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ABSTRACT OF THE DISSERTATION

Non-linear Phenomena of Wing Flutter and the Effect of Laminar-Turbulent Transition

By

Ferran Marti

Doctor of Philosophy in Mechanical and Aerospace Engineering
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Professor Feng Liu, Chair

A Navier-Stokes Computational Fluid Dynamics (CFD) code is coupled with a Computa-

tional Structural Dynamics (CSD) code to study the flutter boundary of the NACA64A010

airfoil using Isogai’s structural model in transonic conditions. This model simulates aeroelas-

tic conditions on a sweptback wing. A well-known feature, only present in the inviscid flutter

boundary of this airfoil, is the existence of multiple flutter points for a fixed freestream Mach

number. The fully-turbulent flutter boundary has not been studied by many researchers us-

ing a Reynolds-Averaged Navier-Stokes approach. In the present study, the fully-turbulent

flutter boundary reveals the existence of multiple equilibrium positions for a narrow range

of flight conditions. The system moves away from the initial equilibrium position, finding a

new set of equilibrium points and oscillating around it. This new set of equilibrium points

reveals as stable or unstable for different structural properties of the wing.

We then proceed to study the effect of turbulent transition on flutter boundary. A laminar-

to-turbulent transition model is implemented in the CFD code and validated. The effect of

using a free-transition CFD code vs. a fully-turbulent approach is evaluated on three airfoils

with different characteristics for subsonic and transonic conditions. While free-transition

does not affect the pressure distribution at subsonic conditions, the transonic simulations

reveal a change in the shock-wave position when laminar-turbulent effects are included. The

xviii



effect of transition on the flutter boundary of the NACA64A010 airfoil at transonic conditions

is then investigated. A comparison between the free-transition, inviscid and fully-turbulent

flutter boundaries reveals similarities between the inviscid and free-transition elastic re-

sponses. Those similarities are due to the shift in the fully-turbulent shock-wave position,

when accounting for free-transition effects, moving closer to the inviscid shock location.
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Chapter 1

Introduction

The use of computational methods to solve engineering problems has improved the engineer-

ing design tools and allowed scientists to gain understanding in the physical phenomena of

fluid flow.

Performing science or engineering with only experimental methods is an expensive and time

consuming task. Wind tunnels are used to simulate flow conditions of real flight using scaled

models of the real size wing or full aircraft configurations. By matching non-dimensional

conditions of real flight, the non-dimensional data can be translated to dimensional data at

flight conditions for non-scaled real size aircrafts. One of the main difficulties is matching

all non-dimensional numbers. Specially, in transonic or supersonic conditions, the Mach

number needs to be matched, along with the Reynolds number and the specific heat ratio

(if heat transfer effects must be considered). This generally leads to the use of cryogenic

wind tunnels [44], where temperature is dropped below freezing point using special gasses as

driven flow, and pressurized conditions are used to control all non-dimensional parameters.

Such runs are very expensive due to the amount of energy needed to run the cryogenic part,

but also the flow part of the tunnel. If normally multiple design configurations are tested,
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the cost will keep on increasing. Computational Fluid Dynamics aims to reduce the cost

while producing results, ideally, as good as the experimental conditions provide. In practice,

if the smallest turbulent scales are to be captured in a numerical simulation of high Reynolds

number (engineering applications tend to take place at high Reynolds number conditions),

the numerical grid size and time step would be so small that the electric cost in running such

supercomputers would exceed the cost of performing the previously mentioned experimental

tests. In order to be able to use numerical methods that provide a reliable solution with a

small cost, multiple approximations have been created which proved very successful when

used within their own assumptions.

Initially in the sixties, panel methods were the only tool available for solving subsonic flow [33]

by solving the incompressible potential equation along with corrections for compressibility

effects. In the seventies, Murman and Cole [59] were the pioneers in solving the transonic

small perturbation equation which allowed for a more accurate solution of transonic flows.

It was not until 1981 when Jameson, Schmidt and Turkel [41], using the well-known JST

scheme, solved the Euler equations in transonic conditions. Following their work, the addition

of viscous fluxes along with algebraic turbulence models [16] [6] enabled the computations

of steady turbulent flow. Further improvements in turbulence models to account for the

transport of turbulent quantities improved the results obtained at the moment [74] [57]. The

introduction of dual-time stepping by Jameson [39] finally allowed for efficient computation of

unsteady flows. Further improvements in numerical methods [37] along with improvements in

computing hardware [61] allowed for the computation of more complicated unsteady physics

in full aircraft configurations.

After being able to obtain accurate results of steady and unsteady flowfield solutions, more

ambitious approaches like aeroelasticity or optimization methods [38] aimed at improving

the design tools providing more accurate results and creating more efficient flying crafts.

The objective of the present work is to solve the structural and fluid flow equations in a cou-
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pled mode to obtain an aeroelastic solution of a loaded wing section. A further contribution

of this dissertation is to account for free laminar-turbulent transition and assess whether its

effect is significant compared to the common use of fully turbulent conditions.

1.1 Aeroelasticity

Aeroelasticity is the combination of aerodynamics and elasticity. Computational aeroelas-

ticity combines Computational Fluid Dynamics (CFD) to obtain the force distribution on

aerodynamic bodies using the previously mentioned methods, with Computational Structure

Dynamics (CSD) to obtain structural deformation under a given loading.

This Fluid-Structure Interaction (FSI) problem is not only studied on aircrafts, but also on

buildings, bridges, cars and even birds or insects. From an engineering point of view, the

structure needs to be able to support any aerodynamic loading either static or dynamic.

And from a scientific point of view, the study of an insect flapping wing can reveal many

interesting features of the wing shape and even some of those could end up in human-made

flying crafts.

Two approaches are generally used. If the deformations are small, such that a change in

bending or torsion will not have a significant effect on the aerodynamic loading, an uncoupled

approach might be used. After a given forced motion, the aerodynamic loading is applied to

the structural solver to analyze the structural motion, and compare it with the initial forced

motion assigned. This approach provides a cheap method to study if a given oscillation will

tend to grow or decay, and therefore if those flight conditions are stable or unstable. If a

more accurate approach is needed, a coupled method where the CFD and CSD equations

are solved in time-accurate mode, provides a more expensive but better prediction of the

stability or instability of a FSI problem. In a general three-dimensional code, Figure 1.1
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exemplifies the transfer of information between the CFD and the CSD codes.

 

CFD Solver CSD Solver Interface 

CFD loading CSD loading 

CFD deformation CSD deformation 

Figure 1.1: Transit of information between the Fluid and Structure solver in an aeroelastic
analysis.

Once the flowfield is converged on the CFD code, the loading on the body must be transferred

from the CFD mesh to the CSD mesh using an interface method between the two that

conserves energy. The CSD code deforms the CSD grid, and such deformation must be

transferred back using the same interface method into the CFD code. Given the new CFD

deformed grid, a new loading will be computed and the process will iterate until both sets

of equations are satisfied.

Given a rigid wing, the solution might be steady or unsteady. An example of unsteady

flowfields in rigid bodies could be vortex shedding, or transonic buffet. While it is interesting

to couple those physics with a flexible structure to understand how flexibility affects the final

solution, stability studies are normally performed on structures where the flow solution is

steady when the body is rigid. Coupling the CFD with the CSD code and generating an

initial disturbance in what would otherwise be a steady solution, will bring the system back

to stability or perhaps not. Figure 1.2(a) shows the heaving amplitude vs. time of a stable

case, while Figure 1.2(b) shows an unstable example where the amplitude of the oscillations

grow until reaching Limit Cycle Oscillations. Under a linear stability analysis, the dynamic

system oscillations will grow or decay infinitely. When growing in an unstable case (known

as flutter), non-linear aerodynamic and structural effects may become significant when the

amplitude of the oscillations is large, and the effect is to stop the growth of the oscillations
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entering in the range known as Limit Cycle Oscillations (LCO). In this dissertation only

aerodynamic non-linear effects are studied.

(a) (b)

Figure 1.2: Heaving response vs. time examples of a speed index value that is (a) stable, (b)
unstable.

The speed index is a measure of the impact of the aerodynamic loading on the deformation of

the wing. High values of speed index correspond to flexible wings with low inertia compared

to the air mass.

VF =
U∞

b ωα
√
µ

=
1

Kα
√
µ

(1.1)

Low reduced natural frequency (Kα) means a soft structural response at a lower frequency

value. Low values of mass ratio (µ) correspond to wings with a weight lighter than the air

displaced by the wing.

Generally, a low speed index value results in a stable solution (Figure 1.2(a)), and a large

VF value results in an unstable response (Figure 1.2(b)). Between these two speed index

values, there is a VF which corresponds to the neutral stability case (Figure 1.3(a)). Given

an initial perturbation, the system does not grow or decay in magnitude. Finding the speed
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index values of neutral stability for a range of Mach numbers, produces what is known as

the flutter boundary (Figure 1.3(b)).

(a) (b)

Figure 1.3: (a) Example of a neutrally stable heaving response vs. time, (b) Flutter bound-
ary example.

Figure 1.3(b), which will be detailed in Section 2.4, is the inviscid flutter boundary for the

NACA64A010 airfoil. Any combination of (Mach, VF ) to the left-top of the boundary will

result in an unstable solution, and any combination at the right-bottom of the boundary will

produce a stable response.

From a CSD perspective, the structural equations can be solved in direct or modal methods.

The direct method normally uses Finite Elements (FE) to discretize the structural domain

which contains a detailed geometry of the inner body structure, and this allows the use

of non-linear structural equations which might be the only solution if large deformations

exist. If the deformations are smooth, which is normally the case in wing aeroelasticity, a

modal method is more convenient. Normally, using a FE code which contains the complete

structural geometry, the modal shapes from the undeformed structured are obtained. Those

modal shapes are then used in the FSI using the modal method as a vector space such that the

specific weighted contribution of the first five to ten modes generates an accurate expansion
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of the exact solution. The modal method is normally preferred due to the simplicity of not

having to deal with a FE code and a fluids code at the same time. Sometimes, even the

same surface grid could be used for FSI problems using the modal method, which facilitates

the exchange of information between CFD and CSD codes. Although normally less than ten

modes is enough to obtain an accurate solution, using all the modes (finite number, since

there are a finite number of structural points) would reproduce the exact solution obtained

by a linear FE analysis.

A simpler approach for two dimensional aeroelastic computations is to use the model defined

by Isogai [36] which assumes the shape of the airfoil to remain unaltered, while allowing a

pitching and heaving motion. This two-degree of freedom (DoF) model represent a mid-span

section of a sweptback wing which is bending (two dimensional heaving DoF) and being

torsioned (two dimensional pitching DoF). A sketch of the model is shown in Figure 1.4.

b b

Cα

Ch Kh

Kα

bxα
bxcg

ba

α
CG

h

EA

a=-2.0          xcg=-0.2        xα=1.8
       r2cg=0.24         r2α=3.48 

              ωh/ωα=1           μ=60

ω1/ωα=0.713394  Φ1=(0.504446,0.270411)

ω2/ωα=5.337706  Φ2=(3.77433, -2.02325)

Figure 1.4: Isogai sketch of the two-degree of freedom aeroelastic model.

Although the sketch is generic, for the Isogai model a = −2.0 which places the elastic

axis before the leading edge of the airfoil. This is justified since the model represents a

midspan section of a sweptback wing. Since the wing is sweptback, when applying torsion, a

midspan section would pitch with respect to a point ahead of the leading edge. Since there
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are only two degrees of freedom in this model, only two modal shapes are possible. This

creates a simple approach to using the modal method and obtain two dimensional aeroelastic

results that represent the elastic response of a three dimensional wing. Isogai [36] was the

first to report results based on a method using a linearized subsonic unsteady aerodynamic

forces [1] . Edwards et al. [24] solved the low-frequency unsteady transonic small perturbation

equation while Ehlers and Weatherill [25] solved the transonic small perturbation equation

for a harmonically oscillating wing. These initial results provided excellent indications of

the overall response of inviscid solutions, but further details were revealed with more recent

solutions of the Euler equations. Liu et al. [51] , Alonso and Jameson [2] , Hall et al. [30] ,

and Bohbot et al. [10] represent some of the recent efforts to capture the flutter boundary

solving the exact Euler equations. A transonic dip is obtained around M∞ = 0.85 − 0.9.

Multiple flutter points are obtained for a fixed Mach number within the M∞ = 0.85 − 0.9

range. For a given Mach number, increasing the speed index sets the airfoil in unstable

mode, a further increase results in a stable situation, and another increase reveals a second

flutter point where the second mode becomes the dominant one.

Yang et al. [86] used an Euler code coupled with an integral boundary layer method while

Prananta [62] solved the Thin-Layer Navier-Stokes equations. The solution of the Euler

equations coupled with boundary layer methods revealed some differences in the flutter

boundary of the Isogai model. Multiple flutter points are not obtained by those methods

for the same Mach number any more, and while the transonic dip is still present, it appears

smoother than in the inviscid situation.

The Reynolds-Averaged Navier-Stokes equations were solved by Bohbot et al. [10] , and by

Chen et al. [18] revealing small differences with respect to boundary layer methods in the

region M∞ = 0.85−0.9. The flutter boundary in this region exhibits almost constant critical

speed index values for the RANS equations, while boundary layer methods predicted an

increase of the speed index with increasing Mach number. Chen et al. [18] revealed multiple
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equilibrium points for M∞ = 0.875 although those were not fully investigated. An initial

equilibrium position of h/b = 0 and α = 0 was found as unstable, but instead of producing

pitching and heaving oscillations of growing amplitude around the given equilibrium point,

the system would evolve into a new {h/b, α} equilibrium point and oscillate around it with

growing or decaying oscillations.

The goal of the present work is to further examine the region where multiple equilibrium

points exist for the fluid-structure interaction of the NACA 64A010 airfoil. Those multiple

equilibrium points are not obtained in inviscid solutions, and there is little information

reported for viscous cases aside from that reported by Chen et al. [18]. A Reynolds number

of 107 is used in the present study.

Although this structural model has been used by many researchers to compute the flutter

boundary for the inviscid equations, there are fewer results for viscous solutions, all of

which assume fully turbulent flow. The second goal of this dissertation is to compute the

flutter boundary of the NACA 64A010 airfoil for free transition conditions and analyze the

differences from that predicted by using a fully turbulent flow.

1.2 Free transition

Laminar to turbulent transition is still a subject under study. While many turbulence models

have been developed which produce good results for well behaved flows, not many options

are available to account for transition prediction. A common practise for CFD users is to

prescribe transition position based on experience or, based on the trip position used when

comparing with experimental results. An even more general practice is to assume the flow

to be completely turbulent and not account for any transition at all. While these practices

are justified on the lack of a robust and validated transition model, it is still under debate
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the effect that free transition might have in free flight conditions.

Johansen [42] shows almost no variation in Cp when no shock waves are present, and a

reduction in drag coefficient. However for transonic flow, a delayed transition might affect

the shock position which will significantly affect the distribution of Cp and the structural

response of the wing.

Sturdza [78] shows a sharp increase of transition Reynolds number when the Mach number is

increased. Boyle and Simon [13] show that an increase in freestream Mach number is related

to a decrease in turbulent spot production rate which delays transition. On the other hand,

a decrease in Reynolds number is known to delay transition.

Most popular approaches to transition prediction range from simple empirical correlations to

eN stability methods or two-equation transport models. Langry and Menter [46] propose a

four-equation turbulence model where the traditional two-equation SST model [57] is solved

along with an equation for the turbulence intermittency γtr, and an equation for the transition

momentum thickness Reynolds number Reθ. While the model is successfully used by Wang

et al. [83] and Robitaille et al. [66] , solving four additional equations to the two-dimensional

Navier-Stokes set of four equations is a significant increase in computing resources.

