Another difficulty is encountered in the implementation. Due to the large number of possible

intersections between the fixed mesh and the interface, a variety of interface-cells are generated

leading to an equally large number of treatments, which could result in complex coding logistics;

see [109, 110].
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We propose an all-in-one solution. The connectedness of intersection points is obtained by the

Delaunay algorithm which is a well developed algorithm in computational geometry and efficient

implementation is available in many software packages. Our mesh generation algorithm in 3D

is similar to the 2D case only different in the step 3: post-processing. The additional work is to

merge tetrahedra into polyhedra. To facilitate the merging, the polyhedra are stored in the form of

faces and the index of the elements to which the faces belong. The resulting mesh retains these

nice properties: the interface is approximately preserved, the maximal angle condition is satisfied,

and cost-efficient. The Delaunay algorithm is only called for points near the interface and thus

the dominated cost is reduced to O(N2/3) which is considerably smaller comparing with O(N)

assembling and solving of the linear algebraic system. The quality and efficiency of our mesh

generation algorithm are balanced and suitable for the finite element simulation. No additional

mesh smoothing process is needed in our algorithm. Of course, adding such a mesh smoothing

process will furthermore improve the quality of the mesh and probably improve the accuracy of

the finite element approximation. However, it will destroy the structure of the grid. In our mesh

generator, the background mesh is fixed. The Delaunay algorithm can be called element by element

and thus local modification is possible if only part of the interface is changed. These features are

important for moving interface problems.

A similar approach was introduced in [50], where the authors introduced the Voronoi diagrams and

Delaunay triangulation of a point set of a surface and more focused on the surface mesh generation.

Our algorithm seems simpler and more suitable for finite element simulation as we shall discuss

below.

Since elements in such interface-fitted meshes are general polyhedra, we shall apply virtual el-

ement methods (VEM) [10, 11], which can be considered as an extension of conforming finite

element methods to polyhedral meshes. The resulting linear algebraic system is symmetric and

positive definite and thus can be solved efficiently using algebraic multigrid solvers. Furthermore,

according to our mesh generation algorithm, we will get the polyhedra with triangular and square

5



faces which will be much easier when assembling the matrices in VEM compared to the original

approach in [11]. Optimal second order of convergence in the L2 and L∞ norms and a super-

convergence of energy norm is observed in several numerical examples. Details are presented in

Chapter 2 and 3.

1.2 Moving Boundary Problems

Many applications in fluids, materials and biology involve multi-connected domains. In multi-

connected problems the boundary between different subdomains can be dealt with moving in-

terfaces such as hot metal forming, mould filling and open channel flows [124, 56, 60, 90]. In

numerical simulations, the major difficulties are the position of the moving interface is not known

a priori and strongly coupled to the solutions of the flow equations.

Numerical methods for moving interface problems based on the representation of the interface

have been developed and they can be roughly classified into two categories. The first category is

interface tracking, in which the interface is explicitly represented. The front tracking methods [132,

48, 124] and the marker and cell ( MAC ) methods [130, 56] belong to this class. Main advantages

of the tracking methods are efficient and accurate representation of the interface and simplicity in

tracking the motion of particles. However, it is difficult for interfaces with complicated geometry

and topological change and particular in three dimensions.

The second category is interface capturing, in which the interface is implicitly embedded in a

scalar field function defined on a fixed mesh, such as a Cartesian grid. Two widely used interface

capturing methods are the volume of fluid method (VOF) [60] and the level set method [101]. Main

advantages of capturing methods are complex interface structures and topological changes which

can be captured quite naturally in two and three dimensions; see, e.g., [22, 101, 120]. However,

there are also a few disadvantages for these Eulerian approaches. For examples, due to the implicit
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representation, capturing methods are usually less accurate and less efficient than tracking method

in terms of both interface representation, which lead to loss of high order accuracy at the moving

front.

The level set method is a popular method in multi-connected domain problems as it is good for

computing curvature driven flow problems [120, 119, 125, 123, 91, 90, 126, 32]. There are different

approaches to solve the level set equation numerically. For instance, finite difference methods such

as forward difference, essentially nonoscillatory (ENO) and weighted essentially non-oscillatory

(WENO) schemes are often used [141, 120, 119, 100, 125]. Also discretization of the level set

equation by means of finite volume schemes [74, 45, 46] or finite element methods [123, 111, 116]

can be found in the literature.

A lot of work has been done for solving partial differential equations with moving interfaces using

finite difference methods. For example, immersed boundary methods(IBM) [94], immersed inter-

face method ( IIM ) [138, 64, 34, 82], a level set/ghost fluid method [89], an embedded boundary

formulation [139], and other methods [144, 117].

In Section 4.1, it introduces the tissue growth problems. We start with static interface problems

with periodic boundary conditions in one dimension using finite element methods. We introduce

another artificial mesh which satisfies the periodic conditions to assemble the matrix. It could

avoid for loop in the code to speed up the performance. Then we use Discontinuous Galerkin

Method Finite Element Method (DG-FEM) [59] to solve the moving interface problems. While

in [103], the approach is transforming the deformed geometry and governing equations to the unit

square and then using finite difference methods. We focuses on the spatial discretization of the

level set equation by DG-FEM combined with a 4th order Runge Kutta time stepping scheme. In

each time step the whole coupled system is solved iteratively. High order accuracy algorithm is

also presented.

In Section 4.2, another model tumor growth simulation is presented. Here we focus on solving the

7



transport equation using 5th order WENO and 3rd order Runge Kutta Methods [115] to simulate

tumor growth problems.. We could use a set of fifteen nearby points to fit a circle to compute the

curvature. And the sign of the curvature depends on the position of the points in the fitted circle. If

one point is still in the tumor interface, the curvature is positive. Otherwise, it is negative. For each

time step, we use harmonic extension for each component of the velocity, which is different from

the EPC methods in [143]. Reinitialization should be taken into consideration if we use signed

distance to compute curvature [143], since the level set function will become very flat or steep near

the zero level set after several time steps. Reinitialization [120, 104] could be proposed to reshape

it to be an signed distance function, which could result in accurate numerical solutions.

8



Chapter 2

Mesh Generation

We present the interface-fitted mesh generation algorithm in two and three dimensions. Both of

them only consist of three steps. Our method is simple and efficient since we just deal with the

points near the interface. We also show some properties of the mesh obtained by our algorithm.

The interface will be approximately recovered in the triangulation generated by the algorithm and

the maximum angle of the triangulation is bounded.

2.1 Interface-fitted Mesh Generator: Two Dimensions

In this section, we introduce our interface-fitted mesh generator in 2D. We first describe the algo-

rithm and then give two examples to illustrate the algorithm. In addition, we prove the generated

mesh will preserve the interface and satisfy the maximal angle condition.
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2.1.1 Algorithm

Let Γ be an interface embedded in a rectangular domain Ω. Assume Γ can be represented by the

zero-level set of a function φ(x), i.e., Γ = {x ∈ Ω : φ(x) = 0}. The interface Γ separates Ω into

subdomains Ω+ := {x ∈ Ω : φ(x) > 0} and Ω− := {x ∈ Ω : φ(x) < 0}. Note that Ω− could have

multiple connected components when Γ consists of two or more closed curves.

One can easily generate a uniform Cartesian mesh Ωh of Ω with a given mesh size h. A vertex

p of Ωh is said to be inside if φ(p) < 0, outside if φ(p) > 0, or on Γ if φ(p) = 0; an edge

(p1, p2) is called a cut edge if φ(p1)φ(p2) < 0; the point which the cut edge intersects with Γ is

called an intersection point; a square element K of Ωh which intersects with the interface Γ, i.e.

|K̄ ∩ Γ| 6= ∅, is called an interface element. We can find interface elements by using one of the

following two rules:

1. There exists at least two vertices p and q with opposite sign, i.e., φ(p)φ(q) < 0;

2. There exists at least two vertices on the interface, namely the value of φ on these vertices is

0.

These two rules could detect all the interface elements in Fig 2.1 except case (3), which could

be avoided by choosing the initial mesh size h small enough. For disconnected interfaces (cases

(6) − (9)), we assume it is described by two level set functions (c.f. Example 2.2), and the in-

tersection points can be found by treating each level set function one by one. See Fig 2.1 for

the illustration. We remark that it is much more difficult to modify stencils or the basis for such

cases. In general, the modified finite difference stencils or modified finite element basis near the

interface is to introduce additional but local degrees of freedom near the interface and then use the

jump conditions to eliminate these degree of freedom by solving a small linear system element-

wise [135, 2, 13, 131, 43, 70, 96]. In almost all of these work, it is assumed the intersection meets

the edges of an interface element at no more than two intersections and intersects at different edges
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for one element, c.f. [142, 57, 86, 85]. If this condition is violated, such as those cases (6) − (9)

in Fig 2.1, the local system will be much more involved since it depends how the interface cuts the

elements.

We define the interface points as the collection of intersection points, vertices of interface elements,

and some auxiliary points explained below. When the intersection points are diagonal, we need to

add the midpoints of corresponding elements, which are called auxiliary points.

!!

!!!!!!(6)!

!!!!!!!(2)!!!!!!!!(1)!

!!!!!!!(4)! !!!!!!!(5)!

!!!!!!!!!(3)!

!!!!!!(9)!!!!!!!!(7)! !!!!!!!(8)!

Figure 2.1: Example of interface elements: (1)− (5) with one level set function and (6)− (9) with
two level set functions

Recall that a Delaunay triangulation for a set points P in a plane is a triangulation of the convex set

of P such that no point in P is inside the circumcircle of any triangle in this triangulation [40, 77].

Our 2D interface-fitted mesh generation algorithm is described as follows:
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Algorithm 1 2D Interface-fitted Mesh Generation Algorithm
Input: Grid size, h, level set function, φ(x) and square domain, Ω;
Output: An interface-fitted mesh of Ω;
1. Find all the interface points.
2. Construct a Delaunay triangulation of these points.
3. Remove triangles not in the interface elements and merge all uncut elements.

2.1.2 Examples

We give two examples to explain Algorithm 1 in detail. The first example shows the simple case

when the interface is a circle. The second example illustrates a more complex case when the

interface is unconnected and some interface elements are divided into three parts.

EXAMPLE 2.1 (A circle). Consider the domain Ω = (−1, 1)2 and a circle interface Γ represented

by the level set function φ(x, y) = x2 + y2 − r2, with r = 0.5. The interface elements are shown

in Fig 2.2.

Figure 2.2: Cartesian mesh Ω and a circle interface Γ. The grayed elements are interface elements.

First, we construct a point set P which includes the intersection points between cut edges and Γ,

the vertices of all interface elements, and some auxiliary points. See Fig. 2.3(a) for the illustration.

Here we use the bisection method to compute the intersection points within the machine precision

tolerance.
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Then we construct a Delaunay triangulation based on the point set P . In MATLAB, we just call

DT = delaunay(x,y) (see Fig. 2.3(b)).

In the last step, we keep the triangles in interface elements and merge the uncut elements to get the

final interface-fitted semi-unstructured mesh in Fig. 2.3(c)-(d).

(a) Step 1: Find all the interface points. (b) Step 2: a Delaunay triangulation of inter-
face points.

(c) Step 3: Remove triangles not in the inter-
face elements.

(d) Step 3: Merge all uncut elements to get an
interface-fitted mesh.

Figure 2.3: Three steps to generate an interface-fitted mesh.

EXAMPLE 2.2 (Two circles). Consider the domain Ω = (−1, 1)2 and the unconnected interface Γ
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represented by the level set function

φ(x, y) = min
{

(x+ r)2 + y2 − (1.1r)2, (x− r)2 + y2 − (0.8r)2
}
,

with r = 0.4. We can apply the same algorithm and obtain the mesh in Fig 2.4. The only difference

is when computing intersection points, we compute them for each level set function separately. We

use this example to show our algorithm can handle unconnected interfaces.

(a) Interface points. (b) The interface-fitted mesh when the inter-
face is two disjoint circles.

Figure 2.4: Interface points and interface-fitted meshes when the interface is unconnected.

2.1.3 Properties

We explore properties of the mesh obtained in Algorithm 1. A triangle is called an interior element

when the center point of the triangle is inside. The interface Γ could be approximated by the

boundary of those interior elements and can be extracted easily. The obtained discrete interface is

denoted by Γh.

Proposition 2.1. The interface will be approximately recovered in the triangulation generated by

Algorithm 1. More precisely, we have dist(Γh,Γ) . h2 provided Γ is smooth enough and h is
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small enough.

Proof. We shall use another characterization of Delaunay triangulations: a Delaunay triangulation

is the projection of the lower convex hull of points lifted to the paraboloid f(~x) = ‖~x‖2 [18, 28,

42].

The function values of f(~x) on the four vertices of a square will be on a plane. As the function f is

strictly convex, the function value of any intersection points which are different from the vertices

of the square will be below this plane. Then the lower convex hull when lifted to R3 will always

connect the intersection points. Thus, the interface will be recovered under this circumstance.

If there are two diagonal vertices of a square on the interface element in P (see Fig. 2.5 (c)), then

the Delaunay triangulation on this square is not unique. Using either diagonal of the square is a

valid Delaunay triangulation (see Fig. 2.5(a) and (b)). Therefore, we introduce the center of this

square as an auxiliary point to make sure the interface is preserved (see Fig. 2.5 (d)).

In both cases, Γh contains a piecewise affine approximation of Γ with nodes on the interface and

thus the distance is in the order of Ch2 with constant C depends on the curvature of Γ.

(c)$(a)$ (b)$ (d)$

Figure 2.5: Add one auxiliary point when two intersection points are diagonal.

Proposition 2.2. Assume the mesh size h is small enough such that the interior of each edge has at

most one intersection point. Then the maximal angle of the triangulation generated by Algorithm 1

is bounded by 135◦.

Proof. Let C be a square with vertices A,B,C,D which intersects with the interface, S the points

set including the vertices of C and the intersection points, and DT the Delaunay triangulation of
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S.

The vertex of every angle in DT can be a vertex of the square or an intersection point. The angle at

a square vertex must be bounded by 90◦ as the two rays of the angle is inside the square. Next, let

us prove that the angle at an intersection point must be bounded by 135◦. Let E be an intersection

point on edge AB, F and G are the other two points of angle ∠FEG and G is on the right of F

(see Fig. 2.6). Here F or G can be an intersection point or a vertex of the square.

