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ABSTRACT OF THE DISSERTATION

Hierarchical Integration of Heterogeneous

Highly Structured Data:

The Case of Functional Brain Imaging

by

Qian Li

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2018

Professor Donatello Telesca, Chair

Functional brain imaging technologies produce high dimensional data with structured de-

pendency spanning along multiple dimensions. This dissertation focuses on the specific case

of Electroencephalography (EEG), even though most methodological developments are ap-

plicable to other imaging modalities. The overarching goal is to provide methodological

foundations to inferential problems involving population inference in the setting of cognitive

experiments. Specifically, I address important challenges associated with the highly heteroge-

nous nature of brain imaging measurements, by reframing complex inferential questions in

the context of familiar analytical techniques involving regression, clustering, functional and

longitudinal data analysis. These contributions focus on spatio-temporal modeling of EEG

measurements, which characterize both intra- and inter-subjects variation within the con-

texts of neuronal synchronicity and differential band power dynamics. The methodological

developments are used to provide analytical insight in several neuro-cognitive studies based

on EEG data.
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CHAPTER 1

Brain Imaging Techniques and Statistical Methods

for Integrative Inference

1.1 Introduction

Functional brain imaging (neuro-imaging) techniques have been widely investigated and

discussed over the recent decades. They enable direct visualization of the brain, highlighting

the underlying metabolic process, through typically non-invasive imaging protocols. For this

reason, the technology is readily available for implementation and adaption to a variety of

scientific investigation. Despite its attractiveness, however, the high dimensionality and the

complex dependency intrinsic to the data, pose substantial challenges to both quantitative

modeling and inferential techniques. Therefore, a tremendous amount of effort has been

dedicated to these problems, and it is the main focus of my dissertation.

Another fundamental challenge from brain imaging techniques is that, measurements are

inherently heterogeneous. This heterogeneity could be induced by trial-specific acquisition

protocols, equipment setups [NCT12], but more commonly, idiosyncratic response from the

measured participant [BDT15]. On the other hand, it is intuitively and statistically ap-

pealing to rely on readings from more than one individuals in order to highlight recurrent

patterns and group characteristics in brain activities. As a consequence, integrating indi-

vidual findings on a small to moderate sample of EEG measurements, that are intrinsically

noisy and unpredictable, into statistically sound group level inference has been central to

many methodological developments (see [HMS07] and [NA16]).

My dissertation focuses on the specific case of Electroencephalography (EEG), even
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though most methodological developments are applicable to other imaging modalities, for

example functional magnetic resonance imaging (fMRI). The overarching goal is to pro-

vide methodological foundations to inferential problems involving population inference in

the setting of cognitive experiments. Specifically, I address important challenges associ-

ated with the highly heterogenous nature of brain imaging measurements, by reframing

complex inferential questions in the context of familiar analytical techniques involving re-

gression, clustering, functional and longitudinal data analysis. These contributions focus

on spatio-temporal modeling of EEG data which characterizes both intra- and inter-subject

variation within the contexts of neuronal synchronicity and differential band power dynam-

ics. The ensuing methodological developments are used to provide analytical insight into

several neuro-cognitive studies based on EEG data.

To lay out the background of related work, I review EEG techniques and analytical

methods for EEG studies in Section 1.2.1 and 1.2.2; various approaches aimed at the esti-

mation of power spectral densities are briefly discussed in Section 1.2.3; clustering methods

as exploratory approaches are reviewed in Section 1.3. Group-level inference via hierarchical

models in cluster analysis is discussed in Section 1.3.3, and mixed effects regression models

in Section 1.4. Following a brief introduction, the application of these techniques in the

context of EEG experiments, inference for neuronal synchronicity is discussed in Chapter 2,

and inference for regionally referenced power bands dynamics is discussed in Chapter 3.

1.2 Electroencephalography (EEG) Data Analysis

Electroencephalography (EEG) captures the potential field and records the difference as

electrical activity on human scalp, non-invasively through sensors that are essentially elec-

trodes. This technique has been extensively used and studied for both clinical and research

purposes since the first published work by Dr. Hans Berger in 1929 [Ber29]. More recently,

EEG has gained increasing attention on account of multi-channel EEG recordings and fine-

grained digitization, which in return has broadened its applications and benefitted scientific

investigations that aim at: substrate of neuronal diseases, including Alzheimer’s [HPS09],
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epilepsy [ABS08] and Autism Spectrum Disorder (ASD) [BDW07]; functional and physiolog-

ical investigation under the states of resting [BSB11] and attention [BCJ03]; and monitoring

neurological injury, in the event of stroke [CBS76], trauma [TWG89] and coma [You00].

By comparison, EEG has significant advantages over the alternative neuroimaging modal-

ities, for example functional magnetic resonance imaging (fMRI) and positron emission to-

mography (PET), because of its high temporal resolution, allowing for stimuli to be registered

precisely to their onset over the course of experiment. In response to the criticism of a lack of

spatial resolution, to locate the electrophysiological source accurately, EEG has evolved from

a single channel monitoring device to high-density geodesic net that captures the electrical

fluctuations simultaneously at multiple locations, therefore gained in popularity for research

purposes. This evolvement has dramatically enriched the volume of information at micro

level, therefore precise inference became feasible longitudinally and spatially. On the other

hand, it highlights the necessity of well engineered analytical metrics, known as quantitative

EEG (qEEG) methods, and motivates the development of automatic and scalable procedures

to analyze a massive amount of waveforms from EEG experiments. This section selectively

reviews some relevant concepts and work. For a thorough review of the recent development

in qEEG methodology, see [TT04].

1.2.1 EEG Measurements and Pre-processing

EEG non-invasively collects electrophysiological signals on the human scalp. More precisely,

it measures the potential difference between a pair of electrodes: one placed at the point of

interest, and the other typically placed on the top of head as a reference. Its measurements

are expected to display the action potential induced by cortical neurons, that is either ex-

citatory or inhibitory, corresponding to stimulus-based and resting-state characterization of

physiological activities, in the targeted pyramidal layer of the cortex [MH03]. Fundamentally

at the cellular level, neuronal activity causes electrical fluctuation that is projected to the

surface of the scalp and further captured by EEG. Depending on the underlying process, it is

possible to observe locally spiked signal as activation and remotely associated cooccurrence
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as connectivity. Regardless of its applications, the observed EEG signal is hypothetically

induced by the neuronal activity perpendicular to the cortical patch where the first electrode

is placed upon, relative to its reference point.

In reality, however, other electrophysiological signals, besides the neuronal activity of

interest, also appear in EEG recordings therefore need to be properly removed. These

electrophysiological “noises”, often induced by physical movements, muscle activities even

heart beats, are often referred to as artifacts, and typically possess distinctive features in

their waveforms. The pre-processing of EEG signals aims to identify and isolate artifacts

by these features, and it has become common standard to all analytic EEG studies (see

[JGK04]). In general, a typical pipeline of EEG preprocessing operates on the segmented

recordings, by marking and replacing the suspicious channels at first, followed by the rejection

of contaminated segments. The rejection procedure routinely starts with a manual rejection,

which visually inspects for non-stereotyped artifacts of certain waveforms, then proceeds

with an automated (algorithmic) rejection with combined Independent Component Analysis

(ICA) and Principal Component Analysis (PCA). Ideally, the artifacts are separated out and

rejected as non-signal components, without sacrificing the whole segment [DSM07].

On the other hand, preprocessing procedures complicate the structure of data. The

first complication is that rejection leads to incompleteness, and significantly reduces the

amount of available data and consequently the power of statistical inference. For example,

when EEGs are recorded on a cohort of children diagnosed with Autism Spectrum Disorder

(ASD), greater amount of rejections are noticed which can be partially attributed to inatten-

tion and frequent physical movements, relative to a control group of Typically Developing

(TD) children. Besides, segments are normally re-referenced after segment-wise processing,

therefore as a consequence, even adjacent segments are essentially discontinued over the

course of the experimental time; this discontinuity impedes the application of statistical

methods that operates on lengthy continuous time series. The effective unit admissible to

statistical modeling has been shortened to segmented pieces that typically span 1 second in

length.

In response, multiple measures have been taken to amplify the Signal-to-Noise Ratio
4



(SNR) of EEG recordings. Previous work can be roughly categorized into one among the

following four:

• Elimination of noise sources;

• Rejection of noisy data;

• Removal of noise;

• Signal averaging.

Statistically speaking, all measures are often considered necessary, except for signal averaging

since it often lead to loss of information with good intentions (see [HBM13]). Careful exam-

ination reveals that this compromise has abused the abundance of information along both

longitudinal and spatial dimensions, where signals appear correlated instead of purely du-

plicated. This observation motivates a key objective of this dissertation, i.e. to structurally

model multi-way dependent data.

1.2.2 Review of Quantitative Methods for EEG Data

Typical EEG studies extract quantitative features from: (a) time domain; (b) frequency

domain; and (c) time-frequency representations. Most of methods in (a) and (b) fall into the

linear category, as they hypothesizes stationarity of the EEG recordings and approach the

problem linearly under a generalized regression framework. By contrast, (c) is more liberal

in the sense that it aims at a dynamic representation of a potentially non-stationary process.

In this context, the definition of time-varying spectra can capture more transient features,

as well as longitudinal effects, and is often categorized as non-linear approach. A thorough

review is provided by [TT04].

Frequency domain methods usually build upon power spectral analysis of each segment.

The calculated power, in absolute or relative sense, is aggregated by five commonly used

frequency bands: Delta (0-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz), Beta (12-30 Hz) and

Gamma (30-50 Hz). Depending on the purpose of the study, absolute power is essentially
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the raw estimate of power spectral density (PSD), whereas relative power is the normalized

version that has the total variance adjusted in the units of segments.

Segmented recordings have a span of only a few seconds. Therefore, power estimates

are highly volatile and potentially unreliable for use in influence. One practical way to

stabilize the spectral estimate is to rely on averaging (smoothing). To be specific, the

estimated powers are averaged over electrodes, within regions of interest (ROI), further over

segments, with hypothetic stationarity spatially (i.e. within ROI) and temporally (i.e. across

segments). This hypothesis is inappropriate in the sense that: (a) a scalp parcellation should

be data-dependent rather than predefined by anatomy; (b) stationarity can be relaxed to

locally such that a stable estimate of spectral power is available without compromising the

spectral dynamics. Consequently, a Bayesian clustering method is motivated in Chapter 2

in accordance with these two observations.

Group-level inference can also improve on spectral differentiation, by relying on record-

ings from multiple subjects. Simple averaging scheme within group, however, overlook the

heterogeneity of the measurements, especially in some pathological conditions, and often

leads to attenuated or even inappropriate findings (see an example in [KJJ13]). Further-

more, inference at group level is still underdeveloped in the context of functional connectiv-

ity using EEG measurements. In this regard, we first introduce an integrative approach in

Section 1.3.3, from a clustering perspective that is applicable to resting-state EEGs, then

discuss Mixed Effects Models and their functional variants extendable to non-stationary time

series from stimulus-based EEG experiments.

1.2.3 Review of Spectral Estimation

The spectral analysis of a time series can be conceptualized from two perspectives, strength

of multiple periodic components and distribution of variance on the frequency domain. It

can be shown that they are equivalent in principle, but often referred to as periodogram and

correlogram in practice. More precisely, for a time series x(t), t = 1, . . . , n, the discrete
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Fourier transform (DFT) is defined as

d(ωj) = n1/2
n∑
t=1

x(t) exp(−2πiωjt) (1.1)

for j = 0, 1, . . . , n−1, where the frequencies ωj = j/n are Fourier or fundamental frequencies.

The periodogram is defined as the squared modulus of the DFT,

I(ωj) = |d(ωj)|2 = n−1
n∑
t=1

n∑
s=1

x(t)x(s) exp(−2πiωj(t− s))

= n−1
(n−1)∑

h=−(n−1)

n−|h|∑
t=1

[x(t+ |h|)− x(t)] [x(t)− x(s)] exp(−2πiωjh) (1.2)

=
(n−1)∑

h=−(n−1)
γ̂(h) exp(−2πiωjh) (1.3)

where γ̂(h) is the sample auto-covariance function (ACF),

γ̂(h) = n−1
n−h∑
t=1

[x(t+ h)− x(t)] [x(t)− x(t)] (1.4)

In (1.2), the mean x(t) is subtracted from x(t) under the assumption that x(t) is a zero-

mean stationary time series. Then correlogram defined by (1.3) is essentially the DFT of the

auto-covariance γ̂(h).

Raw periodograms defined by either (1.1) or (1.3) are unbiased estimators of the spectral

density f(ω). Their implementation is made efficient, by using the fast Fourier transform

algorithm (FFT). The FFT has the most computational advantages when n is highly compos-

ite, for example n = 2p is a factor of 2 with order p. However, this estimator is inconsistent.

As discussed by [SS10], I(ωj) is the sum of squares of only two random variables for any

sample size, which is problematic especially for lower frequencies. In practice, smoothed

periodograms are preferred and set as default for common computation packages.

Smoothed Periodogram Estimator

Given a raw periodogram I(ωj), the smoothed periodogram convolves with a kernel function

h on the frequency domain,

f̂(ω) =
m∑

k=−m
hkI(ωj + k/n), (1.5)
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using weights hk > 0 that satisfy∑m
−m hk = 1 and spans over 2m+1 values in the neighboring

frequency of ω. Popular choices of hk include: the Daniell kernel, corresponding to a moving

average kernel of rectangular shape over 2m + 1 points; the modified Daniell kernel which

yields smoother estimates by assigning half weights at both end points, and it is often applied

recursively by a convolution that leads to further smoothness in practice.

Lag Window Estimator

Alternatively, smoothness can also be achieved by operating on the ACF in (1.4). The so

called lag window estimator is defined as,

f̃(ω) =
∑
|h|≤r

w(h/r)γ̂(h) exp(−2πiωh), (1.6)

where the weight function w(·) satisfies: a) w(0) = 1; b) |w(x)| ≤ 1 and w(x) = 1 for |x| > 1;

and c) w(x) = w(−x).

The smoothness is now controlled by both a lag window smoother, and truncation of the

ACF with r lags at maximum. As suggested by [EOO15], the Parzen window works well for

EEG applications, and the truncation parameter r can be selected based on cross-validation

procedures (see [ORS01]).

Principal Components in the Frequency Domain

All univariate methods centered around the spectral density matrix f(ω) can be generalized

to multivariate cases. These topics are rigorously covered in [SS10] (Chapter 7) and [Bri01]

(Chapters 9 and 10) and only brief reviews are presented in this section.

For a pair of time series xj(t) and xk(t) defined on the same grid of time points, (1.4)

can be generalized from an auto-covariance to a cross-covariance function γ̂jk(h). Therefore

more generally, for a p-variate time series, x(t), one can define the p × p auto-covariance

matrix,

Γ(h) = E(x(t+ h)x(t)′)− E(x(t+ h))E(x(t)). (1.7)

Therefore, similar to (1.6) with truncation for desirable smothness, the spectral density
8



matrix of the multivariate series x(t) is given by,

F̂ (ω) =
∑
|h|≤r

w(h/r)Γ̂(h) exp(−2πiωh). (1.8)

Notice that smoothing is performed universally across all frequency, such that F̂ (ω) is guar-

anteed to be a complex, nonnegative-definite, Hermitian matrix. This is crucial for the

principal component analysis. Similar to its classical definition, wee seek a linear com-

bination of the multivariate time series at a given frequency ω, yt(ω) = a(ω)′x(t) =

a1(ω)x1(t) + · · · + ap(ω)xp(t), such that var(yt(ω)) is maximized. Equivalently, we seek

a complex vector a(ω) such that

max
a(ω)6=0

a(ω)∗F̂ (ω)a(ω)
a(ω)∗a(ω) = λ1(ω),

if we denote {(λ1(ω), e1(ω)), . . . , (λp(ω), ep(ω))} the eigenvalue and eigenvector pairs of F̂ (ω),

and λ1(ω) ≥ λ2(ω) ≥ · · · ≥ λp(ω) ≥ 0. Then at frequency ω, we consider the eigenvalue λ1 as

the first eigen-power that summarizes the multivariate time series x(t) as the leading princi-

pal component. Later on, we introduce power band calculation based on this characterization

and how it connects with simple averaging commonly seen in practice in Chapter 3.

1.3 Clustering Methods

Clustering is well recognized as an exploratory method for data analysis. It usually aims

at grouping similar objects together, and/or separating dissimilar objects apart. These

two entangled objectives motivate two classes of methods, namely bottom-up and top-down.

Top-down procedures are mostly segmentation-based methods, for example K-means, which

iteratively finds the center and a partition based on the current guess of each other. On

the other hand, bottom-up methods approach the problem reversely in an agglomerative

manner, by which it recursively merges a pair of pre-existed clusters that are closest by

certain distance metrics. The commonly used metrics, also known as linkage functions,

include average, single and complete linkage. A comprehensive review of recent development

in clustering method, please refer to [XT15].

9



In the case of functional brain imaging, clustering is scientifically appealing to conceptu-

alize EEG electrode, or channels of EEG recordings, as objects, therefore a cluster identifies

a collection of electrodes that hopefully locate a patch on scalp exhibiting certain degrees

of similarity in its electrical activity. This idea has been investigated from a discriminative

perspective by [Kra16] with known classes, and [CCP06] first suggested hierarchically clus-

ter multi-variate time series using their spectral densities. As pointed out by both work,

it is fundamental to first construct the similarity/dissimilarity measures which is discussed

in Section 1.3.1. A hierarchical approach applicable to functional imaging data is reviewed

in Section 1.3.2, followed by a model-based approach that integrates evidence for group

inferences in Section 1.3.3.

1.3.1 Proximity Measures on EEG

For the ease of notation, we only consider a proximity measure defined between a pair of

time series, x(t) and y(t). Supposedly a dissimilarity measure d(x, y) is well defined for an

arbitrary pair of electrodes, it can be readily extended to a p× p dissimilarity matrix D(·, ·)

featuring p(p− 1)/2 distinct pairwise distences.

Cross-Correlation

Cross-correlation between time series x(t) and y(t) at lag h, ρx,y(h), is defined as,

ρx,y(h) = Cov[x(t), y(t+ h)]√
Var[x(t)]Var[y(t+ h)]

.

It summarizes the linear coupling relationship of two time series. When h = 0, a positive

correlation close to 1 indicates two electrodes are simultaneously activated. Significant corre-

lation with lag h can also be interpreted as delayed response inter-regionally. The numerator

of cross-correlation is called cross-covariance function, which can be regarded as an extension

to ACF. This also motivates a frequency-domain summary, called cross-coherence.
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Cross-Coherence

Similar to the Fourier transform pair of ACF and spectral density, the cross-covariance

function can be decomposed spectrally as cross-spectral density. Suppose that fx,y(ω) is the

DFT of Cov(x, y) at frequency ω, then coherence Cohx,y(ω) is defined as,

Cohx,y(ω) = |fx,y(ω)|2

fx(ω)fy(ω) .

Coherence measure implicitly accounts for lags between time series, and its squared value can

be interpreted as the proportion of the power in one time series, which can be explained by a

linear regression to the other time series [ZTS09]. It is worth noticing that the cross-coherence

measure also relates to the spectral density matrix defined in (1.8), when normalized with

diagonal elements being 1. Therefore the purpose of spectral PCA can be interpreted as a

recombination of multivariate signals into zero coherence components, therefore it can be

used as a summarizing metric referenced to local regions in Chapter 3.

Total Variation Distance

Assume that fx(ω) and fy(ω) are the power spectral densities for x(t) and y(t) respectively,

and they are integrable (i.e.
∫
fx(ω) dω < ∞,

∫
fy(ω) dω < ∞). Then the Total Variation

Distance (TVD) is defined between the normalized density of fx(ω) and fy(ω),

TVDx,y = 1−
∫

min
{

fx(ω)∫
fx(ω′) dω′ ,

fy(ω)∫
fy(ω′′) dω′′

}
dω.