For two-dimensional problems, where cross flow instabilities and attachment-line transition

are not present (since they have a three dimensional origin), if bypass transition does not

occur then Tollmien-Schlichting waves are the main source of instability to trigger transition.

Bypass transition is observed with wall roughness problems leading to an early transition

position. A deeper discussion of the multiple transition mechanisms is detailed in Chapter 5.

An eN method uses linear instability and accounts for the envelope of amplification factors

of Tollmien-Schlichting waves, which is the approach adopted in the current work. Drela [23]

describes the correlations used for an eN model along with an integral boundary layer for-

mulation to compute integral variables needed for the model. While the integral variables
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could be directly obtained from their definition by integration in the boundary layer of a

RANS code, a very fine grid is needed to obtain accurate integral parameters which increases

significantly the computational cost especially in structured codes.

1.3 Summary of current work

Part I describes the multiple equilibrium points phenomenon existing in the flutter bound-

ary of the NACA64A010 airfoil, when using the Isogai structural model, and fully turbulent

flow. A description of the Computational Fluid Dynamics code is also included. The Isogai

structural model is presented along with the numerical implementation for the Compu-

tational Structural Dynamics (CSD) code. The CSD code is validated with the inviscid

flutter-boundary of the NACA64A010 airfoil.

Part II presents the implementation of a laminar-turbulent transition model, along with

an Integral Boundary Layer code used to obtain accurate integral boundary layer variables

needed for the model. After the model is validated in Section 5.3, three airfoils with different

characteristics are simulated in subsonic and transonic conditions to understand the effect

of free-transition vs. fully turbulent flow conditions.

Part III combines the two previous parts, to find the flutter boundary of the NACA64A010

airfoil in free-transition conditions.
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Part I

Non-linear flutter: multiple

equilibrium points
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Chapter 2

Flutter prediction with the Isogai

structural model

This chapter presents the detailed equations for the structural model defined by Isogai [36]

along with the numerical methods used to solve them in Section 2.1. The model is used to

find the flutter boundary using invisid flow, which also serves as a validation test of the model

implementation, and the results are presented in Section 2.4. The Flow solver is introduced

and validated in Sections 2.2 and 2.3 for fully turbulent conditions. Non-linear effects in

fully-turbulent aeroelastic conditions using the Isogai wing generate multiple equilibrium

points, which are described in Chapter 3.

2.1 Isogai two-dimensional structural model

The present Section introduces the structural dynamics equations, the discretization ap-

proach and the modal decomposition analysis used to solve them.

In a three-dimensional approach, the grid must be deformed and an interface between the
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Figure 2.1: NACA 64A010 structural model

aerodynamic loading and the structural deformation is needed. A detailed formulation of the

three-dimensional aeroelastic formulation is included in appendix A. For a two-dimensional

case, a structural grid is normally not needed and the entire grid is rotated around the elastic

axis without the need for grid deformation. Grid deformation and transfer of loading and

surface deformation between structural and aerodynamic grids are covered in appendix B

for three-dimensional aeroelastic simulations.

For the present two-dimensional aeroelastic study, we use a two degrees-of-freedom model

(pitch and heave) created by Isogai [36]. Alonso and Jameson [2] defined an efficient formu-

lation for the structural implementation which is adopted in the present work. The same

formulation was detailed in Liu et al. [51] .

For each real time step ∆t, the flow equations are marched in parallel with the structural

equations. The structural model of a two-dimensional airfoil represents a section of a three
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dimensional swept wing. A sketch of the model is shown in Figure 2.1. Defining a vertical

stiffness for heaving, and an angular one for pitching, a balance of force and moment leads

to

mḧcg = −Khh− L (2.1)

Icgα̈cg = −Kααcg + b xαKhh+Mcg (2.2)

The following relations are used: αcg = α, and hcg = h + α b xα for |α| << 1. Taking the

second derivative in time of hcg and plugging it into Equation (2.1), one obtains

mḧ+ Sαα̈ +Khh = −L (2.3)

For small angles, and thin airfoils, r2
α = r2

cg + x2
α and Mcg = Mea + L b xα. Using these

relations combined into Equations (2.2) and (2.3), one obtains

Sα + Iαα̈ +Kαα = Mea (2.4)

Defining ω2
α = Kα/Iα, ω2

h = Kh/m, a non-dimensionalization of Equations (2.3) and (2.4)

is performed using a structural time τ where dτ = ωαdt, leading to

[M ]{q̈}+ [K]{q} = {F} (2.5)
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where

[M ] =

 1 xα

xα r2
α

 , [K] =

(ωα/ωh)
2 0

0 r2
α

 , q =

h/b
α

 (2.6)

F =
U2
∞ρ∞
ω2
αm

−Cl
2Cm

 =
V 2
F

π

−Cl
2Cm

 (2.7)

A modal decomposition can be applied to Equation (2.5) using

{q} = [φ]{η} =
2∑
i=1

{φi}ηi (2.8)

Since the two modes are independent, Equation (2.5) can be rewritten in modal form for a

single mode as

η̈i + ω2
i ηi = Qi (2.9)

where the modes are scaled to produce

[φ]T [M ][φ] = [I], [φ]T [K][φ] = [Λ] =

ω2
1 0

0 ω2
2

 , [φ]T{F} = {Q} (2.10)

Although no structural damping is used for the present simulations, a general form of the

previous formulation accounting for such damping would lead to

η̈i + 2ξiωiη̇i + ω2
i ηi = Qi (2.11)
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To solve Equation (2.11), one can transform it into a system of two first order equations

defining

{Xi} =

x1i

x2i

 =

x1i

ẋ1i

 =

ηi
η̇i

 (2.12)

and Equation (2.11) becomes

{Ẋi} = [Ai]Xi + {fi} (2.13)

where

[Ai] =

 0 1

−ω2
i −2ωiξi

 , [fi] =

 0

Qi

 (2.14)

Equation (2.13) can be decoupled by diagonalizing [Ai] by finding the eigenvalues and eigen-

vectors of such matrix to obtain

{Żi} = [P−1
i ][Ai][Pi]Zi + [P−1

i ]{fi} (2.15)

using {Xi} = [P ]{Zi} where

[Pi] =

(−ξi −
√
ξ2
i − 1)/ωi (−ξi +

√
ξ2
i − 1)/ωi

1 1

 (2.16)
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[P−1
i ] =

−ωi
2
√
ξ2
i − 1

 1 −(−ξi +
√
ξ2
i − 1)/ωi

−1 (−ξi −
√
ξ2
i − 1)/ωi

 (2.17)

The time derivative of Equation (2.15) is discretized with a second-order implicit scheme,

and a pseudo-time is added to march to a converged solution using a five-stage Runge-Kutta

scheme. For each mode, the following two decoupled equations need to be marched until the

residual is converged

dzn+1
1,i

dt∗
+R∗1,i = 0 (2.18)

dzn+1
2,i

dt∗
+R∗2,i = 0 (2.19)

where the residual is

R∗1,i =
( 3

2∆t
−ωi(−ξi +

√
ξ2
i − 1

)
zn+1

1,i −
−ξi +

√
ξ2
i − 1

2
√
ξ2
i − 1

Qn+1
i − 2

∆t
zn1,i +

1

2∆t
zn−1

1,i (2.20)

R∗2,i =
( 3

2∆t
− ωi(−ξi−

√
ξ2
i − 1

)
zn+1

2,i −
ξi +

√
ξ2
i − 1

2
√
ξ2
i − 1

Qn+1
i − 2

∆t
zn2,i +

1

2∆t
zn−1

2,i (2.21)

All the parameters used in the previous equations to characterize the structural properties

are determined in Isogai’s work [36] . The eigenfrequencies and modal shapes are easily

obtained with a short external script, and are added at the bottom of Figure 2.1. The grid

is rigidly attached and rotated with the airfoil. Grid velocities are added to grid points due

18



to pitching and heaving.
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2.2 Computational Fluid Dynamics (CFD) Approach

The methods used to obtain a flow solution for the present flutter computations are in the

category of Computational Fluid Dynamics (CFD), and the in-house code used for this

research is called Parallel Computation of AeroElasticity (ParCAE).

The history of modern CFD for aeronautics started around the 1970s when people solved the

compressible potential flow equations. Some aircrafts were designed using those methods.

In the early 80s, engineers were able to solve the Euler equations. Rapidly the CFD field

accumulated a significant interest by the scientific community and along with supercomputer

improvements led to solving the Navier-Stokes equations.

Because the turbulent length scales are too small in order to generate a computational

grid that is able to solve high Reynolds number problems with even most modern super-

computers, turbulence models were developed to allow the use of coarser grids and save

computational time. When using those, the Navier-Stokes equations are reformulated as

the Reynolds-Average Navier-Stokes (RANS) equations (see Section 2.2.1). When using the

RANS equations, faster solutions are obtained due to two main reasons: the reduction in the

number of computations for each time step since fewer grid points are to be solved by the

use of a coarser grid, and the reduction in the number of time steps since the small turbulent

scales which have very small resident times are not solved and instead the averaged mean

flow unsteadiness is responsible for determining the larger time step values.

However, some researchers prefer to not model the turbulent flow but directly solve the

Navier-Stokes equations and capture all small length scales using Direct Numerical Simula-

tion (DNS). This approach is so computationally intensive, that even with the use of large

supercomputers only low Reynolds number problems have been solved nowadays.

Since turbulence modeling does not provide matching results with experimental data for all
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cases, the scientific community is still actively involved in finding hybrid methods that with

a small increase in computing time could reduce the inaccuracies of turbulence modelling.

Methods that fall between RANS and DNS require larger computing times than the RANS

cases but far below those required by DNS. On the other hand, they generate a more realistic

flow solution since the modeling is restricted to the smallest flow length scales. Examples

of such methods are Large Eddy Simulation (LES) or types of Detached Eddy Simulation

(DES).

For the present study, flutter is generally well captured using a RANS formulation. Before

non-linear effects are noticed when reaching Limit Cycle Oscillations, a linear stability anal-

ysis is still accurate to determine the stability or instability of a fluid-structure interaction

problem. At those small oscillations, separation is almost non-existent and the need of an

LES approach is therefore not justified. RANS modeling is generally well accepted for at-

tached flows or even in flows with small separation regions. Using a RANS approach in a

two-dimensional study simplifies the problem in many aspects: LES studies require a three-

dimensional grid and are unsteady by definition, the RANS spatial and temporal resolution

is much coarser, the accuracy of the numerical scheme can be set at second order when using

RANS while generally higher order methods are employed in LES mode to avoid dissipating

the smaller flow scales.

The following Sections contain some of the features of the CFD code used for the present

research. There are multiple choices to make when creating a CFD code.

Three popular approaches are normally used for the spatial discretization of the flow equa-

tions: Finite Difference, Finite Volume and Finite Element Methods. While Finite Element

Method (FEM) is commonly used for structural analysis, it is not as popular for solving the

fluid flow equations even if it provides high accurate results. The main reason being the

higher numerical effort required compared to other methods. Finite Differences (FD) are

commonly used due to its simple implementation. However, the Cartesian grid required for
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the computational space must be transformed into the curvilinear grid used for the physical

space. Anderson [43] provides a basic introduction to the CFD field using FD. The Finite

Volume Method (FVM) is the most popular along with FD. Blazek [9] provides an in-depth

description of the FVM implementation for CFD applications. Its coding effort lies between

FD and FEM. The main advantages of FVM over FD are the possibility of using unstruc-

tured grids, the fact that the computational domain and the physical one are the same, and

the capacity of computing weak solutions. A weak solution is one where the solution might

be non differentiable (shock waves). FD comes from a differential formulation of the Navier-

Stokes equations which assumes the flow properties are differentiable and hence continuous.

FVM is obtained from an integral formulation of the Navier-Stokes equations which allows

the presence of discontinuities inside the control volume and is therefore more suitable for

computing the correct shock wave position. Since we are interested in transonic flow, the

spatial discretization choice for ParCAE is the Finite Volume Method.

A basic requirement for every CFD computation is a good quality grid. An ideal grid must

be orthogonal to the wall, with a correct y+ value of less than two, and a grid stretching

ratio less than 1.2. Generating a curvilinear quality grid in a complex geometry is a time

consuming task. Therefore, many researchers choose a Cartesian grid approach instead of a

body fitted one and avoid much of the griding difficulties.

• Cartesian grids (Fig. 2.2) – are more efficient in evaluating the cell fluxes from the

Navier-Stokes equations and are easy to generate. On the other hand, the difficulties

in the treatment of the boundary conditions around the testing geometry create a large

disadvantage.

• Body-fitted grids (Fig. 2.3) – permit highly accurate solutions close to boundaries

which is essential for shear layers or separated flows. However, there is a high com-

plexity in generating body fitted grids with low skewness in the cells for complex

geometries.
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Figure 2.2: Cartesian grid around a quarter of a cylinder.

The choice for ParCAE has been the use of body-fitted grids due to their advantages over

Cartesian grids. Within body-fitted grids, there is a choice between structured or unstruc-

tured grids (Fig. 2.4). This choice, not only affects the grid but the flow solver itself. For

this reason, we also refer to structured and unstructured flow solvers.

• Structured grids – which affect the flow solver schemes making these more efficient

and easy to implement than the corresponding unstructured ones. The grid cells are

quadrilaterals in 2D and hexahedra in 3D grids. The grid points i, j, k are stored in

the i, j, k position of an array which facilitates the access of their value and it is what

makes the flow solver faster and simpler. On the other hand, generating structured

grids for complex geometries is a complex and time consuming process.

• Unstructured grids – are a mix of quadrilaterals and triangles in 2D, and mainly

hexahedra and tetrahedral in 3D. The facility of generating these grids for complex

geometries, and the capability of local refinement makes them superior to structured
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Figure 2.3: Body-fitted structured grid around a quarter of a cylinder.

grids. However, unstructured solvers have disadvantages over the structured ones.

Since the grid points do not follow a particular order in their array, the efficiency in

the schemes is lower than for the corresponding structured ones since an tabulated

search for the neighboring cells is required for every flux computation of a single cell.

Both structured and unstructured methods are very popular nowadays. The disadvantages

of generating structured grids can be partially overcome by the use of a multiblock approach

(described in Section 2.2.5.3). For those reasons, ParCAE is a structured solver. More recent

hybrid codes combine structured grids close to the wall due to their superior quality, and

unstructured grids away from the wall to alleviate the number of grid points. A second

type of codes use overlapping structured grids with the same intention as hybrid codes.

Overlapping structured grids are able to cluster points where needed due to the use of local

patches and alleviate the number of points in coarser regions. These are patches of structured

grids which are computationally superior to unstructured grids, however the patches need a
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(a) (b)

Figure 2.4: Image of (a) structured and, (b) unstructured grids.

proper exchange of boundary conditions which creates a significant challenge for an accurate

numerical implementation.

The next step when creating a Finite-Volume Method solver for structured grids is choosing

between cell-centered (Figure 2.5(a)) or cell-vertex schemes (Figure 2.5(b)). Ref. [9] offers

a detailed discussion in the subject. While in a cell-centered scheme the flow variables are

defined at the center of the cells, in a cell-vertex approach they are defined at the grid points.

I, J
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I-1, J I+1, J

i, j
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Figure 2.5: Image of (a) Cell centered structured grid, (b) Cell vertex structured grid.

For non-distorted grids, both methods seem to provide the same accuracy. If the grid is

not smooth, cell-vertex schemes tend to be superior. Cell-centered schemes have smaller

discretization errors when computing the cells on the boundaries. The face of a cell-centered

scheme matches with the solid wall boundary while for a cell-vertex scheme half of the cell
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is located inside the wall boundary. Cell-centered schemes are also more convenient for

unsteady flows since the mass matrix from the discretized Navier-Stokes equations can be

lumped while a cell-vertex scheme requires a treatment of that matrix. This results in a

simpler implementation of cell-centered schemes vs. cell-vertex schemes which has led to

using a cell-centered approach in ParCAE.

