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Abstract

An exemplar-based algorithm, PROBEX, (Juslin & Persson,
1999) is shown to make robust decisions in multiple-cue in-
ference tasks when very few exemplars are known. We dem-
onstrate the crucial role of knowledge of cue directions for
performance and confront PROBEX with an artificial envi-
ronment specifically construed to favor a non-compensatory
algorithm like Take The Best (Gigerenzer & Goldstein, 1996).
PROBEX is demonstrated to perform well even in these unfa-
vorable conditions. The explanation for the robust perform-
ance is that PROBEX approximates Dawes Rule by using in-
formation of the cue directions for all cues, while yet making
few a priori assumptions about the structure of the environ-
ment.

Introduction
In this paper we will discuss the importance of knowledge of
cue directions for probabilistic inference. The cue direction
refers to the valence of the relationship between two vari-
ables, for example, as represented by the sign of a correla-
tion, or a coefficient in a linear equation (e.g., a beta weight
in linear regression). We will concentrate on a simple binary
choice task format of the following sort, “Which German
city has the higher population: a) Bonn, b) Hamburg?”. In
this case, knowledge of a cue direction corresponds to
knowing if a binary probability cue, say, that Hamburg, but
not Bonn, has a soccer team in the Bundesliga, increases or
decreases the probability that alternative (a) (Bonn) is the
correct answer to the question.

The constraints on a plausible cognitive mechanism for
learning cue-directions are complex and multifaceted. In
some tasks, learning cue-directions is not important because
they are known a priori. In those cases, it is the relative
weight of the cues that is important. On the other hand, it is
sometimes proposed that knowledge of cue directions is the
crucial aspect of learning to make probabilistic inferences
(Dawes & Corrigan, 1974). Moreover, inferences have to be
made for new and unexpected tasks for which little previous
experience is available. This means that the system cannot
rely extensively on pre-computed knowledge—which cues
are predictive, and the direction of predictive validity, has to
be detected on the spot. Finally, a flexible algorithm should
map both linear and nonlinear aspects of an environment.

These constraints boil down to whether we can find an al-
gorithm integrating the ability to represent non-linearity with

on-the-spot detection of cue directionality. Is this possible
without violating psychological plausibility? In this paper,
we show that PROBEX (PROBabilities from EXemplars:
Juslin & Persson, 1999) is such an algorithm. It relies on
similarity-guided retrieval of exemplars to capture nonlinear
relationships and to estimate cue directions. An added bonus
is that because PROBEX belongs to the class of lazy algo-
rithms (Aha, 1997), which do not require pre-computed
knowledge, this is achieved in a fast and frugal fashion.

An important development in the judgment literature is the
concern with evaluating cognitive algorithms within real
environments (Gigerenzer & Goldstein, 1996; Gigerenzer,
Todd, & the ABC-group, 1999). Gigerenzer and Goldstein
(1996) demonstrate that, when applied to the structure of a
real environment, simple heuristics that only rely on a single
cue perform on par with complex algorithms that integrate
multiple cues. Take-The-Best (TTB) relying on the single
most valid cue that is applicable, performed as well as linear
multiple regression that integrates 9 cues. It was concluded
that although TTB falls short of classical norms of rational-
ity, it provides the same accuracy at a minimum of compu-
tation: It is ”fast and frugal”. One shortcoming of the simu-
lations in Gigerenzer and Goldstein was that all algorithms
were provided with a priori knowledge of cue directions.

Connectionist, exemplar-based and decision-tree archi-
tectures have been shown to compete evenly with TTB in
regard to accuracy (Chater et al, 1999). Specifically, in Jus-
lin and Persson (1999) it was shown that PROBEX outper-
formed TTB and linear multiple regression in regard to
accuracy while relying on no pre-computed knowledge.
PROBEX further provided a good quantitative fit to the
quantitative point-estimates, binary decisions, and probabil-
ity judgments made by human participants (see Dougherty,
Gettys, & Ogden, 1999, for a similar approach).