TVD differs from coherence measure in the sense that it measures the affinity of the dis-

tributions of power purely over frequency domain. Recall that coherence is a function of

frequency ω too, however, its definition is rooted on covariance function between two time

series therefore regarded as linear predictability in the time domain. [EOO15] interprets

this measure as spectral synchronicity, referring to the highly synchronized activity of the

neurons that can be reflected by EEG signals. They also provide examples with negligible

coherence, but their TVD is close to zero (highly synchronized).
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1.3.2 Hierarchical Clustering

Based on the distance metric defined as TVD, [EOO15] suggested an agglomerative procedure

called Hierarchical Merger Algorithm. Unlike typical agglomerative approaches with single-

linkage or complete-linkage [XW05], they take advantage of the fact that the center spectra

is representative of the cluster, which is also a valid spectral density. Therein, TVD can

effectively link clusters by a recursive update of the distance matrix between the newly

merged group and the rest.

To be more specific, the algorithm starts with p clusters of p electrodes by themselves,

then TVD is calculated between every pair of spectra. The pair with lowest TVD is merged

and replaced by their mean spectra. Eventually the algorithm iterates until all electrodes

converge to a single cluster.

We find this approach enlightening for the reasons that, it summarizes spectral differ-

entiation into a simple metric that is interpretable and scaled well (TVD ∈ [0, 1]), and it

allows for a time-frequency representation that captures the dynamics of spectral evolution

over time. However, this approach defines a partition tree deterministically without suffi-

cient addresses on the uncertainty, also known as noise, in spectral estimation. At the same

time, it doesn’t integrate findings over repeated measured units, for example, segments even

multiple individuals. To fully take into account these issues, a viable approach is introduced

in Section 1.3.3 and a novel method that combines the benefits of both methods is finally

explicated in Chapter 2.

1.3.3 Bayesian Consensus Clustering

The Bayesian Consensus Clustering (BCC), introduced by [LD13], aims at an integration of

multi-source data for clustering. Two general approaches exist in this regard:

1. Separate clustering for each source, followed by a post-hoc integration.

2. Combining all data sources for a single “joint” clustering.

In a nutshell, BCC excels 1) in the sense that it captures inter-source associations that
12



promise a higher power for source-specific estimates and the integration is simultaneous

which exploits the shared structure more efficiently. The approach 2) comes with a cost

of sacrificing features that are specific to each data source, therefore considered suboptimal

in practice. To illustrate the main idea of BCC, we first review model-based clustering via

densities mixture, then revisit BCC as a hierarchical prior on the mixing probability.

Finite Mixture Models

To illustrate how BCC works, it is assumed that dataXn is given forN objects (n = 1, . . . , N)

with the goal of partitioning these objects into K clusters. We proceed with a model-

based approach by assigning a probabilistic model f(Xn|θ) for Xn with parameter(s) θ. For

example, f can be a Gaussian density with mean and variance, θ = (µ, σ2). Each Xn is

independently drawn from a mixture of K Gaussian distributions. Let Cn ∈ {1, . . . , K} be

the component label for Xn, then the probability that the object n belongs to cluster k:

πk = Pr(Cn = k).

Therefore, the generative model for Xn is

Xn ∼ f(·|θk) with probability πk. (1.9)

Alternatively, (1.9) can also be written as,

Xn ∼
K∑
k=1

πkf(·|θk). (1.10)

We prefer the annotation via data augmentation of latent group label parameter, Cn,

since it is beneficial to express the shared structure hierarchically and connect findings at

multiple levels.

Integrative Model

Now to extend the finite mixture model to M different sources of data X1, . . . ,XM , each of

which is measured on a common set of N objects and the goal is still to cluster these objects
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into K groups. Similarly, each individual data source can be characterized by a density

fm(Xn|θm) which has its own parameters θm.

We further assume that there exists clustering individually for each source Xm, such

that from a generative perspective, Xmn, n = 1, . . . , N , are independently drawn from a

K-component mixture distribution parameterized by θm1, . . . , θmK . Let Lmn ∈ {1, . . . , K}

denotes the source-specific label of Xmn, and Cn is held for a consensus label of object n.

The source-specific clusterings Lm = (Lm1, . . . , LmN) are anchored to a consensus clustering

C = (C1, . . . , CN) through:

Pr(Lmn = k|Cn) = ν(k, Cn, αm), (1.11)

where ν has a simple form of

ν(Lmn, Cn, αm) =


αm if Cn = Lmn

1−αm

K−1 otherwise
(1.12)

We assume the mixing weights at consensus level, Π = (π1, . . . , πK), follows a Dirichlet

distribution, then the source-specific mixing weights have a hierarchical representation:

Pr(Lmn = k|Π) = πkαm + (1− πk)
1− αm
K − 1 (1.13)

The fully conditional model reveals further insights on the mechanism as a hierarchically

constructed mixture prior:

Pr(Lmn = k|Xmn, Cn, θmk) ∝ ν(k, Cn, αm)fm(Xmn|θmk) (1.14)

Pr(Cn = k|L,Π, α) ∝ πk
M∏
m=1

ν(Lmn, k, αm). (1.15)

To be specific, (1.14) indicates that a source-specific estimate is directly rooted to the

likelihood of Xmn, that loosely adheres to the consensus cluster Cn, as a guidance, in pro-

portion to the link function ν. At the consensual level, cluster label C integrates individual

sources with an anchor of adherence of αm if their labels coincide, in addition to a prior

knowledge of the overall assignment through Π.
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As for an application to EEG clustering, a population cluster C is loosely adhered to

individual clusters Lm and we can further extend (1.13) to an extra level of segments, for a

time-frequency representation within each subject. The link function inherits the formulation

in (1.12) such that a dynamic cluster at time t is also loosely anchored to the individual

cluster. We refer to this approach as Multilevel Integrative Clustering (MIC) in Chapter 2.

1.4 Mixed Effects Models

Mixed Effects Models were first introduced by [LW82] as a two-stage random-effects model.

Their use was intended to handle unbalanced samples of serial measurements, that adjust for

within- and between-individual variation explicitly. EEG recordings post to pre-processing

are inherently unbalanced due to quality control measures, for example segment rejection.

These structural assumption also coincide with well recognized characteristics of electrophys-

iological responses. In particular, within-subject variation of EEG is substantially due to the

low signal-to-noise ratio, therefore can be attenuated by borrowing information over repeated

measurements via structural assumptions. At the group level, heterogeneity is commonly

observed on certain cohorts of individuals, Autistic spectrum disorder (ASD) for example,

both etiologically and clinically, posing extra challenges in inferential problems that involve

interpretations of EEG findings among these cohorts at group level.

Moreover, mixed effects models can handle both sequential observations and repeated

measurements under a regression framework. The sequentially observed data points, often

referred to as functional and longitudinal trends depending on applications, are subject to

additional structural assumptions such as smoothness. In these scenarios, one may deal

with single function observed randomly, or multiple functions that are correlated with each

other. In both cases, we could regress observations on covariates, group, age and gender

for example, as fixed effects, and encode appropriate assumptions on the covariance of the

random effects. All of these are statistically appealing and supported with well established

inferential techniques.

In this dissertation, I generalize the mixed effects model to the case of functional data
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analysis (FDA). The proposed approach is applied in the study of regionally referenced EEG

band power dynamics during the course of a cognitive experiment. To appropriately intro-

duce and expand on the topic, linear mixed effects models are first reviewed in Section 1.4.1,

followed by their functional variants in Section 1.4.2. Finally in Section 1.4.3, a latent factor

regression model is introduced and later used to effectively approximate functional covariance

via a reduced-rank structure.

1.4.1 Linear Mixed Effects Models

We start with a notation list similar to [LW82]. Let α be a p× 1 vector of fixed population

parameters and Xi be the ni × p design matrix relating α to outcome yi. Let bi denote a

k × 1 vector of individual random effects, that is related to yi by a known design matrix Zi

of size ni × k. Then the outcome yi is a ni × 1 vector which can be expressed as:

yi = Xiα+Zibi + ei, (1.16)

where ei is distributed as N(0, σ2Ini
). The random effects bi are distributed as N(0,D),

independently between subjects and of the noise term ei. D is a k × k positive-definite

covariance matrix, that is common for all subjects.

Estimation and inference have been well studied and established by [LW82]. Both maxi-

mum likelihood (ML) and restricted maximum likelihood (REML) approaches are available

in standard computational packages (see [BMB14]).

1.4.2 Functional Mixed Effects Models

Linear mixed effects models have been generalized for functional data analysis. As the major

difference, the response variable yi(t), at time t, is a snippet of repeated measure functionals

that are assumed smooth in some functional space. To effectively bridge the gap, functional

observations are projected onto pre-defined basis functions, for examples, polynomials, cubic

splines, B-splines, wavelets, even functional Principal components which are considered as

empirical choices. Due to a reduced and unified dimensionality of the functional domain,
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the coefficient matrices are more tractable in practice. Here, a selective review of functional

mixed models is provided in this section, however, the review paper by [RWC09] is highly

recommended for a comprehensive outlook.

Functional Models with Smoothing Splines

[Guo02] considered a class of functional models in which smoothing splines are used to

represent both fixed and random effects. It is regarded as a non-parametric extension to the

linear mixed effects model, with smoothness guaranteed for both population-average and

subject-specific curves.

To be specific, suppose that yi(tij) (i = 1, . . . , n; j = 1, . . . ,mi) is the response of the ith

curve at time tij and can be modeled as

yi(tij) = x′iβ(tij) + Ziαi(tij) + eij, (1.17)

where eij ∼ N(0, σ2), β(t) = {β1(t), . . . , βp(t)}T is a p× 1 vector of fixed functions, αi(t) =

{α1i(t), . . . , αqi(t)}T is a q × 1 vector of random functions that are modeled as realizations

of Gaussian processes A(t) = {a1(t), . . . , aq(t)}T with zero mean, X = {xi, . . . ,xn}T and Zi

are design matrices for fixed and random effects respectively.

In oder to achieve similar smoothness for both the population-average curve and subject-

specific curve, β(t) and αi(t) are modeled in the same functional space, such that β(t) is

considered as a single realization of a partially diffuse Gaussian process. Further details

about estimation and inference are available in [Guo02].

In the context of EEG experiments, the curves can be conceptualized as longitudinal

trends in response to a sequence of stimuli. For example, differential waveforms of EEGs

are observed at the beginning and the end of a study, where a group of French infants were

exposed to a stream of continuous speech that contains statistical cues for word segmentation

[GSN10]. Moreover, statistically reconstructed functionals can dynamically reflect the func-

tional response over time, for instance band-specific spectral power on experimental time,

highlighting differential electrophysiological responses between groups.

17



Functional Models on Time-domain

Event-related potentials (ERPs) are routinely used in the study of electrophysiological re-

sponses to cognitive tasks. It time locks the EEG recording to the onset of stimuli, and

requires a waveform analysis on time domain. [Dav09] described an application of mixed

effects models to ERPs using a discrete wavelet transform (DWT). It essentially operates

on the space of wavelet coefficients using a linear mixed effects model as (1.16), and trans-

forms the sparse coefficient estimates of β(t) and αi(t) back to the time domain as fixed and

random effects with the inverse DWT.

Functional Models on Frequency-domain

A mixed effects Cramér spectral representation is introduced by [KHG11]. Specifically, the

spectrum is in a product form such that the resulting log-spectrum has a functional mixed

effects representation where both the fixed and random effects are functions on the frequency

domain. An iterative procedure is offered for the periodic smoothing spline estimation of

the fixed effects, penalized estimation of the functional covariance of the random effects, and

individual random effects prediction via the best linear unbiased predictor.

1.4.3 Sparse Bayesian Latent Factor Models

[BD11b] introduced a sparse modeling approach on high-dimensional covariance matrices,

that can be easily generalized to flexibly handle the covariance of random effects under the

settings of functional mixed effects models. The authors used a multiplicative gamma process

shrinkage prior that automatically regulates factor loadings towards zero as column index

increases. Essentially, their approach can efficiently find a unique solution to a low-rank

decomposition of a p× p covariance matrix, Ω = ΛΛT +D, where Λ is a p× k factor loading

matrix with k � p and a diagonal residual D.

In a generic form of a latent factor model,

yi = Ληi + εi, εi ∼ MN(0, D). (1.18)
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where the multivariate outcome yi can be decomposed as k latent factors multiplying their

loadings up to a residual that follows independent Normal distributions. To effectively induce

automatic shrinkage on columns of the loading matrix Λ, the multiplicative gamma prior is

defined as,

λjk|φjh, τh ∼ N(0, φ−1
jh τ

−1
h ), φjh ∼ Ga(ν/2, ν/2), τh =

h∏
l=1

δl,

δ1 ∼ Ga(a1, 1), δl ∼ Ga(a2, 1), l ≥ 2, σ−2
j ∼ Ga(aσ, bσ).

The elements of factor loading matrix are handled individually, where each one has its

own precision parameter φ·· and column-wise shrinkage parameter τh. To effectively regulate

column as h increase, it is required that a2>1 such that τh multiplicatively accumulates

penalties by expectation.

This low-rank structure, also referred to as sparsity by the original authors, is practically

appealing for large p, but also generalizable to include covariate effects. [MTN12a] extended

the approach to functional and longitudinal data, and they explicitly encode covariate effects

via the latent factor ηi. It sacrificed the interpretability of covariate effects, in author’s

opinion, therefore a different generalization is proposed in this dissertation. In addition,

we extend the framework to multivariate functional mixed model under the assumption of

strongly separable and non-separable covariance structures. Further details regarding the

proposed approach are elaborated in Chapter 3.
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CHAPTER 2

Inferring Brain Signals Synchronicity

from a Sample of EEG Readings

2.1 Introduction

Functional neuroimaging technologies, including MRI, PET, MEG, and EEG, aim to mea-

sure different aspects of brain function as they relate to specific mental processes. This

chapter focuses on the analysis of Electroencephalography (EEG) data in the context of

neuropsychology studies. EEG is a well-established noninvasive method for measuring spon-

taneous and event-related electrical activity across brain regions. The technology captures

voltage fluctuation as signals, which reflect the distributed neuronal activities being pro-

jected on a cortical patch on which an EEG sensor is placed ([Tep02]). The general aim

of an EEG study is often the identification of neural function and cognitive states. Diverse

biomedical applications include epilepsy, sleep disorders, multiple sclerosis, brain tumors,

lesions, schizophrenia, and mood disorders ([Tep02]).

Typical analyses in EEG studies focus primarily on inferring group differences in regions

of interest. Such differences are assessed both in the frequency domain, by means of an am-

plified Signal-to-Noise Ratio (SNR) ([LKS03]), and, in the case of studies involving external

stimuli, in the time domain, by means of averaging and smoothing over repeated applications

of the stimuli ([HSJ15]).

Beyond differential activation of brain regions, mounting evidence is building a case for

the deeper understanding of neural interactions ([DAS14], [CJY13]). In this setting, magnetic

resonance imaging has become an established workhorse for the mapping and annotation of
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the human connectome at the macro-scale. The key to the success of MRI technologies as a

preferred measurement tool in functional connectivity studies lies in their ability to produce

measurements at high spatial resolution. This ability comes, however, at the cost of low

time resolution, and perhaps most importantly, at the cost of severe hardware limitations,

intended as the need to rely on expensive and bulky MRI scanners, which make MRI studies

hard to design in a logistically and financially feasible fashion.

On the other end, EEG is thought to provide reliable measurements of neuronal activity

only for the brain cortical regions, with low spatial resolution and often low SNR. However,

compared to other imaging techniques, EEG has the advantage of relying on less bulky hard-

ware and is associated with robust and extremely non-invasive imaging protocols, making

the technology readily available for implementation and adaptation to a variety of scientific

investigations.

Recently , [EOO15] suggested exploiting EEG’s excellent temporal resolution by defining

the concept of spectral synchronicity. In particular, a pair of EEG signals are considered

spectrally synchronized if they are both dominated by similar frequency oscillations. This

idea formalizes the concept of coordinated neuronal activity and reflects recent empirical

evidence, which suggests that differential patterns of coordinated neuronal activity may be

associated with a range of neuropsychiatric and neurological processes, including memory

formation ([FA11]) and mental disorders ([BDD08]).

From a statistical perspective, multi-subject studies of functional connectivity still pose

substantial methodological challenges. Ideally, statistical inference should provide tools for

the understanding of typical functional connectivity patterns, as well as quantification of

familiar concepts like sample and population variability, and dependence on clinical pheno-

types via regression. Even though some progress in the direction of population level inference

has recently been made in the context of fMRI data ([NA15]; [SNM14]), typical analyses are

still reliant on untenable assumptions of time-independence. The literature is, in fact, sub-

stantially silent on the subject of population level connectivity inference using EEG data.

In this work, we aim to address this problem and introduce a simple and interpretable tech-

nique for the analysis of brain synchronicity from a sample of EEG readings. Our approach
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relaxes the classical graphical modeling strategy into a simpler problem of clustering brain

regions. As a consequence our analysis is perhaps coarser than what is usually done in the

functional connectivity literature.

Our approach is based on the definition of cortical maps, identifying areas of synchronous

neuronal activity specific to individual subjects and experimental epochs, intended as time

intervals. Synchronized cortical regions are estimated via a mixture model of eigen-Laplacian

vectors, obtained from appropriately constructed dissimilarity matrices. As the experiment

evolves in time, subject and time-specific cerebral maps form a longitudinal ensemble. In

this context, we posit that pooled information, within and between subjects, is amenable to

statistical analysis via a hierarchical model involving mixture probabilities ([LD13]), which

we call Multilevel Integrative Clustering (MIC). Our framework supports both the definition

of coordinated neuronal activity via a mixture approach, and the formulation of probability

statements describing inter-subject and intra-subject variability via the familiar toolset of

hierarchical modeling.

This chapter is organized as follows. In Section 2.2 we describe a general framework for

integrative clustering at the epoch, subject and population levels. In Section 2.3 we assess

the operative characteristics of our proposed approach through experiments on engineered

data. In Section 2.4 we apply the proposed framework to the analysis of a resting-state EEG

study on typically developing (TD) children and children diagnosed with Autism Spectrum

Disorder (ASD). We conclude with a critical discussion and potential extensions in Section

2.5.

2.2 Multilevel Integrative Clustering (MIC)

In the foregoing discussion we proceed to characterize coordinated neuronal activity via time-

varying pairwise distances between the time series associated with a set of EEG sensors or

electrodes. Our discussion builds on the approach of [EOO15], where synchronicity is defined

in relation to pairwise similarities between the power spectral densities of electrode-level

signals. In §2.2.1, we proceed by describing a data pre-processing step aimed at obtaining
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stable time-varying estimates of the EEG spectral profiles. In §2.2.2, instead of directly

operating on spectral densities, we model a set of related d-dimensional eigen-Laplacians via

a multilevel model for clustering areas of synchronous neuronal activation. Inferential and

computational details are discussed in §2.2.3 and §2.2.4.

In the following discussion we proceed to characterize coordinated neuronal activity via

time-varying pairwise distances between the time series associated with a set of EEG sensors

or electrodes. Our approach builds on [EOO15], who define synchronicity in relation to

pairwise similarities between the power spectral densities of electrode-level signals. In §2.2.1,

we describe a data meta-processing step aimed at obtaining stable time-varying estimates of

the EEG spectral profiles. In §2.2.2, instead of directly operating on spectral densities, we

model a set of related d-dimensional eigen-Laplacians via a multilevel model for clustering

areas of synchronous neuronal activation. Inferential and computational details are discussed

in §2.2.3 and §2.2.4.

2.2.1 From EEG Signals to Eigen-Laplacian Matrices

Let {Zτ , τ = 0,±1,±2, . . .} be a zero mean, weakly stationary time series, with autocovari-

ance CZ(h) = E(Zτ , Zτ+h), (h = 0,±1,±2, . . .). The second order properties of the series

may be described by the spectral density function φZ(ω) of Zτ as in [Bri81], so that:

φZ(ω) = 1
2π

∞∑
τ=−∞

CZ(τ) exp(−iτω), ω ∈ [0, π].