Some books [43] [34] discuss the behavior of partial differential equations and their mathe-

matical nature which is related with choosing the appropriate boundary conditions to obtain

a well posed problem. The steady Navier-Stokes equations exhibit a mixed behavior of el-

liptic, hyperbolic and parabolic equations. The subsonic inviscid flow has an elliptic nature.

The supersonic inviscid flow follows a hyperbolic behavior. And the parabolic nature is ob-

served in the boundary layer equations where viscous effects are dominant. While hyperbolic

and parabolic problems march quite well in space, elliptic problems require solving all grid

points at once since the whole space is both the domain of dependence and the domain of

influence at the same time. In 1966, Moretti and Abbett [58] presented a breakthrough

in solving the supersonic blunt body problem. Solving the steady Navier-Stokes equations

marching in space creates an ill-posed problem due to the mix nature of the equations. How-

ever, using a pseudo time and marching them in pseudo time to a steady state transforms

the problem to a well-posed one. The Navier-Stokes equations are therefore an initial value

problem. The pseudo time marching concept will be explored in Section 2.2.4.

When computing an unsteady problem, a temporal discretization must be used. Not only

for an unsteady case, but for a steady case as well since a pseudo time marching is used to

reach to a steady state condition. When designing a solver, one can choose between implicit

or explicit temporal discretization. However, the optimum decision depends on the type of

problem to be solved. An implicit scheme requires a major effort in the implementation and

a larger computational time per time step. However, since the entire flow field is the domain

of dependence of an implicit scheme, one can choose large time steps and the solution will
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remain stable. In theory one should obtain an accurate solution of the flow field with just

one infinite time step. In practice the non-linearity of the flow equations require some pseudo

time steps to obtain a converged solution. An explicit scheme is easier to implement and

each time step takes much less computational time than for an implicit case. However, the

domain of dependence of each grid point determines the maximum local time step permissible

to maintain a stable solution. For a pseudo time marching to steady state, both explicit an

implicit discretizations seem reasonable. ParCAE uses an explicit approach. For a real time

marching, the choice will depend on the highest frequency to be captured and the maximum

allowed time step for an explicit scheme to remain stable. Aeroelastic phenomena tend to

have long enough periods such that an implicit real time step becomes more appropriate. In

an unsteady case where a physical high frequency must be captured and therefore an explicit

scheme is more appropriate for the real time discretization, a pseudo time is not anymore

used and the solution is directly marched in real time using very small real time steps which

maintain temporal accuracy.

2.2.1 The Governing Flow Equations

2.2.1.1 Navier-Stokes equations

When writing the Navier-Stokes equations for an aeroelastic problem, a change in cell volume

must be allowed in the formulation and a grid velocity should be defined to correctly compute

the fluxes incoming into each cell. The Navier-Stokes equations in integral form suitable for

aeroelastic computations are

∂

∂t

∫
Ω

~WdΩ +

∮
∂Ω

( ~Fc − ~Fv)~ndS =

∫
Ω

~QdΩ (2.22)

where the vector of state variables ~W is composed by the density ρ, the flow velocity [u, v, w]T
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and the total energy E.

~W =



ρ

ρu

ρv

ρw

ρE


(2.23)

From Equation 2.22, Ω represents the control volume enclosed by the surface ∂Ω. ~n is the

unit vector on the control volume surface, and the surface magnitude takes the value dS.

The right hand side of Equation 2.22 is reserved for volumetric forces and heat source terms

which will be set to 0 for ParCAE.

The convective fluxes

~Fc =



ρur ρvr ρwr

ρuur + p ρuvr ρuwr

ρvur ρvvr + p ρvwr

ρwur ρwvr ρwwr + p

ρEur + pu ρEvr + pv ρEwr + pw


(2.24)

use relative velocities (represented by the subindex r in Equation 2.25) due to the moving

grid. The variable p denotes pressure.

ur = u− ug

vr = v − vg

wr = w − wg

(2.25)

The subindex g stands for grid to refer to the grid velocity in Equation 2.25.
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The viscous fluxes

~Fv =



0 0 0

τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

Θx Θy Θz


(2.26)

contain viscosity and heat diffusion effects. For the viscous terms, some classic assumptions

are used: isotropic fluid (same fluid properties in all directions, this does not mean isotropic

turbulence), Newtonian fluid and Stokes hypothesis for bulk viscosity. For the heat diffusion

terms, Fourier’s law has been applied. Equation 2.27, 2.28 and 2.29 close the expression for

the viscous fluxes.

Θx = uτxx + vτxy + wτxz − qx

Θy = uτyx + vτyy + wτyz − qy

Θz = uτzx + vτzy + wτzz − qz

(2.27)

τxx = 2µ
∂u

∂x
− 2

3
µ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
, τxy = τyx = µ

(
∂u

∂y
+
∂u

∂y

)
τyy = 2µ

∂v

∂y
− 2

3
µ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
, τxz = τzx = µ

(
∂w

∂x
+
∂u

∂z

)
(2.28)

τzz = 2µ
∂w

∂z
− 2

3
µ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
, τyz = τzy = µ

(
∂v

∂z
+
∂w

∂y

)

qx = −κ∂T
∂x

, qy = −κ∂T
∂y

, qz = −κ∂T
∂z

(2.29)

Equation 2.28 represents the normal and shear stresses, and Equation 2.29 contains the heat
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conduction terms where T denotes temperature. The dynamic viscosity µ is computed with

Sutherland’s [79] law assuming that it only depends on temperature. The same assumption

is used for the thermal conductivity coefficient κ (Equation 2.30). When using a turbu-

lence averaged formulation like in the case of the RANS equations, the mentioned µ and

κ are referred as laminar dynamic viscosity and laminar thermal conductivity coefficient,

respectively.

κ = cp
µ

Pr
(2.30)

It is normally assumed that the Prandlt number Pr is constant in the entire field. cp denotes

the specific heat coefficient at constant pressure.

2.2.1.2 Perfect Gas

A perfect gas is an ideal gas where cv (specific heat coefficient at constant volume) is constant.

Assuming that there is local equilibrium, we can use an equation of state which for an ideal

gas is

p = ρRT (2.31)

where R denotes the specific gas constant. Using the definitions

R = cp − cv, γ =
cp
cv

(2.32)

and the energy relations

e = cvT, E = e+
1

2
(u2 + v2 + w2) (2.33)
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one can express the pressure p as a function of the vector of state variables ~W as

p = ρ(γ − 1)

[
E − 1

2
(u2 + v2 + w2)

]
(2.34)

where γ is the ratio of specific heats and e the internal energy. The temperature T can be

computed from the equation of state for an ideal gas.

2.2.2 Turbulence modeling

In a laminar flow situation, the formulation shown above is complete. For a turbulent flow

case, it is also complete if the grid is small enough to solve all turbulent length scales in the

flowfield (This type of simulation is called Direct Numerical Simulation (DNS)). However,

for engineering applications at high Reynolds numbers one cannot afford to solve such a large

number of grid points. In those cases a coarser grid is used but the smallest length scales

need to be modeled. Some precision is sacrificed in exchange for obtaining an approximate

solution to a real engineering problem.

Depending on the amount of turbulent flow modeling, the computations can be catego-

rized into Reynolds-Averaged Navier-Stokes type (RANS), Large-Eddy Simulation (LES) or

Detached-Eddy Simulation (DES). In a RANS computation, all turbulent scales are modeled

by the use of a turbulence model.

An LES [32] type of simulation is an interesting approach based on the observation that the

smallest turbulent scales are more universal than the larger ones. For that reason, a filter

is used so the small length scales are modeled and the larger eddies are computed. The

grid required for such computation contains more grid points than in the RANS case but

significantly less than for a Direct Numerical Simulation (DNS). Moreover, the subgrid-scale

models used for the small length scales of the LES approach are simpler than the models used
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for the RANS simulation due to the universal character of the small length scales. Therefore,

LES requires a simpler implementation than the RANS and provides more accurate results

at a higher computational cost.

Even if LES contains significantly fewer grid points than DNS, it still has a computa-

tional cost too high to perform engineering computations at high Reynolds numbers. For

that reason, Spalart introduced another approached known as Detached Eddy Simulation

(DES) [72] [73] aimed for high Reynolds-number separated flows. This hybrid between RANS

and LES uses a RANS solver to compute the boundary layer and uses LES for the outer

region to avoid modeling the large detached eddies.

Even though LES and DES provide interesting approaches to capturing turbulence more

accurately, they require three-dimensional grids, small time steps, and higher order schemes.

Due to the high computational cost associated with these reasons, and due to the well ac-

cepted solution of RANS codes for attached flows (the flow field is attached during the initial

flutter cycles before reaching Limit Cycle Oscillations), a RANS formulation is employed in

ParCAE.

A brief introduction to RANS and the Spalart-Allmaras turbulence model is included in the

following sections.

2.2.2.1 Reynolds and Favre averaging

A well-known approach known as the Reynolds-Averaged Navier-Stokes equations (RANS)

consists in a time averaging of flow variables. Given an instantaneous variable φ with mean

value φ̄ and a fluctuating component φ′ such that

φ = φ̄+ φ′ (2.35)
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the average of φ takes the form

φ̄ =
1

T

∫ t+T

t

φ(τ)dτ (2.36)

where T denotes the integrating time interval.

For cases where the density is not constant, it is better to use a density-weighted time

averaging known as the Favre decomposition to facilitate the final expression of the averaged

Navier-Stokes equations. Like with the RANS approach, the Favre decomposition uses

φ = φ̃+ φ′′ (2.37)

φ̃ =
1

ρ̄(t)T

∫ t+T

t

ρ(τ)φ(τ)dτ (2.38)

to compute the averaged quantities. The optimum formulation employs a Reynolds averaging

for pressure and density, and a Favre averaging for the rest of the variables.

By inserting the average and fluctuation parts of each variable into the Navier-Stokes equa-

tions, the same original formulation of the Navier-Stokes equations is recovered but for the

averaged values and with two extra terms in the viscous fluxes. Those terms are the so-called

• Reynolds-stress tensor (Equation 2.39) – accounts for the transport of mean momentum

due to turbulent fluctuations.

¯̄τRij = −ρ̄ṽ′′i v′′j (2.39)

The terms v′′i and v′′j denote the i, j components of the Favre fluctuating part of the

33



velocity vector [u, v, w].

• Turbulent heat-flux vector (Equation 2.40) – accounts for the heat transport due to

turbulent fluctuations.

~F T
D = −ρ̄h̃′′~v′′ (2.40)

where h denotes enthalpy.

The solution of the averaged Navier-Stokes equations requires the modeling of these two

new terms. The models are divided into first- or second-order closures. Even if the second-

order ones provide more flexibility, they are more complex and sometimes produce numerical

problems. For those reasons first-order closures are more widely used.

In these first-order closure, the Boussinesq hypothesis [11] [12] is used where the Reynolds

stress tensor is assumed to have the same form as the viscous stress tensor. The concept of

turbulent eddy viscosity µT is introduced. The Reynolds stress tensor is dropped from the

final averaged Navier-Stokes formulation, and the dynamic viscosity from the viscous stress

tensor introduced in Section 2.2.1 is enhanced by

µ = µL + µT . (2.41)

The laminar dynamic viscosity µL depends on the temperature by Sutherland’s formula and

the turbulent eddy viscosity µT must be modeled. The turbulent heat-flux vector follows an

analog formulation and is evaluated as

~F T
D = −κT∇T (2.42)

where κT denotes the turbulent thermal conductivity coefficient. As in the viscous case, the
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turbulent heat-flux vector is dropped from the averaged Navier-Stokes equations, and the

thermal conductivity coefficient is enhanced by

κ = κL + κT = cp

(
µL
PrL

+
µT
PrT

)
. (2.43)

The turbulent Prandlt number is assumed constant for the entire flow field. Therefore,

simulating a turbulent flow adds an extra unknown µT which is obtained from any of the

following popular turbulence models, most of which are coded in ParCAE:

• Baldwin and Lomax [6]

• Spalart and Allmaras [74]

• k − ε of Launder and Spalding [47]

• k − ω of Wilcox [84]

• k − ω Shear Stress Transport (SST) of Menter [57]

2.2.2.2 Spalart-Allmaras turbulence model

The SA turbulence model solves a transport equation for eddy viscosity and is the model

used for all the turbulent computations in this research.

The original formulation of the SA model, written in a non-conservative form, is modified

using the continuity equation into a conservative form to be consistent with the already

discretized Navier-Stokes equations. The following transport equation is solved in addition

to Equation (2.22) .

∂µ̃

∂t
+
∂(µ̃ur,j)

∂xj
= Cb1(1−ft2)S̃µ̃−

[
cw1fw−cb1

ft2
κ2

]( ν̃
d

)2

ρ+
ρ

σ

[ ∂

∂xj

(
(ν+ν̃)

∂ν̃

∂xj

)
+cb2

∂ν̃

∂xj

∂ν̃

∂xj

]
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(2.44)

The trip term is not included. Instead an intermittency function described in Chapter 5 is

implemented to guarantee a smooth laminar-turbulent transition, to be used in free or forced

transition. The notation used in Equation (2.44) is the original from [74] . The velocity ur,j

in the convective term of equation (2.44) is a relative velocity as in Equation (2.25) due to

the moving grid. The variable µ̃ = ν̃ρ.

2.2.3 Spatial Discretization

The integral form of the Navier-Stokes equations Equation 2.22 is used in each cell assuming

constant properties for the full interior of the cell. For cell I, J,K,

d( ~WΩ)I,J,K
dt

= −
NF∑
m=1

[(~Fc − ~Fv)m~nm∆Sm]I,J,K (2.45)

is the discretized version of the Navier-Stokes equation where NF is the number of cell faces

(six for a three-dimensional hexahedral grid, and four in two-dimensional quadrilateral grid).

For aeroelastic simulations, the cell volume ΩI,J,K must remain inside the time derivative to

allow for grid deformations through the unsteady time evolution. In a code where the grid

is not deformed, the cell volume can be moved out of the time derivative.

The Right Hand Side (RHS) of Equation 2.45 is usually known as the residual and is denoted

by − ~RI,J,K .

The Left Hand Side (LHS) of Equation 2.45 will be developed in Section 2.2.4 while the RHS

will be addressed in the present Section. The convective and viscous fluxes integrating the

RHS generally receive a different treatment, due to their different physical nature.
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2.2.3.1 Convective Fluxes: Central Differencing with Artificial Dissipation

The convective fluxes are the hardest to compute due to the different nature of the Par-

tial Differential Equations describing subsonic or supersonic inviscid fluxes. This section is

devoted to the analysis of the term

NF∑
m=1

[(~Fc)m~nm∆Sm]I,J,K (2.46)

from the RHS of Equation 2.45. Multiple methods have been developed through the years due

to the numerical instabilities obtained when using second order or higher order schemes, while

still obtaining accurate solutions. Classic approaches for compressible flow computations

include

• central differencing [41]

• flux-vector splitting [75] [50]

• flux-difference splitting [67]

Due to numerical instabilities which prevent a flow solution from converging to a final state,

the concepts of artificial dissipation [41], Total Variation Diminishing (TVD) [31] and flux

limiters [49] are commonly used to stabilize the converging solution. Although a solution

carries truncation error (due to the order of accuracy of the difference operator when repre-

senting the differential operator) and round off errors (due to the computer accuracy), those

are not the only reason for which a scheme may diverge. More commonly, a scheme may

become ill-posed, like in the case of a central scheme with supersonic flow, and produce a

non-converging solution.

In practice, artificial dissipation is added to a central scheme to suppress numerical oscilla-
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tions in the solution. The idea of upwind schemes like flux-vector splitting or flux-difference

splitting arose with the idea of not using any artificial dissipation and obtaining a well posed

scheme based on the mathematical characteristics of the flow. In practice, such methods still

generate oscillations around shock waves, and some type of limitation must be imposed in

order to achieve a converged solution. Those limiting methods are known as TVD and flux

limiters.