In this paper, we complement Juslin and Persson (1999) in
three respects: First, we illustrate the crucial role of esti-
mating cue directions for the performance of any algorithm.
Second, we explore boundary conditions for the robust per-
formance of PROBEX by exposing it to an environment
deliberately construed to favor a non-compensatory algo-
rithm like TTB and a linear, additive algorithm like linear
multiple regression. Finally we present a simple demonstra-
tion to elucidate why evolution should favor decisions algo-
rithms that are robust in states of limited knowledge.



PROBEX—The Algorithm
Many theories in cognitive science stress the storage of
exemplars (traces, instances) (e.g.; Kruschke, 1992; Logan,
1988; Medin & Schaffer, 1978; Nosofsky, 1984, Nosofsky
& Palmeri, 1997). One property of exemplar-based models
is that they describe algorithms that respond to both fre-
quency and similarity. In this respect, they map onto well-
known properties of human probability judgment (Juslin &
Persson, 1999). PROBEX was developed from one of the
well-known and successful exemplar-based model, the con-
text model (Medin & Schaffer, 1978; Nosofsky, 1984).
PROBEX amends the context model in the following re-
spects (see Juslin & Persson, 1999): (a) With a sequential
sampling mechanism that allows prediction of response
times (as such PROBEX provides a humble cousin of the
EBRW model presented by Nosofsky & Palmeri, 1997); (b)
A dampening in order to predict pre-asymptotic performance
(see also Nosofsky et al., 1992); and (c) response rules that
allows prediction of point-estimates and subjective prob-
ability judgments. The simple stopping rule and the mecha-
nisms for point-estimation and probability judgment are the
main differences from previous exemplar-based models.

Knowledge of the environment is modeled by an R C×
matrix, with R exemplars, C cue dimensions and one vector
with R target values. The exemplars in the knowledge matrix
represent distinct psychological entities, either traces of
dated events from episodic memory or semantic knowledge.
Exemplars are described in terms of binary feature values,
except for the continuous target dimension t. Each exemplar
is represented by D binary features [ ]x x x xi i i iD= 1 2, ,� ,
where 1 denotes presence of the feature and 0 its absence.
The participant is presented with a new exemplar t and is
required to make a judgment or a decision. The similarity
between t  and stored exemplar y  is computed by the mul-
tiplicative similarity rule of the context model,
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where dj is 1 if the values on a feature match and s if they
mismatch. Similarity s is a parameter in the interval [0, 1]
for the impact of mismatching features. For low values of s,
the similarity is close to one only for an exemplar that is
almost identical to the new exemplar, but for high values of
s all of the stored exemplars are deemed very similar.

We examine PROBEX with s=0.5 for all cue dimensions
which is a compromise between these extremes. The idea is
that this compromise, referred to as similarity-graded prob-
ability, is a particularly robust and efficient way to exploit
states of limited knowledge (Juslin & Persson, 1999).

The stored exemplars race to determine the response
(Logan, 1988; Nosofsky & Palmeri, 1997). The stored ex-
emplars are retrieved one-by-one from an initial set K  to
yield a sequence x x xN1 2, ,� . The probability that exemplar
y  is the sampled exemplar xn

 at iteration n  is:
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The summation in the denominator is performed across
exemplars not yet sampled. A response is generated at itera-
tion N , where the decision rule specified below terminates
the sampling process. N is a random variable, the distribu-
tion of which can be used to predict response times.

To estimate the target value v t' ( )  of the new exemplar t ,
the target values v xi( )  of the retrieved exemplars xi  are
considered. The estimate of the target value at iteration n is,
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a weighted average of the retrieved target values, where
the similarities are weights. The final estimate is
v t v t N' ( ) ' ( , )=  where N is the first iteration where the con-
ditions for the stopping rule are satisfied. Eq. 3 can also be
produce probability assessments (Juslin & Persson, 1999).

The sampling of exemplars is terminated at the first itera-
tion N where the following condition has been satisfied. The
stopping rule is:

v t n v t n k v t n′ − ′ − < ⋅ ′( , ) ( , ) ( , )1 . (4)

The free parameter k decides the sensitivity of the stop-
ping rule. One can interpret this rule as a way of judging
when the change in the point estimate from v t n′ −( , )1  to
v t n′ ( , )  is too small to merit further sampling.