Intuitively, φZ(ω) may be interpreted as the variance contributed to the entire series by

oscillations in a narrow frequency band around ω ∈ [0, π]. The spectral analysis of neural

signals is an important workhorse in EEG studies, as frequency bands are thought to be

associated with specific cognitive, perceptive and cellular phenomena ([Tep02]).

EEG time-series signals are usually collected in relation to a geodesic net of p electrodes.

Upon collection, raw signals are segmented into 1024ms time intervals for EEG preprocessing,

which typically includes bandpass filtering, electrode and segments rejection, and artifacts

inspection. Similar pipelines are common for EEG analysis, which can improve the SNR for

spectral analysis ([BMK15]).
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Let i = 1, . . . , n index n study subjects, j = 1, . . . , p index p EEG electrodes, and s`i,

`i = 1, . . . , qi, index qi-1024ms segments retained after data quality control. The filtered

EEG data can be seen as an ensemble of time-series segments Yij(s`i), each composed of a

number of measurements reflective of analog-to-digital sampling rates, typically 256/512Hz.

We are interested in the time-dynamics of neuronal synchronicity through a notion of

time-varying spectral density via local stationarity ([FP95]; [RWS12]). In our formulation

we fully acknowledge common pre-processing practices, which sees qualifying EEG segments

being concatenated and re-referenced without time labelling. This practice typically leads

to latent gaps in the post-processed series, providing a non-standard inferential framework

for time-varying spectral estimation.

In order to obtain time-varying stable estimates of electrode-specific spectra, we oper-

ate on a combined set of γ adjacent segments (s`i , . . . , s(`i+γ)), which we define as epochs.

Furthermore, adjacent epochs smooth over the original time domain by overlapping over a

δ ∈ (0, 1) fraction of segments. For each subject i, electrode j and epoch t ∈ {1, 2, . . . , Ti},

we obtain estimates φ̂ij(ω, t) of the epoch-specific spectral density by averaging segment

specific spectral density estimates obtained as in [ORS01]. The details of this procedure are

reported in a supplementary document. Our approach stems from the idea introduced by

[HSJ15] in the context of time-domain analyses. The use of overlapped sliding windows in

the estimation of a time-dependent power spectral density mediates between the need for

stable estimates and the potential for non-stationarity over the entire duration of the study.

A study of inferential robustness to smoothing choices is reported in §2.3.

Following the approach by [EOO15], desynchronicity is measured by total variation dis-

tance (TVD) between a pair of normalized spectral densities estimated at each epoch, so

that, for subject i, desynchronicity between electrode j and electrode k at epoch t is defined

as:

dit(φ̂ij, φ̂ik) = 1−
∫

min{φ̂ij(ω, t), φ̂ik(ω, t)} dω.

For each subject and epoch, these pairwise distances produce a p × p dissimilarity matrix

Di(t) =
[
dit(φ̂ij, φ̂ik)

]
, summarizing information on differential synchronicity between the p
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electrodes from different cortical regions.

Before clustering, each matrix is represented in the eigen-space spanned by the largest

d eigenvectors of the graph-Laplacian associated with an affinity matrix Ai(t) = 1 −Di(t).

More precisely, we take a graph cuts view of clustering and construct a normalized graph-

Laplacian Gi(t) = diag [Ai(t)1p]1/2 Ai(t) diag [Ai(t)1p]1/2, representing a weighted undirected

graph between EEG electrodes. In this setting, we follow ([NJW01]) and summarize the

information in Gi(t) with its largest d eigenvectors Xi(t) ∈ Rp×d.

This strategy is intuitively motivated by the analysis of the isolated connected compo-

nents “ideal case”, in which Ajk(t) > 0 iff components j and k belong to the same cluster,

and Ajk(t) = 0 otherwise. In this simplified setting, considering K clusters, the first K

columns of Xi(t) have non-zero elements corresponding to connected components in Ai(t).

Row-wise, Xi(t) is piece-wise constant, suggesting K-means as a simple clustering rule to

recover the connected components.

We work under the assumption that Gi(t) is a perturbation of the “ideal case” and in §2.2.2

we exploit this intuition to develop model-based clustering of electrodes at the epoch, subject

and population level. Crucially, we avoid using a mixture model of spectral densities; instead

model-based clustering of EEG signals over potentially non-convex manifolds is achieved

using simpler location/scale-mixture models involving vectors in Rd.

It is important to point out, that the measure of neuronal synchronicity, defined as

spectral synchronicity, is indeed not essential for the application of multilevel integrative

clustering. In particular, alternative means of quantifying similarity between time series,

like coherence, cross correlation, partial correlation, etc. may be appropriate in specific

investigations ([BS16]). Furthermore, if interest centers on specific band-power frequencies,

discrepancies are easily defined over the appropriately truncated spectral densities.

2.2.2 Hierarchical Mixture Priors and Multilevel Inference

Let Xij(t) ∈ Rd, be a d-dimensional eigen-Laplacian vector associated with the EEG signal

for subject i, (i = 1, 2, . . . , n); electrode j, (j = 1, 2, . . . , p); at epoch t = 1, 2, . . . , Ti. In
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practice, we observe subject-specific epochs timi
, (mi = 1, 2, . . . , Ti). However, without loss

of generality and for ease of notation, we maintain the lighter epoch indexing t throughout

the chapter.

Within subject, at epoch t, we conceptualize synchronous patterns of cortical activ-

ity, by clustering electrodes according to the following mixture model. Denoting with

f{· | ·} a generic density with respect to the Lebesgue measure on B
(
Rd
)
, we assume that

each eigen-Laplacian vector Xij(t) is sampled from a K-components mixture distribution,

indexed by parameters θik(t) and mixture probabilities pijk(t) ∈ [0, 1], such that:

Xij(t) ∼
K∑
k=1

pijk(t)f{Xij(t) | θik(t)},
K∑
k=1

pijk(t) = 1. (2.1)

We find it convenient to re-express this sampling model with the equivalent hierarchical

representation, mixing over cluster labels Lij(t) ∈ {1, 2, . . . , K}, s.t.:

Xij(t) | Lij(t) = k ∼ f{Xij(t) | θik(t)},

Pr{Lij(t) = k} = pijk(t).
(2.2)

In this setting, echoing the clustering “ideal case” discussed in the previous section, we exploit

the connection between K-means and Gaussian mixtures and represent the sampling density

in (2.1) as a K-component location/scale mixture of Gaussian distributions. Specifically, let

µik(t) ∈ Rd be a d-dimensional mean vector, and σ2
ik(t) > 0 be a variance parameter. We

assume:

f{Xij(t) | θik(t)} = N{µik(t), σ2
ik(t)Id}. (2.3)

Given the sampling model in (2.2), our proposed approach for the integration of information

at the subject and population levels follows a conceptually simple strategy, building directly

on the setting of multilevel modeling ([GH07]). Crucially, we maintain that mixture means

and variances are independent across subjects and epochs, but posit that cluster configu-

rations, conceptualizing synchronicity of brain regions, are likely to adhere to patterns of

similarity within and between subjects.

We make this idea precise by specifying a hierarchical prior for the mixture probabili-

ties, pijk(t). This is achieved by defining conditionally exchangeable mixture configurations,
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where epoch-level clusters Li(t) are obtained, a priori, as a stochastic perturbation of a time

stable subject-level clustering, indexed by Ci. Similarly, subject level configurations, Ci, are

obtained as a stochastic perturbation of a population-level cluster, indexed by S.

Let Cij ∈ {1, 2, . . . , K} be the cluster label for electrode j at the level of subject i.

Furthermore, let βi(t) ∈ [1/K, 1] be an adherence parameter, quantifying conformity between

cluster assignments at epoch t and the subject-level label Ci = (Ci1, . . . , Cip)′. We assume,

Pr{Lij(t) = k | cij} ≡ νc{k, cij, βi(t)} =


βi(t) if cij = k

1−βi(t)
K−1 otherwise

, (2.4)

where the probability νc{·, ·, ·} is defined implicitly. This prior defines a probabilistic anchor,

relating epoch level patterns of synchronicity at the subject level via simple and interpretable

parameters βi(t). The underlying assumption is that epoch-level patterns of synchronicity are

allowed to vary dynamically with t, but that variation in cluster configurations is anchored

at the subject-level by a consensus pattern Ci.

A similar anchoring strategy is pursued at the population level. Specifically, let Sj ∈

{1, 2, . . . , K} be a population level cluster label for electrode j, and αi ∈ [1/K, 1] be an

adherence parameter, quantifying conformity between cluster assignments for subject i and

population level labels S = (S1, . . . , Sp)′. We assume,

Pr(Cij = k | sj) ≡ νs(k, sj, αi) =


αi if sj = k

1−αi

K−1 otherwise
, (2.5)

where probability νs(·, ·, ·) is defined implicitly. The model is completed by specifying pop-

ulation level prior proportions:

Pr(Sj = k) = πk, (k = 1, 2, . . . , K).

To build intuition about the nature of these priors, we note that, if αi = 1, we expect cluster

assignments for subject i to match exactly the population-level labels with probability 1.

In contrast, for αi approaching the value 1/K, electrode clustering configurations Ci, for

subject i, are drawn independently of the population level labels S. Similar considerations

apply to βi(t), as these paratmeters relate subject- and epoch-level cluster configurations.
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This modeling strategy is loosely related to the idea of consensus clustering ([NC07]),

as applied to the integration of multi-source data. Our specific formulation is a direct

generalization to multilevel models of the approach taken by [LD13] to the integration of

heterogeneous genomic data.

In our multilevel setting, the conditional posterior distribution for epoch-level cluster

labels Lij(t) is easily defined as:

Pr{Lij(t) = k | Xij(t), cij, sj,θi(t)} ∝ f{Xij(t) | Lij(t) = k,θi(t)}Pr{Lij(t) = k | cij}

= f{Xij(t) | θik(t)}νc{k, cij, βi(t)}.
(2.6)

This form highlights how inference on Lij(t) integrates information from both data Xi(t) at

epoch t, and subject-level clustering Ci (assumed stable across epochs), through a weighting

scheme proportional to the size of the adherence parameter βi(t).

At the subject-level, conditional posterior probabilities of cluster membership weigh

epoch level configurations Li(t) = (Li1(t), Li2(t), . . . , Lip(t))′ with population level config-

urations S, through adherences αi as follows:

Pr{Cij = k | `ij(1), . . . , `ij(Ti), sj} ∝ Pr{`ij(1), . . . , `ij(Ti) | Cij = k}Pr{Cij = k | sj}

= ∏Ti
t=1 νc{`ij(t), k,βi} νs(k, cj, αi).

(2.7)

Finally, at the population level, overall consensus labels S are determined according to the

following conditional posterior probability:

Pr(Sj = k | c1j, . . . , cnj,Π,α) ∝ πk
n∏
i=1

νs(k, cij, αi). (2.8)

In summary, for each subject we infer a consensus cortical configuration Ci, combining epochs

Li(t) trough coherence weights βi(t). Across subjects, group-level inference is conducted

through a consensus configuration S, pooling subject-level configurations Ci through coher-

ence parameters αi. This stochastic structure allows for a very general conceptualization of

dependence across epochs. We note that, in some cases, more structured priors could be

warranted, including a fully exchangeable configuration, where βi(t) = βi, for all epochs; or

the case of βi(t) being defined as a smooth function of the epoch index t. Similar restrictions

may be applied to αi, depending on inferential goals and experimental characteristics.
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2.2.3 Posterior Inference

We discuss posterior inference for the model in § 2.2.2 on the basis of MCMC samples from

the target distribution. Even though multilevel modeling of cluster labels is a somewhat

non-standard approach in a hierarchical setting, conditionally conjugate analysis is indeed

possible, resulting in significant simplifications in computation and inference.

Specifically, we consider a standard Dirichlet prior for population-level proportions, so

that Π = (π1, π2, . . . , πK)′ ∼ Dirichlet(η). Epoch-level means and variances, are chosen to be

conjugate to the graph Laplacian likelihood in (2.3). Letting θik(tim) = (µik(tim)′, σ2
k(tim))′,

we assume that θik(tim) ∼ NΓ−1(µ0, λ0, ξ01, ξ02). Finally, subject-level adherence parameters

αi and epoch-level adherence parameters βi(tim) are assigned truncated Beta priors, with

left truncation at 1/K, so that:

αi ∼ TBeta(ai, bi, 1/K), and βi(t) ∼ TBeta(ci, di, 1/K).

A justification for these truncated Beta priors may be obtained by considering the form

of the marginal allocation probabilities at subject and epoch level. Given Π, subject-level

allocation probabilities are expressed as:

pik = Pr(Cij = k | πk) = πkαi + (1− πk)
1− αi
K − 1 .

Similarly, at the epoch level, we have:

Pr{Lij(t) = k | Π} =
∑
cij

Pr{Lij(t) = k | cij}Pr(cij | Π) = βi(t)pik + (1− pik)
1− βi(t)
K − 1 .

At both levels, an adherence value of 1/K corresponds to allocation probabilities, which are

independent of higher-level clustering realizations.

A Gibbs sampler targeting the posterior distribution is easily devised, by iterating through

a transition sequence of full conditional posteriors. Specific details about the form of the

conditional posterior densities are reported in a supplementary document.

At each level of the model, the posterior probability associated with set of cluster-

ing labels, for generality say p(C | Y), and the corresponding MCMC samples, summa-
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rize our knowledge about potential partitions of cortical regions into synchronously acti-

vated areas. Based on the information in this posterior, we may be interested in select-

ing a representative partition, say C∗. Following [Dah06], we avoid using the naïve max-

imum a posteriori (MAP) estimate and instead consider a point estimator based on least

squares. More precisely, consider an MCMC sample of M p−dimensional label configu-

rations, {C(r) : r = 1, 2, . . . ,M}. For each sample, we define a p × p adjacency matrix

A
(
C(r)

)
=
[
A
(
C(r)

)
ij

]
=
[
I(C(r)

i = C
(r)
j )

]
. Let Ā be an estimate of the posterior mean

E[A | Y ]. The least square estimate C∗ is selected from posterior realizations which mini-

mize the following Frobenius norm

C∗ = min
C(r),r=1,...,M

|| A
(
C(r)

)
− Ā ||2.

Uncertainty about clustering estimates can be obtained from the posterior distribution, lo-

cally by quantifying pairwise relative frequencies of synchronization or globally via the dis-

tribution of D = ||A(r)− Ā||2. Examining this quantity facilitates direct comparison between

subject and population level clustering results, allowing for low dimensional assessment of

cluster quality, population and individual-level variability.

Computation and inference for MIC is performed under the R environment. A readily

compiled package is available from the corresponding author’s GitHub page.

2.2.4 Number of Clusters and Identifiability

Posterior inference as described in §2.2.3 presumes a known number of clusters K and a

known number of eigen-Laplacian components d. For given d, selection of the number of

mixture components, K, may be based on information criteria. In our simulation studies

we find that the Bayesian Information Criterion (BIC) ([Sch78]) tends to outperform more

complicated indices. Our findings are in agreement with [SR10], who observed that BIC

outperforms many other criteria including ICL, DIC, and AIC, especially in the case of

Gaussian mixture models.

The choice of d is less trivial, even though, some theoretical results point to the inclusion

of the first K eigenvectors as being sufficient in the task of separating K groups, ([NJW01]).
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Guided by this general principle, we perform a joint search on the dimensionality of the eigen-

Laplacian d, and the number of clusters K simultaneously. More precisely, within a specific

dimension d, the optimal value of (K | d) is determined by the maximal BIC. Starting from

low dimensions, usually K = d = 2, we allow for up-transitions on dimensionality, when

K∗ | d > d. Stopping rules, aiming at achieving stable solutions around the equality of

d∗ = K∗ are determined heuristically. Details are reported in Algorithm 1. Crucially, we

avoid complete enumeration over all (d,K) combinations, and propose a search strategy

which is linear in the maximum number of clusters. Our empirical studies in §2.3 show good

performance and fast convergence to well behaved solutions.

Algorithm 1 (d,K) Selection
1: Set d = 2, K = 2;

2: current_BIC = BIC(d,K);

3: while d ≤max_d do

4: while BIC(d,K + 1) ≥ current_BIC do

5: current_BIC = BIC(d,K + 1);

6: K = K + 1;

7: if d ≥ K then

8: break;

9: else

10: d = K, K = K − 1;

11: current_BIC = BIC(d,K);

12: return (d,K)

For given d and K, simulation based procedures, including MCMC, are usually prone to label

switching ([CHR00]). In the setting of the model proposed in §2.2.2 the same phenomenon

may occur both within and between data levels. An important aspect of simulation-based

inference in multilevel clustering is, therefore, the enforcement of correspondence between

component labels of epochs, subjects and population level clustering. Possible remedies

include artificial identifiability constraints, relabeling procedures, and label invariant loss
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functions ([JHS05]). Within the multilevel setting, we proceed with online class relabeling

or alignment. More precisely, we operate within population and subject-level indexes to

find permutations of labels that maximize adherence with the population level clustering.

Specifically, all newly sampled labels are permuted to insure maximal alignment with the

population indexes. IfA0 is an adjacency matrix as defined in §2.2.3, representing the current

state of the population level labels S, and Aq is an adjacency matrix representing the current

state of any other level clustering, optimal alignments are obtained by maximizing tr (A′0Aq)

over k! possible permutations.

2.3 Monte Carlo Studies

To investigate the operating characteristics of the proposed framework, we simulate EEG

signals with the desired oscillation features from a mixture of AR(2) processes. We seek

to evaluate: (1) the sensitivity of MIC results to differing sliding window size, γ, (2) the

accuracy of estimated quantities for varying group adherence, (3) the performance of the

model selection strategy proposed in Algorithm 1, and (4) the behavior of population level

clusters under varying signal to noise ratio (SNR) and varying sample size.

2.3.1 Simulation Setup for Spectrally Specified EEGs

We make an effort to tailor the simulation of engineered time series in a way that mimics

a sample of EEG readings typically seen in practice. To this end, we note that EEGs are

often expected to feature oscillation patterns at different frequency bands: delta (0.5-4 Hz),

theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) and gamma (30-50 Hz). Waveforms that

are subdivided into bandwidths are thought to correspond to region-related activities on the

cortex, both normally and pathologically.

Our strategy, aims to simulate this spectral distinguishability by allowing each spectrum

to exhibit concentrated (peak-shaped) energy in at most two frequency bands. Given a

family of spectra, EEG time-series are simulated from a linear mixture of second order auto-

regressive AR(2) processes. Details about the data generating mechanism are reported in
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a supplementary document. Furthermore, we represent potential non-stationarity by gener-

ating time-series as realizations from a piecewise stationary process, alternating randomly

between two spectral configurations: a main-state (Fig 2.1(a)), and an off -state shown in

Fig 2.1(b). The main-state has a time span tmain,i ∼ exp(λ), with λ = .05s, followed by the

off -state which has a time span toff,i ∼ N(5, 1). Fig 2.1 (c) depicts this piecewise-stationarity

for one electrode from the simulated samples. Cluster labels are generated as follows:

1. At the population level, we structure cluster labels Sj, (j = 1, . . . , p = 100) to partition

100 sensors into 4 balanced clusters.

2. Draw α from a Uniform(0.5, 1) distribution. For each subject i, and j = 1, . . . , p = 100;

generate subject level labels Cij ∈ {1, 2, 3, 4} with probabilities Pr(Cij = Sj) = α and

Pr(Cij 6= Sj) = (1− α)/3.

3. Given Cij, generate piecewise stationary processes for 50 seconds, according to the

main-state / off -state mechanism described previously.