For the present research, although upwinding methods were used, only the results obtained

with central differencing are included in this dissertation. Further documentation in upwind

methods can be found in [67] [75] [50].

The scheme used is well-known as the JST [41] (Jameson Schmidt Turkel) scheme.

As an example, taking m = 1 from Equation 2.46 being the face I+1/2, J,K, the convective

flux on that face using the JST scheme takes the form

[~Fc~n∆S]I+1/2,J,K ≈ ~Fc( ~WI+1/2,J,K)(~n∆S)I+1/2,J,K − ~DI+1/2,J,K (2.47)

where ~D is the artificial dissipation, and

~WI+1/2,J,K =
1

2
(WI,J,K +WI+1,J,K). (2.48)

The dissipative term is a blend between second- and fourth-order differences where the

second-order difference resembles the viscous dissipation. The main idea of the scheme is

to use a pressure sensor to find the location of a shock wave and suppress the fourth-order

dissipation term and activate the second order dissipation. When blending the central dif-

ferencing scheme with the second-order dissipation, it effectively acts as a first-order scheme,

which limits the numerical oscillations around shocks. Away from the shocks, the pressure
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sensor deactivates the second-order dissipation, and activates the fourth-order dissipation

which provides a minimum amount of artificial viscosity to avoid odd-even decoupling waves

due to using a grid with consistent grid spacing. The JST scheme is therefore second-order

accurate, and locally drops down to first-order around a shock to improve numerical stability.

The pressure switch introduced in JST [41] was improved by Swanson and Turkel [81]. Vari-

ous authors have performed slight modification to the switch similar to the one from Swanson

and Turkel. The pressure switch implemented in ParCAE for cell I, J,K, exemplified in the

I direction is

ΓI =
|pI+1 − 2pI + pI−1|

0.5[|pI − pI−1|+ |pI+1 − pI |+ |pI+1 + 2pI + pI−1|]
(2.49)

where the J,K indices have been dropped. Using this switch, the second and fourth order

coefficients for the face I + 1/2, J,K are

ε
(2)
I+1/2 = min[α1,max(ΓI ,ΓI+1)]

ε
(4)
I+1/2 = max[0, (β1 − β2 ε

(2)
I+1/2)]

(2.50)

where typical values for the constants are α1 = 0.5, β1 = 1/32 and β2 = 2. Finally, the

artificial dissipation term for the cell face I + 1/2 is

~DI+1/2 = Λ̂S
I+1/2 [ε

(2)
I+1/2( ~WI+1 − ~WI)− ε(4)

I+1/2( ~WI+2 − 3 ~WI+1 + 3 ~WI − ~WI−1)] (2.51)

where Λ̂S
I+1/2 is the sum of the spectral radii of the convective flux Jacobians for face I+ 1/2

in all I, J,K directions.

Further improvements to the basic JST scheme are the Matrix Dissipation Scheme [81] or

the SLIP scheme [40]. The results shown in this dissertation have been obtained with the

39



classic JST scheme.

2.2.3.2 Viscous Fluxes

The discretization of the viscous fluxes from Equation 2.45 leads to

NF∑
m=1

[(~Fv)m~nm∆Sm]I,J,K . (2.52)

Following the steps for the convective fluxes, and creating an example for face I − 1/2, the

variables of state are obtained with Equation 2.48. The Navier-Stokes equations 2.26, 5.4

and 2.28, contain velocity and temperature gradients in the viscous fluxes expressions which

need to be evaluated at the face cells. Following an integral formulation [80], Green’s theorem

is used and an auxiliary control volume centered on the real cell face is created (Figure 2.6).

As an example, computing ∂u/∂x on face I − 1/2 using Green’s method in an integral form

leads to

∫
Ωaux

∂u

∂x
dΩ =

∮
∂Ωaux

unx dS. (2.53)

Discretizing the previous equation for the auxiliary control volume of Figure 2.6 becomes

(
∂u

∂x

)
I−1/2

≈ 1

Ωaux

NF∑
m=1

(unxaux Saux)m (2.54)

where NF is the number of faces of the auxiliary control volume (six for a three-dimensional

structured grid, and four for a two-dimensional quadrilateral grid), and Ωaux, Saux and nxaux

are the volume, surface and x component of the unit surface vector of the auxiliary control
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i+1, j+1
i, j+1

Figure 2.6: Auxiliary control volume for the evaluation of the gradients of velocity and
temperature on face I − 1/2.

volume, respectively. um for the auxiliary control volume may be directly obtained from the

cell centered values when available, or averaged otherwise.

2.2.4 Temporal Discretization

Since the time step needed to capture accurate aeroelastic wing movement is long when com-

pared with the stability requirements that would come from using an explicit scheme for real

time marching, a common strategy known as dual time-stepping developed by Jameson [39],

and implemented in ParCAE, allows the use of large real time steps through an implicit

temporal scheme.

Dual-time stepping is an implicit-explicit time marching scheme. A pseudo time is used

for the explicit scheme to drive the solution to a converged state while the solution is not

advancing in real time. When the solution is converged for the present time, an implicit
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scheme is used to advance the solution in real time. To reach a converged solution in pseudo

time with fewer iterations, local time stepping (Section 2.2.5.2) is needed.

2.2.4.1 Explicit pseudo-time marching

For a steady state solution, the discretization of Equation 2.45 should not contain the LHS.

However, it is convenient to maintain the LHS of Equation 2.45 and rename the time t as

a pseudo time t∗. The converged solution is obtained by marching Equation 2.55 in pseudo

time to a pseudo steady state until the residual ~RI,J,K approaches zero.

d( ~WΩ)I,J,K
dt∗

= −~RI,J,K (2.55)

The indices I, J,K are omitted in the following formulation, and the current pseudo time

level for a given cell is denoted by n. Since the cell volume is not constant due to grid

deformation, the term Ω remains inside the time derivative of the LHS of Equation 2.55.

However, for the pseudo time marching the problem is static and no grid deformation is

possible which allows us to reformulate Equation 2.55 as

d( ~W n)

dt∗
= − 1

Ω
~Rn. (2.56)

The LHS of Equation 2.56 is discretized using a hybrid multi-stage Runge-Kutta scheme [55],

[56] which enhances stability while requiring low storage.

Blazek [9] states that a classic multi-stage approach is more suitable for upwinding while the

hybrid multi-stage scheme performs better for a central discretization. However, the hybrid

multistage method can also be optimized for upwinding by choosing different coefficients.

Due to the similarity in the formulation of both schemes, ParCAE uses a general formulation
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that allows for the use of both methods by changing the input coefficients in the code. The

following formulation describes the hybrid approach which has been used for all the numerical

simulations presented in this dissertation.

The residual is first separated in a convective part ~Rc and a viscous part ~Rd which also

contains the numerical dissipation terms.

~Rn = ~Rn
c − ~Rn

d . (2.57)

The 5-stage hybrid scheme is formulated as

~W 0 = ~W n

~W 1 = ~W 0 − α1
∆t∗

Ω
[~R0

c − ~R
(0,β)
d ]

~W 2 = ~W 0 − α2
∆t∗

Ω
[~R1

c − ~R
(1,β)
d ] (2.58)

~W 3 = ~W 0 − α3
∆t∗

Ω
[~R2

c − ~R
(2,β)
d ]

~W 4 = ~W 0 − α4
∆t∗

Ω
[~R3

c − ~R
(3,β)
d ]

~W n+1 = ~W 0 − α5
∆t∗

Ω
[~R4

c − ~R
(4,β)
d ]

where

~R
(m−1,β)
d = βm ~Rm−1

d + (1− βm) ~R
(m−2,β)
d (2.59)

and m is the stage position from one to five. The coefficients αm and βm extracted from [9]

and used in ParCAE are specified in Table 2.1 for a central scheme, and a first and second

order upwind schemes.

Since β2 and β4 are set to zero, the computation of ~R1
d and ~R3

d is skipped which makes the
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Central scheme 1st-order upwind 2nd-order upwind

stage α β α β α β
1 0.2500 1.00 0.2742 1.00 0.2742 1.00
2 0.1667 0.00 0.2067 0.00 0.2067 0.00
3 0.3750 0.56 0.5020 0.56 0.5020 0.56
4 0.5000 0.00 0.5142 0.00 0.5142 0.00
5 1.0000 0.44 1.0000 0.44 1.0000 0.44

Table 2.1: Coefficients for a hybrid 5-multistage scheme.

1st-order upwind 2nd-order upwind

stage α α
1 0.0533 0.0695
2 0.1263 0.1602
3 0.2375 0.2898
4 0.4414 0.5060
5 1.0000 1.0000

Table 2.2: Coefficients for a 5-multistage scheme.

hybrid scheme especially efficient due to the reduction in computational time.

To recover the original multistage scheme, all βm coefficients must be set to 1. The appro-

priate αm coefficients for a first- and second-order upwind multistage scheme with 5 stages

are presented in Table 2.2 [9].

2.2.4.2 Dual time-stepping

The idea of dual time-stepping, first introduced by Jameson [39], is used for unsteady flows

and is a hybrid implicit-explicit scheme. It uses an implicit scheme for the real time and an

explicit scheme (Section 2.2.4.1) for the pseudo time.

The discretization of Equation 2.45 leads to

d( ~WΩ)I,J,K
dt

= −~RI,J,K (2.60)

44



where the LHS is discretized using an implicit second-order backward-difference scheme for

the real time derivative

3( ~W Ω)
(n+1)
I,J,K − 4( ~W Ω)

(n)
I,J,K + ( ~W Ω)

(n−1)
I,J,K

2 ∆t
= −~RI,J,K . (2.61)

where ∆t denotes the real time step, and n the real time stage. To solve Equation 2.61,

Jameson includes the pseudo time concept as

3( ~W Ω)
(n+1)
I,J,K − 4( ~W Ω)

(n)
I,J,K + ( ~W Ω)

(n−1)
I,J,K

2 ∆t
+ ~RI,J,K = ~R∗I,J,K (2.62)

d( ~WΩ)I,J,K
dt∗

= ~R∗I,J,K (2.63)

where ∗ represents the pseudo variables. For each real time step ∆t, Equation 2.61 is solved.

When the RHS of Equation 2.62 becomes zero, the solution of Equation 2.62 is the same as

the one in Equation 2.61. For each real time step, Equation 2.63 is marched in pseudo time

to a pseudo steady state using the techniques described in Section 2.2.4.1.

2.2.5 Boundary Conditions and Acceleration Techniques

2.2.5.1 Boundary conditions

When the flow equations are discretized in space, the state variables at one cell depend on

the variables of the adjacent cells. For this reason, the cells in contact with a boundary

require a special treatment. This is accomplished by the use of ghost cells.

There are two layers of ghost cells around the exterior of every boundary. Figure 2.7 shows

the reference from 0 to 3 used for the cells across a boundary.
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W0

W1

W2

W3

Figure 2.7: Ghost cells (W0 and W1) at a boundary.

Depending on the boundary conditions to be imposed, different relations will be used to

assign values to the variables in the ghost cells region. The boundary conditions used to

obtain the results in this dissertation are

• Adiabatic solid wall.

• Farfield.

• Symmetry plane.

Special treatment is required for the ghost cells at the corner between two connecting bound-

aries. A linear extrapolation is used in those cases.
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2.2.5.2 Numerical Acceleration techniques

With the aim of reducing the computational time for a solution to converge, the following

techniques are used.

• Local time stepping – applied in an explicit scheme where the time step is bounded by

the grid spacing. Local time stepping applies the maximum allowed time step for each

cell for steady state problems or in pseudo time for unsteady cases.

• Residual smoothing – used to give an implicit character to an explicit scheme allowing

larger CFL numbers. It also helps to reduce high frequency errors.

• Multigrid – generally talking about V or W cycles, is one of the most efficient accelera-

tors. From the original grid, coarser grids are generated. The solution from finer grids

is transferred to the coarser grids and the flow equations are solved again for these

coarser grids levels. Once the solution on the coarser grids is obtained, flow corrections

are transferred back to the finer grids. The efficiency of the method is based on the

damping of low frequency errors. Given a grid level, high frequency errors relative to

that grid spacing are quickly damped out while the low frequency error components

remain. Therefore, the solution from a fine grid is transferred to a coarser grid where

the low frequency errors from the fine grid become the new high frequency errors in

the coarse grid, and are easily eliminated. Another advantage of the multigrid method

is that larger pseudo time steps can be used in the coarser grid levels, marching faster

to a steady state in pseudo time.

2.2.5.3 Multiblock and parallelization

The structured grid is broken into multiple blocks which facilitates the meshing process

around complicated geometries, but also allows for the parallelization of the code using data
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parallelism. Ideally, breaking a grid into two symmetric blocks and using two processors

instead of one would reduce the computing time in half. In a real system, the exchange

of boundary information between processors, and non ideal distributions of the workload,

among other less common factors, increases the overall required computing time.

Message Passing Interface (MPI) is used in ParCAE to run multiblock grids in supercom-

puters. The San Diego supercomputer Comet has been used to run most of the simulations

in this dissertation.
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2.3 Validation of CFD code using RAE2822 airfoil

The RAE 2822 airfoil is simulated at M∞ = 0.75, Re = 6.2×106 and corrected angle of attack

αcorrected = 2.81◦ to validate the capability of ParCAE to accurately compute turbulent flows.

The numerical results are compared with Case 10 of Reference [20] . Transition is imposed

at 3% of the chord to match the experimental conditions. To guarantee a smooth transition,

the local intermittency function [15] described in Equation 5.18 is used. Eddy viscosity is

set to zero before xtr/c = 0.03, and it is multiplied by γtr when x > xtr.

The computational mesh is available from NASA Glenn Research Center [17] and has been

used in multiple previous studies [52] . It is a single block, C-grid with 369 × 65 points as

shown in Figure 2.8.

Figure 2.8: RAE 2822 airfoil C-grid close up view.

Figure 2.9 compares numerical with experimental results. On the first row of the figure,

the pressure coefficient and skin friction are plotted. The pressure coefficient shows good

agreement in shock position and captures the characteristic pressure bump at the leading
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edge of the upper surface. The skin friction agrees reasonably well with the experimental

data. Separation is observed after the shock wave followed by a flow reattachment. The

effect of laminar-turbulent transition clearly impacts the skin friction around x/c = 0.03.

Only for the RAE2822, the skin friction is referenced to the local boundary layer dynamic

pressure, not the free stream dynamic pressure.

The second row of the same figure shows the displacement boundary layer thickness, and

the momentum boundary layer thickness. Both are in very good agreement with the exper-

imental data showing a sharp rise after the shock.

The third row of the figure compares velocity profiles within the boundary layer for two

x/c positions. While there is good agreement for x/c = 0.90, the profile at x/c = 0.75 is

in poor agreement with the experimental results. This is understandable since it is near

the small separation bubble after the sock. A discrepancy is also observed close to the wall

for x/c = 0.90. Similar disagreement with experimental data is found in other computa-

tions [52], [3], [35] .
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Figure 2.9: Comparison between RANS solutions and experiment data [20] for Case 10 of
the RAE 2822 airfoil. Re = 6.2 × 106, M∞ = 0.75, xtr/c = 0.03, αcorrected = 2.81. Plots of
pressure coefficient Cp, skin friction Cf , displacement thickness δ∗/c, momentum thickness
θ/c, and boundary layer velocity profiles at x/c = 0.75 and x/c = 0.9.
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2.4 NACA 64A010 Flutter boundary by the Euler Equa-

tions

The aeroelastic code is first tested for the Euler equations at zero angle of attack for the

NACA64A010 airfoil since many previous publications [2], [30], [62] are easily available

and there is general acceptance of the validity of those results. The good agreement with

other researchers’ results serves as validation for the aeroelastic implementetation of our

research code. For a given Mach number, computations are performed to sweep through a

range of speed index values to determine the flutter boundary. The speed index is defined

as VF = 2U∞/(c ωα
√
µ), where µ is the mass ratio between the structure density and the

air density which represents inertial effects of the structure. Given a fixed mass ratio, the

higher the speed index, the more flexible the structure is. A symmetric C-grid of 288 × 64

cells is used.