By our assumption, F or G cannot be in the interior of edge AB and F and G cannot be in the

interior of edge CD simultaneously. So either F is on the edge AD or G is on BC. Without

loss of generality, we assume G is on BC. Then the angle ∠FCG ≥ 45◦ since F is on the

left of the diagonal AC. Note that the triangle 4FCG may not be in the DT . Nevertheless, if

∠FEG > 135◦, then ∠FEG + ∠FCG > 180◦ which means the circumcircle of ∆FEG must

include vertices C violating the Delaunay property. So ∠FEG must be bounded by 135◦.

A

C

B
E

D

G
F

A

C

B
E

D

G

F

Figure 2.6: The angle ∠FEG at the intersection point E.

Let N be the number of nodes. Since we restrict the Delaunay triangulation on a local region near

the interface, the complexity of generating a Delaunay triangulation will be O(N1/2 logN) in 2D

which can be ignored compared with the O(N) complexity of assembling the matrix and solving

the matrix equation. Such localization will make it possible to track the moving interface, which

will be discussed in Chapter 4.

The overall complexity of our mesh generation algorithm is: c1N + c2N
1/2 logN since we need to

compute the sign of the level set function at N vertices. In practice, however, the constant c1 � c2
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and the time scales like O(N1/2).

2.2 Interface-fitted Mesh Generator: Three Dimensions

In this section, we present a novel mesh generation algorithm to generate an interface-fitted mesh

for a given smooth interface in three dimensions. We begin with a brief review on the difficulty of

3D mesh generation and then introduce our algorithm to overcome this difficulty.

2.2.1 Main Difficulty

Tetrahedral meshes are frequently used in classical finite element methods. The size and shape of

the tetrahedra influence the accuracy of finite element solutions [118]. The quality of the tetrahe-

dron’s shape can be measured by using the aspect ratio or the radius-edge ratio. The aspect ratio

of a tetrahedron is usually defined as its circumradius divided by its inradius and the radius-edge

ratio is the circumradius divided by the shortest edge length of the tetrahedron. The aspect ratio or

radius-edge ratio of a mesh is the largest corresponding ratio of all of its tetrahedral elements. If

the aspect ratio or radius-edge ratio of a mesh are small, we called the mesh well-shaped [40, 81].

Ideally we expect each element in the mesh is shape regular. But violation is allowed as long as

the so-called maximal angle condition is satisfied [1, 6, 17, 38, 75].

The difficulty of mesh generation in three dimensions is due to the existence of slivers. Slivers

have small radius-edge ratio, but large aspect ratio, which are considered as bad-shaped tetrahedral

elements. The results of the accuracy and convergence of finite element methods may not hold

anymore in the existence of slivers which violates the maximal angle condition. A lot of methods

have been developed to remove slivers; see e.g. [30, 31, 41]. Sliver removal methods, however,

involve the addition and rearrangement of points and thus destroy the semi-structure of the mesh.
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We shall introduce polyhedral meshes near the interface to remove slivers. When we get the

interface elements (which is defined similarly to 2D and will be made clear later) and intersection

points (the definition is the same as in 2D), we can divide interface elements into polyhedra instead

of tetrahedra. Slivers will be eliminated and part of their faces will become the faces of polyhedral

elements. For example, when the interface cuts across one element with four almost coplanar

intersection points, if we divide the element into tetrahedra, then the four intersection points could

form a sliver (see Fig. 2.7). If we use a polyhedral mesh, however, the two well-shaped triangles

will become the boundary of two polyhedra.

1

Figure 2.7: Sliver exists (left) and is removed when the element is divided into polyhedra (right).

2.2.2 Algorithm

We write down the algorithm and then explain the details step by step.

Algorithm 2 3D Interface-fitted Mesh Generation Algorithm
Input: Grid size h, level set function φ(x), and a cubic domain Ω;
Output: Interface-fitted mesh Ω;
1. Find all the interface points.
2. Construct the Delaunay mesh DT on these points.
3. Post processing: remove unnecessary tetrahedra in DT , merge tetrahedra into polyhedra, and
merge with uncut elements.

Given a cubic domain Ω which includes the interface Γ described as the zero level set of φ, and

a mesh size h, we first generate the uniform Cartesian mesh of Ω with size h. The cubes in the
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Cartesian mesh in domain Ω could be classified into exterior, interior and interface elements by

checking the sign of the centers of the cubes. We label them by 1, −1 and 0 respectively.

We define interface elements as elements satisfying one of the following rules:

1. There exists at least two vertices p and q with opposite sign, namely φ(p)φ(q) < 0;

2. There exists at least three vertices on the interface.

All interface elements will form a hexahedral mesh of a layer of the interface (see Fig. 2.8). All

boundary faces of this hexahedral mesh are extracted and will be used as faces of the polyhedral

mesh for the interface. Note that these boundary faces are square faces.

1

Figure 2.8: The surface of the interface is embedded in the hexahedron.

In step 1, similarly to two dimensions, we find cut edges and intersection points, and add auxiliary

points if necessary. The criterion of adding auxiliary points is the same as 2D: if a square face

contains two opposite vertices on the interface, we will add the center point of this square face as

the auxiliary point.
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In step 2, we generate a Delaunay mesh DT of P , the set of interface points, whose definition is

the same as that in two dimensions.

In step 3, we post-process DT to get a polyhedral mesh near the interface and merge all uncut

cubic elements away from the interface.

Similar to the 2D case, we only keep tetrahedra inside the interface elements, which might contain

slivers, and remove tetrahedra not in the interface elements which can be easily marked by checking

the center of tetrahedra in DT .

Now we have a tetrahedral mesh of all the interface elements, and we still call this tetrahedral

mesh as DT for convenience. We could split the tetrahedron in DT into two categories: exterior

tetrahedral set DTE and interior tetrahedral set DTI . For a tetrahedron in DT , if the minimum

of the sign function of the φ value of the four vertex nodes is −1, we put it into DTI , otherwise,

we add it into DTE . The interface Γ could be extracted using the boundary faces of DTI and the

normal direction of the extracted surface mesh points outside of the interface. Tetrahedra in each

category will be merged into polyhedra element by element.

Instead of storing all vertices of a polyhedron, we shall store the polyhedral mesh by the data

structure face and face2elem. The array face records indices of three (triangular face) or four

(square face) vertices of all faces. The direction of all faces follows the right-hand side rule, that

is, the normal direction of each face is outwards. The array face2elem records the index of the

polyhedron to which the faces belong.

Fig. 2.9 is a simple example. Given a unit cube with three intersection points, it is divided into two

polyhedra. Each polyhedron is stored by faces and elements to which they belong. The values of

face and face2elem in Fig. 2.9 are shown in Table 2.1.

Notice that some face, e.g., [3 7 8 4] is stored as a square instead of two triangles since this face

is shared by another cube which is not included as an interface element. Those square faces are
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Figure 2.9: An interface element is divided into two polyhedra.

boundary faces of the hexahedral mesh which consists of all interface elements. All such square

faces have been extracted when we collect all interface elements.

Every interface element is divided into several polyhedra according to our method. For each poly-

hedron, we need to assign a unique index. This index map from face to element, face2elem, can

be generated in two stages. In most cases, the interface element is just divided into two polyhedra.

In the first stage, for the interior part, we use the original interface element index j and for the

exterior part, we append a new index j + N , where N is the number of elements in the initial

Cartesian grid. In some cases, however, one cube could be divided into three or more polyhedra

(see the three cases in Fig. 2.10). In the second stage, we use Euler’s formula to check the connect-

edness of the obtained polyhedral mesh. If a disconnected polyhedron is found, we group faces

into different connected components which is equivalent to dividing the original polyhedron into

more polyhedra. Thanks to our data structure, we only need to change face2elem when adding

and storing the new polyhedra.

In a nutshell, we could get a polyhedral mesh near the interface by storing the triangular and

square faces. The final interface-fitted mesh consists of polyhedra near the interface and uncut

(cube) elements away from the interface.
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Figure 2.10: An cube is divided into three parts.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

2 9 10
2 11 9
2 10 11

11 10 9
11 1 3
5 1 11
3 4 9
3 9 11
9 4 8
5 10 6
5 11 10

10 8 6
10 9 8
11 9 10
1 5 7 3
5 6 8 7
3 7 8 4

1 2 3 4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2

1

Table 2.1: The face array (left) and face2elem (right) for two polyhedra in Fig. 2.9.

2.2.3 Properties

The generated Delaunay triangulation will recover the interface by the lifting method. Namely

Proposition 2.1 also holds for the 3D case since the characterization of a Delaunay triangulation

as the projection of the lower convex hull holds in general dimensions. We formally summarize

below.

Proposition 2.3. The interface will be approximately recovered in the triangulation generated by

Algorithm 2. More precisely, we have dist(Γh,Γ) . h2 provided Γ is smooth enough and h is

small enough.

Next we shall show the maximum angle of the surface mesh is uniformly bounded by 144◦.

In [109], the author considers 12 types of subdivision of boundary cells (not necessarily satisfying

the Delaunay property) in three dimensions and shows the same bound.

Proposition 2.4. The maximal angle of the triangular faces of the polyhedral mesh is bounded by
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144◦.

Proof. For simplicity, let C be a unit cube which intersects with the interface, and S the set of

points including the eight cube vertices and the intersection points. Let DT be the 3D Delaunay

triangulation on S.

For a 3D Delaunay triangulation, it satisfies the Delaunay empty sphere property such that no

point in S is inside the circumsphere of any tetrahedron of DT . Given a tetrahedron T in DT

which has a triangular face τ on one (denoted as F) of the six square faces of C. Since, on the

plane spanned by F , the circumcircle of τ is also on the circumsphere of T , then by Delaunay

empty sphere property, there is no point of S on F which is inside the circumcircle of τ , namely,

the boundary triangulation of DT on F is also Delaunay, and thus the maximal angle of these

triangles is bounded by 135◦ by Proposition 2.2.

Next we only need to consider the interface triangles with three vertices on the interface. For these

interface triangles, their angles can be divided into 16 cases (see Fig. 2.11).

In case (1) to (15), one can find the upper bound of the angle by calculus analysis. Here we

take the case (1) as an example to show how to find the upper bound, see Fig. 2.11 (1). Let vLA

be the vector from point L to point A and |vLA| the length of vLA. Similarly, we have vectors

vLH , vLN , vNA, vNH , then

cos∠ALH =
vLA · vLH
|vLA||vLH |

=
(vLN + vNA) · (vLN + vNH)√
|vLN |2 + |vNA|2

√
|vLN |2 + |vNH |2

=
|vLN |2√

|vLN |2 + |vNA|2
√
|vLN |2 + |vNH |2

≥ 0.

When |vLN | = 0, cos∠ALH reaches the minimum value zero, namely, the maximum of ∠ALH

is 90◦. By the similar method, one can get the upper bounds for other cases except case (16) in

Fig. 2.11.
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Figure 2.11: Different angle cases in the interface triangles.
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In case (16), provided ∆ALG is an interface triangle and ∠ALG is the angle bigger than 144◦. By

Algorithm 2, there must exist a vertex of C, for example, vertex Q and ALGQ is a tetrahedron in

the Delaunay triangulation. Let (1 − h1, 0, 0), (1, 0, h2) and (1, h3, 1) be the coordinates of A,L

and H , respectively. Then one can get the circumcenter O and circumradius r of the circumsphere

of ALGQ, then construct function f(h1, h2, h3) := r − |P − O|. By the assumption ∠ALG >

144◦ and the 2D Delaunay empty circle property on the boundary face of C, one can show that

f(h1, h2, h3) > 0, namely P is inside of the circumsphere of tetrahedronALGQ, which contradicts

with the Delaunay empty sphere property.

Remark 2.5. For the proof of the 3D angle case (16), we use the region plot function in SageMath

[36] to show f(h1, h2, h3) > 0 under the given assumptions.

Remark 2.6. We emphasize that the 16 cases plotted above are used to prove the maximal angle

condition. In the algorithm, we get the mesh by directly calling Delaunay algorithm with all

interface points as input.

Again, we restrict the Delaunay triangulations on a local region near the interface. The overall

complexity of our mesh generation algorithm is: c1N + c2N
2/3 logN since we need to compute

the sign of the level set function atN vertices with c1 � c2. The meshing time scales likeO(N2/3).

See Section 3.4 for numerical results.

In summary, our mesh generator is simple and fast. The generated mesh is semi-unstructured. The

interface is approximately recovered, and the maximum angle of the surface mesh is uniformly

bounded.
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Chapter 3

Finite Element Methods for Elliptic

Interface Problems

We start with Sobolev spaces and the weak formulation of the elliptic interface problem (1.1)-

(1.4). We then introduce the linear virtual element methods and discuss the implementation detail.

Finally we present several numerical results within the 3D setting for elliptic interface problems

with jump conditions across the interface.

3.1 Sobolev Spaces and Weak Formulation

Let D denote a bounded and open set in Rd, d = 2, 3 and Wm,p(D) be the usual Sobolev space

with standard norm ‖·‖m,p,D and semi-norm |·|m,p,D. In particular, for p = 2, we denoteHm(D) =

Wm,p(D) and the corresponding norm and semi-norm by ‖·‖m,D = ‖·‖m,p,D and |·|m,D = |·|m,p,D,

respectively. The space H1
0 (D) = {v ∈ H1(D) : v|∂D = 0} is the subspace of H1(D) with

zero trace. Let (·, ·)D and 〈·, ·〉∂D denote the standard L2 inner products of L2(D) and L2(∂D)

respectively.
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Domains are considered as open sets. Define Ω̃ = Ω− ∪ Ω+ and notice that Ω = Ω− ∪ Γ ∪ Ω+ =

Ω̃ ∪ Γ. For v ∈ Wm,p(Ω̃), that is, v|Ω− ∈ Wm,p(Ω−) and v|Ω+ ∈ Wm,p(Ω+), v may not be in

Wm,p(Ω) due to the jump across the interface Γ.

To derive the weak formulation of elliptic interface problems (1.1)-(1.4), we multiply (1.1) with a

test function v ∈ H1
0 (Ω) and apply integration by parts. To address the jump of function values,

we chose a w− ∈ H1(Ω−) with w− = q0 on ∂Ω−. With a slight abuse of notation, the zero

extension of w− to H1(Ω̃) is still denoted by w−. The model (1.1)-(1.4) is equivalent to: find

p ∈ H1
g (Ω) = {v ∈ H1(Ω) : v|∂Ω = g} such that

(β∇p,∇v)Ω = (f, v)Ω − 〈q1, v〉Γ + (β∇w−,∇v)Ω− , ∀v ∈ H1
0 (Ω), (3.1)

and set u = p− w−. It is easy to show that u solves equations (1.1)-(1.4). Even though the choice

of w− is not unique, the solution u does not depend on the choice of w− by the maximal principle.