Our Monte Carlo study is based on 100 datasets. Subject-level variation is induced semi-

parametrically, via random reconfigurations of subject specific clusters, and random timing of

the main/off -state segments. The number of subjects, electrodes and segments were chosen

to mimic the sampling structure in our case study. Note that in this setting, knowledge of

the timing of main-state, off -state would result in perfect agreement of cluster labels within

subject. Our simulation is therefore engineered to detect specific sensitivity to alternative

metapreprocessing strategies.

2.3.2 Operating Characteristics

In §2.2.1 we introduced a pre-processing step to smooth over the duration of the EEG

recordings in order to obtain time-stable estimates of spectral densities. We start by assessing

sensitivity of window size, γ ∈ {4, 6, 8, 10}, at a fixed δ = 0.5 fraction of overlap between

epochs. Algorithm 1 successfully selected the correct number of clusters (K = 4), in more

than 76% of cases for all varying widow sizes, Fig 2.2(a).
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Furthermore, we investigate the performance of MIC under varying degrees of subject-

specific variability, by examining estimates of adherence between subject- and population-

level clustering. Fig 2.2(b) depicts posterior medians α̂i = E(αi | X) and their 90% credible

intervals, based on the 5 and 95 percentiles, against the true α’s. Posterior estimates are

generally close to their true values, and over 99% of the credible intervals cover the true α’s.

Clustering accuracy, defined as the percentage of correctly classified electrodes, is assessed

both at the subject and population level, Fig 2.2(c). Estimated subject-level clusters tend

to be recovered accurately ( > 98%), regardless of α values. As expected, accuracy in the

recovery of population level patterns relies on the magnitude of subject-level adherence to

the population, with accuracy approaching 100% as α→ 1.

Finally, we investigate the relationship between subject-level and population-level cluster-

ing variance estimates as a function of adherence and meta-processing strategy, Fig 2.2(d).

Our summaries focus on a measure of global variance D, as defined in §2.2.3. More pre-

cisely, denoting the clustering variance by DS at the population level, and by DCi
at the

level of subject i, we consider the average difference in clustering variance, defined as:

∆D = E(DS | X) − 1
n

∑
iE(DCi

| X). As the adherence simulation truth approaches a

level of complete agreement (α → 1), the average difference in clustering variance ∆D con-

verges to zero, indicating that average subject-level and population-level cluster variances

reach similar magnitudes over strongly adherent clustering patterns, Fig 2.2(d).

A second set of simulation studies aims to assess the operative characteristics of the

proposed method under different SNR and sample size settings. Specifically, we consider

SNR = 1, 5, 10 and sample size N = 10, 20, 40. We assess performance of our method under

stationarity and local stationarity. Details about the simulation procedure are reported in

our supplementary materials document. Our experiments show that group-level inference

is highly robust to SNR configurations. In both stationary and locally stationary settings,

clustering accuracy increases with sample size, going from a minimum of 0.8 (N=10), to

about 0.9 (N=40). Results are reported in Table 2.1.

From our experiments we conclude that estimation and clustering results tend to be
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robust across a broad range of SNR and smoothing parameters. This feature is likely to

be useful in many applications, where it is usually hard to develop meta-processing gold

standards.

2.4 A Case Study on Resting State Brain Activity

Our study originates from an experiment aimed at understanding children’s neurocognitive

development. The study was carried out in the department of Psychiatry at UCLA and aims

to cluster spectrally synchronized EEG signals recorded during resting-state. We provide

technical background information about the study design and measurement structure in a

web-based supplement. Here we investigate neuronal synchronicity in a group of typically

developing (TD) children. We contrast group inference for the TD cohort against patterns

of synchronicity in a cohort of children diagnosed with Autism Spectrum Disorder (ASD) in

§ 2.4.1. To our knowledge this is the first attempt at population level-inference for neuronal

synchronicity in the setting of EEG studies.

2.4.1 MIC Analysis of TD and ASD Children

Autism Spectrum Disorder (ASD) describes a neurodevelopmental condition, characterized

by social communication deficits, presence of repetitive behaviors, and/or restricted interest.

Clinical presentation is highly variable, with heterogeneity in relation to medical conditions,

behavioral challenges, and degree of intellectual impairments [PLB11]). Such behavioral

and neurophysiological heterogeneity poses serious challenges to the study of the neurophys-

iological substrate. In this respect, resting-state EEG is a particularly advantageous, and

therefore popular, brain imaging choice ([WBE13]).

Here we perform a comparative study between age-matched TD and ASD cohorts, under

the framework of Multilevel Integrative Clustering (MIC). The study includes 9 participants

(29-60 months of age) from the TD group, and 10 participants (27-99 months of age) from

the ASD group. During the experiment, EEG was recorded at 250Hz using 129 channel

geodesic nets with Ag/AgCl electrodes. Recordings took place while participants watched
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videos of bubbles and other non-social images on a computer monitor for 2 to 6 minutes.

Starting with the TD cohort, our analysis follows the scheme detailed in § 2.2.1 and con-

siders epochs composed of γ = 6 contiguous 1024ms segments, allowing for a δ = 0.5 overlap

between epochs. This choice was based on both substantive and empirical considerations.

In particular, we consider a smoothing strategy that guarantees good average adherence. A

sensitivity analysis to differential smoothing choices was carried out with respect to both the

epoch length and the percent of overlap. While details are reported in a supplementary doc-

ument, we observe fairly robust results, with only small changes in estimation and selection

of the number of clusters, echoing our findings in the simulation setting.

An illustration of how the proposed method clusters electrodes in relation to their spec-

tral features is provided in Figure 2.3. Here, we represent the epoch-level estimates of the

spectral densities for each electrode, color-labeled by inferred cluster membership. For each

subject, we report the epoch of highest coherence with subject-level clustering. This simple

illustration shows how, pooling information at the level of cluster labels can be achieved

without requiring the spectral structure of electrode-level time series to be aligned across

subjects. We maintain that this feature is particularly appealing in resting-state neurocog-

nitive settings, where complex and dynamic alignment issues may render extremely difficult

any attempt at pooling EEG signals directly.

An informal comparison between TD and ASD groups is carried out in Figure 2.4. For

both cohorts, we identify 5 spectrally synchronized areas, corresponding to the following

cortical regions: frontal, left and right parieto-temporal, occipital, and peripheral, defined

as a ring of outsidemost electrodes. At the population level, the least square estimates of

cortical clusters are remarkably similar between the two cohorts, with the exception of an

asymmetrical partition on the occipital and parieto-temporal regions, where the left parieto-

temporal cluster seems to be leaning towards the left hemisphere for ASD, but towards the

right hemisphere for TD.

Further, we examine local and global sources of cluster variability in both groups. At the

electrode level, we report the entropy associated with posterior cluster label probabilities in
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Figure 2.4: (1.b) for ASD and (2.b) for TD. Perfect partitions, e.g. an electrode assigned

to cluster k with probability one, yields 0 entropy, whereas uniform assignment probabilities

yield entropy equal to 1. We observe that the mid-, right-frontal and mid posterior regions

are the most stable regions for both groups. Compared to the ASD group, the TD cohort

exhibits more stable regions, for example, in the left-temporal (speech and language related),

left-central, as well as some regions in the posterior and occipital areas of the cortex. The high

entropy observed on the left-hemisphere among ASD children coincides with the abnormal

left-hemispheric asymmetry findings in the literature on individuals with ASD ([SNT07],

[BHI11]).

We gain more insight into the nature of variability of synchronized neuronal patterns by

examining global sources of cluster variance at the subject-specific and population levels. In

Figure 2.4: (1.c) for ASD and (2.c), we report subject and population level cluster assign-

ments for both TD and ASD cohorts. For each subject we also report the posterior median

coherence estimate. We note how ASD children exhibit higher clustering heterogeneity, with

coherence estimates ranging from 0.63 to 0.82, compared to the TD cohort, with coherence

estimates ranging from 0.70 to 0.81. A similar conclusion is noted in the higher entropy

associated with ASD consensus estimates (1.b and 2.b). This observation echoes some of

our previous findings in EEG studies of implicit-learning in ASD and TD children ([HSJ15];

[HST6a]; [HST6b]).

While formal covariate adjustments are outside the scope of this chapter, we attempted

a post-hock analysis aimed at explaining subject-level cluster variability using subjects age,

ASD vs. TD cohort indicators, and electrode-level band power estimates. Using cluster labels

as a categorical outcome, we used random forests as a flexible tool to get a sense of variable

importance in the classification of synchronous electrodes. We found the out-of-bag estimate

of classification accuracy to be about 0.73, with subject’s age explaining the largest mean

decrease in accuracy and therefore being flagged as one of the most important predictors.

None of the power bands had a specific predictive advantage in explaining subject-level

cluster variability, confirming our intuition that, in the setting of resting state experiments,

it may be inappropriate to pool subject-level spectral features directly, in order to infer
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connectivity. A less stringent model, like the one proposed in this chapter, is therefore

likely to be more robust in applications. More details for this analysis are included in the

supplementary materials.

2.5 Discussion

This chapter proposes what to our knowledge is the first comprehensive statistical framework

for population level inference of spectrally synchronized brain activity from a heterogeneous

sample of EEG readings. A hierarchical model allows for the estimation of population

level synchronicity patterns, with full consideration of intra- and inter-subjects variability.

Crucially, information is borrowed at the latent level of cluster membership indicators. De-

pendent mixtures are based on a hierarchical Dirichlet prior, indexed by interpretable and

informative parameters, which measure cluster adherence at all levels of the hierarchy.

Our approach melds non-parametric dimension reduction and fully model-based tech-

niques through a graph-partitioning representation of clustering. This two-stage approach

is likely to be useful in several experimental settings involving EEG measurements, where

different scientific goals and different data meta-processing concerns may require substantial

subject-matter input in the definition of similarity between cortical regions.

In our study we operate within the context of spectral synchronicity. It is however

important to point out that alternative measures of neuronal affinity, for example partial

correlation, coherence, and mutual information, are also amenable to MIC analysis. In this

sense, the proposed framework is quite general and can be adapted to handle alternative

neuroimaging data platforms, such as functional Magnetic Resonance Imaging (fMRI). This

consideration also applies, with possible minor adjustments, to the integration of multiple

imaging modalities. This flexibility traces back to the hierarchical prior, which relates clus-

ter labels rather than cluster-specific parameters (location and scale for example), so that

complex data alignment issues are resolved within a higher level of modeling abstraction.

Clearly, technical preprocessing pipelines may differ substantially between and within modal-

ities. Therefore, important analytic details should be thoughtfully engineered in practice.
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Stationary Setting Locally Stationary Setting

SNR N=10 N=20 N=40 N=10 N=20 N=40

10 0.812 0.868 0.903 0.808 0.868 0.897

5 0.810 0.867 0.898 0.810 0.868 0.898

1 0.810 0.869 0.900 0.813 0.866 0.902

Table 2.1: Simulation study: Group-level clustering accuracy for varying sample size and signal

to noise ratio.

Our simulation results in § 2.3.2, show that inference is robust to reasonable variants in

the meta-processing strategies. In our experiments, simple information criteria like BIC tend

do do well in the selection of the number of clusters K, when combined with a search over the

number of eigen-Laplacians d. Our model, of course, offers a very simple representation of

cluster variability within- and between-subjects. Therefore, modeling refinements are likely

needed in applications where one can expect a strong dynamic evolution of synchronicity

patterns; such as the setting of stimulus-based EEG studies.

Potentially useful extensions include a formal treatment of group comparison and co-

variate adjustments. In particular, predictors could, in principle, be introduced through

cohesion functions as in [MQR11]. We note, however, that the multilevel and dynamic

structure of cluster configurations may require significant efforts to extend available covari-

ate adjustment strategies in clustering. Other options would include covariates through a

regression on subject-level coherence parameters, which would perhaps lead to simpler and

more interpretable models.

A user-friendly implementation of the proposed method is available online as an R package

at: https://github.com/Qian-Li/MIC2.
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(a) Main-state (b) Off-state (c) Spectral realization

Figure 2.1: Simulated spectral configurations: (a) main-state spectral densities. (b) off-state

spectral densities. (c) Segment-by-segment normalized power spectral densities for a piecewise

stationary process simulated from cluster 4.
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(a) (b)

(c) (d)

Figure 2.2: Simulation results: (a) Path-length for the search in Algorithm 1 for varying smooth-

ing configurations in γ. (b) Estimated adherence parameters α̂’s and 95% credible intervals against

the data generating truth. (c) Clustering accuracy against generating α’s at the subject- and

population-level. (d) Average difference in clustering variance against true α’s.
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(1.a) ASD Subject 7 (1.b) ASD Subject 9

(2.a) TD Subject 3 (2.b) TD Subject 8

Figure 2.3: Synchronicity and spectral features: For each cohort, cluster configurations are

depicted for two illustrative subjects. For each electrode, the estimated spectral density (normal-

ized) is color coded by cluster membership. All plots refer to the epoch that is most coherent with

subject-level clustering.
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(1.a) ASD Population (1.b) ASD entropy (1.c) ASD cluster assignments

(2.a) TD Population (2.b) TD entropy (2.c) TD cluster assignments

Figure 2.4: Group contrasts, ASD (1) vs TD (2): (1.a) TD-cohort posterior least square

synchronicity. (1.b) TD-cohort normalized posterior entropy. (1.c) TD-cohort subject- and pop-

ulation-level cluster assignments. (2.a) ASD-cohort posterior least square synchronicity. (2.b)

ASD-cohort normalized posterior entropy. (2.c) ASD-cohort subject- and population-level cluster

assignments. In the (c) panels, we report consensus labels as the last row. Subject-level labels are

reported in each row, together with posterior median estimates of cluster adherence.
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CHAPTER 3

Regionally Referenced Spectral Power Dynamics of

EEG Signals:

A Hierarchical Functional Modeling Approach

3.1 Introduction

The human brain is in central command to all neural activities. Either driven by individual

neurons or their ensemble interactively, these activities see their involvement in every single

aspect of the central nervous system, therefore affecting human behaviors like sleep, motor

coordination, memory formation and perception ([BD04], [Kli99]), as well as pathological

conditions, such as Parkinson’s disease, Epilepsy and Autism ([BDD09], [US10], [MWG07]).

To effectively observe it, one could study the macroscopic oscillations that were projected

onto the scalp, in the form of electrophysiological signals, and record them by means of elec-

troencephalography (EEG). Therein, EEG is widely recognized for research in investigating

the brain dynamics, and for identifying causes and characterizing mechanism that give rise

to the intrinsic oscillations in the appearance of electrical signals ([Bas04]), under various

biomedical settings ([Tep02]).

Within the recent decades, EEG has seen more of its applications analytically and quan-

titatively by means of multi-channel recording on a geodesic net. This transition was both

shaped by and benefitted from the shift in research focus, from localized observation to

holistic assessment, when single-neuron neurophysiology faded in the shadow of quantita-

tive EEG on the entire scalp. It has also revolutionized the research paradigm in the sense

that the human brain is now considered an integrative system ([Bas12]), and meanwhile,
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researchers have an extra dimension of the spectral features with fine grained resolution to

explore on. Currently, typical multi-channel EEG research is geared with EEG-net, of up to

256 electrodes, that collects signals in milliseconds. Depending on the purpose of the study,

event-related potentials (ERP) and event-related oscillations (ERO) are well investigated

with focus on time- and frequency-domain respectively by means of ingeniously engineered

features.

Despite the abundance of information provided, common practice still perform simple

statistical tests for inference instead of characterizing brain activity by means of electro-

physiological trajectories ([FF10], [JKR15]). Take our motivating example for instance,

language acquisition, a critical cognitive process that relates to a number of developmental

disorders, happens as early as 6 months old for infants, when they start to parse continuous

stream of speech effectively and actively ([Kuh04]). Nevertheless, neither verbal instructions

nor behavioral evaluations can be performed on toddlers, therefore EEG has greatly been

appreciated under a lab environment to effectively and economically collect their responses.

By means of an analysis on these measurements, research scientists hope to unravel the

neural substates of this cognitive process. To do that, EEG oscillations are aggregated by

frequency bands, namely Delta (0-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz), Beta (12-30 Hz)

and Gamma (30-50 Hz), based on which extensive researches have been performed to simply

compare the band metrics at multiple experimental stages. Findings include: 1) augmented

Gamma power as relating to better performance in cognitive tasks and language acquisition

([GCB11] [FPM04]); 2) selective lateralization in frontal and temporal regions are observed

during language-related tasks ([DOG74], [MCN93]), etc.

Even though desirable, full trajectory analysis of EEG band powers poses challenges in

many folds. Most importantly among all, EEG recordings suffer from poor Signal-to-Noise

Ratio (SNR), since by nature, all activities that result in electrophysiological responses are

captured including neuronal activities on the scalp, muscle movements (myogenic potentials),

eye movements and other artifacts. Worse off, to obtain an accurate estimate of power

spectral density (PSD), which proceeds band aggregation, we need long pieces of electrical

signals from a stationary process which are barely encountered in practice. On the analytical
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side, it falls short on the flexibility of the modeling strategy to handle a complex covariance

structure underneath. Traditional statistical methods do not scale up on densely collected

functional observations, besides, we need more inferential tools for meaningful scientific

findings in a rigorous way.

Recently, remarkable efforts have been made from the domain of Functional Data Analy-

sis (FDA) by treating each electrophysiological trajectory as a function of interest. Under a

regression framework, [Guo02] first introduced functional mixed effects models using smooth-

ing splines, where both fixed and random effects are characterized in the same functional

space. [CW11] maintained the flexibility of Guo’s work, and further decomposed variation

by intra- and inter-subjects components by their covariance structures. From a Bayesian

perspective, [CRC07] extended the nonparametric modeling to the variance function as a

variance process characterized by P-splines, therefore gave extra freedom in handling covari-

ance structures along multi-dimensions. Additionally, a reduced rank structural assumption

is utilized to approximate functional covariances more economically. Among all great works,

we found both [ZHM10] and [MTN12a] are intriguing with a difference of using either lead-

ing principle components from a frequentist perspective, or shrinkage priors on the loading

matrices of latent factors under a Bayesian framework, for an efficient approximation.

In this chapter, we present a Bayesian hierarchical functional model that decomposes

functional observations flexibly in both the first and second moments: group mean and indi-

vidual curves are estimated in the same functional space; multi-way functional covariances

are flexibly handled with an automatic regularization of the redundant entries in a latent

factor decomposition. Theoretically, the proposed framework is suitable for nonparametric

estimation with any projection methods and it permits covariance structures that are non-

separable between the functional and spatial dimensions. Our approach is fully Bayesian

and accompanied with a rich set of inferential tools directly applicable to the Markov Chain

Monte Carlo samples, all of which are highly optimized in a Rcpp package. We combine

our modeling efforts together with a carefully engineered band power metric that references

noisy spectral features to a robust regional summary, and illustrate the benefits of such inno-

vations through an analysis of brain dynamics on a EEG dataset collected from a cognitive

46



experiment at UCLA. Our work conforms with and amplifies the existing findings in psychi-

atry with abundant and dynamic information on the learning process, and provide further

insights to a more fundamental understanding of Autism from a statistical perspective.

The chapter is organized as follows. In Section 3.2, we lay out background information

of the motivating example and a outline of the meta-preprocessing steps, including the

Regionally smoothed Eigen band powers (Rs-EP), and its alternatives. The hierarchical

functional model is introduced and elucidated under a fully Bayesian framework, in Section

3.3. We assess the performance of the proposed model on engineered datasets in Section 3.4,

and report the results and findings by performing an analysis on the speech stream exposure

data in Section 3.5. We conclude with final remarks and potential extension in Section 3.6.