The meaning of the flutter boundary, and how to determine it, has been presented in the

Introduction 1.1. Ideally, given a fixed free-stream Mach number, the boundary is found by

changing the speed index value until finding a neutrally stable response. A more practical

approach is used with the goal of determining the boundary more accurately and efficiently. A

least-squares fitting of a curve crossing the peaks of the heaving response in time is obtained,

in order to determine the growth or decay rate in an exponential form. Figure 2.10 shows a

positive growth rate after the exponential fit is applied.

This method is based on the definition of linear stability where

h

b
=
h0

b
e((a+i ω) t),

∣∣∣h
b

∣∣∣ =
h0

b
e(a t) (2.64)
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Figure 2.10: Exponential fit to determine the growth rate of the structural response for the
Euler equations at M∞ = 0.825 and VF = 0.6. h0/b = 0.00335, τ0 = 11.788, and the least
squares fit of h/h0 = 0.9988 exp(0.007936 (τ − τ0)).

The constant a is the growth rate, while ω is part of the imaginary term forming the oscilla-

tory behavior. A search for the peaks is performed after manually imposing a pair (τ0, h0/b).

The first cycles must be ignored since they might be in transient state due to the imposed

initial condition.

A least-squares fit through the absolute value of the heaving peaks is shown in Figure 2.10.

After obtaining the growth rate for a pair of speed indexes (one above and one below the

flutter boundary value), a linear interpolation is used between them to find the speed index

of neutral stability (a = 0).

The flutter boundary results for M∞ = 0.75 − 0.95 are presented in Figure 2.11 and com-

pared with the inviscid flutter boundary from other authors [30], [10], [62] showing good

agreement. The transonic dip is obtained, and the stable pocket around VF = 2.3 for

M = 0.85− 0.9 is also captured. This pocket is only reported for inviscid simulations.

The pocket corresponds to having multiple flutter boundary points for a given Mach number.

By increasing the speed index at M∞ = 0.875 the system evolves from stable to unstable
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(a) (b)

Figure 2.11: Flutter boundary (left) and non-dimensional frequency at the flutter bound-
ary (right) for inviscid solution. Comparison with numerical simulations from other au-
thors [62], [30], [10] .

at VF = 0.447, to stable at VF = 2.038, and to unstable again for VF = 2.59, leaving all

points on the left side of the curve from Figure 2.11a as unstable, and the ones on the right

side as stable. Figure 2.11b shows the frequency response at the flutter boundary. The

results agree well with numerical simulations from other authors. The Mach region showing

multiple flutter points, reveals the second unstable flutter point is caused by the instability

of the second mode, and responds at a much higher frequency than instabilities caused by

the first mode.

Figure 2.12 shows an unstable response at M∞ = 0.825 and VF = 0.5. It is a condition near

the neutrally stable point VF = 0.483 and the growth rate is therefore small. The simulation

is truncated after 32 periods. Due to the small growth, the drag coefficient appears constant

and the second mode seems inactive. Figure 2.13 corresponds to the same Mach number

but at VF = 0.9. Due to the higher growth rate in the instabilities, the drag coefficient

oscillates and the oscillation amplitude grows monotonically until the system reaches Limit

Cycle Oscillations. The second mode shows minimal oscillation compared to the first mode.
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Figure 2.12: Euler results for flutter of NACA 64A010 at M∞ = 0.825, VF = 0.5.
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Figure 2.13: Euler results for flutter of NACA 64A010 at M∞ = 0.825, VF = 0.9.
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To study the multiple flutter boundary point condition, M∞ = 0.875 is examined. Fig-

ures 2.14 - 2.18 show results for VF = 0.5, 1.9, 2.1, 2.5, 2.6, 2.7 where only VF = 2.1, 2.5 are

stable, and the rest are unstable. The unstable cases are marched until LCO (defined in Sec-

tion 1.1). Figure 2.14 shows results of Cl and Cm, while Cd is not shown since its contribution

to the dynamic system is of lower order. Heaving and pitching are shown in Figure 2.15,

revealing the heaving amplitude always to be larger than the pitching. While both degrees

of freedom are in phase for VF = 0.5, a phase shift appears while increasing VF reaching a

complete out of phase of π for VF ≥ 2.5. Figure 2.16 shows the first mode to be the dominant

one, before reaching the second flutter point at VF = 2.59. For VF = 2.6, 2.7 the second

mode appears as the dominant, generating a structural response at a much higher frequency.

These results agree with those in Figure 2.11b. Figures 2.17 and 2.18 show the phase plots

in heaving and pitching for the given VF values.

The initial conditions are generated by a forced pitch motion of one degree during three

periods at the natural frequency of the system. The results in the figures only show the

evolution after the initial three forced periods. Some transition effects are shown on the first

two periods of the elastic response until it adapts from the initial condition to each specific

free response. Variations in the magnitude of the forced pitch for the initial condition did

not affect the final state of stability of the dynamic system.
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Figure 2.14: Lift and moment coefficients for Euler results of NACA 64A010 flutter at
M∞ = 0.875, VF = 0.5− 2.7.
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Figure 2.15: Heaving and pitching for Euler results of NACA 64A010 flutter at M∞ = 0.875,
VF = 0.5− 2.7.
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Figure 2.16: Generalized coordinates for Euler results of NACA 64A010 flutter at M∞ =
0.875, VF = 0.5− 2.7.
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Figure 2.17: Heaving phase for Euler results of NACA 64A010 flutter at M∞ = 0.875,
VF = 0.5− 2.7.
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Figure 2.18: Pitching phase for Euler results of NACA 64A010 flutter at M∞ = 0.875,
VF = 0.5− 2.7.
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Chapter 3

Non-linear behavior of the

NACA64A010 airfoil using Isogai’s

model for fully turbulent flow

In the previous Chapters, the Computational Fluid Dynamics and the Computational Struc-

tural Dynamics codes have been described, along with validations for steady-state fully-

turbulent flow and for inviscid aeroelasticity. The present Chapter explores the flutter

boundary of the NACA64A010 airfoil using Isogai’s model for fully-turbulent flow (Sec-

tion 3.1). Due to the non-linearity of the CFD code, multiple equilibrium points are revealed

in Section 3.2.

3.1 Flutter boundary for fully turbulent conditions

The elastic response of the NACA 64A010 is studied for the URANS equations using Spalart-

Allmaras turbulence model at Re = 107. Three symmetric grid levels are generated to obtain
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Figure 3.1: Coarse grid level of NACA
64A010 for RANS simulation with 312× 72
cells.

Figure 3.2: Grid independence study for
RANS simulation.

grid independent results by coarsening the finer grid in every direction for each level. The

coarser grid of 312×72 cells is shown in Figure 8.1. Figure 3.2 shows the pressure distribution

for M∞ = 0.8 for each grid level. While the 3 grids produce the same results away from

the shock, the coarse grid is too diffusive to capture a sharp shock wave. The medium and

fine grids produce comparable results at the shock location, therefore the medium grid of

624× 144 cells is chosen for the flutter studies.

The dynamic response in a turbulent flow differs from that obtained with the Euler equations.

For M∞ = 0.825, Figures 2.12 and 2.13 show two unstable solutions for VF = 0.5, 0.9. The

same conditions tested for fully turbulent flow, shown in Figures 3.3 and 3.4, reveal VF = 0.5

as stable.

Figures 3.5a and 3.6a show the flutter boundary results for M∞ = 0.75−0.95. In Figure 3.5a

results by other researchers are also included. While the agreement in the Euler boundary

was excellent until M∞ = 0.9, the turbulent results show more dispersion. However, the

main trend agrees well with the results from Bohbot et al. [10] (used SA model). They
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Figure 3.3: RANS results for flutter of NACA 64A010 at M∞ = 0.825, VF = 0.5.
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Figure 3.4: RANS results for flutter of NACA 64A010 at M∞ = 0.825, VF = 0.9.
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(a) (b)

Figure 3.5: Flutter boundary (left) and non-dimensional frequency at the flutter boundary
(right) for fully turbulent RANS solution. Comparison with other numerical simulations.

show a good agreement for low and high Mach numbers when compared with Prananta et

al. [62] (Thin-Layer Navier-Stokes), and a fair agreement with Chen et al. [18] (SA model).

Figure 3.6a includes the closed region where multiple equilibrium points exist.

The effect of the speed index in unstable conditions is studied. Two Mach numbers away

from the multiple equilibrium points region are chosen (M∞ = 0.825, 0.95). Figure 3.7a

shows the amplitude in heaving and pitching when LCO is reached for multiple speed index

values above the flutter boundary of each corresponding Mach number. While the heaving

amplitude for M∞ = 0.95 is higher than for M∞ = 0.825, the pitching amplitude shows

comparable values. The trend however appears different. The ratio in heaving/pitching

amplitudes for M∞ = 0.825 is almost constant, while it increases with VF for M∞ = 0.95.

Figure 3.7b shows the non-dimensional time to reach LCO, which is similar for both Mach

numbers when accounting for the difference between the flutter boundary and the plotted

VF value. For M∞ = 0.825, the flutter boundary is at VF = 0.656, while for M∞ = 0.95 it

is at VF = 3.53. Therefore, the time to reach LCO depends on the difference between the

simulated speed index and the flutter boundary VF , but it appears to have a small Mach
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(a) (b)

Figure 3.6: Flutter boundary showing region of multiple equilibrium points for fully turbulent
RANS solution (left). Reduced frequency at the flutter boundary for for fully turbulent
RANS solution (right). The flutter boundary on the left image indicates the region of
stability for the first equilibrium point, if only a single equilibrium points exists, or for the
second and last equilibrium point, in case multiple equilibrium points exist.

dependence.
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(a) (b)

Figure 3.7: Effect of VF on Limit Cycle Oscillations. Amplitude of heaving and pitching
(left), and non-dimensional time to reach LCO (right) for M∞ = 0.825, and M∞ = 0.95.
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3.2 Multiple equilibrium points caused by non-linear

effects

Chen et al. [18] discovered multiple equilibrium points for M∞ = 0.875. Under further

inspection, Figure 3.6a revealed a pocket where multiple equilibrium points exist. The solid

squares in Figure 3.6a indicate a neutrally stable condition around the initial equilibrium

point, if only a single equilibrium point exists, or around the second and last equilibrium

point, in case multiple equilibrium points exist. The open squares indicate a closed region

where the dynamic system oscillating around the initial equilibrium point h/b = 0 and α = 0

is unstable, but evolves into a new equilibrium point which reveals as stable (if below the

solid squares line) or unstable (otherwise). For the Mach ranges where a single equilibrium

point is found, the flutter boundary is easy to define. However, under a linear stability

analysis which determines the stability of a dynamic system around a given point, the lower

boundary for multiple equilibrium points would become the new flutter boundary.

In order to clarify the meaning of Figure 3.6a, Figure 3.8 is created where each color rep-

resents a different region. The light green region is the traditional region of stability where

the initial symmetric equilibrium point is stable. The pink region, defines the traditional

unstable region where the system oscillates around the initial, symmetric equilibrium point,

albeit its amplitude grows. The dark green region, limits cases where the original symmetric

equilibrium point is unstable and the system finds a new asymmetric equilibrium point which

becomes stable. The last dark purple region, determines the original symmetric equilibrium

point to be unstable, finding a new asymmetric equilibrium point. The system then oscillates

around this new asymmetric equilibrium point with oscillations growing in magnitude until

reaching LCO.

Like in the inviscid situation, 3 periods of forced pitch motion at one degree of amplitude are
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Figure 3.8: Flutter boundary using colors to describe the different regions where single or
multiple equilibrium points exist.
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applied to generate the initial condition for the elastic system. For the low and high transonic

range, away from the region of multiple equilibrium points, variations in the amplitude of

the forced pitch motion to generate the initial conditions have no effect in the final state of

stability of the elastic system. This is not the case for M∞ = 0.865−0.895 where bifurcations

appear, and multiple equilibrium points are found. The direction of the pitch motion used

to obtain the initial condition determines the sign of the asymmetry in the final equilibrium

point.

Comparing Figure 3.5 with 2.11, clear differences in the dynamic response between turbulent

and inviscid flow are observed. The characteristic S-shape of the inviscid flutter boundary

is not obtained in the turbulent simulation. In the turbulent case, the frequency response

at flutter conditions is always driven by the first mode which eliminates the high frequency

response observed in the inviscid simulations. Figure 3.6b reveals low values of reduced

frequency (κ) for turbulent conditions. κ can be obtained combining VF and ω/ωα using

κ =
1

VF
√
µ

ω

ωα
(3.1)

The case of M∞ = 0.875 is chosen as an example of the multiple equilibrium points phe-

nomenon. Figures 3.9 - 3.13 show the dynamic response of the system for VF = 0.7, 1.9,

2.1, 2.3,2.5, 2.7. While bifurcation appears at VF = 1.4, it is stable. The range 1.4 ≤ VF ≤

2.2 generates stable solutions converging to equilibrium points different from the original

{h/b = 0, α = 0}. VF ≥ 2.2 sets the boundary where oscillations grow until reaching LCO

around asymmetric equilibrium points, and VF ≥ 2.4 is the higher limit for the existence of

multiple equilibrium points.

While the lift and moment coefficients seem to always be in phase (Figure 3.9), a non-zero
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Figure 3.9: Lift and moment coefficient for RANS results of NACA 64A010 flutter at M∞ =
0.875, VF = 0.7− 2.7.
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Figure 3.10: Heaving and pitching for RANS results of NACA 64A010 flutter at M∞ = 0.875,
VF = 0.7− 2.7.
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Figure 3.11: Generalized coordinates for RANS results of NACA 64A010 flutter at M∞ =
0.875, VF = 0.7− 2.7.
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Figure 3.12: Heaving phase for RANS results of NACA 64A010 flutter at M∞ = 0.875,
VF = 0.7− 2.7.
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Figure 3.13: Pitching phase for RANS results of NACA 64A010 flutter at M∞ = 0.875,
VF = 0.7− 2.7.
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mean value is observed for the cases showing multiple equilibrium points. For those cases,

the mean value of Cl and Cm have the same sign.

For VF = 2.3, the heaving and pitching responses in Figure 3.10 show a constant shifting

in the equilibrium point during the system response until LCO is reached. That shift is

clearly observed in the phase plots, where the motion changes from smooth round oscillations

into a deformed phase when LCO is reached. That kink, specially noticed in the heaving

phase plots, is due to a small perturbation when increasing the heaving position, shown in

Figure 3.10.

The cases of VF = 2.5, 2.7 start oscillating around a non-zero equilibrium point (Figure 3.10),

but quickly move back to the original zero equilibrium position. A significant kink in heaving

is found for VF = 2.5, 2.7, while a small perturbation present in pitching is almost not

observed. Those are clearly revealed in the phase plots. The kinks are less significant for

the higher speed index case of 2.7 which suggests the kinks might vanish if the speed index

is further increased. Those kinks, are caused by a multiple frequency response of the second

mode (Figure 3.11).

While the second mode is always less dominant than the first mode, it is also the reason

for creating multiple equilibrium points at VF = 2.3, as shown in Figure 3.11. This conclu-

sion cannot be extracted for lower VF values, where both modes oscillate around non-zero

positions.

The phase plots in Figures 3.12 and 3.13 show the dynamic system moving away from the

the original {h/b = 0, α = 0} equilibrium point for VF = 1.9, 2.1, 2.3.