The flux jump [βun]Γ = q1 is imposed in H−1/2(Γ) and the jump of function value is imposed in

H1/2(Γ).

3.2 Finite Element Methods in 2D

In this section, we present the numerical analysis of the standard finite element methods on the

two-dimension interface-fitted mesh generated by the Algorithm 1.

For simplicity of exposition, we assume the function value jump condition [u]Γ = 0. Let Th be an

interface-fitted triangular mesh with maximal angles uniformly bounded away from π. For each

τ ∈ Th, let hτ denote its diameter and h = maxτ∈Th hτ . The vertices on Γ forms a polygon Γh

approximation of Γ. The polygon also splits Ω into two subdomains, Ω+
h and Ω−h , which are the

approximations of Ω+ and Ω−, respectively. Each triangle τ ∈ Th is in either Ω+
h or Ω−h and has at

most two vertices on Γ.
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Let Vh be the linear finite element space on Th. The linear finite element approximation of (3.1) is

as follows: find uh ∈ Vh ∩H1
0 (Ω) such that:

(βh∇uh,∇vh)Ω = (f, vh)Ω − 〈q̄1, v〉Γh
, ∀vh ∈ Vh ∩H1

0 (Ω), (3.2)

where q̄1 = q1(P0(x)) and P0(x) is a well defined projection from Γh to Γ (c.f. [129]).

We can get the nearly optimal L2-norm and H1-norm estimates as the results in [136, 29].

THEOREM 3.1. Let u be the solution of (3.1) and uh be the linear finite element approximation in

(3.2) based on the two-dimension interface-fitted mesh generated by the Algorithm 1. We have

‖β1/2(∇u−∇uh)‖0,Ω . h| log h|1/2(‖f‖0,Ω + ‖q1‖2,Γ), (3.3)

‖u− uh‖0,Ω . h2| log h|(‖f‖0,Ω + ‖q1‖2,Γ). (3.4)

Proof. For finite element approximation, we have the Ceá lemma,

‖β1/2(∇u−∇uh)‖0,Ω ≤ ‖β1/2(∇u−∇uI)‖0,Ω.

Then the energy error estimate is reduced to the interpolation error estimate. In [6], the authors

proved that the local interpolation error estimate ‖(∇u−∇uI)‖0,τ . h‖u‖2,τ provided the maxi-

mal angle condition is satisfied which has been verified for the interface-fitted mesh generated by

Algorithm 1; see Proposition 2.2. Another difficulty is the mis-match of the curved interface and

the discrete interface. Then follow the proof in [136, 29], and replace the mesh regular condition

there by the maximal condition, we obtain the desired results.

A mesh is O(h2σ) irregular means the total area of all adjacent triangle pairs in Th which do not

form an O(h2) approximate parallelogram is O(h2σ). For the interface-fitted mesh generated by
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Algorithm 1, only the adjacent triangle pairs near the interface is not O(h2) approximate parallel-

ogram and other adjacent triangle pairs away from the interface can exactly form a parallelogram.

That is σ = 0.5 for the mesh generated by Algorithm 1.

Then follow the proof procedure in [129], we can also prove the following superconvergence

result.

THEOREM 3.2. If u ∈ H1(Ω) ∩H3(Ω̃) ∩W 2,∞ and Γ is of class C2, then for all vh ∈ Vh,

‖β1/2
h (∇uh −∇uI)‖0,Ω . h3/2

(
‖u‖3,Ω̃ + ‖u‖2,∞,Ω̃ + ‖u‖2,∞,Ω̃ + ‖q1‖0,∞,Γ

)
. (3.5)

Let hmin be the minimum element size of Th, by the discrete embedding result,

‖vh‖0,∞,Ω . | log hmin|1/2|vh|1,Ω, for all vh ∈ Vh ∩H1
0 (Ω), (3.6)

we have the error estimate for the maximal norm estimate.

Corollary 3.3. Assume the same hypothesis in Theorem 3.2. Then

‖β1/2
h (∇uh −∇uI)‖0,∞,Ω . | log hmin|1/2

[
h3/2(‖u‖3,Ω̃ + ‖u‖2,∞,Ω̃

+‖u‖2,∞,Ω̃ + ‖q1‖0,∞,Γ)
]

3.3 Virtual Element Methods in 3D

In this section, we focus on solving three-dimensional elliptic equations by the virtual element

methods (VEM) developed by Brezzi’s group [10, 11].

Let Th be the interface-fitted polyhedral mesh generated by the algorithm in Section 2.2. Recall

that elements near the interface Γ are polyhedra with triangular or square faces and a uniform cubic

mesh away from the interface. We could not use the classical finite element methods which are
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not well-defined on polyhedra. Instead, we shall apply virtual element methods [10] which can be

thought of as conforming finite element spaces defined on polyhedral meshes.

A local finite-dimensional vector space Vh(E) for a polyhedron E ∈ Th is defined as

Vh(E) := {v ∈ H1(E) : ∆v|E = 0, v|∂E is continuous and

piecewise linear (on triangles) or bilinear (on squares)}.

As a piecewise linear or bilinear function will be uniquely determined by its value on vertices,

dimVh(E) = nvE , where nvE is the number of vertices of E.

We define the global virtual element space

Vh = {vh ∈ H1(Ω) : vh|E ∈ Vh(E) for all E ∈ Ωh}.

LetN (Th) be the set of vertices of mesh Th andN = |N (Th)| be the number of vertices. We define

the operator dofi from Vh to R as dofi(vh) = vh(xi), for a vertex xi ∈ N (Th). The canonical basis

{φ1, · · · , φN} ⊂ Vh is chosen as dofi(φj) = δij, i, j = 1, · · · , N . And the nodal interpolation

Ih : C(Ω̄) → Vh is defined as Ihu =
∑N

i=1 u(xi)φi and denoted by uI = Ihu. The basis does not

need to be written explicitly which is the main difference between classical finite element methods

and virtual element methods.

As mentioned before, we could extract an approximate surface Γh which splits Ω into two subdo-

mains: Ω−h and Ω+
h , which are the approximation of Ω− and Ω+, respectively. Similarly, βh|τ = β+

for all τ ∈ Ω+
h and βh|τ = β− for all τ ∈ Ω−h .

Let w−I be the nodal interpolation of w− in Vh. A simple construction is one that: interpolates q0 on

Γh and sets other coefficients to zero. The linear virtual element approximation of (3.1) is: finding

31



ph ∈ Vh ∩H1
g (Ω) such that:

(βh∇ph,∇vh)Ω = (f, vh)Ω − 〈q1, vh〉Γ + (βh∇w−h ,∇vh)Ω− , ∀vh ∈ Vh ∩H1
0 (Ω)

and taking uh = ph − w−h . Suppose ph =
∑N

j=1 pjφj , w
−
h =

∑N
j=1wjφj , by linearity, we have for

i ∈ 1, · · · , N ,

N∑
j=1

(βh∇φj,∇φi)Ωpj = (f, φi)Ω − 〈q1, φi〉Γ +
N∑
j=1

(βh∇φj,∇φi)Ω−wj. (3.7)

We define the matrix (A−h )ij = (β−h∇φj,∇φi)Ω−
h

, (A+
h )ij = (β+

h∇φj,∇φi)Ω+
h

and (Ah)ij =

(βh∇φj,∇φi)Ωh
in Ωh. Then Ah = A−h + A+

h . Define the vector b = (b1, · · · , bN)t by bi =

(f, φi)Ω − 〈q1, φi〉Γ. Equation (3.7) is written in the matrix form as

Ahph = b + A−hwh, (3.8)

where Ah and A−h are N ×N matrices, ph = (p1
h, · · · , pNh )t and wh = (w1, · · · , wN)t. Since the

coefficient β is a positive constant, the matrices Ah and A−h are symmetric and positive definite.

The algebraic system (3.8) could be solved stably and efficiently by using algebraic multigrid

methods.

For finite element methods, it suffices to compute the local stiffness matrix in each element and

then, based on that, the matrices A+
h ,A

−
h are assembled by summing the contribution from each

element. Therefore, the major task is to compute (∇φj,∇φi)E .

To do so, we introduce some projection operators at first. For each polyhedron E, the operator

Π∇ : Vh(E)→ P1(E) is defined as the H1 projection to P1(E) space, i.e.,:

(∇pk,∇Π∇vh)E = (∇pk,∇vh)E for all pk ∈ P1(E),
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where P1(E) is the space of linear polynomials. As it can be easily seen that the above condition

defines Π∇vh only up to a constant. This can be fixed by prescribing a projection operator onto

constants P0 : Vh(E)→ P0(E) and requiring

P0(Π∇vh − vh) = 0.

One such choice is P0vh =
∑nv

E
i=1 vh(xi)/n

v
E =

∑nv
E
i=1 dofi(vh)/n

v
E .

Using the projection Π∇, we write the basis function φi ∈ Vh(E) as Π∇φi + (I − Π∇)φi and split

the entry of the local stiffness matrix as

(∇Π∇φi,∇Π∇φj)E + (∇(I − Π∇)φi,∇(I − Π∇)φj)E.

Again the second term is not computable since the basis φi is not known point-wise. Instead we

replace by a so-called stabilization term SE(·, ·)

(∇Π∇φi,∇Π∇φj)E + SE((I − Π∇)φi, (I − Π∇)φj).

Let hE be |E|1/3, where |E| means the volume of E. We use a scaled l2 inner product in the

stabilization term

SE((I − Π∇)φi, (I − Π∇)φj) = hE

nv
E∑

r=1

dofr((I − Π∇)φi) dofr((I − Π∇)φj)

in order to satisfy the assumption of SE

c1(∇v,∇v) ≤ SE(v, v) ≤ c2(∇v,∇v), ∀v ∈ Vh(E) and Π∇v = 0

for some positive constants c1 and c2 independent ofE and hE . The explicit expression of the local

33



stiffness matrix of the virtual element method is:

(KE
h )ij := (∇Π∇φi,∇Π∇φj)E + hE

nv
E∑

r=1

dofr((I − Π∇)φi) dofr((I − Π∇)φj).

We now give concrete formulae on the computation of the matrix representation of the operator

Π∇. Let xE = (xE, yE, zE) be the center of E, i.e. xE = 1/nvE
∑nv

E
i=1 xi. We choose a scaled

monomial basis of P1(E) as m1 = 1,m2 = (x−xE)/hE,m3 = (y− yE)/hE,m4 = (z− zE)/hE .

Let G4×4 be defined as

G :=



P0m1 P0m2 · · · P0m4

0 (∇m2,∇m2)0,E · · · (∇m4,∇m2)0,E

...
... . . . ...

0 (∇m2,∇m4)0,E · · · (∇m4,∇m4)0,E


=

1 0

0 hEI3



where I3 is a 3× 3 identity matrix.

Let B4×nv
E

be a matrix defined as:

B :=



P0φ1 · · · P0φnv
E

(∇m2,∇φ1)E · · · (∇m2,∇φnv
E

)E
... . . . ...

(∇m4,∇φ1)E · · · (∇m4,∇φnv
E

)E


.

The formulae for the first row of B is P0φ1 = P0φ2 = . . . = P0φnv
E

= 1/nvE . For the other

components (∇mj,∇φi)E, j = 2, 3, 4, we have (∇mj,∇φi)E = −
∫
E

∆mjφi +
∫
∂E

∂mj

∂n
φi by

integration by parts. The first term is zero as ∆mj = 0 for linear polynomials. We only need to

compute the second term. Due to our data structure, all the faces on the ∂E are either triangles or
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squares. Then

∫
∂E

∂mj

∂n
φi =

∑
i∈triangular facef n

j
f |f |

3hE
+

∑
i∈square facef n

j
f |f |

4hE
, (3.9)

where nf = (nxf , n
y
f , n

z
f ) = (n2

f , n
3
f , n

4
f ) is an outward unit normal direction on each face f and

|f | is the area for each face f .

Remark 3.4. Using our mesh generation algorithm in Section 2.2, we store the polyhedron in

the form of either triangles or squares which leads to the simple formula (3.9). When the faces

are general polygons, additional projection operators are needed in order to compute the integral∫
f

∂mj

∂n
φi (see [10, 11]). �

To compute the stabilization term, we need one more matrix Dnv
E×4

D :=

(
dofi(mj)

)
= h−1

E



hE x1 − xE y1 − yE z1 − zE

hE x2 − xE y2 − yE y2 − zE

· · · · · · · · · · · ·

hE xnv
E
− xE ynv

E
− yE znv

E
− zE,


where (xi, yi, zi), i = 1, · · · , nvE are vertices in each polyhedron E.

By definition, Π∇vh =
∑4

α=1 s
αmα and the coefficients (sα) is determined by the following linear

systems

(∇mα,∇(Π∇vh − vh))E = 0 α = 1, . . . , 4.

The matrix representation of Π∇ : Vh(E)→ P1(E) relative to the basis (mα) is Π∇ = G−1B.

We will also need the matrix representation of Π∇ in the canonical basis {φi}. Let Π∇φi =∑nv
E
j=1 dofj(Π

∇φi)φj, i = 1, · · · , nvE , then the matrix representation Π∇∗ of the operator Π∇ :

Vh(E)→ Vh(E) in the canonical basis is given by Π∇∗ = DG−1B = DΠ∇.
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Finally the matrix formulation of KE
h could be written as

KE
h = [Π∇]T G̃Π∇ + hE[I −Π∇∗ ]T [I −Π∇∗ ],

where G̃ is the same with G except that the elements in the first row are all zero.

For the first term of bi in (3.8), we approximate f by a piecewise constant and approximate

(f, φi)Ω =
∑
E∈Ωh

(f, φi)E ≈
∑
E∈Ωh

|E|f(xE, yE, zE)/nvE.

The second term of bi could be computed by Gauss quadrature on surface mesh Γh.

Remark 3.5. An abstract error estimate of VEM has been given in [10]. With a type of Ceá lemma,

the convergence analysis is reduced to the interpolation error estimate |u − uI |1 and |u − uπ|1,E ,

where uI is the nodal interpolation and uπ is a local approximation of u. Notice that uI ∈ Vh

is continuous but uπ is most likely discontinuous. To obtain optimal order of the interpolation

and approximation error, the authors in [10] further assume the shape-regular condition: there

exists a γ > 0 such that each domain E is star-shaped with respect to a ball of radius ρ ≥ γhE ,

where hE = diam(E). This shape regularity assumption will rule out elements generated by our

algorithm.