Is PROBEX Frugal?
Gigerenzer and Goldstein (1996) proposed the notion of
‘fast and frugal’ as a conceptual threshold that a model of
human decision making must reach in order to be plausible.
At first sight, the mathematics of PROBEX that model re-
trieval of exemplars seems too complex to be ”fast and fru-
gal”. But there are two major issues that resolve this di-
lemma. First, the complex part of PROBEX models quick
and effortless memory processes that operate in parallel.
Secondly, it is not enough to prove that an algorithm is effi-
cient at the moment the decision is made, without concern
for the requirements on pre-computation. PROBEX belongs
to the class of lazy algorithms (Aha, 1997) in artificial intel-
ligence, that avoid the processing of data before the task is
given. On the other hand, all algorithms discussed in this
paper, except PROBEX, rely on pre-computed representa-
tions. TTB (Gigerenzer & Goldstein, 1996) for example
need to compute a sorted list of cue validities for the specific
task, which in it self is computationally demanding. Argua-
bly, if PROBEX makes good decisions by retrieving few
exemplars and without using pre-computed representation, it
is fast and frugal in a more general and important sense.



The Ecological Rationality of Five Algorithms
The German City-population Task The task in the initial
study on ecological rationality was the German city-
population task (Gigerenzer & Goldstein, 1996; see Giger-
enzer, et al., 1999, for applications to other environments).
The task is to answer questions such as ”Which city has the
larger population: Heidelberg or Erlangen?” The decision
process is modeled by an algorithm that relies on some strat-
egy to make intelligent guesses about the populations of
German cities. The simulation also requires an environment-
model containing facts about German cities which—once
known to the algorithm—can be used to infer city-
populations. The environment is represented by nine binary
cues that characterize each city, for example, whether a city
is a state capital or not, whether it has a university or not,
where the nine cues vary in predictive validity.

The Algorithms PROBEX was compared to four algorithms
for guessing which of two objects have the largest value on
the target dimension: (1) A linear multiple regression model
with cues as independent variables and population as de-
pendent variable. In a pair-wise comparison task, the algo-
rithm decides on the city with the higher estimate. The di-
rection of the cues is the sign of the regression weights.
Linear multiple regression is included because it is routinely
claimed to provide robust and accurate predictions. How-
ever, it cannot handle situations with few observations un-
less one amends it with a method such as Ridge Regression
to compensate for cue dimensions with no information1.

(2) Dawes’ Rule (Gigerenzer, et al., 1999): A heuristic
version of the linear model that counts how many of the cues
support each of the two cities and decides on the city im-
plied by more cues. Cue direction is represented as 1 or -1 if
there is positive or negative correlation in the training data
respectively and zero if it was not computable. As detailed
below, two versions of Dawes’ Rule were implemented in
order to investigate the importance of a priori knowledge of
the cue directions. (3) TTB (Gigerenzer & Goldstein, 1996):
In pair-comparisons, TTB decides on the task implied by the
first most valid cue that differentiates between the pair.

(4) QUICKEST (Gigerenzer, et al., 1999) is an algorithm
appropriate for skewed distributions like the German city-
populations, where most cities have small populations. For
each cue, the mean population for cities with negative cue-
values is computed (negative cue values are those that go
with small populations, e.g., not being a state capital). Cues
are rank-ordered from the cue with lowest mean given a
negative cue value to the cue with the highest mean given a

                                                          
1 Ridge regression has the drawback of biasing the predictions

towards the mean, and thus lowers the predictive accuracy when
the weights are calculated from many observations without
problems with correlated variables. We hand-picked an interme-
diate ridge constant, 0.1, that increased accuracy with limited
information (small training set) but did not lower performance
with much information (large training set).

negative cue value2. To estimate a population the algorithm
starts by checking if a city has the cue value that is first in
this rank-order, then the next, and so on until a match is
encountered. Then the mean population for the cities which
have this cue is the estimate. Given the skew of the city-
population distribution with mostly small cities, this algo-
rithm is frugal in the sense of minimizing the number of cues
that have to be accessed (i.e., for most cities the algorithm
will stop for the first negative cue values in the rank-order).
In pair-comparisons, QUICKEST decides on the city with
the larger estimate.