Figure 3.14 shows pressure and Mach contours for the final state of VF = 1.9. The final

position of {h/b = 0.02786, α = −1.9107◦} produces a negative lift of Cl = −0.02432, and

a nose-down moment of Cm = 0.05042. The small lift, even at almost two degrees of angle

of attack, is caused by the large separation of the flow at the foot of the shock wave, as
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Figure 3.14: Cp (left) and Mach (right) contours for fully turbulent simulation at M∞ =
0.875 and VF = 1.9 after elastic oscillations have vanished.

observed in the Mach contours figure. Figure 3.15 shows the streamlines along with a Mach

contour color map of the final state of the elastic system for VF = 0.7 and 1.9. While the

solution is symmetric for VF = 0.7, the asymmetric solution for VF = 1.9 is caused by a

large separation bubble after the shock position which effectively modifies the zero-camber

of the airfoil into a ficticius cambered airfoil with specific lift and moment characteristics to

balance the sturctural loading of the wing.

For the unsteady speed index case of VF = 2.5, the large pitching amplitude of 12◦ obtained

at LCO generates a fully detached flow after the shock. Figure 3.16 shows the streamlines

and Mach contours for the highest angle of attack stage during an LCO period. An oblique

shock wave emmanating from the foot of the separation region is merging with a normal

shock at the trailing edge of the airfoil which originates a lambda shock pattern.

Some simulations are performed at Re = 106 around the multiple equilibrium point region

to study if the phenomenon is also revealed at lower Reynolds numbers. While the flutter

boundary for Re = 106 is not mapped, the existence of multiple equilibrium points is also

found. Figure 3.17 shows oscillations around a non-zero equilibrium point, dominated by
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(a) (b)

Figure 3.15: Streamlines and Mach contour for the final steady state of the elastic solution
at M∞ = 0.875 and VF = 0.7 (left), VF = 1.9 (right).

Figure 3.16: Streamlines and Mach contour for the α = 12◦ state of the LCO solution at
M∞ = 0.875 and VF = 2.5.
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(a) (b)

Figure 3.17: Effect of Reynolds number on the existence of multiple equilibrium points.
Heaving and pitching (a), and modal coordinates (b) for Re = 106, M∞ = 0.875, VF = 1.9.

the first mode.
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Chapter 4

Conclusions Part I

The phenomenon of multiple-equilibrium-points in fully-turbulent flow for transonic flutter

has been explored using the NACA64A010 airfoil and Isogai’s structural model. The initial

equilibrium point α1 = 0, h1/b = 0 is unstable, and a new equilibrium point α2, h2/b is cre-

ated. The heaving and pitching coordinates move into the new equilibrium point, oscillating

around it. For some speed index values, the new equilibrium point is found stable, and for

other VF values the oscillations grow in magnitude until reaching LCO centered on the new

equilibrium point. The region of multiple equilibrium points is centered on M∞ = 0.875

creating a closed pocket in a VF vs. M∞ plot. Although the full range of M∞ is explored

for Re = 107, only a few M∞ are simulated for Re = 106 to show that this phenomenon also

exists for a range of Reynolds numbers.

At the beginning of the current Part, the Computational Fluid Dynamics code is presented

and validated. The Computational Structural Dynamics code is also described and is used

to compute the inviscid flutter-boundary for the NACA64A010 airfoil using the Isogai struc-

tural model. The inviscid flutter-boundary does not reveal the multiple-equilibrium-points

phenomenon. However it reveals the existence of multiple flutter points for a fixed M∞.

82



Increasing VF , the dynamic response switches from stable to unstable at the first flutter-

point, from unstable to stable at a higher VF value, and from stable to unstable again at the

second flutter-point. While the instability of the dynamic system at the first flutter-point

is caused by the first mode, the second flutter-point is dominated by the instability of the

second mode, and reacts at a much higher frequency than the frequency response of the first

flutter-point.
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Part II

Free laminar-turbulent transition

prediction
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Chapter 5

Free transition prediction model

The theory behind laminar-turbulent transition is still a topic of research nowadays. Al-

though there is a common agreement on the multiple paths leading to transition, the mech-

anisms are so complicated that laminar-turbulent transition is still not only difficult to

understand but more so to predict.

Some well known transition mechanisms found in airplane wings are Tollmien-Schlichting

waves, crossflow instabilities, bypass transition and attachment line instabilities.

The two-dimensional small perturbations generated as laminar flow instabilities traveling in

the streamwise direction are referred to as Tollmien-Schlichting waves. The growth of TS

waves develops in three-dimensional perturbations, leading to the formation of turbulent

spots and finally when those spots merge, leading to a fully turbulent flow.

Attachment line transition takes place in sweptback wings when perturbations from the

wing-body junction or others generated in upper swept region travel through the leading

edge triggering transition. Our simulations do not account for attachment line transition

since they are two-dimensional. Attachment line transition increases with the swept angle,
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and with the thickness of the leading edge radius. Therefore, our results are still valid for

wings with low swept back angle.

Crossflow instabilities are only present in three-dimensional wings, and therefore not in-

cluded in the present two-dimensional study. This type of instabilities is more common than

attachment line transition for traditional wings, and should be included when studying three-

dimensional transition prediction. Crossflow instabilities are perturbations travelling in the

spanwise direction of a wing. The initial two-dimensional Tollmien-Schilchting waves start

to show spanwise differences which triggers a three-dimensional wave mechanism increasing

in energy until non-linear effects start coalescing those waves into three-dimensional vortical

structures. Crossflow instabilities are not dominant unless the wing has a considerable swept

angle. Therefore, our two-dimensional simulations are still valid for low-swept back wings

where TS waves are the main instability factor.

Bypass transition is a non-linear transition mechanism by which the linear growth of TS

waves is bypassed and a sudden transition occurs. Bypass transition is normally caused

by surface roughness or tripping bands which produce a sudden perturbation triggering

laminar-turbulent transition. This type of transition mechanism is hard to predict, and it is

not accounted for in our simulations, which assume a smooth surface free of irregularities.

Due to the infinitesimal initial nature of TS waves, it is appropriate to use a linearized

version of the Navier-Stokes equations to study the stability of the boundary layer. The

Orr-Sommerfeld equation is a complicated derivation obtained from linearly perturbing the

Navier-Stokes equations. It is traditionally used to determine the stability of a viscous flow

given a velocity profile as input, by doing an eigenvalue analysis. Using velocity profiles for

different wedge geometries from the Falkner-Skan solutions as inputs to the Orr-Sommerfeld

equation, a data base of stability is generated for multiple realistic boundary layer profiles.

Drela [23] uses this data base to create a free transition model based on the linear growth of

unstable Tollmien-Schlichting waves, as the main mechanism to generate laminar-turbulence
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transition. Traditionally, it was found transition to take place when the most unstable TS

wave had amplified by a factor of e9 ≈ 8100 which lead to the creation of the so-called eN

method or e9 method.

The chosen method to predict free transition is the eN model which requires integral bound-

ary layer variables as inputs: boundary layer momentum thickness θ, and boundary layer

shape factor H = δ∗/θ. An integral boundary layer code is added to ParCAE to produce

high quality results of the needed integral variables without the need of using an extremely

fine grid in the boundary layer region.

5.1 Integral boundary layer method

Integral boundary layer codes use information at the edge of the boundary layer to solve a set

of parabolic equations marching in the flow direction, to determine the evolution of integral

quantities. Therefore, the flow quantities at the edge of the boundary layer must be known

a priori. The main variable is the velocity at the edge of the boundary layer. Obtaining

it is not a trivial process. When both, the boundary layer thickness and edge velocity are

unknown the classic definition of the boundary layer thickness being that at which the flow

velocity is 99% of the edge velocity is of no use in a numerical computation.

Some authors successfully solved this problem by using laminar and turbulent boundary

layer thickness correlations [76], [77] . A different approach [48], [60] to finding the edge

velocity, which is adopted in this research, makes use of Bernoulli equation for compressible

flows along with ideal gas and isentropic relations to obtain

Ue(i) =

√√√√U2
∞ −

2γ

γ − 1

p∞
ρ∞

[
pe(i)

ρ∞

γ−1
γ

− 1

]
(5.1)
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Using the boundary layer approximation of zero pressure gradient normal to the wall, one

can replace pe by pw in the previous equation. This results in a simple equation which only

requires wall values in order to find the edge velocity.

The previous methods are valid for steady conditions only. While much effort has been

invested to adapt these methods to unsteady simulations, nothing has proved as successful

as still using Equation (5.1) for small Strouhal numbers where the error is therefore small.

For the present flutter study, the reduced frequency at LCO is k = 0.1−0.2 and the heaving

amplitude is h0/c = 0.1− 0.2 which correspond to St = k(ho/c)/π ∼ 10−2.

Furthermore, the previous relation must be used before a shock wave occurred so the isen-

tropic condition is not violated. This condition is satisfied since laminar-turbulent transition

always takes place before or at the shock position (given the flow conditions simulated in

this dissertation). If transition did not occur prior to the shock, the strong adverse pressure

gradient of the shock quickly triggers boundary layer transition.

To compute the integral boundary layer parameters (δ∗ and θ) needed for the transition

model, Nebel et al. [60] use a high quality grid to obtain an accurate velocity profile at

the laminar boundary layer region. The integral parameters are directly obtained from the

RANS computations using their definition. The displacement thickness is

δ∗(i) =

∫ δ

0

(
1− ρ(i, j)U(i, j)

ρe(i)Ue(i)

)
dη (5.2)

and the momentum thickness

θ(i) =

∫ δ

0

ρ(i, j)U(i, j)

ρe(i)Ue(i)

(
1− U(i, j)

Ue(i)

)
dη (5.3)

The shape factor is a ratio of the previous, H = δ∗/θ.
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Instead of using a high density grid in the wall region, Drela [22] uses a compressible inte-

gral boundary layer formulation which ensures high quality results of the integral variables

assuming one has a correct boundary layer edge velocity. The latter approach is adopted in

our current work solving two coupled ordinary differential equations

dθ

dξ
+ (2 +H −M2

e )
θ

Ue

dUe
dξ

=
Cf
2

(5.4)

θ
dH∗

dξ
+ [2H∗∗ +H∗(1−H)]

θ

Ue

dUe
dξ

= 2CD −H∗
Cf
2

(5.5)

where ξ is the local coordinate parallel to the wall. To close the integral boundary layer

equations, the following correlations detailed in Reference 23 are needed

H∗ = H∗(Hk,Me, Reθ) H∗∗ = H∗∗(Hk,Me) (5.6)

Cf = Cf (Hk,Me, Reθ) CD = CD(Hk,Me, Reθ) (5.7)

Equations (5.4) and (5.5) are solved with a Newton-Raphson method, similar to the one

proposed by Johansen [42] although modified for the compressible version of the integral

boundary layer equations. Rewriting Equations 5.4 and 5.5 as

f1 =
dθ

dξ
+ (2 +H −M2

e )
θ

Ue

dUe
dξ
− Cf

2
(5.8)

f2 = θ
dH∗

dξ
+ [2H∗∗ +H∗(1−H)]

θ

Ue

dUe
dξ
− 2CD +H∗

Cf
2

(5.9)
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the solution is obtained by an iterative process when both f1 = 0 and f2 = 0. The Newton-

Raphson method computes the corrections in θi and Hi as (where station (i− 1) is known,

and (i) increases in the streamwise direction)

 df1
dθi

df1
dHi

df2
dθi

df2
dHi

×
 δθi
δHi

 = −

f1

f2

 (5.10)

where δ are corrections, which are under-relaxed to enhance numerical convergence.

Johansen [42] presents a direct and an inverse solution procedure, using the inverse solution

when separation occurs before transition, and using the direct solution around a stagnation

point. The direct method solves the IBL equations as they are indicated. The inverse method

uses the skin friction from the RANS code instead of using the skin friction correlation

provided in the IBL code (Equation 5.7).

A first approach of using the direct method for the entire laminar range is coded. The

second coded approach follows the steps of Johansen, using the direct method until the

flow approaches separation, at which point the inverse method is used. The two approaches

produce almost identical transition prediction results. While both methods are tested in

the validation section of the present work, only the fully direct method is used for flutter

computations. In the direct approach, if separation takes place, transition is imposed where

the flow separated. While laminar separation can occur, for high Reynolds number flows

the distance between the laminar separation point and the transition point is very small.

Therefore the error associated with the direct method is small and using the direct method

is the fastest approach to convergence. If instead, the inverse method is chosen, since it uses

the skin friction from the RANS code instead of using the skin friction correlation defined

in Equation 5.7, a better matching between the CFD and the Integral Boundary Layer code

is obtained at a higher cost due to the numerical oscillations while converging. The CFD
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edge velocity, which is used in the skin friction correlation, converges much faster than the

RANS skin friction value, which justifies the cheaper cost in using the direct approach over

the inverse method.

5.2 Transition models

Drela’s eN model [23] is implemented along with Sturdza’s model [78] showing very sim-

ilar results. Sturdza’s model is designed for supersonic flows even though it was used by

Lee and Jameson [48] for transonic two-dimensional and three-dimensional wings with ex-

cellent performance. The results shown in the present work make use of Sturdza’s model

which introduces a temperature ratio Tw/Te into the original Drela model to account for

compressibility effects of boundary layers.

The location of the initial instability takes place when

log10

(
Reθ0
K0

)
≥
(

1.415

Hk − 1
− 0.489

)
tanh

(
20

Hk − 1
− 12.9

)
+

3.295

Hk − 1
+ 0.44 (5.11)

K0 =
2

π
tan−1

(
10
Tw
Te
− 10

)
+ 1 (5.12)

Before the previous condition is satisfied, any instability created in the real flow (not the

RANS solution) are damped out. Therefore the N-factor is zero before the location of θ0

and H0. After this point, a set of Tollmien-Schilchting waves are created which grow in the

streamwise direction with different amplification factors for each wave frequency. The follow-

ing N-factor correlation model tracks the growth of the most unstable Tollmien-Schlichting

wave, computing the linear amplification rate. Traditionally the amplification determining
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transition was 8100, giving name to the e9 method although smaller Ncrit values proved more

accurate for the present simulated conditions. The Ncrit value has been correlated with free

stream turbulence intensity and values ranging from Ncrit = 4−12 have been used in multiple

research articles depending on the free stream turbulence conditions.

The slope of the N-factor envelope is

dN

Reθ
=

0.01

Kb

(
2.4HkKa − 3.7 + 2.5Kctanh[1.5(Hk − 3.1)] + 0.125 +Kd −Km

)
(5.13)

Ka = 1 + 0.2(Hk − 2.5918)

(
1− Te

Tw

)
(5.14)

Kb = 4.7

(
Tw
Te
− 1

)
+ 1 , Kc =

Tw
Te

, Kd = 1.2

(
Tw
Te
− 1

)3/2

(5.15)

After Equation 5.11 is satisfied, N starts growing by integrating Equation 5.13 until N =

Ncrit where transition takes place.

The transition position information must be transferred from the Integral Boundary Layer

code to the CFD code in a smooth manner and accounting for a real transition length. An

intermittency function γtr created by Cebecci [15] is implemented. Eddy viscosity is set to

zero before xtr, and it is multiplied by γtr when x > xtr. The intermittency function has a

value of zero when x = xtr, and grows until the end of the transition length reaching a value

of one. The intermittency is a measure of the turbulent content. The flow is intermittently

turbulent, with regions of laminar flow.