As we mentioned before, for linear finite element space defined on triangles, a refined analysis

shows that the optimal first order interpolation error estimate still holds if the maximum angle

is uniformly bounded away from π as h → 0 [6]. Such angle condition is generalized to three

dimensions, and to high order elements in [76, 3, 37]. Generalization to polyhedron, however, is

unknown and under investigation.
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3.4 Numerical Experiments

In this section, we present numerical results for the elliptic interface problems in three dimensions.

We implement mesh generation and VEM based on the MATLABr package iFEM [25]. We also

solve the algebraic system by an algebraic multigrid (AMG) solver implemented in iFEM [25]. We

start with a simple spherical interface and then consider more complex geometric shapes, including

two spheres, an orthocircle shape and 12 intersecting spheres. We shall report the following errors:

‖uI − uh‖A =
(
‖β1/2

h ∇(u−I − u
−
h )‖2

Ω−
h

+ ‖β1/2
h ∇(u+

I − u
+
h )‖2

Ω+
h

)1/2

,

‖uI − uh‖∞ = max
{
‖u−I − u

−
h ‖∞,Ω−

h
, ‖u+

I − u
+
h ‖∞,Ω+

h

}
,

‖uI − uh‖0,h = h3/2

 ∑
xi∈N (Ω−

h )

(u−I (xi)− u−h (xi))
2 +

∑
xi∈N (Ω+

h )

(u+
I (xi)− u+

h (xi))
2

1/2

,

where uh is the numerical solution obtained by the linear virtual element methods; u+
I and u−I are

the nodal interpolation of the exact solution u in Ω+
h and Ω−h respectively. Note that the squared

energy norm ‖uI−uh‖2
A can be computed by (u−I −u

−
h )TA−h (u−I −u

−
h )+(u+

I −u
+
h )TA+

h (u+
I −u

+
h )

and ‖ · ‖0,h is a good approximation of L2-norm. The rate is obtained by the least square fitting of

the errors in the log log scale.

EXAMPLE 3.1 (One sphere). The domain Ω is (−1, 1)3 and the interface is defined by φ(x, y, z) =

x2+y2+z2−r2 with radius r = 0.75. The coefficient β is piecewise constant. The analytic solution

is given by u+ = 10(x + y + z) and u− = 5 exp(x2 + y2 + z2) + 20. In this case, the solution is

discontinuous and the flux jump across the interface is also non-homogenous.

Fig. 3.1 shows the surface mesh extracted from the volume mesh generated by our algorithm for the

spherical interface. The maximal interior angle of triangular faces on the surface mesh is bounded

by 112.8104◦. Tables 3.1 and 3.2 show the error for β− = 1, β+ = 10 and β− = 1, β+ = 100,

respectively. As it can be seen that near second order accuracy is attained in both ‖ · ‖0,h and
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‖ · ‖∞ norms. The convergence rate in the energy norm is near 1.5, which is consistent with the

superconvergence result obtained in [24]. This superconvergence occurs due to the nice properties

of our semi-unstructured mesh. It seems that the convergence rate is robust to the variation of β.

From Table 3.3, we can conclude that the runtimes of the mesh generation part can be ignored

compared with the assembling and solving parts. In Table 3.4, we present the variation of iteration

steps of the algebraic multigrid method with respect to the number of degrees of freedom (#dof)

and to the variation of jump coefficients (fix β− = 1 and change β+). It indicates that the algebraic

multigrid method is a robust and efficient solver: robust to the number of degrees of freedom and

to the variation of jump coefficients.

Figure 3.1: An interface mesh with maximal angle 112.8104◦.
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Table 3.1: Errors for Example 3.1: β− = 1 and β+ = 10.

#dof h ‖uI − uh‖A ‖uI − uh‖∞ ‖uI − uh‖0

10,323 0.1 4.45798e-01 5.24227e-02 3.62347e-02
72,713 0.05 1.64215e-01 1.81762e-02 8.97415e-03
547,881 0.025 6.62120e-02 5.09725e-03 2.62269e-03

4,240,529 0.0125 2.43899e-02 1.37664e-03 7.05429e-04
Rate 1.4 1.8 1.9

Table 3.2: Errors for Example 3.1: β− = 1 and β+ = 100.

#dof h ||uI − uh||A ||uI − uh||∞ ||uI − uh||0
10,323 0.1 6.65319e-01 5.14276e-02 3.40871e-02
72,713 0.05 2.41564e-01 1.84007e-02 8.42552e-03
547,881 0.025 8.98117e-02 5.21504e-03 2.50271e-03

4,240,529 0.0125 3.21041e-02 1.42298e-03 6.80724e-04
Rate 1.5 1.7 1.9

Table 3.3: CPU time (in seconds) for Example 3.1: β− = 1 and β+ = 10.

#dof Assemble Solve Mesh
10,323 0.228973 0.47 0.21165
72,713 0.970122 2.59 0.4854

547,881 6.99419 13.55 1.8981
4,240,529 62.1644 121.59 8.0172

Table 3.4: Example 3.1: Iteration steps of AMG with fixed β− = 1 and various β+.

#dof
β+

10−3 10−2 10−1 1 10 102 103 104

7,921 10 10 10 9 9 9 9 9
63,111 11 11 11 11 11 10 10 10

509,479 12 12 12 12 14 13 13 13
4,086,927 13 12 13 15 17 16 16 16
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EXAMPLE 3.2 (Two spheres). The domain Ω is (−1, 1)3 and the interface is defined by

φ(x, y, z) = min {φ1, φ2}

where

φ1 = (x+ 0.5r)2 + (y + 0.5r)2 + (z + 0.75r)2 − r2,

φ2 = (x− 0.25r)2 + (y − 0.75r)2 + (z − r)2 − r2,

with radius r = 0.4. The coefficient β is piecewise constant. The analytic solution is given by

u+ = 10(x2 + y2 + z2) and u− = 5 cos (x2 + y2 + z2).

Fig. 3.2 shows that two spheres are embedded in the unit cube. When h = 0.1, i.e., the background

Cartesian grid is not fine enough, there exists an interface element which is divided into three

parts by these two spheres. The maximal interior angle of triangular faces on the surface mesh

is bounded by 130.4665◦. Tables 3.5 and 3.6 show the numerical results for β− = 1, β+ = 1

and β− = 1, β+ = 100, respectively. Table 3.7 shows how the computational time grows with

respect to the number of degrees of freedom. Table 3.8 shows the number of iterations taken by

the algebraic multigrid method for various values of input parameters.

All results are consistent with our conclusion. It indicates that our algorithm works in a case when

the interface is unconnected.

Table 3.5: Errors for Example 3.2: β− = 1 and β+ = 1.

#dof h ||uI − uh||A ||uI − uh||∞ ||uI − uh||0
9,789 0.1 3.76723e-01 1.08148e-01 6.52076e-02

71,225 0.05 1.32276e-01 2.82699e-02 1.74225e-02
540,945 0.025 4.52335e-02 7.30380e-03 4.28321e-03

4,211,729 0.0125 1.60165e-02 1.92081e-03 1.11271e-03
Rate 1.5 1.9 2

40



Table 3.6: Errors for Example 3.2: β− = 1 and β+ = 100.

#dof h ||uI − uh||A ||uI − uh||∞ ||uI − uh||0
9,789 0.1 3.67145e+00 1.15596e-01 5.54995e-02

71,225 0.05 1.35081e+00 3.08549e-02 1.51136e-02
540,945 0.025 4.78640e-01 8.22331e-03 3.74778e-03

4,211,729 0.0125 1.72934e-01 2.25395e-03 9.77991e-04
Rate 1.5 1.9 2

Table 3.7: CPU time (in seconds) for Example 3.2: β− = 1 and β+ = 1.

#dof Assemble Solve Mesh
9,789 0.160716 1.01 0.259938

71,225 0.706959 5.84 0.36018
540,945 6.32812 27.26 1.78691

4,211,729 52.7369 133.86 10.067

Table 3.8: Example 3.2: Iteration steps of AMG with fixed β− = 1 and various β+.

#dof
β+

10−3 10−2 10−1 1 10 102 103 104

7,387 10 11 10 9 9 9 9 9
61,623 11 11 11 10 10 10 10 10

502,543 12 12 12 12 12 11 12 11
4,058,127 13 13 13 12 13 13 13 13
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Figure 3.2: Two balls are embedded in the unit cube. The maximal angle is 130.4665◦.

EXAMPLE 3.3 (An orthocircle). The domain Ω is (−1.2, 1.2)3 and the interface is defined by

φ(x, y, z) =
[
(x2 + y2 − 1)2 + z2

] [
(x2 + z2 − 1)2 + y2

] [
(y2 + z2 − 1)2 + x2

]
− 0.0752[

1 + 3(x2 + y2 + z2)
]
.

The coefficient β is piecewise constant. The analytic solution is given by u+ = 1 − x2 − y2 − z2

and u− = sin(πx) sin(πy) sin(πz).

Fig. 3.3 shows the interface-fitted mesh extracted as the boundary of Ω−h . The maximal angle of

triangular faces of the interface mesh is bounded by 132.4673◦. Tables 3.9 and 3.10 show the

numerical results for β− = 1, β+ = 1 and β− = 1, β+ = 100, respectively. Table 3.11 shows

the computational time accordingly. The mesh part is still quick even the interface with complex

geometry. Table 3.12 is the number of iterations of the algebraic multigrid (AMG) solver.
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These test results indicate that the proposed interface problem solver works well even for complex

surfaces. Note that the maximal angles of the surface mesh in our examples are uniformly bounded

by 144◦, then there is no need to be smoothed as a post-processing step.

Figure 3.3: The interface is an orthocircle with maximal angle 132.4673◦.

EXAMPLE 3.4 (12 intersecting spheres). In this example, we consider a more complicated in-

terface formed by 12 intersecting spheres, which has many one-dimension sharp features. The

domain Ω is (−3, 3)3 and the interface is defined by

φ(x, y, z) = min {φ1, φ2, · · · , φ12}

43



Table 3.9: Errors for Example 3.3: β− = 1 and β+ = 1.

#dof h ||uI − uh||A ||uI − uh||∞ ||uI − uh||0
11,145 0.12 2.93834e-01 5.50055e-02 5.14120e-02
76,469 0.06 7.95795e-02 1.05921e-02 4.18525e-03

561,957 0.03 2.35627e-02 2.22961e-03 9.17810e-04
4,295,165 0.015 7.80143e-03 6.05301e-04 2.15878e-04

Rate 1.7 2.1 2.1

Table 3.10: Errors for Example 3.3: β− = 1 and β+ = 100.

#dof h ||uI − uh||A ||uI − uh||∞ ||uI − uh||0
11,145 0.12 3.44042e+00 9.63266e-02 1.24556e-01
76,469 0.06 7.72426e-01 1.21513e-02 1.56542e-02
561,957 0.03 2.06488e-01 3.04186e-03 3.34684e-03

4,295,165 0.015 6.30787e-02 7.45803e-04 8.10506e-04
Rate 1.8 2 2.1

Table 3.11: CPU time (in seconds) for Example 3.3: β− = 1 and β+ = 1.

#dof Assemble Solve Mesh
11,145 0.493225 0.75 0.383038
76,469 1.41325 1.72 0.857616

561,957 8.1635 12.05 3.48605
4,295,165 62.6127 97.92 13.8495

Table 3.12: Example 3.3: Iteration steps of AMG with fixed β− = 1 and various β+.

#dof
β+

10−3 10−2 10−1 1 10 102 103 104

8,743 15 14 15 13 11 10 10 10
66,867 13 12 11 11 11 11 11 11

523,555 13 12 12 12 12 12 12 12
4,141,563 13 13 13 13 13 13 13 13
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where φi, i = 1, . . . , 12 are equal radius balls with centers

(1.0, 0, 0), (−1.0, 0, 0), (0.5, 0.866025403784439, 0), (−0.5, 0.866025403784439, 0),

(0.5,−0.866025403784439, 0), (−0.5,−0.866025403784439, 0), (2.0, 0, 0), (−2.0, 0, 0),

(1.0, 1.73205080756888, 0), (−1.0, 1.73205080756888, 0), (−1.0,−1.73205080756888, 0),

(1.0,−1.73205080756888, 0)

and radius r = 0.7. The coefficient β is a piecewise constant. The analytic solution is given by

u+ = 10(x2 + y2 + z2) and u− = 5 cos (x2 + y2 + z2).

Fig. 3.4 shows the interface-fitted mesh extracted as the boundary of Ω−h , which did not capture the

sharp one-dimension features of the interface, and this will lead to a loss of the solution accuracy.

From part of the interface-fitted mesh, there are geometric singularities with sharp edges at the

intersection of balls. See Fig. 3.5 for an illustration. In order to capture the features of complicated

interface and improve the solution accuracy, one need to use adaptive mesh near the geometric

features, and this will be our future work. But the maximal angle condition is still satisfied as

the maximal angle of triangular faces on the surface mesh is bounded by 131.3925◦. Tables 3.13

and 3.14 show the numerical results for β− = 1, β+ = 1 and β− = 1, β+ = 10, respectively. As it

can be seen that the convergence rate in the energy norm is still near 1.5. But the convergence rates

in the ‖·‖0,h and ‖·‖∞ norms are not second order due to geometric singularities. Table 3.15 shows

how the computational time grows with respect to the number of degrees of freedom. Table 3.16

shows the number of iterations taken by the algebraic multigrid method for various values of input

parameters.
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Table 3.13: Errors for Example 3.4: β− = 1 and β+ = 1.

#dof h ||uI − uh||A ||uI − uh||∞ ||uI − uh||0
2,527 0.48 2.27225e+01 3.60464e+00 6.97070e+00

18,960 0.24 1.18700e+01 2.24845e+00 4.20002e+00
138,051 0.12 3.99601e+00 8.79537e-01 9.22094e-01

1,051,665 0.06 1.57695e+00 2.91154e-01 3.92484e-01
Rate 1.4 1.2 1.6

Table 3.14: Errors for Example 3.4: β− = 1 and β+ = 10.

#dof h ||uI − uh||A ||uI − uh||∞ ||uI − uh||0
2,527 0.48 8.71247e+01 5.29705e+00 8.63843e+00

18,960 0.24 3.90973e+01 3.07134e+00 4.54532e+00
138,051 0.12 1.38105e+01 1.37945e+00 1.15474e+00

1,051,665 0.06 5.49027e+00 4.88589e-01 3.78441e-01
Rate 1.3 1.1 1.6

Table 3.15: CPU time (in seconds) for Example 3.4: β− = 1 and β+ = 1.