3.2 Defining Regionally Referenced Spectral Power Dynamics

3.2.1 Research Background

Our motivating example of EEG recordings is collected by our collaborators at UCLA on

3 groups of young children over the course of a speech stream exposure task. One group

of the children are typically developing (TD), and the other 2 groups are diagnosed with

autism spectrum disorder (ASD) at different language level: verbal (v-ASD) and minimally

verbal (mv-ASD). ASD is a developmental condition that affects individuals in two domains:

communication and social interactions ([LRL00]). It also features late development of lin-

guistic skills compared to typically developing (TD) children ([EMS11]). Despite the wealth

of information uncovered about ASD, little is known about the 30% of the ASD population

who remain minimally verbal. The main goal of this study is to compare and contrast EEG

oscillation properties, i.e. band powers, between children in the mv-ASD, v-ASD and TD

diagnostic groups, to infer their brain dynamics when processing linguistic inputs.
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3.2.2 EEG Recordings from the Speech Stream Exposure Task

In our working example, 9 TD, 14 v-ASD and 19 mv-ASD children volunteered in the speech

stream exposure task. Each participant listened to a stream of synthetic speech constructed

with a collection of 12 different phonemes, of which certain pairs appeared deterministically

but the others did not. In particular, as exemplified in Figure 3.1, two consecutive pairs that

were deterministic in the order they appear consisted words such as pa-bi-ku and da-ro-pi,

whereas the phoneme pairs in between words were indeterministic, therefore could not be

expected, such as ku-da in block 1 and ku-go in block 2. All 4 words are pseudo-randomly

permuted and repeated into blocks, to balance the frequency that indeterministic pairs ap-

peared in the whole speech, then further repeated in the units of blocks. As hypothesized

by our collaborators, the repeated co-occurrence of phoneme pairs facilitating the parsing of

a continuous speech, or equivalently word segmentation, will provide substantial insights on

this cognitive process, therefore hopefully, language related developmental disorders and de-

lays frequently observed among autistic children. To capture underlying neuronal activities

effectively, the experiment lasted about 144 seconds, during which EEG data were recorded

for each participant at 128 electrodes and pre-processed in NetStation. The standardized

pre-processing steps outlined in the Appendix B, resulted in segmented pieces of EEG record-

ings, each of 1 second in duration, and segments tagged as inattention, which flagged time

windows when the participants were not complying with the requirements, were excluded

for statistical analysis.

Previous studies have acknowledged differentiated neurophysiological responses across

regions and oscillation frequencies, over the course of the experiment. Using functional

magnetic resonance imaging (fMRI), which measures haemodynamic responses within brain,

[MMD06] reported extensive activation in the temporal, frontal and parietal regions. In

addition, converging evidences using multiple neuro-imaging techniques suggest that, in the

left hemisphere, the posterior regions are involved in the storage and retrieval of phono-

logical information, whereas the anterior regions are involved in segmentation, phonologi-

cal assembling and word production ([Bur01], [BSB00], [ZE92]). Specific to EEG studies,
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Gamma oscillations associated with information processing were noticed significantly increas-

ing in power shortly after the onset of auditory stimulus in a segmentation task according

to [KKP98]. Irregular activities, for example, slow increase of Delta and Theta band powers

in the frontal and right temporal regions were detected among individuals with learning

deficits, as contrasted against the control group ([APB07]). In this chapter, we investigate

EEG oscillations by means of regionally referenced frequency-band power estimates, with

explicit emphases on their dynamic changes in the previously recognized region, on three

diagnostic groups and their contrasts.

3.2.3 Regionally Referenced Spectral Power Estimates

Multi-channel EEGs are highly structured and high-dimensional, however, considerable

amounts of similarity exhibits in the neighboring electrodes and segments from both time

and frequency domain. It has been a common practice to collapse ERP characteristics and

EEG spectral powers over adjacent segments, to achieve an amplified Signal-to-Noise Ratio

(SNR) on pre-processed signals. However, this strategy operates on the redundancy of seg-

ments available post to pre-processing. The rejection percentage ranging between 10% and

90% with an average of 50%, in our working example, forced our attention of dimensional-

ity and noise reduction among neighboring electrodes. Specifically, electrodes are clustered

into 11 anatomical regions of interests on the scalp, i.e., right/mid/left frontal (RF/MF/LF),

right/left temporal (RT/LT), right/mid/left central (RC/MC/LC) and right/mid/left poste-

rior (RP/MP/LP), therefore, power spectral density estimates are aggregated and referenced

to predefined regions.

Within a specific region, we are interested in a zero mean p-dimensional stationary ran-

dom process, X(t) (t = 0,±1, . . .), which has a spectral representation:

X(t) =
∫ π

−π
A(ω) exp(iωt) dZ(ω),

where A(ω) is a p × p Hermitian transfer function matrix and dZ(ω) is a zero mean and

orthonormal random process. The spectral density matrix of X(t) is defined to be I(ω) =

A(ω)A(ω)′, where A′ is the transpose of the complex conjugate of A.
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Following [OH06], we define kernel smoothed spectral density matrices under the assump-

tion of local stationarity on each segment. The smoothing bandwidth, that is allowed to vary

by regions, is selected via a generalized cross validation (GCV) procedure (see Appendix B

for details). Since we fix the smoothing bandwidth within each region, the corresponding

smoothed spectral density matrix, Ĩ(ω), stays Hermitian and non-negative definite, therefore

all of its eigenvalues are non-negative real numbers. To aggregate power spectral densities

regionally, one could define:

• Regionally smoothed Average Power (Rs-AP) is the arithmetic mean of p smoothed

spectral power densities, or equivalently,

PAP(ω) = tr(Ĩ(ω))∑
ω PAP (ω) . (3.1)

• Regionally smoothed First Eigen-Power (Rs-EP1) is the first leading eigenvalue asso-

ciated with the smoothed spectral density matrix normalized by the total Rs-EP1 over

all frequencies,

PEP1(ω) = max|x|=1 x
T Ĩ(ω)x∑

ω PEP1(ω) . (3.2)

• Regionally smoothed First k Eigen-Powers (Rs-EPk) are the sum of k leading eigen-

values associated with the smoothed spectral density matrix normalized by its total

power,

PEPk
(ω) =

∑k
j=1 maxxj⊥x1...xj−1 x

T
j Ĩ(ω)xj∑

ω PEPk
(ω) . (3.3)

It can be shown that, Rs-EPk contains both Rs-EP1 and Rs-AP as special cases when

k → 1 and k → p, where k indicates the equivalent reduced dimensionality of the p-electrodes

region. Only k incoherent components, which are linear combinations of the p original

time series, are used to summarize the regional spectral feature at each given frequency ω.

Similar to coherence measure defined directly on the spectral density matrix I(ω), Rs-EP1

equals Rs-AP when complete redundancy, therefore perfect cross-coherence, exists in the

multivariate signals that are linearly transferrable. For this reason, we consider Rs-EP1 an

approximation of Rs-AP when the electrodes are highly coherent in region. Practically, it
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excels at capturing locally coherent oscillations whereas attenuating incoherent oscillations

in their spectral profile, and consequently, Rs-EP1 is our choice of band power metrics per

region for the case study.

3.3 Regionally Referenced Functional Hierarchical Model

3.3.1 Data Projection

We set to model spectral power dynamics over cortical regions, as brain activity adapts

to stimuli over the course of an cognitive experiment. Responses to the external stimuli

are regionally referenced and follow a multivariate stochastic process, by our assumptions,

that is continuous over time. More precisely, the underlying process denoted by Yi(t) =

{Yi1(t), . . . , Yip(t)}′, a p-dimensional vector of band-specific power metrics, highlights the

trajectory of subject i, (i = 1, 2, . . . , n), at p cortical regions (j = 1, 2, . . . , p) over time

t ∈ (0, T ). In practices, only a finite number of observations are collected discretely at

ti = {ti1, ti2, . . . , timi
}. Therefore, for ease of notation, we maintain a lighter indexing t, that

varies on a common set of observed time points.

The ensuing assumptions admit a decomposition with a functional component and error

terms of the observed band-powers,

yi(t) = fi(t) + εi(t), εi(t) ∼ N(0,Σε); (3.4)

Residual covariance, Σε = diag{ε2
1ε, . . . , ε

2
pε}, allows for independent heteroscedastic re-

gional error that can be induced either by band-power processing or system noise. The

functional component fi(t) has its dependency encoded in two-way, namely regional and

functional. With its regional dependency, it highlights the coordinated cortical activity

instantaneously, whereas with the functional dependency, the underlying process is charac-

terized smoothly with long and short term correlations.

To flexibly characterize the multivariate functional component, we project each of its

element fij(t), j ∈ {1, . . . , p} onto a functional space spanned by q cubic B-spline basis
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{b1(t), . . . , bq(t)}, such that,

fij(t) =
q∑

k=1
θijkbk(t), or equivalently, fi(t) =

q∑
k=1
θikbk(t),

where θik = (θi1k, . . . , θipk)T is p-dimensional B-spline coefficients.

So far, we have projected band-power observations as well as the encoded functional

dependency into a pre-defined functional space. And this first stage of our model is called

data projection,

Yi = ΘiB
′
i + Ei, (3.5)

with Θi = [θi1, . . . ,θiq] being a p× q coefficient matrix, Bi = (bk(t))tk the ni × q projection

matrix and residuals Ei ∼ MN (0,Σe, Ini
) follow a matrix normal distribution. Under this

projection, both regional and functional dependency are preserved and encoded with unified

and reduced dimensionality: p× q.

3.3.2 Hierarchical Priors on Projected Coefficients

We proceed with hierarchical modeling of Θi in the projected functional space. Under a

typical regression framework, one often collects subject-level covariates xi, characterizing

study participants through a set of quantitative and/or qualitative variables. In this regard,

the main objective of typical scientific investigations involving EEG imaging can be concep-

tualized as a characterization of the conditional expectation, E{yi(t) | xi}, or equivalently

in the functional space M(xi) := E{Θi | xi}, while accounting for appropriate dependencies

in the observed data.

Under a familiar mixed effects regression framework for Θi, one could construct both

fixed and random effects in matrix notations,

Θi = M(xi) + Zi, vec(Zi) ∼ MN(0,Σz); (3.6)

where M(xi) represents population-level projected dynamics associated with x as the fixed

effect, and Zi features subject-specific variations as random effect. The covariate-adjusted

group mean trajectories are main quantities of inferential interests, and individual deviations

should respect heterogeneity with tremendous flexibility.
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Indeed, the model in (3.6) induces explicit assumptions about regional and functional

dependence via Σz. For instance, when modeling multi-way functional covariances under the

assumption of a separable structure, Σz ∝ Σp ⊗ Σq, it directly reflects at the observational

level,

cov(yij(t), yij′(t′)) = Σp(j, j′) · b(t)TΣqb(t′),

that overall covariance is essentially an outer product between regional and functional co-

variances.

All centered around (3.6), we introduce three modeling approaches that correspond to

hierarchical prior configurations on Θi. To be more specific, a) a Naive Bayesian(NB) prior

inducing separable covariance consists of a constant smoothness penalty and a flexible re-

gional covariance; b) a Strongly Separable(SS) prior originated from a Bayesian infinite factor

model; c) a Non-Separable(NS) prior that operates on vec(Zi) in a similar approach as SS

using latent factor characterization, however with minimal restrictions on the covariance

separability.

3.3.2.1 Naive Bayesian Prior

Our baseline model correspond to a Bayesian P-spline approach that is essentially a matrix

normal prior on Θi, with strongly separable constant functional smoothness penalty and

totally free regional covariance. To be precise,

Zi ∼MN (0, S,Ω−1
0 ), S−1 ∼ W (ν, S−1

0 /ν). (3.7)

In this parametrization, the flexibility totally hinges on regional dependency via the

covariance matrix S, which indexes the column-wise covariance of the subject-level random

effects Zi. For completion, we consider a conjugate Inverse Wishart (IW) prior on S, and

E(S−1) = S−1
0 a priori. In this setting, S0 may be chosen to represent prior knowledge on the

proximity of cortical regions through conditionally autoregressive representations ([GV03]).

On the other hand, the constant regularization matrix Ω0 are constructed to achieve

adaptive smoothing at the subject-level, by following a strategy similar to ([LB04]). At a

53



region j, the adaptiveness reflects on its region-specific regularization Dj = s−1
jj Ω0 which

also relieves the identifiability concern that commonly appears troublesome for multi-way

covariance estimation. The choice of Ω0 is based on an AR(1) process, and more details are

documented in the Appendix B.

3.3.2.2 Strongly Separable Prior

We propose a two-way Bayesian latent factor model on Zi which also coincide with the

strongly separable covariance structure by [CL17]. First introduced by [BD11a] and further

extended to functional data by [MTN12b], Bayesian latent factor model offers extensively

flexibility in modeling structured covariance with minimal restrictions. Our work extends

[MTN12b] to multivariate functional observations by introducing individual factor loading

on both functional and regional dimensions, at the same time, preserves all merits to the

original approach including sparsity of factors loading matrices and scalable sampling of

factor loadings. More specifically, the two-way multiplicative shrinkage prior on Zi is defined

by a decomposition,

Zi = ΥHiΓ′ +Ri, with Ri ∼MN (0,Σp,Σq), (3.8)

where Υ = {υjr} and Γ = {γks} highlights regional and functional factor loadings respec-

tively, that by their combination interacts with a matrix of latent fact scores, Hi, whose

components are i.i.d N(0, 1). Furthermore, coefficient residuals Ri has separable covariances,

Σp and Σq, both are diagonal with heteroscedastic variances. Similar to the multiplicative

shrinkage prior (MGPS by [BD11a]), we complete with,

υjr | φjr, τr ∼ N(0, φ−1
jr τ

−1
r ), φjr ∼ Ga(ν1/2, ν1/2), τr =

r∏
u=1

δu,

δ1 ∼ Ga(a11, 1), δu ∼ Ga(a12, 1), when u > 1;

γks | ψks, κs ∼ N(0, ψ−1
ks , κ

−1
s ), ψks ∼ Ga(ν2/2, ν2/2), κs =

s∏
v=1

πv,

π1 ∼ Ga(a21, 1), πv ∼ Ga(a22, 1), when v > 1;
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When the residuals Ri’s are disregarded, the covariance of Zi conditional on both factor

loadings rewrites,

cov(Zi | Υ,Γ) = ΥΥT ⊗ ΓΓT ,

therefore strongly separable. It can also be regarded as a two-way generalization of [JHS00]

with reduced-rank approximation to cov(Zi) by means of a latent factor decomposition.

Therein, we call the proposed two-way MGPS prior a strongly separable (SS) prior on

projected coefficients Θi.

3.3.2.3 Non-Separable Prior

To lift the constraints on separability, we propose an alternative to two-way MGPS by im-

posing the latent factor model on vec(Zi), which we refer to as block multiplicative shrinkage

prior. The vectorization gives us freedom to exceed beyond linear characterization and de-

composition of Σz, while scalability persists since the building blocks of the construction

is bounded by regularizations of size p × p or q × q. To be specific, the vectorized Zi is

decomposed in a similar way as [BD11a],

vec(Zi) = ζi = Ληi + ri, with ri ∼ MN(0,Σp ⊗ Σq), (3.9)

where the residuals stay the same, ri = vec(Ri), the factor loading matrix Λ is pq ×m and

the latent factors ηi has an i.i.d standard normal similar to Hi. However, this prior differs

from 3.8 by the hierarchical priors on Λ,

λ
(c)
(k) | Ωk, τc ∼ MN(0,Ω−1

k τ−1
c ), Ωk ∼W(ν,W0), τc =

c∏
l=1

δl,

δ1 ∼ Ga(a1, 1), δl ∼ Ga(a2, 1), when l > 1;

where λ(c)
(k) indicates the k-th block, k ∈ {1, . . . , q}, of the c-th column of Λ. As directly

compared to 3.8, the shrinkage operates jointly on all regions via Ωk which is the same across

all latent factors. As a matter of fact, Σz can be represented regardless of the residuals ri,

cov(ζi | Λ) = Σz = ΛΛT ,
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therefore non-separable in essence. This block multiplicative shrinkage prior exploits on

factor loading matrices and allows for factor-coefficient specific regularization by blocks.

Considering the encoded assumption on the covariance structure, we call it a non-separable

prior on projected coefficients Θi.

3.3.3 Linking the Priors

The Naive Bayesian prior distinguish from the other two with a constant regularization, as

well as the lack of residual component Ri that can be treated as an extra level of adaptive

smoothing. Even though it appears naive and simple, we find this approach surprisingly

effective in reconstructing the fixed effects in simulation. By including this prior as the

baseline approach, we aim to evaluate the effectiveness of the low-rank approximations, as

well as the benefits of addressing non-separability on Σz.

At a second look, we can bridge the Strongly Separable (SS) and Non-Separable (NS)

priors by revisiting the latent factor decomposition. Let us rewrite the loading matrices

with their column vectors, namely Λ = {λ(1), . . . ,λ(m)}, Υ = {υ(1), . . . ,υ(k1)} and Γ =

{γ(1), . . . ,γ(k2)}. Therefore,

SS-prior: Zi =
m∑
s=1

ηismat(λ(s)),

NS-prior: Zi =
k1∑
r=1

k2∑
s=1

ηirsυ
(r)γ(s)′ ,

such that when mat(λ(·)) = υ(·)γ(·)′ and m = k1 ∗ k2, the Non-Separable prior includes

the Strongly Separable prior as a special case. Indeed, both priors induces a reduced-rank

structure on cov(Zi), the NS prior escalates above the outer product of two-way marginal

covariances, and potentially, recognize more sophisticated structures of Σz than its latent

factor alternative.

3.3.4 Posterior Inference

Posterior inference through Markov Chain Monte Carlo sampling is implemented and realized

through Gibbs Sampling for all three proposed priors. Detailed calculation of full conditional
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distributions are reported in the Appendix B, for completeness. A highly optimized R

package for data manipulation and inference is freely available on author’s github page.

Once posterior samples are obtained for all parameters in the model, estimation and

inference on functionals of interest is relatively straightforward. For the fixed effects, we

follow [KKC10] to obtain simultaneous confidence bands on population-level trajectories, as

well as the posterior means; for the random effects of individual functional estimates, only

the posterior means are reported. Further details are reported in Web Appendix B.

3.4 Experiments on Engineered Data

This section describes and evaluates the finite sample performance of the proposed functional

mixed-effects model, on Monte Carlo samples that are generated both strongly separable and

non-separable. We engineer our simulated datasets with comparable structure as the working

example, i.e. multivariate functional observations are collected on groups of individuals,

where group trajectories are of major interests as first moment estimates and covariance

of random effects highlight structured regional and functional dependency via the second

moment estimators.

Following the data project in (3.5), we encode the (non)separability in B-spline coefficient

matrix Θi. Specifically, let’s denote Σss and Σns as cov(vec(Θi)) separately for strongly

separable and non-separable priors,

Σss = S0 ⊗ Ω−1
0 ,

Σns = ΛΛ′ + Σ0.

Given the covariance of random effects, we sample Θi marginally for strongly separable

prior, Θi ∼ MN(0,Σss), however conditionally for non-separable priors,

ηi ∼ MN(0, I); vec(Θi) = Ληi + ri.

To reflect the regional and functional dependency via Λ, we follow the generative assumptions

introduced in Section 3.3.2.3 given the block-wise covariance hyperprior W0. Notice that
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even the mean is fixed, the spline specific covariance still yield non-separability since it is

separately sampled. To be consistent, we assume all pre-determined covariances, S0,Ω−1
0

and W0, follow AR(1) structures that have the same parameter on each dimension (regional

or functional). As an example in Figure 3.2(c), the strongly separable covariance is more

structured than its alternative with significant amount of dependency between nearby regions

and B-spline coefficients encoded on adjacent knots.

The group mean functionals are selected from a pool of parametric curves, including

constant, polynomials and trigonometric functions. Each group has its own regional mean

trajectory and can be differentiated at each region (see Figure 3.2). To evaluate on the

proposed approaches, we consider performance metrics of:

• average integrated mean square error (aiMSE):

aiMSE(f̂) = avg
(∫

t
(f̂(t)− f(t))2 dt

)
;

• average coverage of simultaneous confidence band (a.cover): per region, set to 1 if ∀t

the band covers fj(t);

• Frobenius norm between the estimated and true covariance of vec(Θi)(fCOV):

‖Σθ − Σ̂θ‖f

Further details regarding the data generation schemes are available in the Appendix B, and

all results presented can be reproduced with our R package and supplementary documents.