γtr = 1− exp
[
−G(x− xtr)

∫ x

xtr

dx

Ue

]
(5.16)
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where

G =
3U3

eRe
−1.34
xtr

C2ν2
, C2 = 213(logRextr − 4.7323) (5.17)

Cebecci [15] presents a correlation between the Reynolds number based on the transition

length (γtr ranging from 0 to 1) Re∆x, and the Reynolds number based on the transition

position Rextr

Re∆x = C Re2/3
xtr (5.18)

which indicates that the transition length increases when delaying the transition position.
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xtr,UP xtr,DOWN

RANS XFOIL exp RANS XFOIL exp

0.368 0.37 0.35 0.60 0.63 0.6

Table 5.1: NLF(1)-0416 transition positions with Ncrit = 7

5.3 Validation of free transition model

The transition model is validated in the present Section using some classic benchmarks for

steady conditions (Section 5.3.1) comparing our simulations with experimental data, and

with the well-known code XFOIL [22]. XFOIL is an extremely fast code, used in subsonic

conditions, that accounts for laminar-turbulent transition.

In Section 5.3.2, the transition model is used in a forced pitching motion with the NACA0012

airfoil, where free-transition results produce a better matching with the experimental data

than fully turbulent conditions do.

5.3.1 Free transition steady code validation with NLF(1)-0416 and

NACA0012

A transition prediction comparison with experimental data [70] and the code XFOIL for the

NLF(1)-0416 airfoil is summarized in Table 5.1. Three grid levels are tested to obtain grid-

independent results where each coarse level is obtained by reducing in half the number of

cells in each direction. The coarse grid is presented in Figure 5.1 and the pressure coefficient

contours are shown in Figure 5.2 for the test condition Re = 4×106, M∞ = 0.3 and α = 2.03◦.

The results shown using the inverse method in Table 5.1 are obtained for the fine grid level

of 944 × 256 cells and Ncrit = 7. Using larger values of Ncrit resulted in delayed transition

positions compared to the experimental data.
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Figure 5.1: Coarse grid for the NLF(1)-0416
airfoil. Grid size of 236× 64.

Figure 5.2: Coarse flow field solution of
pressure distribution for NLF(1)-0416 airfoil
at test conditions.

Figure 5.3 illustrates the effect of the intermittency function described in Equation (5.18) to

guarantee a smooth change of eddy viscosity when transition takes place at the top surface of

the NLF(1)-0416 airfoil. Before transition, eddy viscosity is set to zero. After the transition

point, the intermittency function gradually increments the value of eddy viscosity until it

is fully activated when intermittency becomes one. Figure 5.3 shows high values of eddy

viscosity inside the turbulent boundary layer region, and zero (or small) values at the wall

and outside the boundary layer region.

Figure 5.4 compares pressure distribution, skin friction, shape factor and momentum thick-

ness against the code XFOIL. A very good agreement is observed in all plots. The pressure

distribution shows a kink at the top and bottom transition positions due to the sudden

growth in the boundary layer thickness. The shape factor peak is slightly ahead of the one

obtained with XFOIL. This is due to the difference in the predicted transition position,

which can be corrected by slightly increasing Ncrit, and due to the higher diffusion present

in the RANS code where a parabolic boundary layer method is not employed.
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Figure 5.3: Eddy viscosity after transition smoothly increasing due to the intermittency
function.

α
xtr,UP xtr,DOWN

RANS XFOIL exp RANS XFOIL exp

0 0.516 0.515 0.44 0.516 0.515 0.44
2 0.328 0.321 0.25 0.703 0.705 0.62
4 0.153 0.145 0.11 0.865 0.873 0.72
6 0.034 0.055 0.048 0.930 0.970 0.81
8 0.019 0.027 0.022 0.965 0.996 0.90

Table 5.2: NACA 0012 transition positions with Ncrit = 9

The present code is also tested against experimental results [29] and the code XFOIL for the

NACA 0012 airfoil at multiple angles of attack and using the direct method. The NACA0012

results shown in the present Section will be further explored in Section 6.1. This Section

shows the effect of changing Ncrit and the validity of using the direct method for transition

prediction.

Table 5.2 shows the comparison in transition position prediction when Ncrit = 9 is used in our

implementation and in XFOIL. Both predictions are delayed when compared to the experi-

mental results. The simulations are rerun with Ncrit = 7 showing a much better agreement

with the experimental results (Table 5.3). The experimental conditions of Re = 2.88 × 106

and M∞ = 0.16 are simulated. Grids with multiple resolutions are tested generating similar

transition positions. The transition prediction results shown in the tables are for the fine

C-grid level of 928× 240 cells.
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Figure 5.4: Free transition simulation of NLF(1)-0416 airfoil at Re = 4 × 106, M∞ = 0.3
and α = 2.03◦. Results of pressure distribution (a), skin friction (b), shape factor (c) and
momentum thickness (d). Comparison with numerical results from XFOIL.

α
xtr,UP xtr,DOWN

RANS XFOIL exp RANS XFOIL exp

0 0.454 0.453 0.44 0.454 0.453 0.44
2 0.274 0.270 0.25 0.63 0.634 0.62
4 0.122 0.117 0.11 0.806 0.811 0.72
6 0.031 0.047 0.048 0.920 0.941 0.81
8 0.015 0.025 0.022 0.958 0.993 0.90

Table 5.3: NACA 0012 transition positions with Ncrit = 7
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The pressure distribution, skin friction, shape factor and momentum thickness of the present

solution at α = 2.0◦ are compared with those by XFOIL, showing a very good agreement.

The comparison in Figure 5.5 reveals again the pressure kink in the pressure distribution

at the transition position, although for this case it is smoother than for the NLF(1)-0416

airfoil. A small difference is observed at the transition position in the shape factor results.

That rise of shape factor is related to the small dip in skin friction close to the transition

position.
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Figure 5.5: Free transition simulation of NACA 0012 airfoil at Re = 2.88× 106, M∞ = 0.16
and α = 2.0◦. Results of pressure distribution (a), skin friction (b), shape factor (c) and
momentum thickness (d). Comparison with numerical results from XFOIL.
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5.3.2 Free transition unsteady code validation with NACA 0012

forced pitching

Although the transition position was not measured in the experiment [45] , a trip point was

not used to force transition either. The results in this section show an improvement in lift

and moment coefficients when accounting for free transition instead of using a fully turbulent

approach.

A forced pitching motion for the NACA 0012 airfoil around the quarter chord point is

imposed

α(t) = αm + α0 sin(ω t) (5.19)

or using the reduced frequency, the previous equation becomes

α(t) = αm + α0 sin
(2U∞ κ t

c

)
(5.20)

Case 5 of Reference 45 is simulated with M∞ = 0.755, Re = 5.5 × 106, αm = 0.016◦,

α0 = 2.51◦, κ = 0.0814. The initial condition for the unsteady run was a converged steady

state with α = αm. After two or three periods, the solution achieved periodicity. However,

five periods were simulated with 100 time steps per period.

A comparison of inviscid, fully turbulent and free transition results against the experimental

data is shown in Figure 5.6. The Euler mesh has 192× 56 cells while the RANS grids have

464 × 120 with an estimated y+ = 0.16 at the wall. Similar lift results are obtained for

all the simulations. However, disagreement in moment coefficient reveals differences in the

pressure distribution throughout the oscillating motion. The bottom images of Figure 5.6
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show the pressure distribution at 1/4 and 1/2 of the period. The shock wave position of

the free transition case agrees better with the inviscid solution, while the fully turbulent

shock is ahead. This justifies the improvement in moment coefficient when changing from

fully turbulent to free transition conditions. The inviscid moment coefficient, however, still

produces the best match with the experimental results. Since neither transition position,

nor free-stream turbulence intensity were measured in the experimental setup, it is difficult

to estimate a value for Ncrit to use in the transition model. A value of Ncrit = 7 was used to

be consistent with the results from Section 5.3.1. However, changing the value of Ncrit would

affect the transition position, which would change the shock position. An improvement in

the matching between experimental and free-transition simulations could be obtained by

exploring multiple values of Ncrit. The present Euler results are similar to those obtained

in Reference [27] and [64] and the fully turbulent solution is similar to Reference 63. The

kink in moment coefficient close to α = −2◦, 2◦ is captured in all the numerical simulations,

being smoother in the fully turbulent case.
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Figure 5.6: Pitching of NACA 0012 airfoil at Re = 5.5 × 107 and M∞ = 0.755 around
x/c = 0.25, 0.016◦ of angle of attack, amplitude of 2.51◦, and reduced frequency k = 0.0814.
Comparison of inviscid, fully turbulent, free transition and experimental results of lift (a)
and moment (b) coefficients; pressure distribution at T/4 (c) and at T/2 (d).
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Chapter 6

Free transition effect on subsonic and

transonic conditions

ParCAE has been validated for fully turbulent and free transition conditions. The Ncrit = 7

value has proved to provide the best matching with the available experimental results. Al-

though some solutions for the NACA0012 airfoil at subsonic conditions where shown in the

previous validation Chapter (Section 5.3.1), those were limited to studying the effect of Ncrit

value, and to show the correct solution is obtained when using the fully direct method for

transition prediction, described in Section 5.1. The present Chapter performs a full com-

parison of free transition, fully turbulent and inviscid results for subsonic and transonic

conditions of three airfoils with different aerodynamic characteristics to understand the ef-

fects of laminar-turbulent transition. Some free-transition experimental results are available

for each of the simulated airfoils, and those are also included as a validation benchmark.
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6.1 NACA0012

Figure 6.1 shows the coarse level grid used for the NACA0012 simulations. The complete

C-grid as well as a zoom in on the airfoil are displayed.

(a) (b)

Figure 6.1: Coarse mesh (464 X 120) for airfoil NACA0012. (a) Complete C-mesh topol-
ogy, (b) zoomin of airfoil mesh.

6.1.1 Free-stream conditions: Re = 2.88× 106, M∞ = 0.16. Effect of

transition on subsonic conditions of a subsonic airfoil, and

validation for α = 0.0◦, 2.0◦, 4.0◦.

A grid independence study to validate the implementation of transition prediction reveals

good agreement in the pressure distribution along the wall for fine, medium, and coarse

grids. Figure 6.2 shows a small kink at transition positions of xtrtop = 0.36 and xtrbottom =

0.54 due to the sudden growth of the boundary layer when transitioning from laminar to a

turbulent state. A zoom in on the pressure at the leading edge reveals a minor deviation
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Figure 6.2: Grid independence study of NACA0012 for free transition conditions.

for the coarse grid level. The transition prediction for the three grids is shown in Table 6.1

showing a good agreement and a converging trend as the grid is refined.

Fine Medium Coarse
xtrtop 0.365 0.364 0.359

xtrbottom 0.541 0.542 0.537

Table 6.1: Transition position prediction for NACA0012 at M∞ = 0.16, Re = 2.88 × 106,
α = 1.0◦ for three grid levels.

For the following computations, the medium grid level is used although the error by using

the coarse grid would be small as revealed in the grid independence study section.

Transition prediction for the NACA0012 is validated against experimental results [29] for

subsonic conditions at multiple angles of attack. Figures 6.3(a),(b) show transition position

for the top surface and lift coefficient, respectively. The numerical predictions are compared

with the experimental results revealing good agreement in transition although the experiment

shows an earlier transition at high negative angle of attack values. The difference in transition

position could be improved if decreasing the value of Ncrit. Figure 6.3(b) shows very good

agreement in lift vs. angle of attack between free transition, fully turbulent and experimental
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(a) Transition position comparison for multiple an-
gles of attack.

(b) Lift coefficient comparison of computational free
transition, computational fully turbulent, and exper-
imental free transition results.

Figure 6.3: Validation of transition prediction for NACA0012 airfoil. (a) Transition posi-
tion. (b) Lift coefficient.

conditions. For all the simulated airfoils, a very good agreement between free transition and

fully turbulent lift is found for subsonic conditions only.

The polar curve is shown in Figure 6.4(a). Since the experimental transition position is

slightly earlier than our simulation, the experimental drag is also slightly larger since a

smaller portion of the wing is affected by laminar flow. Figure 6.4(b) shows the friction

drag and pressure drag components for fully turbulent and free transition conditions. The

friction drag is not affected by the change in angle of attack. When increasing the angle

of attack, the transition position on the top surface moves forward, but transition on the

bottom surface is delayed. This could overall contribute to a similar laminar wet area which

justifies the invariance of friction drag for variations in angle of attack. The pressure drag

however, shows a small increase with increasing lift.

Figures 6.5 and 6.6 show wall pressure and skin friction for fully turbulent and free transition

conditions for α = 0.0◦, 1.0◦, 2.0◦, 3.0◦, 4.0◦. The experimental top surface pressure is also
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(a) Drag coefficient comparison of computational free
transition, computational fully turbulent, and exper-
imental free transition results.

(b) Friction and pressure drag coefficient for free
transition and fully turbulent simulations.

Figure 6.4: Validation of transition prediction for NACA0012 airfoil. (a) Drag coefficient. (b)
Friction and pressure drag.

plotted for α = 0.0◦, 2.0◦, 4.0◦. A very good agreement is found for the wall pressure dis-

tribution for free transition, fully turbulent, and experimental conditions. Free transition is

not affecting the wall pressure for subsonic free stream conditions. This explains the similar

lift coefficient results obtained for both flow conditions in Figure 6.3(a). The free transition

skin friction shows significant differences with respect to the fully turbulent friction value.

Those differences result in a variation in drag, as confirmed in previous Figures. The free

stream skin friction shows a sharp growth when transition takes place since the turbulent

wall shear is higher than the laminar wall shear.

The transition position is linearly correlated with the lift coefficient, and displayed in Fig-

ure 6.6(b).
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(a) (b)

(c) (d)

Figure 6.5: Pressure coefficient and skin friction comparison for free transition and fully
turbulent simulations in the subsonic range of NACA0012 airfoil. Pressure coefficient of ex-
perimental results at α = 0.0◦, 2.0◦ are included. The lower surface skin friction is highlighted
with square symbols.
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(a) (b)

Figure 6.6: (a) Pressure coefficient comparison for numerical free transition, numerical fully
turbulent and experimental free transition conditions in the subsonic range of NACA0012
airfoil. Skin friction comparison of numerical simulations is included with square symbols
for the lower airfoil surface. (b) Summary of transition prediction position dependance on
lift coefficient for subsonic NACA0012 airfoil.

6.1.2 Free-stream conditions: Re = 5.5× 106, M∞ = 0.755. Effect of

transition on transonic conditions of a subsonic airfoil.

Figure 6.7 shows wall pressure and skin friction for free transition and fully turbulent condi-

tions at α = 0.0◦, 1.0◦, 2.0◦, 3.0◦ and transonic conditions. A stronger shock wave appears on

the top surface when increasing the angle of attack. The free transition shock is consistently

delayed with respect to the fully turbulent shock position. The skin friction reveals com-

pletely different trends for fully turbulent and free transition flow. Larger separation regions

are obtained with free transition conditions since the flow is more prone to separation due

to the smaller wall shear found in laminar boundary layers. When the flow separates due to

encountering a shock, it reattaches for all tested angles of attack. The transition position on

the top surface takes place close to the shock position due to the favorable pressure gradient

helping maintain a laminar flow.
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(a) (b)

(c) (d)

Figure 6.7: Pressure coefficient and skin friction comparison for free transition and fully
turbulent simulations in the transonic range of NACA0012 airfoil. The lower surface skin
friction is highlighted with square symbols.
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(a) (b)

Figure 6.8: Summary of (a) free transition and fully turbulent comparison of lift coefficient
dependence on angle of attack, (b) transition position, for NACA0012 airfoil at transonic
conditions.

Figure 6.8(a) shows a deviation of the free transition and the turbulent lift when increasing

the angle of attack. This is due to the differences in the top shock wave position shown in

Figure 6.7. Figure 6.8(b) shows the transition position moving back as the angle of attack

is increased. The bottom transition behaves as it normally does for subsonic conditions. On

the top surface however, transition also moves back since the top surface has supersonic flow

and the pressure gradient is favorable until the shock wave is found.