#dof Assemble Solve Mesh
2,527 0.213214 0.29 0.3674
18,960 0.431979 1.81 0.61863

138,051 2.22761 4.88 2.4452
1,051,665 29.9028 42.76 6.8316

Table 3.16: Example 3.4: Iteration steps of AMG with fixed β− = 1 and various β+.

#dof
β+

10−2 10−1 1 10 102 103 104

1,611 11 10 9 8 9 8 8
15,208 12 11 10 10 10 10 10
123,049 12 12 11 11 11 11 11
991,663 14 12 12 12 12 12 12
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Figure 3.4: Twelve balls are embedded in the cube. The maximal angle is 131.3925◦.

Figure 3.5: Part of the interface-fitted mesh with sharp edges.
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Chapter 4

Moving Interface Problems

There are two major sections in this chapter. The first section is to discuss the 2D model of the

tissue growth problems. The second section is about the 2D model of the tumor growth problems.

In this chapter we will discuss the applications of solving the Poisson equation with a moving

boundary domain. Free interface problems have been applied heavily in different fields such as bi-

ology, physics, and engineering recently. However, due to the discontinuities of physical quantities

across the interface designing accurate numerical methods for such problems is still challenging.

The fundamental problem in exploring the numerical scheme is how to treat the discontinuities.

Many schemes have tried to use the different strategies to handle the discontinuities across the

interface. For example, one of the most popular strategies is to convert the discontinuities to sin-

gular terms by adding the regularization term. The method is very straightforward and robust with

various spatial discretization methods such as finite difference, finite element, and the finite vol-

ume method, and so on. Level-set method [102], immersed boundary method [106, 107] and front

tracking methods [112] use this approach. Another popular strategy is to use local differencing

schemes or basis functions near the interface to approximate the discontinuities. The matched in-

terface and boundary method (MIB) employed this strategy [145, 146]. The last popular strategy

applied interface-fitted mesh with interfaces passing through mesh node points [113]. Here, we use
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the interface-fitted mesh strategy to solve the moving interfaced problems since we could generate

good quality mesh efficiently. In every time step of the interface evolution, we use the zero level

set of the level set function to identify the interface position and then generate the interface-fitted

mesh. The velocity of the flow is solved using the linear finite element method and then used it to

solve the transport equation to update the level set function. We iterate this process to evolve the

interface. In order to show our schemes in details, we applied our schemes to solve the interface

problems in biology.

4.1 Tissue Growth Problem

This section is to introduce the tissue growth problem with static interface at first. The linear and

quadratic element methods are showed for this case. The moving interface problem is discussed

afterwards.

4.1.1 Tissue Growth Model

The following model describes the process of tissue growth [103]. The boundary is either the

interface between neighboring tissues or an open external environment and the pressure on the

boundary is proportional to the curvature of the boundary. The model has periodic boundary

condition along the x-direction throughout the tissue. The growth of tissue is quantified by the

dynamic boundary of the system. First, we discuss derivation of equations, which is on the two

dimensional rectangle domain Ω = (0, 2)× (0, h).

−K∆P = Ψ, x ∈ Ω (4.1)
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with boundary conditions:

v(x, y = 0, t) =
∂P

∂y
(x, y = 0, t) = 0, (4.2)

P (x, h, t) = ξκ = ξ
∂2h/∂x2

[1 + (∂h/∂x)2]3/2
, (4.3)

and the periodic boundary condition:

P (x = 0, y, t) = P (x = 2, y, t). (4.4)

The growth of the dynamic boundary of the system is determined by h, which is governed by the

kinematic condition,
∂h

∂t
+ u(x, h, t)

∂h

∂x
= v(x, h, t).

Here u = −KPx and v = −KPy [103], P is the pressure, the gradient obtained from ( 4.1)

(Px, Py) gives the velocity of the tissue, Ψ represents the net rate of production, ξ is related to the

magnitude of the surface tension along the boundary and K is the permeability. See Fig. 4.1 for

illustration.

y = h(x, t)

⌦

0 2

Figure 4.1: The domain of tissue growth model.
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4.1.2 Kinematic Boundary Condition

In order to link the velocity of a boundary to the particle adjacent to the boundary we need to

impose a condition. It is the motivation of the kinematic boundary condition, which is modeled by

the transport equation. Firstly we consider the general 2D equations for a free-surface flow with

the compressible fluid and the flow driven by the potential.

u = ∇P and −∆P = f are used to describe the fluid, where u = (u,w) and P = P (x, y, t).

y = h(x, t) is the surface of the fluid in motion, f is the force term and y = 0 is the lower boundary

where the vertical velocity vanishes.

0 = n · ∇p =
∂p

∂y
= v.

In other words, we get

∂p

∂y
= 0 on y = 0.

The velocity of the fluid normal to the boundary is required to be equal to the velocity of the

boundary normal to itself. Otherwise, the fluid would either be flowing through the boundary or

separating from it. Neither of them is acceptable. Therefore, the kinematic boundary condition on

a moving surface is DS
Dt

= 0 and the free surface is the zero set of S(x, t). We define a function

based on the height function h(x, t).

S(x, y, t) = y − h(x, t),

It is zero at the free surface. Thus

0 = (
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
)(y − h(x, t)) = −∂h

∂t
− ∂p

∂x

∂h

∂x
+
∂p

∂y
on y = h.
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Therefore, the kinematic boundary condition holds

∂h

∂t
+ u

∂h

∂x
= v on y = h. (4.5)

We chose the discontinuous Galerkin finite element (DG-FEM) scheme to solve the above transport

equation 4.5. By subdividing the interval Ω = [L,R] into a union of non-overlapping elements

Dk = [xkl , x
k
r ]

Ω ≈ Ωh = ∪Kk=1D
k,

as illustrated in Fig. 4.2 .

x

L = x1
l

Dk�1 Dk Dk+1

xk�1
r = xk

l xk
r = xk+1

l
xk

r = R

hk+1

1

Figure 4.2: Sketch of the geometry for simple one-dimensional example.

Consider the one-dimensional scalar conservation law for the solution u(x, t)

∂u

∂t
+
∂f(u)

∂x
= g. (4.6)

subject to an appropriate set of initial conditions u(x, 0) = u0(x) and boundary conditions on the

boundary, ∂Ω, where f(u) is the flux and g(x, t) is some prescribed forcing function. To solve

Eq. 4.6, we define a space of test functions, Vh, to which the residual is orthogonal to in this space

in the weak sense as

∫
Ω

(
∂uh
∂t

+
∂fh
∂x
− gh)φh(x)dx = 0, ∀φh ∈ Vh.
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Next, the local residual is formed on the k = 1, · · · , NE elements

x ∈ Dk : Rk
h(x, t) = ∂tu

k
h + ∂xf

k
h − gkh

and require this to vanish locally in a Galerkin sense

∫
Dk

Rk
h(x, t)l

k
i (x)dx = 0, i = 1, . . . , Np, k = 1, . . . , NE

It forms the basis of a nodal DG-FEM scheme. Gauss’s theorem is applied to obtain the local

statement.

∫
Dk

∂ukh
∂t

lkj − fkh
dlkj
dx
− glkj dx = −[fkh l

k
j ]
xk+1

xk .

The right-hand side is used to connect the elements. However, the uniqueness of the solutions at

interfaces between adjacent elements cannot meet. To overcome it a numerical flux f ∗ is employed

to approximate the physical flux. We applied Gauss’s theorem and get

∫
Dk

∂ukh
∂t

lkj − fkh
dlkj
dx
− glkj dx = −[f ∗lkj ]

xk+1

xk .

Then we applied Gauss’s theorem once again,

∫
Dk

Rh(x, t)l
k
j dx = [(fkh − f ∗)lkj ]x

k+1

xk .

The two schemes are the weak and strong forms for the scalar conservation law. The key of the

scheme is how to choose the numerical flux, f ∗. The two local elementwise schemes are written
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using the terminology of the finite element scheme.

Mkdu
k
h

dt
− (Sk)Tfkh −Mkgkh = −f ∗(xk+1)lk(xk+1) + f ∗(xk)lk(xk),

and

Mkdu
k
h

dt
+ Skfkh −Mkgkh = (fkh (xk+1)− f ∗(xk+1))lk(xk+1)− (fkh (xk)− f ∗(xk))lk(xk).

Here local unknowns,ukh,of fluxes,fkh, and the forcing,gkh are given on the nodes in each element.

lk(x) = [lk1(x), . . . , lkNp(x)]T , and M k
ij =

∫
Dk l

k
i (x)lkj (x)dx and Sk

ij =
∫
Dk l

k
i (x)

dlkj (x)

dx
dx are the

local mass matrix and stiffness matrix, respectively [58].

We construct the matrices of M k
ij and Sk

ij as the similar way of assembling the mass and the

stiffness matrices in the finite element methods.

4.1.3 Static Problems

We consider the static problem to test our scheme first and then solve the problem using linear and

quadratic finite element methods. K and ξ are set as 1. The top boundary of the tissue is given by

h(x) = 1 +B cos(2πx) with different B for numerical tests. The exact solution of the pressure is

P (x, h) =
−4π2B cos(2πx) cos(2πy)/(1 +B cos(2πx))

[1 + 4π2B2 sin2(2πx)]3/2
.

We need a larger box containing the domain Ω and generate the mesh for the rectangle box. In the

first step, we could get the interface points based on given ∆x. In the second step, we generate

Delaunay triangulations on interface points. In the last step, we remove triangles not in the interface

elements and merge all uncut elements below h to get a semi-unstructured mesh. Finally, we could

get the approximated mesh of Ω. Figure 4.3 shows the mesh generation procedure. In order to
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reduce the complexity, we could divide all squares into triangles (see Figure 4.4) and use finite

element methods to solve the Poisson equations.

(a) Step 1: Find all the interface points on the curve h. (b) Step 2: a Delaunay triangulation on interface points.

(c) Step 3: Remove triangles not in the interface elements. (d) Step 3: Merge all uncut elements to get a semi-
unstructured mesh.

Figure 4.3: Three steps to generate a semi-unstructured mesh.

Based on the assumption in theX direction of the domain, there is a straightforward way to impose

periodic boundary conditions in the matrix form. The details are shown in [47]. It is, however, not

easy to implement the method for higher order schemes. In this thesis, we use an alternative way

to impose the periodic boundary conditions, which could be used for higher order algorithm easily.

At first, we get the original mesh as above, which is only used for all geometric information such
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Figure 4.4: All elements are triangles

as length, area. See the right graph in Figure 4.5. Then we introduce another artificial mesh which

requires that the index of nodes on right hand side of the points is the same as that of the left hand

side of the points. See the left graph in Figure 4.5 for illustration. It is used for assembling the

finite element matrix except geometric information. For linear finite element methods, we use a

map between the original mesh and artificial mesh called nodeMap to impose periodic conditions.

For quadratic finite element methods, another map named dofMap should be introduced to get the

relationship between middle points. It could be extended to any higher order elements.
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(a) The original mesh based on initial boundary con-
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(b) Construct the artificial mesh which imposes pe-
riodic conditions

Figure 4.5: The mesh with periodic boundary condition

In this subsection, we test the convergence rates to demonstrate the effectiveness of our methods.
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The energy (|| · ||A) and maximum norms (|| · ||∞) are considered. Here is the definition:

||PI − P∆x||A =
√

(PI − P∆x)TA(PI − P∆x), (4.7)

||PI − P∆x||∞ = max |PI − P∆x|, (4.8)

where PI is the nodal interpolation of the exact solution of P , P∆x is the numerical solution ob-

tained by finite element methods, A is the corresponding stiffness matrix and ∆x is the mesh size

of the initial Cartesian mesh.

EXAMPLE 4.1 (B = 0.1). Table 4.1 and 4.2 show the numerical convergence results for linear

and quadratic finite element methods respectively when B = 0.1.

Table 4.1: Errors for Example 1: linear finite element methods when B = 0.1.

#Dof ∆x ||PI − P∆x||A ||PI − P∆x||∞
455 5.00e-02 2.09603e-01 7.44661e-02
1715 2.50e-02 5.58425e-02 2.00167e-02
6635 1.25e-02 1.50097e-02 4.96067e-03

26075 6.25e-03 4.41325e-03 1.21513e-03
Rate 1.9 2

Table 4.2: Errors for Example 1: quadratic finite element methods when B = 0.1.

#Dof ∆x ||PI − P∆x||A ||PI − P∆x||∞
887 5.00e-02 5.82090e-02 3.14154e-03
3385 2.50e-02 8.69113e-03 4.42525e-04

13181 1.25e-02 1.34846e-03 5.94591e-05
51973 6.25e-03 2.21733e-04 7.68399e-06

206357 3.13e-03 3.71963e-05 9.75976e-07
Rate 2.7 2.9

EXAMPLE 4.2 (B = 0.15). Table 4.3 and 4.4 show the numerical results for linear and quadratic

finite element methods respectively when B = 0.15.
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Table 4.3: Errors for Example 2: linear finite element methods when B = 0.15.

#Dof ∆x ||PI − P∆x||A ||PI − P∆x||∞
460 5.00e-02 5.86786e-01 1.43121e-01
1725 2.50e-02 1.45334e-01 4.35102e-02
6655 1.25e-02 3.80448e-02 1.11352e-02

26115 6.25e-03 1.00820e-02 2.72108e-03
Rate 2 2

Table 4.4: Errors for Example 2: quadratic finite element methods when B = 0.15.

#Dof ∆x ||PI − P∆x||A ||PI − P∆x||∞
896 5.00e-02 1.68363e-01 1.02863e-02
3403 2.50e-02 2.53524e-02 1.31378e-03

13217 1.25e-02 3.88118e-03 1.85960e-04
52045 6.25e-03 6.20807e-04 2.48831e-05

206501 3.13e-03 1.04426e-04 3.19088e-06
Rate 2.7 2.9

EXAMPLE 4.3 (B = 0.25). Table 4.5 and 4.6 show the numerical results for linear and quadratic

finite element methods respectively when B = 0.25.

Table 4.5: Errors for Example 3: linear finite element methods when B = 0.25.

#Dof ∆x ||PI − P∆x||A ||PI − P∆x||∞
470 5.00e-02 4.02367e+00 6.86283e-01
1745 2.50e-02 6.66825e-01 1.31735e-01
6695 1.25e-02 1.66809e-01 3.81307e-02

26195 6.25e-03 4.26586e-02 9.52049e-03
Rate 2.2 1.9

EXAMPLE 4.4 (B = 0.5). Table 4.7 and 4.8 shows the numerical results for linear and quadratic

finite element methods respectively when B = 0.5.