3.4.1 Synthetic Data: Strongly Separable and Non-Separable

We generate simulated samples for both strongly separable and non-separable covariance.

For each dataset, 60 individuals evenly split into 3 groups have their functional observations

collected over 6 regions. Since we simulate the projected B-spline coefficients, instead of

functional observations, the degrees of freedom for B-spline bases is set to 12. The discretized

observations are defined on a common grid ∈ [0, 1], however, may randomly be discarded
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with probability between 0 and 0.8. This missing percentage is fixed per dataset as p, and

each simulated time points is assigned with binary label generated from Bernoulli(p).

To perform a comprehensive assessment, we evaluate all three models under various

scenarios. First, we consider the degrees of freedom for B-splines are unknown. Since the

fCOV metric requires the estimation defined on the same space as the truth, we only report

aiMSE and a.cover accordingly. Secondly, regional dependency formulated under an AR(1)

process is examined at three levels, ρ = 0.4, ρ = 0.6 and ρ = 0.8. And finally, all three

models are evaluated on each of the 500 simulated dataset, under every scenario previously

mentioned, and we obtain the posterior mean estimates, 90% confidence bands on parameters

of interests.

Results: The group mean trajectories are recovered consistently well by all three models,

where non-separable condition poses further challenges than strongly separable condition,

yielding almost doubled aiMSE overall. Indeed, each individual function is generated in

a less constrained way such that estimation at the group level becomes essentially more

difficult. In terms of average coverage, Naive Bayes approach is pervasively conservative and

covers the true curves over 97% against the specified level of 90%. When the true degrees

of freedom is unknown, all three models demonstrate sufficient robustness on both metrics,

and under both simulation settings.

We highlight some enlightening findings in Table 3.1 and withhold the extensive report

in the Appendix B. Under mild regional dependency setting, i.e. ρ = 0.4, both Strongly

Separable (SS) prior and Non-Separable (NS) prior outperform the Naive Bayes (NB) prior

by averaged coverage and covariance reconstruction. More interestingly, NS prior exceeds

both SS and NB priors in covariance recovery when functionals are more spatially corre-

lated, ρ = 0.8 in contrast to ρ = 0.4, and the bias metric inflated only 8% compared to

49% of SS prior and 61% of NB prior. Bearing in mind the stringent assumptions of func-

tional covariance, which is proportional to a constant matrix, we imposed on NB prior, the

comparison between NS and SS priors becomes the spotlight. For the non-separable simu-

lations, NS and SS are mainly distinguished by the measure of fCOV, where NS has been

consistent regardless of regional dependency (ρ) and outperforming SS. Different from the
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separable simulations, SS prior estimates the covariance structure more accurately under

higher regional correlation and a possible explanation is that more dependent structures

impose less challenge under non-separable setting, i.e. more information can be borrowed

locally, therefore some efficiency gain can be expected.

3.4.2 Synthetic Data: Sample size, SNR and Number of Latent Factors

A second batch of simulation studies aim to assess the operative characteristics of all three

models under different Signal-to-Noise Ratios (SNRs), sample sizes and unknown number

of latent factor settings. More specifically, we first examine under SNR= 0.2, 1.0 and 5.0

with a sample size of N = 10, 20 and 50 per group (3 in total). Both strongly separable

and non-separable simulations are assessed with 100 repeated datasets per configuration.

Secondly, we focus on the robustness to the number of latent factors when the true value is

not given. Our experiments show that NS prior benefits the most with accruing sample size

and SNRs, and its robustness and efficiency stands out under both simulation settings.

From our experiments we conclude that Non-Separable prior exceeds in the recovery of

covariance estimation for random effects, and at the same time, yields satisfactory and ro-

bust estimation of the fixed effects trajectories under a broad range of settings. Therein, we

recommend this implementation in practice, especially when separability cannot be hypoth-

esized on an unknown structure of the random effects covariance.

3.5 Implicit Auditory Learning in a Study of Autism

Our case study follows the paradigm and metrics investigated in Section 3.2 to highlight the

regionally referenced spectral power dynamics using our Hierarchical Functional Model. As a

common practice, logarithm of power metrics are of major interest and we mainly emphasize

on the gamma and alpha band oscillations for inference. We provide technical background

and pre-processing pipelines in the Appendix B. Considering established robustness and

efficiency from numerical experiments, we choose the non-separable model (NS-prior) that

can flexibly handle both separable and non-separable conditions for inference. Under a
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regression framework, our investigation provides a holistic view of regionally referenced brain

activities under implicit learning research paradigm.

3.5.1 Group Mean Trajectory Analysis

Given all its manifestation at elder ages, for example social communication deficits, presence

of repetitive behaviors and restricted interest, we want to discover what Autism means at a

micro-level. Although the quantity of interest throughout this case study is the logarithm of

Rs-EP1 defined in Eq 3.2, our approach is readily generalizable to any self defined measures

repeated observed at multiple locations on the scalp. The only restriction is that we require

repeated observations are collected on the same grid of time points per individual, which

practically makes sense.

It is worth mentioning that we still need to pick B-splines related parameters and the

number of latent factors for the NS-prior. We empirically picked 12 B-spline with knots

selected from quantiles of the distribution of time, considering a relatively small collection

(150) of unique time stamps. However, authors do recognize more systematic even automatic

schemes for optimizing the number and the position of the knots (see for example [Rup02]

and [FS89]), therefore recommend in practice for a large span of functional time collected.

As for the choice of the number of latent factors, we’ve assessed the robustness of our model

to it in the simulation study and further on the case study. Both results agree that our

model is capable of automatically regularize redundant factors and we chose 8 factors as

model input therein.

To start with the alpha (8-12 Hz) power which is reportedly associated with cognitive

activities [FB14]. By group means, TD and v-ASD are universally higher than mv-ASD

across all 11 regions, even though none of the difference is significant by the 90% simultaneous

confidence bands. The difference between TD and v-ASD is subtle and the trajectory is

flat relative to experimental time among all three groups. In other words, the cognitive

functionality, indistinguishable between TD and v-ASD, does not indicate the process of

implicit learning and identifies the mv-ASD cohort directly at baseline, or reseting state. We
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further looked into the asymmetry of alpha powers by calculating the difference between the

left and right regions of frontal, temporal, central and posterior respectively. The asymmetry

is significant over time at frontal regions, diminished at temporal regions and negligible at

central and posterior regions.

Gamma (30-50 Hz) band activities have been long recognized as correlate to implicit

learning process, therefore are further investigated under our research paradigm. As show in

Figure 3.3(1.a & 1.b), TD group has significantly higher gamma band power than vASD and

mvASD, especially at early stage of the experiment. Meanwhile, it also indicates a trend of

decreasing in gamma band powers over time among TD children. Similar finding by [GM02]

reported a decreased response when stimuli recur which they projected to be linked to a

‘neural savings’ mechanism within a cell assembly representing an object, i.e. a word in our

case. This pattern is majorly discovered at temporal regions, both left and right, partially at

frontal regions. Moreover, we observe significant frontal asymmetry throughout the study at

gamma band too, where TD group exhibits a higher degree however gradually flattens over

time. Although [RW14] has pointed out this left-dominant asymmetry as a discriminative

feature between TD and ASD cohort, for the first time, we confirm it with region references

by means of power dynamics over experimental time.

3.5.2 Effects of Age and Verbal-DQ

Further, we examine both the alpha and gamma band powers dynamics as effects of age and

verbal-DQ. In addition to a small sized sample we acquired, the distribution of demographics

among three groups is remarkably unbalanced. To be specific, the TD cohort is significantly

older (94.7± 28.8, in months) with hider vDQ (120.6± 11.4), the v-ASD cohort are younger

(67.1± 58) with medium vDQ (89.3± 22.7) and mv-ASD has widely distributed age (85.6±

24.0) however significantly lower by vDQ (23.6±10.9). Due to the colinearity between group

and vDQ, we include only age and vDQ as covariates below.

As shown in Figure 3.3(2.a & b), the effects of age and vDQ are flipped on alpha and

gamma band powers. For the alpha band, higher power is correlated with higher vDQ scores
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marginally, and significantly greater than 0 at two small time windows at both ends of the

experiment with 90% confidence. For the other hand, we observe positive correlation between

gamma band power and age especially in the middle and close to the end of the exposure.

We tend to take extra caution making a scientific interpretation out of a relatively small

sample, however, it casts some light on the comprehensive inferential toolkit we offer when

handling functional observations under a bayesian regression framework.

3.6 Discussion

In this chapter, we propose a Bayesian hierarchical functional model that utilizes latent factor

decomposition on B-spline coefficients for the analysis of EEG band power dynamics under

the context of a cognitive experiment. We provide a high-performance computation package

that implements three types of priors that can flexibly handle both separable and non-

separable covariance structure of correlated functional observations. The proposed approach

has satisfactory operating characteristics under extensive numerical experiments, in addition

to its inferential competency from the posterior samples.

Our approach exploits on a latent factor structure with automatic regularization, that

ensures identifiability and numerical stability, is the first attempt of hierarchical modeling

on non-separable multi-way functional data to the best of author’s knowledge. It is worth

mentioning that this approach can be readily extended to various non-parametric and para-

metric projection methofds, for example polynomials, cubic splines, wavelets and empirical

projections like fPCA. The latent factor structure is also easily scalable under both sepa-

rable and non-separable conditions to high-dimensional tensor structures, with thoughtful

engineering on the decomposition and prioritization of vectorization.

The case study of regionally referenced alpha and gamma band powers relies on a revisit

to the eigen-power from spectral PCA, which is shown less prone to poor SNRs especially in

highly coherent regions. However, it is important to point out the sample size sets the true

bottleneck to our major findings above. The effects of age and vDQ are less interpretable

in face of high correlation with group, therefore, a comprehensive study on a larger cohort
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of individuals with balanced demographics is surely needed before any scientific claim being

made. Given all the limitations to the available dataset, our contribution is more noticeable

in the regards of methodological development and innovation. We also need to point out that

we consider our approach under the category of functional-to-scaler regression, therefore all

the covariates are expected to be time-invariant after all.

As shown in Figure 3.3(2.c), it is also possible to investigate the regional and functional

correlation from the posterior samples and we obtain a point estimate of regional correlation

matrix, from the gamma power analysis. Via a visual inspection, all 11 regions of interest

can be aggregated into two groups: {LF, RF, LT, MC, RC} and {RC, RT, MF, LC, MP, LP,

RP}, which intersects on Right Central (RC) region. The inverse of this correlation matrix

is often interpreted as brain connectivity (for example see [HLS10]). To obtain this quantity,

it is much easier under the separable condition, namely Γ̂Γ̂′, however more challenging for

NS-prior. One possible remedy is an ad-hoc construction of this inverse covariance matrix

under certain sparsity assumptions, but we believe it more interesting to encode both the

sparse inverse constraint and low-rank structure simultaneously and analytically.

There are a couple of potential directions authors find illuminating for future reference.

First of all, a comparative study of the eigen-power based on spectral PCA is desirable.

Secondly, we believe modeling the full power spectral density (PSD) is totally feasible under

the current framework instead of separate analysis on the band aggregated powers. The

challenge is that our new observational units are functional surfaces of PSD over time that

are naturally correlated across regions. We have seen significant efforts in this endeavor

using functional PCA, and expect more from a bayesian perspective. Lastly, more inferen-

tial devices can be implemented to take the full advantage of the posterior samples of the

functional observations. For example, to test on the hypothesis of time-invariant effect:

H0 : aj(t) = Cj ←→ H1 : aj(t) 6= Cj

A user-friendly implementation of the proposed method is available online as an Rcpp

package at: https://github.com/Qian-Li/HFM
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Table 3.1: Simulated results
ρ = 0.4 ρ = 0.6 ρ = 0.8

Prior aiMSE a.cover fCOV aiMSE a.cover fCOV aiMSE a.cover fCOV

Separable Simulation

NB 0.1779 0.9757 23.1002 0.1773 0.9791 28.3420 0.1764 0.9813 37.2262

SS 0.1807 0.8981 7.7684 0.1806 0.8911 8.8431 0.1807 0.8819 11.5938

NS 0.1811 0.8958 10.5123 0.1809 0.8960 11.1077 0.1807 0.8948 11.3615

Non-Separable Simulation

NB 0.3309 0.9776 230.8164 0.3300 0.9788 253.0962 0.3280 0.9856 290.8440

SS 0.3331 0.8759 119.2790 0.3326 0.8775 116.2758 0.3309 0.8669 104.6439

NS 0.3297 0.8507 77.1105 0.3296 0.8519 76.4085 0.3286 0.8509 76.8683

pa bi ku
da

ro
pi

go
latu

ti

bu

do

−→

(block 1)

(block 2)

pa bi ku da ro pi

pa bi ku go la tu

time

Figure 3.1: Illustration of Word Segmentation Streams: A Vocabulary consist of 12 syllables

(phonemes) on the left; constructed tri-syllabic words are randomly concatenated into blocks on

the right.
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(a) (b)

(c) (d)

Figure 3.2: Simulated curves: a) Five group-regional means {β0(t), β1(t), β2(t), β3(t), β4(t)};

b) Individual curves simulated from a multivariate Gaussian Process at one region; c) Simulated

strongly separable covariance of Θi; d) Simulated non-separable covariance of Θi.
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(1.a) (1.b) (1.c)

(2.a) (2.b) (2.c)

Figure 3.3: Case Study Results: Posterior group means and C.B. for Gamma band power at

Left Temporal region (1.a), Right Temporal region (1.b) and contrasts between Left and Right

Frontals (1.c); Posterior mean and C.B. for the marginal effects of AGE and Verbal-DQ at Left

Frontal region: Alpha band powers (2.a) and Gamma band powers (2.b); Posterior mean of regional

correlation of Gamma band power (2.c).
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CHAPTER 4

Open Problems and Opportunities for Contributions

The contributions of this dissertation are likely to prove useful and provide a novel analytical

view to the analysis of neuroimaging data collected in relation to neurocognitive experiments.

In this Chapter, a discussion that has originated from the accomplished work of the previous

chapters aims at the unrealized ideas and potential directions from where the author stands.

Instead of peeks into the future, I consider all being reflections of the past on what could

have been done from an angle of where more could have been seen.

4.1 Multimodal Neuroimaging

This dissertation is focusing on analytical approaches that are primarily engineered for EEG

data. However, multimodal neuroimaging has gained increasing attention recently, which

stands for a combination of imaging techniques (MRI, PET) and electrophysiological mea-

surements (EEG, MEG). [LCL15] reviewed the recent advances in this endeavor specifically

applications to neuropsychiatric disorders, however, very few contributions are seen from a

statistical point of view. One key challenge that author noticed is that, multimodal tech-

niques target distinct neuronal processes, therefore the measured responses are not funda-

mentally unifiable.

The integrative method from Chapter 2 has offered an alternative. In stead of seeking

integration at observational level, it is plausible and viable to connect on some latent quan-

tities and processes, for example clusters. Taking one step forward, the underlying process is

mainly the target of interest, even though its representation per modality can be intractable.

To tackle with this challenge, it requires a deep collaboration between research scientists and
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statisticians, a sizable collection of multimodal data and a well-defined scientific problem of

interest.

4.2 Joint Modeling of Exposure and Test Phases

The implicit learning paradigm in Chapter 3 has a two phases design: exposure and test

phase. Participants get exposed to a continuous stream of artificially constructed linguistic

input during the first phase, and receive “tests” of exposed and non-exposed words in the

second phase. Methodologically speaking, analytics on phase one focus spectral features

compared to waveform characteristics for the second phase. However, it is scientifically

appealing to jointly model and interpret both phases simultaneously.

The statistical challenge in essence is a functional to functional regression problem. Tak-

ing the multivariate PSD dynamics from exposure phase as inputs, one could predict and/or

interpret on ERP waveforms conditionally. It is strongly recommended to read [Mor15] for

reference, where both functionals as predictors and outcomes are thoughtfully covered with

great details.

4.3 Hierarchical and Latent Structures

Both hierarchical characterization and latent structure assumptions have seen their appli-

cation in Chapter 2 and 3. As a matter of fact, it is just the tip of the iceberg how both

techniques can benefit statistical modeling. Conceptually, hierarchical structure is a sys-

tematic simplification to a complicated hypothesis that often leads to numerical efficiency

and direct interpretability. This dissertation has mainly dedicated to using this technique to

utilize the structured dependency naturally observed in EEG data. More of its application

are strongly encouraged, for example, author has also been working on a deep learning based

multi-class image classification problem where hundreds of labels can follow a hierarchical

structure directly encoded in the loss function during training time.

On the other hand, latent structure brings simplicity and sparsity from an alternative
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perspective. The latent labels of clustering, also known as data augmentation, unifies and

summarizes the exploratory findings at multiple levels, whereas the latent factor decompo-

sition approximate a giant covariance matrix economically with a few factors. This highly

organized and simplified conceptualization is signature to the creativity and originality of hu-

man been, therefore should be highlighted as valuable principles of statistical model building

overall.
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APPENDIX A

Supplementary files for Chapter 2

To company our main article in Chapter 2, more detailed formulations and computational

procedures are described in this appendix. We structure this document as below: more

technical details, including spectral estimation, Gibbs sampler and Information criteria are

provided in Section A.1; detailed simulation of EEG signals along with extended results can

be found in Section A.2; we conclude with EEG measurements and MCMC assessment of

the case analysis in Section A.3

A.1 Technical Details

A.1.1 Estimation of the Spectrum

Since our procedure considers a Total Variation Distance between every pair of spectra,

smoothness is desirable in spectral estimation. To have a continuous spectral density of x(t),

a truncated and smoothed correlogram is constructed by,

f̃(ω) =
∑
|h|≤a

w(h/a)γ̂(h) exp(−i2πωh),

where γ̂(h) is the sample auto-covariance, defined as 1/(N − h)∑N
h+1 x(t) · x(t − h). The

truncation with span a on the covariance is further smoothed by Parzen window, which is

defined as,

w(u) =


1− 6|u|2 + 6|u|3, if |u| < 1

2

2(1− |u|)3, if 1
2 ≤ |u| ≤ 1,

0, otherwise
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In practice, the span size a controls the smoothness of estimated spectrum. We used a =

N/2 in both the numerical experiments and case study, which is relatively conservative for

the purpose of smoothing periodogram. This is not problematic for our procedure, since

cumulative evidence will be integrated, which can also be seen as smoothing, over epochs

under the merits of hierarchical modeling. A more rigorous approach for choosing a can be

found in [ORS01]

A.1.2 Gibbs Sampler

The estimation procedure is implemented under Bayesian framework, and a Gibbs sampler

is designed targeting the posterior density. By default, the algorithm is initialized with a

K partitioning using pam in R at each epoch, then iterates through conditional posterior

distributions. At the m-th iteration, the sampling scheme is detailed as below:

• Θi(t)|Xi(t),Li(t) ∼ f(θik(t)|Xi(t),Li(t) = k) for i ∈ {1, . . . , n} and t ∈ {1, . . . , Ti}.

Specifically, the posterior distribution for θ(m)
ik (t) is:

θ
(m)
ik (t) ∼ NIW(µ(m)

ik (t),λ(m)
ik (t), σ2

ik
(m)(t), ν(m)

ik (t))

And these quantities will be updated using data specific to cluster k, based on L(m)
i (t).

• Li(t)|Xi(t),θi(t),βi,Ci ∼
∏
j Pr(k|Xij(t), Cij,θij(t), γi) for j = 1, . . . , p and k = 1, . . . , K

where,

Pr(k|Xij(t), Cij,θik(t),βi) ∝ νe(k, C(m−1)
ij ,β

(m−1)
i )f(Xij(t)|θ(m)

ik (t))

And L
(m)
ij (t) will be sampled as k ∈ {1, . . . , K} with the probability proportional to

the above expression.