Gigerenzer and Goldstein (1996) tested the algorithms by
feeding them with all the pair-wise comparisons between
German cities with more than 100 000 inhabitants. One
weakness of this procedure was that the knowledge of the
algorithms was assumed to consist of all the cities. A better
test (Gigerenzer, et al., 1999) is to split the set of German
cities into a training set and a test set. The training set is
used to train the algorithm and the test set is the pool from
which the test questions are constructed. This cross-
validation is a true test of the robustness and detects any
over-fitting to the training set. Moreover, it highlights the
issue of learning the cue directions.

Learning Cue Directions In the simulations, all algorithms
except A Priori Dawes’ Rule have no a priori knowledge of
the cues, but have to learn them from the known exemplars.
In some tasks it, may be possible to infer cue direction by
reasoning, but this topic is not addressed in this paper.

To illustrate the importance of knowing the cue directions,
two versions of Dawes’ Rule were implemented. The first
version is the A Priori Dawes’ Rule and it assumes that cue
directions are known a priori. Its purpose is to show the
theoretical upper limit of Dawes’ Rule with a priori knowl-
edge of cue directions. The second version, Dawes’ Rule,
relies on observed training exemplars to estimate cue direc-
tions by calculating whether each cue is positively or nega-
tively correlated with the target dimension among the train-
ing exemplars. The difference between the variants indicates
the importance of a priori knowledge of cue directions.

It is important to make special solutions for several of the
algorithms below. With Dawes’ Rule, insufficient data can
make the correlation between a cue and the target variable
undefined and then this cue is never used in the test phase.
TTB must also be treated with care, because it use a sorted
list of cue validities. When there are few exemplars it is
often the case that several cue validities get the same nu-
merical value and then these have to be listed in random
order within the list. If this is not done the computer imple-
mentation can lead to a biased cue order which may either
increase or decrease the accuracy of the algorithm.

                                                          
2 We did not implement QUICKEST exactly as Gigerenzer et al.

(1999) did as we did not use approximations to natural numbers
which probably implies that our implementation gives slightly
better predictions.



Study 1: Pair-Comparisons in the German
City-Population Task

From an evolutionary perspective, it is important that an
algorithm is good also when information is limited, because
a decision maker has to survive as a ”beginner” (see Study 3
below). Performance with small training sets is therefore a
most important aspect of the robustness of an algorithm.
Also, each algorithm soon reaches an asymptote that de-
pends on both the cue structure and the algorithm itself. In
the first simulation we thus compared the algorithms in the
standard binary choice task with a particular eye to their
performance in states of severely limited knowledge.

Training Set Size

P
ro

po
rt

io
n 

C
or

re
ct

0 .45

0.50

0.55

0.60

0.65

0.70

0.75

1
2

3
4

5
6

7
8

9
10

20
30

40
50

60
70

80

PROBEX

A PRIORI  DAWES

D A W E S

TAKE THE BEST

RIDGE REGRESSION

MUL. REGRESSION

QUICKEST

Figure 1. Accuracy and robustness of the algorithms. For each
training set size, 1000 sets were randomized.

Method The dependent variable was proportion of correct
inferences among the pair-comparisons of the test set. For
each training set-size (2-80), as many as 1000 participants
were simulated in order to make the errors of the means
negligible. For each simulated participant, the German cities
were randomly partitioned into training and test sets. Each
algorithm was given the training set and the remaining cities
were combined into all possible unique pairs and used as the
test set. The data for the 83 German cities were collected
from Gigerenzer and Goldstein (1996).

Results and Discussion Aside from A Priori Dawes’ Rule
that gets a head-start by virtue of its initial knowledge,
PROBEX seems to be the winner in Figure 1. At minimum
knowledge, PROBEX, Ridge Regression, and Dawes’ Rule
utilize the information equally well. TTB seems to have
problems sorting the cues in a good order with little infor-
mation, but does very well with 6 or more training exem-
plars. QUICKEST trade off accuracy for speed which is
seen clearly in the cross validation paradigm. Note that A
Priori Dawes’ Rule does not define the asymptote that the
other algorithms converge on, because it does not depend on
the training set and does not suffer from over-fitting. This
effect of cross-validation explains why it is constant at the
high proportion correct of .74. It is surprising that Dawes’
Rule performs worse with more information, but this is be-
cause the correlation between two cues in the full training

set is negative. With less information there is a greater
chance to get a training set with only positive correlations. If
cue validities had been calculated instead of correlations,
Dawes’ Rule would have done better.