We could get the conclusion that near second order of accuracy of our method is in || · ||A and || · ||∞

norm for linear finite element methods. We also consider high order finite element methods such
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Table 4.6: Errors for Example 3: quadratic finite element methods when B = 0.25.

#Dof ∆x ||PI − P∆x||A ||PI − P∆x||∞
914 5.00e-02 8.47067e-01 6.98431e-02
3439 2.50e-02 1.30214e-01 6.88447e-03

13289 1.25e-02 1.94364e-02 9.88083e-04
52189 6.25e-03 3.01006e-03 1.34961e-04

206789 3.13e-03 4.91737e-04 1.77970e-05
Rate 2.7 2.9

Table 4.7: Errors for Example 4: linear finite element methods when B = 0.5.

#Dof ∆x ||PI − P∆x||A ||PI − P∆x||∞
495 5.00e-02 1.08631e+02 4.41181e+01
1795 2.50e-02 9.94629e+00 1.39314e+00
6795 1.25e-02 1.68044e+00 2.27722e-01

26395 6.25e-03 4.15898e-01 6.59658e-02
Rate 2.7 2.2

as quadratic finite element methods. The convergence rates for || · ||A and || · ||∞ norms are nearly

three. It seems that the convergence rate is robust to the variability of the coefficient B. But the

iterative pseudo spectral approach fails to converge for some B [103]. What’s more, our method

could be extended to any higher order algorithm easily. The convergence rate in the energy norm

is higher than the theoretical results due to the nice structure of our grids. And this is known as

superconvergence.

4.1.4 Moving Problems

In this subsection, we test the accuracy of our approach for the moving interface problems with

known or unknown solutions. We use linear finite element methods and second order of DG-FEM

to solve the coupled system of both P and h. In addition, a 4th order Runge Kutta (RK) is employed

for time discretization.
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Table 4.8: Errors for Example 4: quadratic finite element methods when B = 0.5.

#Dof ∆x ||PI − P∆x||A ||PI − P∆x||∞
959 5.00e-02 9.09381e+00 1.27759e+00
3529 2.50e-02 1.74621e+00 1.24500e-01

13469 1.25e-02 2.61604e-01 1.19905e-02
52549 6.25e-03 3.72530e-02 1.67308e-03

207509 3.13e-03 5.55039e-03 2.31907e-04
Rate 2.7 3

EXAMPLE 4.5 (Moving problems with exact solution). The initial state of the dynamic boundary

h is described by h(x, 0) = 1, and a uniform influx of cells is assumed by Ψ = −4. The exact

solution are given by P = 2(y2 − h2) and h = e−4t. Parameters chosen are K = 1 and ξ = 10−5.

We choose the final time T = 0.004. Recall that we consider the two dimensional domain Ω =

(0, 2)× (0, h).

−K∆P = Ψ, x ∈ Ω

with boundary conditions:

v(x, y = 0, t) =
∂P

∂y
(x, y = 0, t) = 0, P (x, h, t) = ξκ = ξ

∂2h/∂x2

[1 + (∂h/∂x)2]3/2
,

and periodic condition :

P (x = 0, y, t) = P (x = 2, y, t).

The growth of the dynamic boundary of the system, h is governed by the kinematic condition,

∂h
∂t

+ u(x, h, t)∂h
∂x

= v(x, h, t), where u = −KPx and v = −KPy. Since the velocity of the

transport equation is changing in different time, we choose the time step ∆t = O(∆x/max (u, v)),

where ∆x is a uniform span in the x direction. Given the inital boundary condition h, we generate

the interface-fitted mesh. The procedure is the same as 4.1.3. Then we use linear finite element
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methods to solve P . For each boundary node, choose 5 closet neighbour mesh nodes in x and y

direction. Fit those points with cubic polynomial using polyfit, which is a built-in function in

MATLAB. Finally the velocity u and v could be the first derivative of the fitted cubic polynomial.

Then we solve the transport equation using DG-FEM to update the new h. The couple system

P and h will be solved iteratively. In Figure 4.6, it shows the interface-fitted mesh generated in

different time step. From Table 4.9, it shows all the order of spatial accuracy is 2 for P using

|| · ||∞ and || · ||A norms and for h using || · ||∞ norm.
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(d) time = 0.04

Figure 4.6: The interface-fitted mesh in the domain with different time when ∆x is 0.05.

EXAMPLE 4.6 (Moving problems without exact solution(a straight line)). The initial state of the

dynamic boundary h is described by h(x, 0) = 1 and a uniform influx of cells is assumed by

Ψ = 4. Parameters chosen are K = 1 and ξ = 10−5. We choose the final time T = 0.001. Recall

that we also choose ∆t = O(∆x/max (u, v)) for time discretization. But the error formulae is

different from the above definition because there is not exact solution. Here we use maximum
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Table 4.9: Errors for straight line:Errors for P and h.

#Dof ∆x ||PI − P∆x||∞ ||PI − P∆x||A ||hI − h∆x||∞
231 1.00e-01 3.03654e-03 9.18840e-03 5.72428e-06
861 5.00e-02 7.03826e-04 2.34927e-03 1.06895e-06

3,321 2.50e-02 1.30030e-04 3.83277e-04 2.43114e-07
12,880 1.25e-02 4.78007e-05 3.28391e-04 5.49985e-08
Rate 1.9 1.7 2.1

norm difference between successive approximations to compute the order of accuracy. That is,

log2

max |P∆x−P∆x/2|
max |P∆x/2−P∆x/4| is the order for P in maximum norm. Similarly, we choose h instead of

P to get the convergence rate. Here we need to calculate the approximate curvature since we

do not know the exact solution. The idea is the same as computing the velocity. We use cubic

polynomial to fit the curve and then take the first and second derivative in the x direction. Table

4.10 demonstrates that the order of spatial accuracy in maximum norm for both P and h is 2.

Table 4.10: Errors for straight line h = e4t: Order of accuracy with maximum norm for P and h.

#Dof ∆x ||PI − P∆x||∞ ||hI − h∆x||∞
544 0.25 2.0748 2.7105

2,112 0.125 2.0155 2.6449
8,320 0.0625 1.9553 2.3873

33,024 0.03125 1.9603 1.7226

4.2 Tumor Growth Problem

4.2.1 Tumor Growth Model

In this section, we apply our mesh algorithm to simulate tumor growth phenomenon. Based on the

biological reality, we assume that the tumor occupies the region Ω− and the healthy tissue stays

the outside Ω+ = Ω\(Ω−∪Γ) with a free boundary Γ. The pressure and velocity of Ω+ are simply

62



assumed to be zero. In Ω−, the following equations govern the tumor growth: Find (u, p) such that

u = ∇p in Ω−, (4.9)

−∇ · u = G(n− A) in Ω−, (4.10)

p |Γ = κ, (4.11)

here n(x, t) is the nutrient (e.g. oxygen) concentration which satisfies

∇2n− n = 0 in Ω−,

n |Γ = 1,

u(x, t) is the velocity of the tumor, p(x, t) is the pressure, G and A are respectively the growth

and death rates without unit, and κ is the mean curvature on the boundary Γ [143]. To simulate the

tumor growth, we need to solve the following elliptic equation:

−∆p = G(n− A) in Ω−,

p |Γ = κ,

The interface Γ is represented by a zero level-set function φ, that is, Γ(t) = {x | φ(x, t) = 0}. If

φ < 0, it is inside Ω−. If φ > 0, it is outside Ω+. Suppose the tumor boundary is moving with

velocity u = ẋ(t) = ∇p. Then we have φ(x(t), t) = 0 by definition. Taking the derivative with

respect to time t on both sides, we get the following equation:

∂φ

∂t
+ u · ∇φ = 0. (4.12)
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4.2.2 Numerical Scheme

The mesh generation step is the same as that for the tissue growth problem described in Section 4.1.

Then we get the mesh in Ω− for the initial boundary condition of φ. We could directly use the

boundary points on Γ to caculate the curvature using the way of our interface-fitted mesh. For

each point on Γ, we choose 15 nearby mesh nodes to approximate a circle. The radius of the fitted

circle is R. Here the curvature is signed. If one point in the circle is in Ω−, then the curvature is

1/R. Otherwise, the curvature is −1/R, which is negative. n and p could be solved using linear

finite element methods. The gradient of p is obtained using gradu.m and recovery.m based

on the MATLABr package iFEM [25]. φ is defined over the whole domain Ω. But the velocity

u = (px, py) is only computed in Ω−. Then we extend each component of u from Γ to Ω+ using

harmonic extension. After this, we use WENO5 [115] and 3rd order Runge Kutta methods to

solve the transport equation to update φ for each time step ∆t = O(∆x/maxu). Then we apply

reinitialization step near the interface [104, 141]. The numerical scheme could be summarized as

follows:

Step 1: Generate a Cartesian mesh with size h. Based on the initial boundary condition of φ, we

get the interface-fitted mesh generated by Algorithm 1 in Chapter 2.

Step 2: Compute p, px, py, κ in Ω−.

Step 3: Extend px, py from Γ to Ω+ using harmonic extension with Dirichlet boundary condition.

Step 4: Solve the transport equation (4.12) on the Cartesian mesh in Step 1 to update φ using

WENO5 methods.

Step 5: Reinitialize φ near the interface to make it the sign distance function to Γ.

Step 6: Do Step 1 to Step 5 iteratively.
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4.2.3 Tumor Growth Simulations

We compute the growth when G = 10, A = 0.5, and the initial shape of the tumor boundary

is (2 cos(θ), 2 sin(θ), θ ∈ [0, 2π]. The computational domain is chosen as Ω = [−6, 6]2. The

evolution of a tumor is presented in Figure 4.7.

(a) iteration step = 1 (b) iteration step = 100

(c) iteration step = 300 (d) iteration step = 500

Figure 4.7: The interface(red) and the domain Ω−(green) when the Cartesian mesh size h is 0.125.
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Appendix A

Appendices

A.1 The Elliptic Interface Equation and Weak Formulation

Elliptic interface problems arise in many physical applications, including electromagnetism, fluids

dynamics, materials science, free boundary problems, and biological applications [49, 69, 114]. In

this work we study a typical elliptic interface problem which is described as piece-wisely defined

elliptic partial differential equations (PDE) in different regions which are coupled together with

non-homogeneous jump conditions, such as solution and flux jump across the interface.

A.1.1 The Elliptic Interface Equation

Ω is an open bounded domain in Rd, d = 2, 3 and Γ is a continuous simple connected interface

which separates the domain Ω into two disjoint regions Ω+ and Ω−. Ω+ denotes the exterior

domain and Ω− denotes the interior domain enclosed by Γ. The equation of the typical elliptic
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interface problem is as follows:

−∇ · (β(x)∇u(x)) = f(x), x ∈ Ω\Γ (A.1)

with solution and flux jump conditions across the interface Γ:

[u]Γ = u+ − u− = q0, [βun]Γ = β+u+
n − β−u−n = q1, u = g on ∂Ω, (A.2)

where un is the normal flux (∇u) · n and n is the unit norm direction of the interface Γ pointing

from Ω− to Ω+(outwards). The superscripts + and − stand for the constraint of a function on Ω+

and Ω−, respectively. The coefficient β(x) is assumed to be uniformly positive and smooth on each

disjoint subdomain, but may be discontinuous across the interface Γ [27].

A.1.2 The Weak Formulation

Given functions q0 and q1 along the interface, we prescribe the non-homogeneous jump condi-

tions in Eq. (A.2). The flux jump q1 is imposed weakly in the weak formulation. Elliptic

interface problems with such jump conditions arise in many application fields. For example,

BurtonCabreraFrank-type model [7] solves the diffusion equation on terraces with jump condi-

tion across the interface representing atomic steps. Another example is that the reaction potential

model of electrostatics of a solvation energy has a non homogeneous flux jump condition [49].

Proposition A.1. The homogeneous jump conditions are q0 = 0 and q1 = 0 on Γ((A.2)), then the

problem (A.1)-(A.2) is to find u ∈ H1(Ω) with u = g on ∂Ω such that

∫
Ω

β∇u · ∇v dx =

∫
Ω

fvdx, ∀v ∈ H1
0 (Ω)

Proof. Multiply the equation by a smooth test function v ∈ H1
0 (Ω) and integrate over the whole
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domain Ω,

∫
Ω

−∇ · (β∇u)vdx =

∫
Ω

fvdx,∀v ∈ H1
0 (Ω) (A.3)

then use integration by parts

∫
Ω

−∇ · (β∇u)vdx = −
∫
∂Ω

β∇u · nvds+

∫
Ω

β∇u · ∇vdx =

∫
Ω

β∇u · ∇vdx (A.4)

Thus combining (A.3) and (A.4), we get

∫
Ω

β∇u · ∇vdx =

∫
Ω

fvdx,∀v ∈ H1
0 (Ω)

Note that
∫
∂Ω
β∇u · nvds = 0, since v = 0 on ∂Ω and q1 = 0 on Γ.

Proposition A.2. If q0 = 0, q1 6= 0 on Γ, then the corresponding weak formulation is :

(β∇u,∇v)Ω = (f, v)Ω − 〈q1, v〉Γ, ∀v ∈ H1
0 (Ω) (A.5)

Proof. From (A.1), we could write in this way:

−∇ · (β−(x)∇u(x)) = f(x), x ∈ Ω−, −∇ · (β+(x)∇u(x)) = f(x), x ∈ Ω+

For the first equation, using integration by parts,

∫
∂Ω−
−β−4u · nvds+

∫
Ω−
β−∇u · ∇vdx =

∫
Ω−
fvdx

for all v ∈ H1
0 (Ω). Since ∂Ω− = Γ, then

∫
Γ

−β−4u · nvds+

∫
Ω−
β−∇u · ∇vdx =

∫
Ω−
fvdx. (A.6)
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Similarly, for the second equation, using integration by parts,

∫
∂Ω+

−β+4u · ñvds+

∫
Ω+

β+∇u · ∇vdx =

∫
Ω+

fvdx

for all v ∈ H1
0 (Ω). Since ∂Ω+ = ∂Ω ∪ Γ, v = 0 on ∂Ω and ñ = −n, then

∫
Γ

β+4u · nvds+

∫
Ω+

β+∇u · ∇vdx =

∫
Ω+

fvdx. (A.7)

Adding (A.6) and (A.7), we could get

∫
Γ

(β+4u+ − β−4u−) · nvds+

∫
Ω

β∇u · ∇vdx = (f, v)Ω, ∀v ∈ H1
0 (Ω)

Since q1 = (β+4u+ − β−4u−) · n, then

∫
Γ

q1vds+

∫
Ω

β∇u · ∇vdx = (f, v)Ω, ∀v ∈ H1
0 (Ω)

Removing the first term to the right hand side, then

(β∇u,∇v)Ω = (f, v)Ω − 〈q1, v〉Γ, ∀v ∈ H1
0 (Ω)

On the other direction, if we choose v ∈ H1
0 (Ω+) ,then we get

∫
Ω

β+∇u · ∇vdx =

∫
Ω+

fvdx,∀v ∈ H1
0 (Ω+).