• βi(t)|Ci,Li(t) ∼ TBeta(ci + τi, di + pTi − τi(t), 1/K) where τi(t) is the number of

samples (Lij(t) = Cij) for t ∈ {1, . . . , Ti} and j ∈ {1, . . . , p}. Also Ci = C(m−1)
i and

Li(t) = L(m)
i (t).
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• Ci|Li(t),C, αi,βi,∼
∏
j Pr(k|Lij(t), . . . , Lij(Ti), Cj, αi,βi), where

Pr(k|Lij(1), . . . , Lij(Ti), Cj, αi,βi) ∝
 Ti∏
t=1

νe(Lij(t)(m), k, β
(m)
i (t))

 νs(k, C(m−1)
j , α

(m−1)
i ).

• αi|Ci,C ∼ TBeta(ai+ψi, bi+p−ψi, 1/K) where ψi is the number of electrodes (C(m)
ij =

C
(m−1)
j ) for j ∈ {1, . . . , p}.

• Cj|Π, C1j, . . . , Cnj, αi ∼ Pr(k|C1j, . . . , Cnj,Π, αi), where

Pr(k|C(m)
1j , . . . , C

(m)
nj ,Π(m−1), α

(m)
i ) ∝ π

(m−1)
k

n∏
i=1

νs(k, C(m)
ij , α

(m)
i ).

• Π|C ∼ Dirichlet(η + ρ) where ρk is the number of samples clustered k in C(m) and

ηk = 1 is chosen non-informatively as a priori.

Markov chain Monte Carlo (MCMC) proceeds by iteratively sampling from the above

conditional posterior distributions, and 1/5 of the iterations are used for burning-in after

which parameter estimates and information criteria are calculated.

A.1.3 Model Assessment Criteria

We consider the model assessment measures at both epoch and population levels. Epoch

levels fitting is favored by the number of clusters, K, that maximizes information criteria

listed below, conditional on the eigen-Laplacian dimension d. Average adherence, α̂, reflects

population level fitting, which serves as valid measure across dimensionality.

• The BIC ([Sch78]) is defined as

BIC(K) = 2 log f(y|τ̂ , K)− d log(n),

where d is the number of free parameters.

In our model:

BIC(K) =
∑
i

Ti∑
t

2 log f(Xi(t)|(θ̂i(t), L̂i(t)), K)− df log(P ),
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where df is the number of free parameters in the model,

df = 2G · d ·Nepoch +Nepoch + n+K − 1,

and d is the dimensionality of the eigen-Laplacian data.

• The DIC ([SBC02]) uses effective model parameters pd instead, which has a general

form of,

DIC(K) = −2 log p(y|τ̂ , K) + 2pd,

where pd = Eτ |y(log p(y|τ̂))− log p(y|τ̂).

[CFR06] suggested a form of DIC (as DIC4 in their paper), which treats the labels L

as missing data thus taking expectation with respect to them afterwards. The formal

definition of DIC in our model is,

DIC(K) =
∑
i

Ti∑
t

{ELi(t)l|Xi(t)[DIC(Xi(t),Li(t), K)]}

=
∑
i

Ti∑
t

{−4 Eθ,Li(t)|Xi(t)[log f(Xi(t),Li(t)|θi(t))]

+ 2 ELi(t)|Xi(t)[log f(Xi(t),L|θ̂i(t))]}

• The adjusted coherence ([LD13]) was suggested for choosing K,

α∗i = K · αi − 1
K − 1 ; ᾱ∗ = K · ᾱ− 1

K − 1 ,

By the definition of coherence parameter, αi ∈ (1/K, 1). So adjustments were made

such that α∗i share the same range (0, 1) regardless of K. In our model, αi reflects

the adherence between population and individual consensus, which complements the

BIC and DIC for population inference. As pointed out by [LD13], this measure favors

smaller K, which is more appropriate when a population pattern exists and being

desired.
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A.2 Extended Simulation Study

A.2.1 Simulating Band-Oscillating EEG Signals

EEG signal readings features by the oscillation at different frequency bands: delta (0-4 Hz),

theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) and gamma (30-50 Hz). Being motivated by

[EOO15], a linear mixture of second order auto-regressive (AR(2)) models is used to simulate

EEG readings. To be specific, an AR(2) process Zt is defined to be

Zt = φ1Zt−1 + φ2Zt−2 + εt

where εt is a Gaussian white noise process. The oscillation properties of the procedure can

be reflected by its characteristic polynomial, φ(z) = 1− φ1z − φ2z
2. Its root, denoted as z2

0

and z2
0 , has a polar representation that directly relates to the features in frequency domain,

|z1
0 | = |z2

0 | = M, arg(z0) = 2πη
Fs

,

where Fs is the sampling frequency; M is the amplitude or magnitude of the root (M > 1);

and η is the frequency index. The spectrum of the AR(2) process with polynomial roots

above will have peak frequency at η. The peak becomes broader as M → ∞; it becomes

narrower as M → 1+.

With a predetermined (Fs, η,M), EEG can be simulated as a sample of AR(2) process

with the corresponding coefficients (φ1, φ2).

In our experiment, M = 1.03 and Fs = 200Hz are fixed. Let Zm
t be the m-th AR(2)

component (m = 1, . . . , 5), oscillating at peak frequency η = 2, 6, 10, 21, 40 respectively.

Thus the observed time series for electrode j is,

Xjt = eTL(j) · Zjt + εjt, Zjt = (Z1
jt, Z

2
jt, Z

3
jt, Z

4
jt, Z

5
jt)T ,

where L(j) ∈ {1, . . . , K} is the true group label for the electrode j and eL(j) is the mixture

weights associated with the AR(2) components. To be more specific, 4 groups of synchronized

patterns (K = 4) are considered, and the corresponding weights are,

e1 = (1, 2, 0, 0, 0)T , e2 = (0, 1, 2, 0, 0)T , e3 = (0, 0, 1, 1, 0)T , e4 = (0, 0, 0, 1, 1)T

75



A.2.2 Simulating Non-stationary EEGs

To assess the robustness of proposed procedure to stationarity violations, we construct a

piecewise stationary process that has randomly alternating main and off states. The non-

stationarity is coded by two sets of AR(2) mixing weights, eL(j) and e′L(j) as main and off

respectively:

e1 = (1, 2, 0, 0, 0)T ←→ e′1 = (1, 0, 0, 2, 0)T

e2 = (0, 1, 2, 0, 0)T ←→ e′2 = (0, 0, 2, 1, 0)T

e3 = (0, 0, 1, 1, 0)T ←→ e′3 = (0, 0, 1, 2, 0)T

e4 = (0, 0, 0, 1, 1)T ←→ e′4 = (0, 0, 0, 1, 2)T

A.2.3 Extended Results

We examine our procedure against multiple window sizes at γ = {4, 6, 8, 10} with fixed

overlapping of 50%. Results are reported here on 100 repeated datasets, in terms of α esti-

matesand clustering accuracy against the known truth. Fig A.1 depicts the results for both

cases. α estimates are stable over varying smoothing settings (a), and clustering accuracy

behaves similar especially at individual level (b). Population level clusters are better estab-

lished at γ = 6, which has fewer misclassified cases, but the overall trend as a function of

true α holds for all settings.

A.3 Further Details of the Case Study

A.3.1 EEG measurements

The sample in our case study includes 9 participants (29-60 months of age) from the TD

group, and 10 participants (27-99 months of age) from the ASD group. During the ex-

periment, EEG was recorded at 250/512Hz using 129 channel geodesic nets with Ag/AgCl

electrodes, while participants watched videos of soap bubbles and other non-social images

on a computer monitor for 2 to 6 minutes.
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(a) (b)

Figure A.1: Extended simulation results: (a) α̂ and its 95% credible interval from MCMC

samples, against the true α’s. (b) Clustering accuracy at both individual and population

level, as a function of the true α’s.

The EEG recordings were bandpass filtered at 1-50 Hz using a finite impulse response

(FIR) filter with EEGLAB toolbox ([DM04]). Recordings were then segmented into 1024

ms segments for preprocessing. Noisy or loose channels were spherically interpolated using

EEGLAB, and EEG recording segments with > 11 interpolated channels were rejected. 4

eye channels were physically removed from the net before the recording session even began,

and another reference channel was also excluded yielding a total of 124 channels to be

clustered on. All remaining segments were manually inspected for non-stereotyped artifacts,

e.g., electromyogram (EMG), and rejected based on qualitative inspection; then a combined

principal component analysis (PCA) and independent component analysis (ICA) approach

was used to eliminate stereotyped artifacts, e.g., ocular artifacts. All EEG recordings were

re-referenced to the average prior to power calculations.

EEG was recorded for 165.1(±74.3) seconds among ASD and 139.9(±30.1) among TD.

After the aforementioned preprocessing, 102.7(±19.8, ASD) and 95.9(±32.8, ASD) segments

entered MIC analysis.
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A.3.2 MCMC Mixing

We consider MCMC mixing by evaluating parameter and cluster estimates at a fixed con-

figuration of smoothing (γ = 6 and δ = 3) and model (d = 5 and K = 5). MCMC draws

20k and 40k samples respectively, and a comparison is presented in Table A.1 in terms of α̂

and clustering results. To compare K-clusters partition, we used the adjustedRandIndex

function of “mclust” package in R (see [FRS12], [FR02] and [HA85]).

α C.I. 20K α C.I. 40K adjRandIndex

population · · 1.0000

subject 1 (0.7593, 0.9013) (0.7300, 0.8992) 0.9086

subject 2 (0.7754, 0.9336) (0.8144, 0.9573) 0.8616

subject 3 (0.6184, 0.7885) (0.6123, 0.7828) 1.0000

subject 4 (0.7831, 0.9316) (0.7930, 0.9290) 1.0000

subject 5 (0.5883, 0.8052) (0.5979, 0.8106) 0.7987

subject 6 (0.7671, 0.9268) (0.7233, 0.9177) 0.7446

subject 7 (0.7041, 0.8651) (0.7039, 0.8697) 0.8959

subject 8 (0.6520, 0.8420) (0.6042, 0.8106) 0.7447

subject 9 (0.6686, 0.8349) (0.6583, 0.8230) 1.0000

Table A.1: MCMC mixing at 20k and 40k draws

The 95% credible intervals for αi’s are relatively close, and the subject clusters perfectly

agree at subject 3,4 and 9. For the purpose of group inference, population estimate perfectly

matches between 20k and 40k runs, which highlights the advantage of our proposed method

when individual hard clusters are susceptible to missing segments and artifacts.
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APPENDIX B

Supplementary files for Chapter 3

This document accompanies Chapter 3 and provides a detailed discussion of technical points.

In particular, Section B.1 completes the research paradigm and the corresponding preprocess-

ing procedures for EEG cleaning. In Section B.2, we give detailed formulation and calculation

of the eigen powers, and discuss on an generalized cross validation procedure that automat-

ically selects the smoothing bandwidth. Extensive technical details are provided in Sec-

tion B.3, that contains prior and hyper-prior choices for our hierarchical functional models,

step-by-step Gibbs samplers to carry out the posterior sampling and calculation of simulta-

neous confidence bands for inference. We conclude with an extended report of our simulation

study, covering generative assumptions, settings for the numerical study, and extra findings

under various scenarios in Section B.4. The implementation of our model is fulfilled in R and

Rcpp, which is publicly available on author’s Github (https://github.com/Qian-Li/HFM)

B.1 Research Paradigm and EEG Preprocessing

B.1.1 Extended Research Paradigm

The audio learning research paradigm hypothesized that participants were able to implicitly

learn the boundary of artificially constructed words out of a continuous stream of phonemes.

To be precise, there are 12 phonemes, as building blocks, constructing 4 expected words that

would be repeatedly exposed during the task, thereby expected to be learned:

• pa-bi-ku

• da-ro-pi
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• tu-da-ro

• go-la-tu

Exposure Phase: the exposure phase exposed participants with repetitions of “ex-

pected” words. Specifically, the above listed 4 words were pseudo-randomly permuted 3

times into a block, under two constraints: 1) each word was repeated 3 times in a block; 2)

none of the words was repeated twice in a row. Afterwards, five individually constructed

blocks were further repeated 3 times. As an example b1 = (w1 w2 w3 w4 w2 w1 w4 w3 w2

w4 w1 w3), b2 = (w2 w4 w1 w3 w4 w2 w1 w4 w3 w1 w2 w3), etc. Then overall (b1 b2 . . .

b5 b1 b2 . . . b5 . . .). At last, each expected word was repeated 45 times counting as 3(within

block reps) × 5(blocks) × 3(blocks reps).

Timing: all expected words were recorded then played continuously in a stream, and

further time-locked and tagged during the recording (however not available in our sample).

With an average duration of 803 milliseconds per word, the total length of exposure phase

is:

803× 4× 45 = 144540 ms = 144.54 s

Test Phase (Not used): the test phase consisted of words that were expected to be

implicitly learned and part-words, that had also appeared in the stream as tri-phenome

combination however less frequently, during the exposure phase. As an example, a part-

word was constructed by the last phoneme of an expected word together with the first

two phonemes of the following word. During the stream where “pa-bi-ku” was followed by

“go-la-tu”, “ku-go-la” was a part-word.

A total of 96 trials were tested in this phase, where a mixture of 4(expected words)×12(reps)=

48 case trials and 12(part-words)×4(reps)= 48 control trials had been randomly scrambled.

A 500-700 ms inter-trial interval was inserted to definitely inform word boundaries, therefore

the total length of this phase was roughly:
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803× 96 + 600× 96 = 134688 ms = 134.68 s

The test phase data was time-locked to trails, and was further segmented and separated

as “words” and “part-words” datasets. Within each trial, the event-related potentials (ERPs)

were registered to -100ms relative to the onset of stimuli and the averaged amplitude within

the 400-600ms time window was of major interest for interpretation.

B.1.2 EEG Preprocessing Pipeline

The exposure phase data was preprocessed in a similar manner to resting-state EEG. A

pipelined procedure was followed:

Filtering→ Segmentation→ initial BCR→ Auto Reject

→ Manu Reject→ Final BCR→ re-Reference

• Segmentation: the exposure phase is word-locked according to the protocol, but still

segmented into 1s in the given dataset.

• Initial Bad Channel Replacement (BCR): mark and replace channels that contains

EMG, high impedances or being unstable and erratic throughout the recording.

• Automatic Rejection: use “Auto Artifact Detection” toolbox builtin in NetStation.

• Manual Artifacts Detection: mark segments bad if they contain eye blinks, saccades,

EMG/muscle or clusters of bad channels (based on initial BCR).

• Final BCR: mark all channels bad again that were marked bad during initial review,

also mark all eye channels, and replace.

• Re-Reference to Average: standard re-referencing

Eventually the segments marked “good” are saved and output, with the rejection log man-

ually recorded in a separate file.
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The exposure phase has a total of 153 segments, with 77.53 good segments left after

preprocessing on average (MIN= 14, MAX= 146). All 129 channels (including 4 eye channels

and 1 ref channel) recording EEG at 512Hz are available for 45 subjects. Discrepancy was

noticed between data distribution and manual log. Further summaries are produced for all

subjects (45) on their demographical variables.

IDs 17 437∗ 439∗ 451∗ 3002 3015 3020

Group TD vASD mvASD vASD mvASD mvASD mvASD

Segments in Data 65 84 102 134 70 17 40

Segments in Log 67 153 69 94 72 18 39

Table B.1: Mismatches between manual log and actual data

Group N M/F Age in m. vDQ nvDQ

TD 9 6/3 94.67(28.82) 120.56(11.40) 115.22(15.19)

vASD 16 9/7 67.05(5.84) 89.33(22.69) 95.62(19.77)

mvASD 20 17/3 85.65(24.00) 23.64(10.87) 43.09(13.60)

Total 45 32/13 80.73(22.99) 68.37(43.18) 76.95(34.63)

Table B.2: Demographical Variables, with Mean and (SD)

Individuals, 437, 439 and 451 were excluded from the case study due to a significant

amount of mismatches between the data distribution and their processing log, therefore it

leads to our sample size of 42 persons. It is also worth mentioning that age and verbal-DQ

are highly correlated with the group definition of TD, vASD and mvASD. The separability

of verbal-DQ is reasonable since that directly relates to the clinical definition of ASD. We

consider the unbalanced distribution of age to be problematic especially the vASD cohort

are significantly younger than TD children, and one might suspect that their deficits in

verbal-DQ are purely due to the effects of age.
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B.2 Spectral Principle Component Analysis

The principle component analysis on spectral domain is extensively covered by [SS10] in

Chapter 7. This section mainly focuses on the technical details of implementing the method

by [OH06] and a generalized cross-validation approach for automatic band selection. Author

has implemented this procedure in R, however, all work can be easily translated and migrated

to other statistical packages for computation. For simplicity, we refer to this approach as

spectral PCA in the details that follow.

B.2.1 Calculation of Spectral PCA

The spectral PCA decomposes the multi-channel signals into incoherent components, and

provides a lower dimensional representation of the regionally characteristic spectrum. In

our application, only the first eigenvalues are considered at various Fourier frequencies. Due

to the reported inconsistency of raw spectral estimates and a relatively short signal length

(1s), smoothing is highly recommended to effectively reduce variance of the estimated spec-

trum. In this regard, each univaraite time series is normalized (var = 1) such that PSDs

are comparable over frequencies, followed by an GCV-based procedure that automatically

determines the optimal bandwidth of modified Daniell’s kernel at each frequency.

Detrend: each channel of EEG signals is normalized per segment. A standard normal-

ization is followed, by which we first remove a linear trend as well as the intercept from the

univariate process, then rescale the residuals to unit variance as detrended signal.

Spectral Matrix: For a p-variate time series of lengthM , denoted as X = {X1, . . . , Xp},

collecting signals in p channels, its Fourier coefficients at frequency ω is defined:

d(ω) = 1√
M

∑
t

X(t) exp(−i2πωt). (B.1)

Consequently, the spectral matrix (p × p), which has real diagonal entries and complex

off-diagonal entries, is,

I(ω) = d(ω)d(ω)′. (B.2)
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Its implementation in R depends on the mvspec function of astsa package. De-trending

can also be performed by this function with the corresponding option. An alternative imple-

mentation can utilize a basic-R function, mvfft, even though extra attentions are necessary

regarding the normalization.

B.2.2 Optimal bandwidth via GCV

To smooth the spectral matrices over varying Fourier frequencies, we use the modified

Daniell’s kernel with a bandwidth of w (span = 2w + 1). The optimal bandwidth is de-

termined by a generalized cross-validation (GCV) procedure, see [OH06]. Specifically for a

given bandwidth w, we first estimate the corresponding spectral density matrix Ĩw(ω). The

GCV error is defined individually on each univariate process and we summarize by summing

up to a total error: GCV (w) = ∑p
j=1 GCVj(w). For each channel,

GCVj(w) = 2
df(w)2

M/2−1∑
k=0

qk

[
Ijj(ωk)
Îjj(ωk, w)

− log Ijj(ωk)
Îjj(ωk, w)

− 1
]
, (B.3)

where df(w) = 1−trace(S(w))/(M/2+1) is the degree of freedom, qk = 1/2 when k = 0,M/2

and 1 elsewhere.

Eventually, the optimal bandwidth, w∗ = minwGCV (w), minimizes the combined GCV

error across all frequencies. Therefore the smoothed spectral matrix is guaranteed Hermitian.

As for implementation, the optimal value is determined on a grid of preselected values

whichever eventually yields the minimal loss. With the optimal bandwidth, we extract

the first eigenvalues as the Regionally smoothed Eigen-power (Rs-EP1) by means of eigen-

decomposition on Ĩw∗(ω).