In sum: The algorithms that use all information, such as
PROBEX, perform robustly in states of limited knowledge.
PROBEX, however, also performs best when more informa-
tion is available. The superior performance of A Priori
Dawes’ Rule shows that a crucial aspect to be acquired by
any algorithm is knowledge of the cue directions.

PROBEX and Dawes Rule
In order to understand why PROBEX performs better than
TTB with few training exemplars, it is instructive to con-
sider only two optimal training exemplars: Big-city with all
cues set to 1 and Small-city with all cues set to 0. For sim-
plicity, all cues are assumed to be positively correlated with
population. For PROBEX the similarity of the probe to Big-
city decreases monotonically as a function of the number of
cues in the probe that are not 1. The opposite holds for the
similarity to Small-city which increases for each cue not set
to 1. Because it is the number of cues set to 1 that differenti-
ate the probes, PROBEX has the same high accuracy as
Dawes’ Rule.

TTB computes the cue direction for all cues but cannot
apply this information, because the order of the cues is se-
lected at random when the cue validity is the same for all
cues. The data point with two training exemplars in Figure 1
suffers from this problem because the search order will be
picked at random from those cues that have a well defined
direction. PROBEX, Ridge Regression and Dawes’ rule, on
the other hand, integrate cue direction information from all
cues in every decision in a similar way, which explains why
they have identical proportions correct for the case of two
training exemplars in Figure 1.

Study 2: A Non-Compensatory Data Set
When is PROBEX outperformed by other algorithms, like
linear multiple regression and TTB? A good guess is in an
environment with additive and non-compensatory cues. The
cues are non-compensatory if the optimal regression weights
are such that the largest weight is bigger than the sum of the
smaller weights. The second largest cue should likewise be
larger than the sum all the remaining cues, and so on (Giger-
enzer et al., 1999). An environment with linear, additive
relations favors the regression model and a non-
compensatory cue-structure favors TTB. A simple environ-
ment for which this is true can be defined by ordinary binary
numbers. Each binary number can be used as a cue. For
example, 5 is written as 00101 in binary numbers, and gives
the cues c1= 0, c2= 0, c3=1, c4=0 and c5= 1. The optimal
weights here are {16, 8, 4, 2, 1}, respectively (i.e.,
16 0 8 0 4 1 2 0 1 1 5⋅ + ⋅ + ⋅ + ⋅ + ⋅ = ).



How much better than PROBEX will linear multiple re-
gression and TTB perform in this environment specifically
construed to fit the latter two algorithms?

Method The same procedure was used as in Study 1, except
that the data were binary numbers between 0 and 32. Analo-
gously with the German city-population task, the task was to
guess which of two binary vectors has the highest number.
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Figure 2. PROBEX in an artificial environment composed of the
binary numbers.

Results and Discussion Ridge regression is clearly superior
in Figure 2, but suffers slightly from biased estimates with 8-
15 exemplars in the training set. TTB does not reach the
asymptote unless it is trained with almost every exemplar,
and is easily beaten by PROBEX when there are few train-
ing exemplars. The two variants of Dawes Rule cannot use
the non-compensatory nature of the cues and are stuck at
about the same level of performance as in Study 1.

As expected, multiple regression is perfectly suited for this
environment, but both TTB and PROBEX converge on the
same asymptote. More surprisingly, PROBEX is better than
TTB with few exemplars. TTB only evens the score when
more training exemplars are available, despite the fact that
this cue structure is optimal for TTB. Thus, linear multiple
regression converges more rapidly on the asymptote, but
TTB enjoys no clear advantage over PROBEX.

Study 3: An Unforgiving Environment
Does it matter if a decision algorithm is a few percentages
better for decisions made in states of limited knowledge?
The answer to this question, of course, depends on the con-
sequences of these decisions. In this final section, we pro-
vide an simple demonstration that in an environment where
poor decisions are fatal, and experience is only gained con-
ditional on the survival of previous decisions, a small differ-
ence in decision quality may add up quickly. Arguably, these
are the living conditions of many animals, including those of
humans for a large portion of the evolutionary history.