Similarly, if we choose v ∈ H1
0 (Ω−), then we get

∫
Ω

β−∇u · ∇vdx =

∫
Ω−
fvdx,∀v ∈ H1

0 (Ω−)

Finally, we get
∫

Γ
(β+4u+ − β−4u−) · nvds =

∫
Γ
q1vds when choosing v ∈ H 1

2 (Γ).
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Proposition A.3. If q0 6= 0 on Γ, we can find w− : Ω− → R with w− = q0 on ∂Ω− and w− ∈

H1(Ω−). The zero extension of w− ,denote by w satisfies w ∈ H1(Ω− ∪ Ω+) with w = w− on Ω−

and w = 0 on Ω+. The model is equivalent to: find u = p− w with p ∈ H1
g (Ω) such that:

(β∇p,∇v)Ω = (f, v)Ω − 〈q1, v〉Γ + (β∇w,∇v)Ω− , ∀v ∈ H1
0 (Ω) (A.8)

Proof. Since p satisfies [p]Γ = 0 and [βpn]Γ = q1 + [βwn]Γ, then (A.5) holds for p, that is

(β∇p,∇v)Ω = (f −∇ · (β∇w), v)Ω − 〈q1 + [βwn]Γ, v〉Γ, ∀v ∈ H1
0 (Ω)

then

(β∇p,∇v)Ω = (f, v)Ω − 〈q1, v〉Γ − (∇ · (β∇w), v)Ω − 〈[βwn]Γ, v〉Γ, ∀v ∈ H1
0 (Ω)

Since ∀v ∈ H1
0 (Ω)

−(∇ · (β∇w), v)Ω = −(∇ · (β∇w), v)Ω− = −
∫

Γ

β∇w · n · vds+

∫
Ω−
β∇u · ∇vdx,

and

〈[βwn]Γ, v〉Γ = −
∫

Γ

β∇w · n · vds,

then we get

(β∇p,∇v)Ω = (f, v)Ω − 〈q1, v〉Γ + (β∇w,∇v)Ω− , ∀v ∈ H1
0 (Ω)
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THEOREM A.4. The weak formulation of the elliptic interface equation ((A.1)-(A.2)) is stated as:

find u = p− w with p ∈ H1
g (Ω) = {v ∈ H1(Ω) : v|∂Ω = g} such that

(β∇p,∇v)Ω = (f, v)Ω − 〈q1, v〉Γ + (β∇w−,∇v)Ω− , ∀v ∈ H1
0 (Ω). (A.9)

A.2 Efficient Implementation of Virtual Element Methods in

Two Dimensions

In this section, we mainly present how to implement the linear virtual element method for the two

dimensional Poisson equation on a polygonal domain. In [121], it aims to short implementation

of algorithms for the education purpose. But the codes could be more efficient especially for the

large size of matrix. Here we focus on efficient implementation in Matlab.

A.2.1 Introduction

Virtual Element Method ( VEM ) [10] is developed by Brezzi’s group, which can be viewed as

an extension of Finite Element Methods to general polygonal and polyhedral elements. In two

dimensions, elements in finite element methods are either triangles or quadrilateral. But in VEM,

polygonal elements can be of very general shape, which may even be non convex. Theoretical

results and generalize matrix formulation are discussed in [10, 11]. [11]is about the coding. Here

we mainly focus on the efficient implementation of linear virtual element methods. At first, we

will introduce the concrete matrix formulation for the linear virtual element methods. Then we

will demonstrate how to implement each component of the matrix in the next section.
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First we study the model problem of the two dimensional Poisson equation:


−∆u = f in Ω,

u = g on ∂Ω.

(A.10)

Here Ω is a polygonal domain in R2, f ∈ L2(Ω) and g ∈ H1/2(∂Ω). Define H1
0 (Ω) := {v ∈

H1(Ω) : v = 0 on ∂Ω} and H1
g (Ω) := {v ∈ H1(Ω) : v = g on ∂Ω}. The weak formulation will

be derived using the same strategy of the classical finite element methods: find u ∈ H1
g (Ω) such

that

a(u, v) = L(v), ∀v ∈ H1
0 (Ω),

where the bilinear form a(u, v) = (∇u,∇v) =
∫

Ω
∇u · ∇v dx, the linear form L(v) = (f, v) =∫

Ω
fv dx and (·, ·) is the inner product in L2. By Lax-Milgram Lemma, it has a unique solution.

Let Th be the collection of partitions of the domain Ω into polygonal elements with not self-

intersecting boundary. h denotes the maximum diameter of all elements in Th. In our numerical

results, h is approximated by the square root of the area of each element. A local finite-dimensional

vector space Vh(E) for a polygon E ∈ Th can be written as

Vh(E) := {v ∈ H1(E) : ∆v|E = 0, v|∂E is continuous and piecewise linear polynomial}.

Since a piecewise linear function will be uniquely determined by its value on vertices, dimVh(E) =

nvE , where nvE is the number of vertices of E.

The global virtual element space is defined as

Vh = {vh ∈ H1(Ω) : vh|E ∈ Vh(E) for all E ∈ Th}.

N (Th) is the set of vertices of mesh Th and N = |N (Th)| denotes the number of vertices. We

define the operator dofi from Vh to R as dofi(vh) = vh(xi), for a vertex xi ∈ N (Th). The
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canonical basis {φ1, · · · , φN} ⊂ Vh is chosen as dofi(φj) = δij, i, j = 1, · · · , N . And the nodal

interpolation Ih : C(Ω̄)→ Vh is defined as Ihu =
∑N

i=1 u(xi)φi and denoted by uI = Ihu.

In finite element methods, we use discrete solutions uh to approximate the solution u. The linear

virtual element approximation of (A.10) is: finding uh ∈ Vh ∩H1
g (Ω) such that:

(∇uh,∇vh)Ω = (f, vh)Ω, ∀vh ∈ Vh ∩H1
0 (Ω).

Suppose uh =
∑N

j=1 ujφj , by linearity, we have for i ∈ 1, · · · , N ,

N∑
j=1

(∇φj,∇φi)Ωuj = (f, φi)Ω. (A.11)

We denote the matrix Aij = (∇φj,∇φi)Th and the vector b = (b1, · · · , bN)t by bi = (f, φi)Ω.

Equation (A.11) is written in the matrix form as

Ahuh = b. (A.12)

Here Ah is anN×N matrix and uh = (u1
h, · · · , uNh )t. As the matrix Ah is symmetric and positive

definite, the algebraic system (A.12) could be solved stably and efficiently by using algebraic

multigrid methods.

For finite element methods, it suffices to compute the local stiffness matrix in each element at first,

and then the matrix A is assembled by summing the contribution from each element. Therefore,

the major task is to compute (∇φj,∇φi)E , where (·, ·)E is the L2 inner product on E.

In order to do so, we define some projection operators at first. In each polygonal element E, the

operator Π∇ : Vh(E)→ P1(E) is represented as the H1 projection to P1(E) space, i.e.,:

(∇pk,∇Π∇vh)E = (∇pk,∇vh)E for all pk ∈ P1(E).
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Here P1(E) is the space of linear polynomials. It is obvious that the above condition defines

Π∇vh only up to a constant. This can be resolved by mapping a projection operator onto constants

P0 : Vh(E)→ P0(E) and requiring

P0(Π∇vh − vh) = 0.

One simple choice is P0vh =
∑nv

E
i=1 vh(xi)/n

v
E =

∑nv
E
i=1 dofi(vh)/n

v
E .

We rewrite the basis function φi ∈ Vh(E) as Π∇φi+(I−Π∇)φi using the projection Π∇, and then

split the entry of the local stiffness matrix as

(∇Π∇φi,∇Π∇φj)E + (∇(I − Π∇)φi,∇(I − Π∇)φj)E.

Again the second term is not computable since the basis φi is not known point-wise. Now we

replace by a so-called stabilization term SE(·, ·)

(∇Π∇φi,∇Π∇φj)E + SE((I − Π∇)φi, (I − Π∇)φj).

A scaled l2 inner product was chosen in the stabilization term

SE((I − Π∇)φi, (I − Π∇)φj) =

nv
E∑

r=1

dofr((I − Π∇)φi) dofr((I − Π∇)φj)

to satisfy the assumption of SE

c1(∇v,∇v) ≤ SE(v, v) ≤ c2(∇v,∇v), ∀v ∈ Vh(E) and Π∇v = 0,

where some positive constants c1 and c2 are independent ofE [10]. We write the explicit expression
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of the local stiffness matrix of the virtual element method as follows:

(AE
h )ij := (∇Π∇φi,∇Π∇φj)E +

nv
E∑

r=1

dofr((I − Π∇)φi) dofr((I − Π∇)φj). (A.13)

The matrix representation of the operator Π∇ is computed using the following concrete formulae.

xE = (xE, yE) denotes the centroid of E. A scaled monomial basis of P1(E) is chosen as m1 =

1,m2 = (x − xE)/hE,m3 = (y − yE)/hE , where hE = |E|1/2, which is approximated by the

square root of the area of each element E. Let the matrix G3×3 be defined as

G :=


P0m1 P0m2 P0m3

0 (∇m2,∇m2)0,E (∇m3,∇m2)0,E

0 (∇m2,∇m3)0,E (∇m3,∇m3)0,E

 =


1 1

nv
E

nv
E∑

i=1

xi−xE
hE

1
nv
E

nv
E∑

i=1

yi−yE
hE

0 1 0

0 0 1



Here B3×nv
E

is a matrix defined as:

B :=


P0φ1 · · · P0φnv

E

(∇m2,∇φ1)E · · · (∇m2,∇φnv
E

)E

(∇m3,∇φ1)E · · · (∇m3,∇φnv
E

)E

 .

The first row of B is P0φ1 = P0φ2 = . . . = P0φnv
E

= 1/nvE . For the other components

(∇mj,∇φi)E, j = 2, 3, we have (∇mj,∇φi)E = −
∫
E

∆mjφi +
∫
∂E

∂mj

∂n
φi by integration by

parts. Here the first term is zero as ∆mj = 0 for linear polynomials and the second term need to

be only computed.

∫
∂E

∂mj

∂n
φi =

∑
node i∈edge e n

j
e

2hE
, (A.14)

where n = (nxe , n
y
e) = (n2

e, n
3
e) denotes an outward unit normal direction to the edge e.
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In order to compute the stabilization term, one more matrix Dnv
E×3 is needed.

D :=

(
dofi(mj)

)
= h−1

E



hE x1 − xE y1 − yE

hE x2 − xE y2 − yE

· · · · · · · · ·

hE xnv
E
− xE ynv

E
− yE


,

where (xi, yi), i = 1, · · · , nvE mean the vertices in each polygon E.

By definition,

Π∇vh =
3∑

α=1

sαmα (A.15)

and the coefficients (sα) are determined based on the following linear systems

(∇mα,∇(Π∇vh − vh))E = 0 α = 1, . . . , 3. (A.16)

The matrix representation of Π∇ : Vh(E)→ P1(E) relative to the basis (mα) is Π∇ = G−1B.

Furthermore, we also need the matrix representation of Π∇ in the canonical basis {φi}. Let

Π∇φi =
∑nv

E
j=1 dofj(Π

∇φi)φj, i = 1, · · · , nvE , then the matrix representation Π∇∗ of the opera-

tor Π∇ : Vh(E)→ Vh(E) in the canonical basis is written as Π∇∗ = DG−1B = DΠ∇.

Finally the matrix formulation of AE
h could be given by

AE
h = [Π∇]T G̃Π∇ + [I −Π∇∗ ]T [I −Π∇∗ ],

where G̃ is the same with G except that the elements in the first row are all zero.Then it is easily

to get the local stiffness matrices (A−h |E) and (A+
h |E).

For the right hand side vector bi in (A.12), we simply approximate f by a piecewise constant and
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approximate

(f, φi)Ω =
∑
E∈Th

(f, φi)E ≈
∑
E∈Th
|E|f(xE, yE)/nvE.

A.2.2 Implementation

In this subsection, we discuss how to implement the code efficiently in Matlab. In [121], it shows

how to implement the code in Matlab based on the matrix form G, B and D, but it is not efficient

for two reasons. One reason is that there are large for loops. Vectorization should be taken into

account to avoid for loop as much as possible. Another one is that it does not take advantage of

sparsity. Because the stiffness matrix we obtained via the discretization is very sparse. We shall

think about using sparse matrix algorithms, which require less computational time and computer

memory [26].

The polygonal mesh we used is generated from PolyMesher.m, which is written in MATLAB [122].

The output contains a matrix named node which represents the coordinates of vertices and a cell

array named element which records the vertices of each element with a counter-clockwise order.