B.3 Technical Details

This section lays out the technical details for implementing all three priors on the coefficient

matrix Θi, which were proposed in our hierarchical functional models. We refer to Naive

Bayesian, Strongly Separable and Non-Separable priors and NB, SS and NS respectively.
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B.3.1 Choice of Ω0

To choose an appropriate hyper prior for the inverse Wishart distribution, especially the

prior mean Ω0, we borrow structural assumption that has been well established in the spatial

statistics literature. Precisely,

Ω0 = (DW − ρW ), with ρ ∈ (1/λ(1), 1/λ(p)),

and λ(1) < λ(2) < · · · < λ(p) are the ordered eigenvalues ofD−1/2
W WD

−1/2
W ,DW = diag(w1+, . . . , wp+),

W is the a pre-defined adjacency matrix. Therefore Ω0 is guaranteed to be positive definite.

Hyper-parameter ρ can be empirically estimated to simplify the problem, and it is highly

recommended to use a non-informative choice.

B.3.2 Gibbs Sampler

To unify the use of notations, we denote matrices as A, vectors as a, c-th column of matrix

A as A(c), the b-th block of matrix A as A(b). Under the representation from the main article,

we complete the model with,

NS : λ
(c)
(k)|Ωkτc ∼ MN(0,Ω−1

k τ−1
c ), Ωk ∼W(ν,W0), τc =

c∏
l=1

δl, k ∈ {1, . . . , q}

δ1 ∼ Ga(a1, 1), δl ∼ Ga(a2, 1), σ−2
· ∼ Ga(a0, b0);

SS : υjr|φjr, τr ∼ N(0, φ−1
jr τ

−1
r ), φjr ∼ Gamma(ν1/2, ν1/2), τr =

r∏
u=1

δu,

j ∈ {1, . . . , p}, r ∈ {1, . . . , k1}

γks|ψksκs ∼ N(0, ψ−1
ks κ

−1
s ), ψks ∼ Gamma(ν2/2.ν2/2). κs =

s∏
v=1

πv,

k ∈ {1, . . . , q}, s ∈ {1, . . . , k2}

δ1 ∼ Ga(a11, 1), δu ∼ Ga(a12, 1),

π1 ∼ Ga(a21, 1), πv ∼ Ga(a22, 1), σ−2
· ∼ Ga(a0, b0).

Mean: vec(Mi)T = xTi B, where B|Σr ∼MN (0, g(X ′X)−1,Σr),

where Σr = cov(Ληi + Zi) = ΛΛ′ + Σq ⊗ Σp, g is a constant set to be large.
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Gibbs Sampler using NS-prior

Step 1 Full Gibbs update of Λ, including Ω·’s and δ·’s. For k ∈ {1, . . . , q}, j ∈ {1, . . . , p}, the

diagonal precision matrixes Σ−1
p = diag{σ−2

j }, Σ−1
q = daig{σ−2

k }

– For k ∈ {1, . . . , q},

∗ Pr(Λ(k)|Ω, δ, . . .) by block: the vectorized version of which has a multivariate

Gaussian posterior distribution,

π(vec(Λ(k))|−) ∼ MN(σ−2
k S−1(H ′ ⊗ Σ−1

p )vec(Θ(k) −M (k)), S−1)

where S = T ⊗ Ωk + σ−2
k H ′H ⊗ Σ−1

p , and T = diag(τ1, . . . , τm).

∗ Pr(Ωk|Λ(k), T )

π(Ωk|−) ∝W(ν +m,W0 + Λ(k)TΛ′(k)),

– Pr(T |Λ,Ω), and τc = ∏c
l=1 δl. To effectively sample δ’s, we need to distinguish the

baseline precision δ1 and add-on penalties δl’s where l > 1:

π(δ1|−) ∼ Gamma(a1 + pqm

2 , 1 + 1
2

m∑
c=1

τ (1)
c

q∑
k=1
λ

(c)
(k)

T
Ωkλ

(c)
(k)),

∼ Gamma(a1 + pqm

2 , 1 + 1
2

q∑
k=1

tr(T (1) · Λ′(k)ΩkΛ(k)),

π(δl|−) ∼ Gamma(a2 + pq(m− l + 1)
2 , 1 + 1

2

m∑
c=l

τ (l)
c

q∑
k=1
λ

(c)
(k)

T
Ωkλ

(c)
(k))),

∼ Gamma(a2 + pq(m− l + 1)
2 , 1 + 1

2

q∑
k=1

tr(T (l)Λ(l−)′
(k) ΩkΛ(l−)

(k) )),

for l ≥ 2,

where τ (l)
c = ∏l

t=1,t 6=c δt for l = 1, . . . ,m and T (l) = diag(τ (l)
· )

Step 2 Update Σp and Σq for j ∈ {1, . . . , p} and k ∈ {1, . . . , q},

σ−2
j |Σq,− ∝ Gamma(a0 + nq

2 , b0 +
∑n
i=1(Θi −Mi −mat(Ληi))j·Σ−1

q (Θi −Mi −mat(Ληi))Tj·
2 ),

σ−2
k |Σp,− ∝ Gamma(a0 + np

2 , b0 +
∑n
i=1(Θi −Mi −mat(Ληi))T·kΣ−1

p (Θi −Mi −mat(Ληi))T·k
2 ).
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Step 3 Update the variance of system error εi(t), σ2
e

σ−2
e |− ∝ Gamma(ae +

∑
i ni
2 , be +

∑n
i=1 vec(Yi −Θi)′vec(Yi −Θi)

2 ).

Step 4 Update the mean function Mi or µi (B)

µi = vec(Mi) = B′ · xi,

where xi is a d×1 vector, that contains both discrete and continuous covariates and B

is the coefficient matrix of size d× pq with p-blocks of spline coefficients corresponding

to d covariates. In our working example, we are explicitly interested in group-specific

means and the effects from age and verbal-DQ. The coefficients are therefore modeled

flexibly,

θ∗i = vec(Θi) = B′ · xi + ri, where ri ∼ MN(0,Σr),

In a matrix form, Θ = XB + R, let Σr = ΛΛ + Σq ⊗ Σp is conditioned on, therefore

the full conditional posterior for B is,

π(B|Σr,−) ∼MN (Bn,
g

g + 1(X ′X)−1,Σr),

and Bn = g
g+1(X ′X)−1(X ′Θ).

Step 5 Update the latent variable ηi by marginalizing out Θi and back projection Bi(B′iBi)−1

Yi = MiB
′
i + mat(Ληi)B′i + ZiB

′
i + Ei,

which is equivalent to,

Y ∗i = mat(Ληi)B′i + ZiB
′
i + Ei,

and Y ∗i being the centered observations Y ∗i = Yi − MiB
′
i. Multiply both sides by

Bi(B′iBi)−1 and vectorize,

y∗∗i = vec(Y ∗i Bi(B′iBi)−1) = Ληi + vec(Zi) + vec(EiBi(B′iBi)−1),
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where y∗∗i ∼ MN(Ληi,Σq ⊗Σp + σ2
e(B′iBi)−1 ⊗ Ip) has fixed covariance, denoted as Σ∗

Therefore, sample ηi from its full conditional posterior,

π(ηi|−) ∼ MN((Λ′Σ∗−1Λ + Ik)−1(η0 + Λ′Σ∗−1y∗∗i ), (Λ′Σ∗−1Λ + Ik)−1)

Step 6 Update the coefficient matrices Θi, or θi (must vectorize!) We have the data level:

Yi = ΘiB
′
i + Ei, where Ei ∼MN (0, Ip, σ2

eIni
)

And the projection level, which is the prior in this sampler:

vec(Θi) ∼ MN(vec(Mi) + Ληi,Σq ⊗ Σp)

Therefore, the full conditional posterior of vec(Θ′i) is,

θ∗i = vec(Θ′i) = MN(S−1(vec(σ−2
e B′iY

′
i ) + (Σ−1

p ⊗ Σ−1
q vec(M ′

i + mat(Ληi)′)), S−1).

where S = (σ−2
e Ip ⊗ (B′iBi) + Σ−1

p ⊗ Σ−1
q )

Gibbs Sampler using SS-prior

Step 1 Update Υ and Γ: sample υjr, γks, φjr, ψks, δ’s and π’s.

– Sample the j-th row of Υ, for j = 1, . . . , p:

π(Υj·|−) ∼ MN(S−1
j σ−2

j

∑
i

(HiΓ′Σ−1
q Θj·), S−1

j ),

with Sj = D−1
j + σ−2

j

∑
i(HiΓ′Σ−1

q ΓH ′i) and D−1
j = diag(φj1τ1, . . . , φjk1τk1).

– Sample φjr:

π(φjr|−) ∼ Gamma(ν1 + 1
2 ,

ν1

2 +
τrυ

2
jr

2 )

– Sample δu for u = 1 and u ≥ 1
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π(δ1|−) ∼ Gamma(a11 + pk1

2 , 1 + 1
2

k1∑
c=1

τ (1)
c

p∑
j=1

φ2
jc)

π(δu|−) ∼ Gamma(a12 + p(k1 − u+ 1)
2 + 1 + 1

2

k1∑
c=u

τ (u)
c

p∑
j=1

φ2
jc)

with definitions similar to (a).

– Sample the k-th row of Γ, for k = 1, . . . , q:

π(Γk·|−) ∼ MN(S−1
k σ−2

k

∑
i

H ′iΥ′Σ−1
p Θ·k, S−1

k ),

with Sk = D−1
k + σ−2

k H ′iΥ′Σ−1
p ΥHi and D−1

k = diag(ψk1κ1, . . . , ψkk2κk2).

– Sample ψks:

π(ψks|−) ∼ Gamma(ν2 + 1
2 ,

ν2

2 + κsγ
2
ks

2 )

– Sample πv for v = 1 and v ≥ 1

π(π1|−) ∼ Gamma(a21 + qk2

2 , 1 + 1
2

k2∑
c=1

κ(1)
c

q∑
k=1

ψ2
kc)

π(πu|−) ∼ Gamma(a22 + q(k2 − u+ 1)
2 + 1

2

m∑
c=u

κ(u)
c

q∑
k=1

ψ2
kc)

with definitions similar to (a).

Step 2 Update Σp and Σq the same as (NS) except for plugging in

mat(Ληi) = ΥHiΓ′

Step 3 Update the variance of system error εi(t), σ2
e the same as (NS)

Step 4 Update the mean function Mi or µi the same as (NS)
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Step 5 Update the latent variable ηi by marginalizing out Θi

We adopt a different strategy, but still borrow notations from (a):

Y ∗i = ΥHiΓ′B′i + Ai

=
∑
r,s

ηirsυ
(r)γ(s)′B′i + Ai

vec(Y ∗i ) = 1k1k2vec(υ(r)γ(s)′B′i)′ηi + vec(Ai)

y∗i = B∗i ηi +αi

And we have closed form updating density for ηi

π(ηi|−) ∼ MN((B∗′i Σ−1B∗i )−1(η0 +B∗
′

i Σ−1y∗i ), (B∗
′

i Σ−1B∗i )−1)

Step 6 Update the Θi the same as (a)

Gibbs Sampler using NB-prior

Gibbs Sampler using Matrix normal priors are trivial, therefore not listed in details. To

make all implementations fairly comparable, author borrowed the steps 3,4 and 6 from the

NS and SS priors. This implementation is an example of hierarchical centering in Bayesian

analysis.

B.3.3 Simultaneous Confidence Bands

To construct a simultaneous confidence band, we followed [KKC10] that slightly modified

an approach from [CRC07]. First of all, functional estimates are recorded the same time

as posterior means are updated online during the MCMC sampling. Suppose that f̂ is the

posterior mean to the estimated functional, whose standard deviations are updated as well

per functional observation,
√
v̂ar(f̂(t)). Under a normality assumption on the posterior

samples, one could derive the (1− α) quantile cb of,

max
t

∣∣∣∣∣∣f
(i)(t)− f̂(t)√
v̂ar(f̂(t))

∣∣∣∣∣∣ , i = 1, . . . , N,
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where n is the total number of posterior samples. Therefore we can derive a hyperrectangular

band at each time point,
[
f̂(t)− cb ·

√
v̂ar(f̂(t)), f̂(t) + cb ·

√
v̂ar(f̂(t))

]
(B.4)

B.4 Extended Simulation

This section expand on the numerical study reported in the main article.

B.4.1 Simulation Settings

Our simulation considered three groups of interest, each consists of 20 individuals, and their

signals are simulated over 6 regions on a grid of 100 observational points evenly distributed

by default. For each individual, their functional observations deviate randomly from its cor-

responding region-specific group means, which are selected among a predetermined collection

of parametric curves:

β0(t) = 1; β1(t) = 5 · sin(t ∗ π/60); β2(t) = 2− 3 · cos((t− 25) ∗ π/15)

β3(t) = 5− 0.2t; β4(t) = −1 + (20− t)2/100,

The data generation process follows the generative assumptions listed in the main article.

Let’s denote the individual random effects projected onto the B-spline functional space as a

coefficient matrix Θ∗i , we define:

Separable : Θ∗i ∼MN (0, S0,Ω−1
o )

Non-Separable : Θ∗i = mat(Ληi), where ηi ∼ MN(0, I)

In fairness, we further included perturbations to Θ∗i , Ri ∼ MN (0,Σp,Σq), where Σp and

Σq are diagonal matrices with its entries sampled from a inverse gamma distribution. Such

noise in coefficient matrix is not considered the same as system errors, since they are no

longer independent any more after B-spline projection to data level.
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B.4.2 More Simulation Results

Extensive numerical experiments are performed on all three proposed priors to our hier-

archical functional models. To organize our work, we group them by: 1) Separable and

Non-separable simulation with incomplete functional observations; 2) Separable and Non-

separable simulation with varying sample size and Signal-to-Noise Ratios (SNRs); 3) Sen-

sitivity to unknown number of latent factors. Similarly as the above sections, we use the

abbreviations of NB, SS and NS for Naive Bayesian, Strongly Separable and Non-Separable

priors in our model.

Incomplete functional observations

In this case, 500 repeatedly sampled dataset were engineered with a functional missing

percentage uniformly sampled between 0 and 0.8. We also investigate when the true number

of B-spline basis is unknown, therefore to evaluate the robustness of three priors in this

setting. Finally, we repeat this scheme on both non-separable and separable generative

process, each with 500 engineered dataset.

Results:

For separable simulation, all three priors recovered the group mean curves very accurately.

NB slightly outperform SS and NS, however the difference is very marginal. When the true

degree of freedom is unknown for B-spline basis, our approaches are very robust to both over-

and under-specified basis functions. On the simultaneous confidence bands side, NS and SS

consistently covered the ground truth at the specified level of 90%, whereas NB yielded

conservative results that had a coverage over 96%. We also varied the regional dependency

parameter, ρ = {0.4, 0.6, 0.8} during the generative process. NS and SS recovered both the

group mean and the random effects covariance, cov(Θi) accurately with good confidence band

coverage. NB is shy on the coverage and covariance part even though it conforms with the

generating process. Between NS and SS, SS has yielded better covariance estimates especially

when the regions are less dependent, however its advantage faded as more dependency were
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introduced where more benefits were picked up by the low-rank structure of NS.

Compared with the Separable simulation, the Non-Separable simulation posed more chal-

lenges. Most of the findings have been reported by our main article, therefore we skip extra

interpretations. Please refer to Table B.3 for more results.

Table B.3: Incomplete Functional Observations: Number of B-Spline basis Unkown
df.BS = 8 df.BS = 12∗ df.BS = 20

Prior aiMSE a.cover aiMSE a.cover aiMSE a.cover

Separable Simulation

NB 0.1723 0.9887 0.1773 0.9791 0.1850 0.9667

SS 0.1734 0.8971 0.1806 0.8911 0.1957 0.8952

NS 0.1735 0.9029 0.1809 0.8960 0.1960 0.9034

Non-Separable Simulation

NB 0.3094 0.9844 0.3300 0.9788 0.3481 0.9709

SS 0.3115 0.8954 0.3326 0.8775 0.3586 0.8698

NS 0.3095 0.8736 0.3296 0.8519 0.3529 0.8565

Sample Size and SNRs

To extend on the finite sample operating characteristics, all three priors are tested on varying

sample size and SNRs. We vary the sample size per group, n = {10, 20, 50}, and maintain the

same size between groups. SNR is tested under {0.2, 1.0, 5.0} on all three sample size con-

figurations. Consequently, we have 9 combinations of sample size and SNR settings, within

each case 120 datasets were simulated under both separable and non-separable assumption

for evaluation.

Results:

Under the separable setting, NB outperformed NS and SS in group mean recovery espe-

cially on challenging conditions (small sample size and low SNR), however, it fell short in all

other aspects. NS and SS are very comparable under all scenarios, and both of them benefit
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by all metrics as sample size and SNR increased. On the other hand, the non-separable

simulation stilled posed more challenges and we begin to notice a divergence in performance

among three priors. Since NB has been easily outperformed by its alternatives, we mainly

focus on the SS and NS under this scenario. The efficiency gain was obvious for NS in terms

of covariance estimates, where 16% gained noticed at SNR= 0.2, 23% at 1.0 and 38% at

5.0, however barely for SS. By the group mean recovery, NS and SS yielded almost the same

performance and gain as more information became available. And finally, we did notice

better confidence band coverage from especially and strong SNR.

Table B.4: Sample Size and SNRs: Separable Simulations
n = 10 n = 20 n = 50

aiMSE a.cover fCOV aiMSE a.cover fCOV aiMSE a.cover fCOV

SNR = 0.2

NB 0.3300 0.9454 16.6004 0.2357 0.9407 16.0672 0.1543 0.9204 15.9142

SS 0.3836 0.9227 16.5972 0.2722 0.9199 15.6221 0.1748 0.9000 14.5899

NS 0.3862 0.9431 17.5774 0.2722 0.9380 16.2057 0.1738 0.9185 15.0789

SNR = 1.0

NB 0.2644 0.9703 26.2468 0.1862 0.9717 26.1408 0.1185 0.9689 26.4185

SS 0.2726 0.9057 10.3331 0.1920 0.8956 9.4470 0.1220 0.8865 8.7190

NS 0.2731 0.9119 13.4917 0.1922 0.9047 11.9307 0.1221 0.8870 9.9558

SNR = 5.0

NB 0.2404 0.9844 29.6935 0.1680 0.9861 29.4679 0.1073 0.9853 29.3421

SS 0.2412 0.8775 9.1318 0.1686 0.8809 8.2208 0.1077 0.8742 7.5274

NS 0.2413 0.8885 12.9454 0.1687 0.8826 10.6144 0.1077 0.8683 8.5531
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Table B.5: Sample Size and SNRs: Non-Separable Simulations
n = 10 n = 20 n = 50

aiMSE a.cover fCOV aiMSE a.cover fCOV aiMSE a.cover fCOV

SNR = 0.2

NB 0.5733 0.9296 147.5943 0.4142 0.9236 146.6023 0.2754 0.9111 147.9268

SS 0.7015 0.9134 128.9884 0.4923 0.9208 125.9013 0.3150 0.9023 123.1696

NS 0.7049 0.9241 121.6705 0.4926 0.9269 113.1884 0.3144 0.9125 102.6813

SNR = 1.0

NB 0.5089 0.9765 231.0302 0.3544 0.9837 213.8458 0.2295 0.9775 215.7354

SS 0.5266 0.8779 121.1370 0.3642 0.8999 119.1692 0.2352 0.8817 117.8870

NS 0.5242 0.8664 96.5781 0.3620 0.8879 86.3803 0.2340 0.8669 74.5817

SNR = 5.0

NB 0.4601 0.9966 313.1928 0.3216 0.9987 314.2198 0.2096 0.9983 310.7135

SS 0.4590 0.8721 114.0363 0.3205 0.8944 111.4064 0.2092 0.8767 110.3721

NS 0.4572 0.7980 76.0761 0.3192 0.8304 63.3445 0.2086 0.8165 47.6799
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