Method In order to cover a wider range of possibilities and
simplify the demonstration, we modeled three ideal deci-

sions strategies, Early Learner (EL), Late Slow Learner
(LSL) and Late Fast Learner (LSF), as linear functions
roughly similar to the functions in Figure 1 and 2. EL is
PROBEX-like in the sense that it has a slight advantage
early in the learning process. LSL and LSF are more TTB-
like in that they start at a lower level but increases in accu-
racy, where LSF increases at a higher speed.

( )p correct iEL = + ⋅055 0 010. .    (5)

( )p correct iLSL = + ⋅050 0 015. . (6)

( )p correct iLFL = + ⋅050 0 020. . (7)

Equation 5, 6 and 7 define the probability of a correct de-
cision if the decision maker has i training exemplars as guid-
ance. Two simulations were made where EL was pitted once
against LSL and once against LFL. Ten generations were
simulated, where the relative proportion of surviving deci-
sion makers decided the relative proportion in the next gen-
eration. Each generation made 11 decisions, where i was
varied from 0 to 10. For example, a member of the EL-
species had a 0.55 chance to survive the first decision and
0.65 chance to survive the last. LSL and LFL both had to
start off at 0.5, but ended with 0.65 and 0.7, respectively.

LSL is an example of a decision strategy that starts off
poorly and barely catches up with EL. LFL, on the other
hand, is better than EL for the last 5 trials. Note that, if the
decisions were not fatal, LFL and EL would both make the
same overall amount of correct decisions.
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Figure 3: Two simulations of decision making in a unfor-
giving environment. Open symbols present Early Learners
vs. Late Slow Learners, filled symbols present Early Learn-
ers vs. Late Fast Learners.

Results and Discussion Figure 3 presents the relative
population proportions in a competition between EL and
LSL, on the one hand, and EL and LFL, on the other. LSL
would vanish very quickly in such a harsh environment. LFL
are better but the losses in the beginning of every generation
cannot be repaired despite the superior performance at the
end of each generation (experienced decision makers).



This example is artificial and simplified, but shows that it
is important to be a few percent better with little information
than a few percent better with a lot of information, if learn-
ing is potentially dangerous. Indeed, the differences need not
be large if they sum up over thousands of generations.

General Discussion
We propose that a plausible model of the cognitive proc-

esses that underlie memory-based judgment and decision
making should have at least three properties: First, the
model should be consistent with—and preferably extend
on—previous models with independent support in the cog-
nitive science literature. PROBEX is a moderately modified
version of one of the most successful models from the cate-
gorization literature—the context model (Medin & Schaffer,
1978; Nosofsky, 1984). Second, algorithm-details that per-
tain to implementation in judgment and decision making
needs to be tested. First steps along these lines have been
taken by fitting the predictions by PROBEX to empirical
judgment data (Juslin & Persson, 1999).

Third, as implied by the research on ecological rationality
(Gigerenzer et al., 1999), a cognitive algorithm should make
sense also from an evolutionary perspective. An algorithm
favored by natural selection should produce accurate judg-
ments when applied to the constraints of a real environment,
require a minimum of mental effort, and be robust in states
of limited knowledge. In this paper we have scrutinized the
ability of PROBEX to infer and use cue direc tions, in com-
parison with a number of fast-and-frugal algorithms dis-
cussed by Gigerenzer et al. (1999).

PROBEX provides a flexible and efficient way to compute
and use directions of many cues on the spot, that is, without
requiring any pre-computed knowledge. Moreover, TTB
enjoys no systematic advantage over PROBEX in an envi-
ronment specifically designed to favor a non-compensatory
strategy. Importantly, in contrast to the other algorithms,
PROBEX brings no strong commitment in regard to the
presumed structure of the environment (e.g., linear, compen-
satory), but applies equally well to nonlinear environments
(such as the classic X-OR-problem). Arguably, this is the
kind of flexibility favored by evolution in adaptation to a
complex and uncertain environment.
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