Given node and element, the stiffness matrix A could be implemented as follows:

function A = assemblematrix(node,element)

N = size(node,1);

Nelement = size(element,1);

% initialize large enough array

ii = zeros(Nelement*49,1);

jj = zeros(Nelement*49,1);

ss = zeros(Nelement*49,1);

curIdx = 1; % current index

for t = 1:Nelement

v = element{t};

Nv = length(v);

x1 = node(v,1);% the coordinate of node
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y1 = node(v,2);

x2 = circshift(x1,-1);

y2 = circshift(y1,-1);

bdIntegral = x1.*y2 - y1.*x2;

area = sum(bdIntegral)/2;% the area

h = sqrt(abs(area));

cx = sum((x1+x2).*bdIntegral)/(6*area); % the centroid

cy = sum((y1+y2).*bdIntegral)/(6*area);

edgeVecx = x2 - x1; %v(k-1)-v(k) for x (-x)

edgeVecy = y2 - y1; %v(k-1)-v(k) for y (-y)

normVecx = edgeVecy; % the first normal derivative (-y)

normVecy = -edgeVecx; % the second normal derivative (x)

H = zeros(2,Nv);

H(1,:) = (normVecx + circshift(normVecx,1))/(2*h);

H(2,:) = (normVecy + circshift(normVecy,1))/(2*h);

% Part 1: matrix of projections

A1 = H’*H;

% Part 2: matrix of difference

D = ones(Nv,3);

D(:,2) = (x1 - cx)’./h; % cx, cy, h computed before

D(:,3) = (y1 - cy)’./h;

c1 = (ones(1,Nv) - sum(D(:,2:3))*H)/Nv;

GinvB = [c1; H];

IminusP = eye(Nv)- D*GinvB;

A2 = IminusP’*IminusP;

% Record nonzero entries (i,j,s) for the sparse matrix

[loci,locj,s] = find(A1 + A2);

nnz = length(s);

ii(curIdx:curIdx+nnz-1) = v(loci); % change to global index

jj(curIdx:curIdx+nnz-1) = v(locj);

ss(curIdx:curIdx+nnz-1) = s;

curIdx = curIdx + nnz;

end
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A = sparse(ii(1:curIdx-1),jj(1:curIdx-1),ss(1:curIdx-1),N,N);

In the subroutine assemblematrix, we use build in function sparse to form the sparse matrix

A for the sake of memory. In this way, we avoid updating a sparse matrix inside a large loop. It

is much faster than the code in [121]. Because the stiffness matrix in [121] is stored as a full

matrix. It will be out of memory for a large number N , where N is the number of nodes. The code

in lines 1 − 8 is some initialization step. After line 9, we will get the vectorization form of the

stiffness matrix for each element. The number of vertices for each element denotesNv in the code.

circshift is used for getting the neighbor for each node. Given node and element, it is easy

to get the area, the diameter and centroid of each element. The centroid of a non-self-intersecting

closed polygon defined by Nv vertices (x1, y1), . . . , (xNv, yNv) is the point (Cx, Cy), then

Cx =
1

6E

Nv∑
i=1

(xi + xi+1)(xi yi+1 − xi+1 yi)

Cy =
1

6E

Nv∑
i=1

(yi + yi+1)(xi yi+1 − xi+1 yi)

whereE denotes the polygon’s signed area and is calculated using the formulaE = 1
2

∑Nv
i=1(xi yi+1−

xi+1 yi) [15]. The diameter of each element h could be approximated by the square root of the

area. From lines 10−24, we get the area, diameter, centroid and normal direction for each element.

The local stiffness matrix is given in lines 25 − 37. For the first part in Equation (A.13), we can

compute accurately. For each basis function ϕi, we define sαi as the coefficients of Π∇ϕi in the

basis mα:

Π∇ϕi =
3∑

α=1

sαimα, i = 1, . . . , 3. (A.17)
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where m1 = 1,m2 = x−Cx

h
,m3 = y−Cy

h
. From equation (A.17) we have

(∇Π∇ϕi,∇Π∇ϕj)0,E =
3∑

α=1

3∑
β=1

sαi s
β
j (∇mα,∇mβ)0,E =

3∑
α=2

3∑
β=2

sαi s
β
j .

Note that (∇m1,∇m1)E = 0 and (∇mα,∇mβ)E = 1, α = 2, 3, β = 2, 3, then the second equality

holds. In addition, we can get

s2
i = (∇m2,∇ϕi)E =

∫
∂E

∂m2

∂n
ϕi =

1

2h
(n1(ei) + n1(ei+1))

from Eq.(A.14) and similarly,

s3
i = (∇m3,∇ϕi)E =

∫
∂E

∂m3

∂n
ϕi =

1

2h
(n2(ei) + n2(ei+1)),

where n = (n1, n2) is the normal direction for each edge and the intersection of two edges ei and

ei+1 is the vertex i.

Combing equation (A.15) and (A.17), we get sα = (sα1 , . . . , s
α
Nv), α = 1, . . . , 3. Therefore we

define a matrix H with size 2×Nv such that H(1, :) = s2, H(2, :) = s3, then (∇Π∇φi,∇Π∇φj)E

could be written as [HTH]ij .

For the second part in Eq. (A.13), we know
∑Nv

r=1 dofr((I − Π∇)ϕi)dofr((I − Π∇)ϕj) = [(I −

Π∇)T (I − Π∇)]ij , where Π∇ = DG−1B,matrix D is Nv × 3 and G−1B is 3×Nv. It is straight-

forward to implement matrix D in code. The first column of D is 1, the second column of D

is the value of m2 in different vertices and the third column of D is the value of m3 in differ-

ent vertices. Finally we need to compute G−1B. Based on deep understanding each component

of the matrices formed from Eq. (A.16), we could rewrite G−1B = [s1; s2; s3] = [s1;H]. The

only thing is solving s1. By the definition of P0 and P0vh =
∑Nv

i=1 dofi(vh)/Nv,then we obtain∑
(Π∇ϕi)(V ) =

∑
ϕi(V ), finally

∑Nv
i=1(s1

i+s
2
im2(Vi)+s

3
im3(Vi)) = 1 from equation (A.17),that

is, each component of s1 could be s1
i = (1− (s2

im2(Vi) + s3
im3(Vi)))/Nv, see line 34. Then a list

91



of index and nonzero entries of local stiffness matrix are recorded in line 38− 45, which are used

for updating a sparse matrix outsider the inner for loop. The global stiffness matrix is stored as

sparse matrix in order to save the memory.

But there exists a large for loop in the subroutine assemblematrix. When the number of

elements is large, it can quickly add significant overhead. We then use the vectorization technique

to avoid the large for loop for the sake of efficiency. Since the length of each element is different,

the vectorization could also be used with the same length of the elements. Here is the most efficient

code for the assembling of stiffness matrix in two dimensions.

function A = assemblevem(node,elem)

%% Assemble the matrix equation

N = size(node,1);

elemVertexNumber = cellfun(’length’,elem);

nnz = sum(elemVertexNumber.ˆ2);

ii = zeros(nnz,1); %initialization

jj = zeros(nnz,1);

ss = zeros(nnz,1);

index = 0;

for Nv = min(elemVertexNumber):max(elemVertexNumber)

% find polygons with Nv vertices

idx = find(elemVertexNumber == Nv); % index of elements

NT = length(idx); % the # of elements

% vertex index and coordinates

vertex = cell2mat(elem(idx));

x1 = reshape(node(vertex,1),NT,Nv);

y1 = reshape(node(vertex,2),NT,Nv);

x2 = circshift(x1,[0,-1]);

y2 = circshift(y1,[0,-1]);

% Compute geometry quantity: edge, normal, area, center

bdIntegral = x1.*y2 - y1.*x2;

area = sum(bdIntegral,2)/2; % the area per element
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h = repmat(sqrt(abs(area)),1,Nv); % h = sqrt(area)

cx = sum((x1+x2).*bdIntegral,2)./(6*area); % the centroid

cy = sum((y1+y2).*bdIntegral,2)./(6*area); % the centroid

normVecx = y2 - y1; % normal vector

normVecy = x1 - x2;

% matrix B, D, I - P

Bx = (normVecx + circshift(normVecx,[0,1]))./(2*h);

By = (normVecy + circshift(normVecy,[0,1]))./(2*h);

Dx = (x1 - repmat(cx,1,Nv))./h; % m(x) = (x - cx)/h

Dy = (y1 - repmat(cy,1,Nv))./h;

c1 = (1 - (repmat(sum(Dx,2),1,Nv).*Bx + repmat(sum(Dy,2),1,Nv).*By))/Nv;

IminusP = zeros(NT,Nv,Nv);

for i = 1:Nv

for j = 1:Nv

IminusP(:,i,j) = - c1(:,j) - Dx(:,i).*Bx(:,j) - Dy(:,i).*By(:,j);

end

IminusP(:,i,i) = ones(NT,1) + IminusP(:,i,i);

end

% assemble the matrix

for i = 1:Nv

for j = 1:Nv

ii(index+1:index+NT) = vertex(:,i);

jj(index+1:index+NT) = vertex(:,j);

ss(index+1:index+NT) = Bx(:,i).*Bx(:,j) + By(:,i).*By(:,j) + dot(

IminusP(:,:,i),IminusP(:,:,j),2);

index = index + NT;

end

end

end

A = sparse(ii,jj,ss,N,N);

The out for loop goes over elements with the same the number of vertices,which is a big improve-
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ment compared with all the elements. The vectorization code is similar to assemblematrix. The

major difference is vectorizing the matrix I − DG−1B. We introduce three dimensional array to

store, see lines 34− 40.

For the right hand side b, we have

b ≈
∑
E∈Th
|E|f(Cx, Cy)/Nv.

Here we use the build in command accumarray in Matlab to avoid the for loop over all elements.

The following codes are the whole assembling procedure:

function [u,A] = PoissonVEM(node,elem,pde)

%% Assemble the matrix equation

N = size(node,1);

elemVertexNumber = cellfun(’length’,elem);

nnz = sum(elemVertexNumber.ˆ2);

ii = zeros(nnz,1); %initialization

jj = zeros(nnz,1);

ss = zeros(nnz,1);

b = zeros(N,1);

edge = zeros(sum(elemVertexNumber),2);

index = 0;

edgeIdx = 1;

for Nv = min(elemVertexNumber):max(elemVertexNumber)

% find polygons with Nv vertices

idx = find(elemVertexNumber == Nv); % index of elements

NT = length(idx); % the # of elements

% vertex index and coordinates

vertex = cell2mat(elem(idx));

x1 = reshape(node(vertex,1),NT,Nv);

y1 = reshape(node(vertex,2),NT,Nv);

x2 = circshift(x1,[0,-1]);
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y2 = circshift(y1,[0,-1]);

% record edges

nextIdx = edgeIdx + NT*Nv;

newEdgeIdx = edgeIdx:nextIdx-1;

edge(newEdgeIdx,1) = vertex(:); % get edge per element

vertexShift = circshift(vertex,[0,-1]);

edge(newEdgeIdx,2) = vertexShift(:);

edgeIdx = nextIdx;

% Compute geometry quantity: edge, normal, area, center

bdIntegral = x1.*y2 - y1.*x2;

area = sum(bdIntegral,2)/2; % the area

h = repmat(sqrt(abs(area)),1,Nv); % h = sqrt(area)

cx = sum((x1+x2).*bdIntegral,2)./(6*area); % the centroid

cy = sum((y1+y2).*bdIntegral,2)./(6*area); % the centroid

normVecx = y2 - y1; % normal vector

normVecy = x1 - x2;

% matrix B, D, I - P

Bx = (normVecx + circshift(normVecx,[0,1]))./(2*h);

By = (normVecy + circshift(normVecy,[0,1]))./(2*h);

Dx = (x1 - repmat(cx,1,Nv))./h; % m(x) = (x - cx)/h

Dy = (y1 - repmat(cy,1,Nv))./h;

c1 = (1 - (repmat(sum(Dx,2),1,Nv).*Bx + repmat(sum(Dy,2),1,Nv).*By))/Nv;

IminusP = zeros(NT,Nv,Nv);

for i = 1:Nv

for j = 1:Nv

IminusP(:,i,j) = - c1(:,j) - Dx(:,i).*Bx(:,j) - Dy(:,i).*By(:,j);

end

IminusP(:,i,i) = ones(NT,1) + IminusP(:,i,i);

end

% assemble the matrix

for i = 1:Nv

for j = 1:Nv

ii(index+1:index+NT) = vertex(:,i);
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jj(index+1:index+NT) = vertex(:,j);

ss(index+1:index+NT) = Bx(:,i).*Bx(:,j) + By(:,i).*By(:,j) + dot(

IminusP(:,:,i),IminusP(:,:,j),2);

index = index + NT;

end

end

% compute the right hand side

ft = area.*pde.f([cx cy])/Nv;

b = b + accumarray(vertex(:),repmat(ft,Nv,1),[N,1]);

end

A = sparse(ii,jj,ss,N,N);

%% Find boundary edges and nodes

totalEdge = sort(edge(:,1:2),2);

[i,j,s] = find(sparse(totalEdge(:,2),totalEdge(:,1),1));

bdEdge = [j(s==1), i(s==1)]; % find the boundary edge

isBdNode = false(N,1);

isBdNode(bdEdge) = true;

bdNode = find(isBdNode); % get the boundary node

%% Impose boundary conditions

u = zeros(N,1);

u(bdNode) = pde.g_D(node(bdNode,:));

b = b - A*u;

%% Solve Au = b

freeNode = find(˜isBdNode); % get the interior node

u(freeNode) = A(freeNode,freeNode)\ b(freeNode);

Note that we impose the Dirichlet boundary conditions, which is realized by lines 74 − 76. Prob-

lems involving Neumann boundary part can also be implemented in a similar way. The boundary

integral involving the Neumann boundary part is added into the right hand side. It is also vectorized

using accumarray.
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A.2.3 Numerical Results

In Figure A.1, it shows the irregular mesh from [122] in the rectangle domain [0, 1] × [0, 1]. We

shall define the following errors:

‖uI − uh‖A =
√

(uI − uh)TA(uI − uh),

‖uI − uh‖∞ = max |uI − uh|,

where uh is the numerical solution obtained by the linear virtual element methods; uI is the nodal

interpolation of the exact solution u in Th and A is the corresponding stiffness matrix.

We choose the exact solution is u = cos (πx) cos (πy) − 1 and f = 2π2 cos (πx) cos (πy). The

errors of ||uI − uh||A and ||uI − uh||∞ are presented in Table A.1. We could conclude that the

order of accuracy in energy norm is near 1 and in maximum norm is almost 2. It verifies that

virtual element method is feasible for solving Poisson equations with polygonal meshes in two

dimensions. Finally, we also compare the corresponding assembling CPU time along with that

in [121] in Table A.2, which reveals that our assembling time is not increasing too much for the

large number of nodes. While it is more expensive to assemble the stiffness matrix due to the large

for loop as the number of nodes is large enough in [121].

#Dofs # of elements ||uI − uh||A ||uI − uh||∞
34 16 8.2e-02 2.7e-02

130 64 5.9e-02 2.1e-02
514 256 2.4e-02 6.9e-03

2,044 1024 1.0e-02 1.6e-03
8,168 4096 4.9e-03 5.2e-04

32,652 20014 2.3e-03 1.2e-04
Rate 1.1 1.9

Table A.1: Errors measured in H1 and L∞ norms
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Figure A.1: The mesh when the number of the element is 16.

#Dofs Assemble(our algorithm) Assemble(other algorithm)
34 0.030971 0.0398962
130 0.018579 0.0416274
514 0.011572 0.194252

2,044 0.016255 0.521451
8,168 0.049402 3.4407
32,652 0.19699 40.2361

Table A.2: The comparison of assembling CUP time ( in seconds)
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