Figures 6.9(a) and (b) show the drag variation with lift for free transition and fully turbulent

conditions. Although the friction drag is higher than the pressure drag for α = 0.0◦, 1.0◦

since the shock is weak, the pressure drag shows a sharp rise for α = 3.0◦, 4.0◦ when the

strength of the shock increases. The friction drag decreases with lift since transition on top

and bottom surfaces is delayed when increasing the angle of attack, increasing the laminar

shear portion of the wing.
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(a) (b) Friction and pressure drag.

Figure 6.9: Polar curves for free transition and fully turbulent results of NACA0012 in
transonic conditions.
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6.2 NACA64A012

Figure 6.10 shows the coarse level grid used for the NACA64A012 simulations. The complete

C-grid as well as a zoom in on the airfoil are displayed.

(a) (b)

Figure 6.10: Coarse mesh for airfoil NACA64A012 (336 X 88). (a) Complete C-mesh topol-
ogy, (b) zoomin of airfoil mesh.

6.2.1 Validation at free-stream conditions: Re = 1.16 × 106, M∞ =

0.4, α = −2.0◦, 0.0◦, 2.0◦

Figure 6.11 shows two images from [4] of experimental transition results. Figure 6.11(a) indi-

cates the transition position on the top surface as a measure of relative light intensity change

using luminescent experimental methods. The minimum value before a a sudden rise in rel-

ative intensity change, determines the experimental transition position for Re = 1.16× 106,

M∞ = 0.4, and α = −2.0◦, 0.0◦, 2.0◦. Approximately, values of x/c = 0.5, 0.55, 0.6 are

observed for corresponding α = −2.0◦, 0.0◦, 2.0◦ positions. Comparing those with our nu-

merical simulations shown in Figure 6.12, a very good agreement is obtained. The transition
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(a) (b)

Figure 6.11: Experimental results on free transition with NACA64A012 from [4] (edited).
Airfoil coated with Ru (VH127) paint and excited with a light source to capture luminescent
images. (a) Chordwise luminescent profiles at Mach = 0.4, Re = 1.16×106. Transition onset
takes place when the intensity jumps (approximately at x/c = 0.5, 0.55, 0.6 for corresponding
α = 2.0◦, 0.0◦,−2.0◦ for the top airfoil surface). (b) Post-processed Figure 15a from [4]
showing the pixel intensity in a gray value scale. The sudden change in color at x/c =
0.5 − 0.55 determines transition. The original Figure from [4] shows a photo of the top
surface of the airfoil with laminar regions in white and turbulent regions in dark. Multiple
turbulent wedges due to imperfections near the leading edge of the original photo, create
an early transition on localized regions. A clean region without wedges is chosen to post-
process the original photo using the software ImageJ and create Figure (b). Mach = 0.76,
Re = 2.57− 2.69× 106 α = 2.0◦.

prediction on the top surface takes place at x/c = 0.495, 0.549, 0.606 for corresponding angle

of attack position of α = −2.0◦, 0.0◦, 2.0◦. Figure 6.12(a) shows wall pressure on the top sur-

face, while Figure 6.12(b) shows the corresponding skin friction distribution which achieves

minimum values at transition, followed by a sudden rise when a turbulent boundary layer

begins.
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(a) (b)

Figure 6.12: Free transition simulations for various angles of attack for NACA64A012 at
Mach = 0.4, Re = 1.16×106 to validate transition prediction of Figure 6.11(a). (a) computed
pressure distribution, (b) computed skin friction.

6.2.2 Free-stream conditions: Re = 2.6 × 106, M∞ = 0.2. Effect of

transition on subsonic conditions of a classic airfoil.

The NACA64A012 airfoil is tested at multiple angles of attack for subsonic conditions re-

vealing differences compared to the subsonic free transition results of the NACA0012 case.

Figures 6.13 and 6.14(a) show wall pressure and skin friction for α = 0.0◦, 1.0◦, 2.0◦, 3.0◦, 4.0◦

in free transition and fully turbulent conditions. Increasing the angle of attack, brings the

pressure peak closer to the leading edge, which increases the adverse pressure gradient re-

gion promoting an early transition as shown in Figure 6.14(b). The pressure distribution

at the bottom surface is not significantly affected by the change in angle of attack, and the

pressure kink due to the change in airfoil thickness remains at a similar position creating

a small dependence of bottom transition position on variations in the angle of attack. The

fully turbulent wall pressure perfectly overlaps the free transition pressure, like for the sub-

sonic NACA0012 case. Therefore, free transition is not affecting the pressure distribution
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which is the main contributor to the lift coefficient. Figure 6.15(a) shows the variation of lift

with angle of attack, where an almost linear trend is obtained, and no differences between

free transition lift and fully turbulent lift can be appreciated. On the other hand, although

the free transition drag is smaller than the turbulent drag, an interesting trend in the free

transition polar curve is shown in Figure 6.15(b). The sharp rise in drag for the higher lift

cases is caused by the corresponding top surface early transition shown in Figure 6.14(b).

Such early transition on the top surface acts as almost a fully turbulent case, and the free

transition drag polar moves closer to the fully turbulent polar curve. The contributions to

drag due to pressure and wall friction are shown in Figure 6.16. While most of the drag is

caused by friction, when the friction drag increases due to the top transition moving closer

to the leading edge, so does the corresponding pressure drag which slightly overpasses the

fully turbulent pressure drag component. This overlap is caused by small differences in the

pressure peak at the leading edge between free transition and fully turbulent conditions.

6.2.3 Free-stream conditions: Re = 2.6 × 106, M∞ = 0.76. Effect

of transition on transonic conditions of a classic airfoil, and

validation for α = 2.0◦.

The NACA64A012 airfoil is simulated at transonic conditions for α = 0.0◦, 1.0◦, 2.0◦, 3.0◦.

Figure 6.17 shows wall pressure and skin friction for free transition and fully turbulent

conditions. A consistent delay of the top surface free transition shock wave position is

observed compared to the fully turbulent shock. This is in agreement with the free transition

transonic results shown for the NACA0012 airfoil. By increasing the angle of attack, the

shock wave at the bottom surface disappears. A small kink in free transition Cp is still

present at the bottom surface due to transition thickening the boundary layer. This kink is

specially noticeable for α = 3.0◦. Like in the NACA0012 case, the difference in wall pressure
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(a) (b)

(c) (d)

Figure 6.13: Subsonic simulation of angle of attack effect in free transition flow for
NACA64A012 airfoil. Pressure distribution comparison with fully turbulent simulations.
Skin friction comparison of free transition and fully turbulent conditions with lower surface
highlighted with square symbols.
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(a) (b)

Figure 6.14: a) Subsonic simulation of angle of attack effect in free transition flow for
NACA64A012 airfoil. (a) Pressure distribution and skin friction comparison of free transition
and fully turbulent simulations. The skin friction on the lower airfoil surface is indicated
with square symbols. (b) Transition position as a function of lift coefficient.

(a) (b)

Figure 6.15: Free transition and fully turbulent comparison for subsonic NACA64A012 airfoil
of (a) lift coefficient dependence on angle of attack, (b) polar curve.
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Figure 6.16: Friction and pressure drag coefficient of free transition and fully turbulent
conditions for subsonic NACA64A012 airfoil.

between the two flow conditions generate differences in lift coefficient vs. angle of attack,

as seen in Figure 6.18(a). The skin friction reveals flow separation at the shock position,

followed by a boundary layer reattachment. Stronger separation regions are obtained for

free transition conditions. Figure 6.18(b) shows the transition position on the top surface is

extended until the shock position due to the favorable pressure gradient displayed. On the

bottom surface, the pressure peak moves forward when increasing the angle of attack, and the

adverse pressure gradient decreases at the same time. Therefore for α = 1.0◦, the beginning

of a strong adverse pressure gradient has moved forward, which bring transition closer to

the leading edge. For the higher angle of attack cases of α = 2.0◦, 3.0◦, the beginning of

adverse pressure gradient keeps moving forward but the adverse gradient is smoother which

effectively delays transition. Figure 6.19 shows the drag increasing with lift, while the free

transition drag is lower than the fully turbulent drag. For small values of the angle of attack,

the friction drag is higher than the pressure drag. As the shock gets stronger when increasing

angle of attack, the pressure drag overpasses the friction drag and is the main contributor

to the total drag component.

119



(a) (b)

(c) (d)

Figure 6.17: Transonic simulation of angle of attack effect in free transition flow for
NACA64A012 airfoil. Pressure distribution and skin friction comparison with fully tur-
bulent simulations. Airfoil lower surface skin friction displayed with square symbols. (c)
validation of experimental results of Figure 6.11(b)
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(a) (b)

Figure 6.18: Transonic NACA64A012 airfoil results of (a) free transition and fully turbulent
comparison of lift coefficient dependence on angle of attack, (b) transition position.

(a) (b)

Figure 6.19: Polar curve for transonic NACA64A012 airfoil at free transition and fully
turbulent conditions. (b) Friction and pressure drag.

121



6.3 NLR7301

Figure 6.20 shows the coarse level grid used for the NLR7301 simulations. The complete

C-grid as well as a zoom in on the airfoil are displayed.

(a) (b)

Figure 6.20: Coarse mesh (256 X 80) for airfoil NLR-7301. (a) Complete C-mesh topol-
ogy, (b) zoomin of airfoil mesh.

6.3.1 Validation at free-stream conditions: Re = {1.12− 2.3} × 106,

M∞ = 0.3− 0.8, α = 0.2◦ − 0.4◦

The supercritical NLR7301 airfoil is validated for multiple Mach number conditions following

the experimental results [26]. The test conditions for each Mach number are summarized in

Table 6.2 showing small variations in Reynolds number and angle of attack.

The top and bottom transition position prediction is compared against the experimental

data, and displayed in Figure 6.21(a). A very good agreement is found, showing a very

small variation of transition at the bottom surface, and a significant shift in the top surface
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Mach Reynolds α
0.3 1,200,000 0.4
0.5 1,700,000 0.4
0.6 1,900,000 0.38
0.7 2,100,000 0.39

0.724 2,200,000 0.38
0.747 2,200,000 0.2
0.774 2,200,000 0.25
0.8 2,300,000 0.4

Table 6.2: Corrected conditions used for transition prediction for NLR-7301 airfoil.

for the high Mach number cases. The lift, drag and moment coefficients for free transition,

fully turbulent and experimental data are compared and displayed in Figures 6.21(b), 6.22(a)

and 6.23. The free transition and experimental lift are in good agreement. Although small lift

differences appear for M∞ = 0.8, the main trend is correctly captured. The lift coefficient

is almost constant until it peaks at M∞ = 0.747 and sharply decreases for higher Mach

numbers. The fully turbulent lift shows similar characteristics with different values showing

and offset at lower values than the corresponding free transition lift components. The rise

in drag for the high Mach number cases, can be understood with Figure 6.22(b) where the

friction drag, and the pressure drag are included. The steep drag shown in Figure 6.22(a)

is therefore caused by a sharp increase in pressure drag due to the stronger shock created

at higher free stream Mach values. Although the simulated free transition drag does not

decrease for M∞ = 0.747, the experimental drag shows a small value for that particular

Mach number. This could be explained from Figure 6.22(b). As the free stream Mach

number increases, the top transition position suddenly moves back increasing the laminar

portion of the airfoil which reduces the skin friction drag. At the same time, the shock get

stronger increasing the pressure drag. A balance exists for the experimental case, where

the drop in skin friction drag is more significant than the increase in pressure drag, which

effectively reduces the total drag component, as shown in Figure 6.22(a). The moment

coefficient shown in Figure 6.23 also reveals a good comparison between our free transition
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(a) Transition position validation for multiple Mach
number cases listed on Table 6.2 for NLR-7301 airfoil.

(b) Lift coefficient comparison of computational free
transition, with experimental free transition results
for test conditions in Table 6.2. Fully turbulent sim-
ulations are also included.

Figure 6.21: Validation of transition prediction for NLR-7301 airfoil. (a) Transition posi-
tion. (b) Lift coefficient.

prediction and the experimental results, with a small deviation for M∞ = 0.8.

Figures 6.24 and 6.25 show a comparison of numerical pressure distribution for free transi-

tion and fully turbulent conditions. While almost no differences are observed for subsonic

conditions, as the Mach number is increased the free transition shock wave is delayed with

respect to the fully turbulent shock. Major differences in pressure distribution are obtained

for M∞ = 0.747 even before reaching the shock wave.
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(a) Drag coefficient comparison. (b) Friction and pressure drag.

Figure 6.22: Drag comparison of numerical free transition, numerical fully turbulent and
experimental free transition conditions for free stream values from Table 6.2.

Figure 6.23: Moment coefficient comparison of computational free transition, computational
fully turbulent, and experimental free transition conditions for free stream values from Ta-
ble 6.2.
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(a) (b)

(c) (d)

Figure 6.24: Pressure coefficient comparison for free transition and fully turbulent simula-
tions in the subsonic range of NLR-7301 airfoil.
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Figures 6.26 and 6.27 show a comparison of free transition pressure distribution for nu-

merical and experimental conditions, and numerical values of skin friction distribution. A

very good agreement is obtained for subsonic pressure distributions between numerical and

experimental values. However, as the free-stream Mach number increases, slight pressure

differences are revealed which are the reason for discrepancies in the previous figures for lift

and moment coefficients. The numerical skin friction reveals separation on both surfaces

for M∞ = 0.774 − 0.8. While only the bottom surface boundary layer is able to reattach

for M∞ = 0.774, both surfaces maintain a detached boundary layer after separation for the

highest M∞ = 0.8 case.

6.3.2 Free-stream conditions: Re = 2.2 × 106, M∞ = 0.2. Effect of

transition on subsonic conditions of a supercritical airfoil.

The NLR7301 airfoil is tested for free transition, and subsonic conditions at angles of at-

tack α = −2.0◦,−1.0◦, 0.0◦, 1.0◦, 2.0◦, 3.0◦. Figure 6.28 shows wall pressure and skin friction

for the top and bottom surfaces for each of the tested conditions. Increasing the angle of

attack increases the pressure suction on the top surface, and it decreases for the bottom

surface. Although wall pressure is not shown for fully turbulent conditions, the differences

between free transition and fully-turbulent pressure are very small, which explains the sim-

ilarity in fully turbulent and free-transition lift coefficient vs. angle of attack shown in

Figure 6.29(a). The skin friction distributions are highly correlated with the transition po-

sition shown in Figure 6.29(b). The top surface transition position quickly moves forward

for α = −2.0◦,−1.0◦, 0.0◦ and remains at a very similar position close to the leading edge

pressure peak for the higher angle of attack cases. This is also observed in the forward

shifting of the skin friction rise when the flow transitions from laminar to turbulent state.

The bottom surface transition is almost constant except for α = −2.0◦. This is also seen in

the skin friction plot where the rise in wall shear takes place earlier than in the other angle
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(a) (b)

(c) (d)

Figure 6.25: Pressure coefficient comparison for free transition and fully turbulent simula-
tions in the transonic range of NLR-7301 airfoil.
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(a) (b)

(c) (d)

Figure 6.26: Pressure coefficient comparison with experimental data, and skin friction coef-
ficient for the subsonic range of NLR-7301 airfoil. Forward skin friction deep corresponds to
upper surface.
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(a) (b)

(c) (d)

Figure 6.27: Pressure coefficient comparison with experimental data, and skin friction coef-
ficient for the transonic range of NLR-7301 airfoil. Lower surface skin friction is represented
with square symbols.
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of attack cases. Figure 6.30 shows drag coefficient vs. angle of attack for free transition

and fully turbulent conditions. While the polar curve for fully turbulent conditions reveals a

normal trend showing the lowest drag for α = 0.0◦, the free transition polar is monotonically

increasing. Since the top surface transition is delayed for the negative angles of attack, a

large laminar portion of the wing contributes to a small skin friction drag. The skin friction

drag dominates over the pressure drag for subsonic conditions as seen in Figure 6.30(b).

6.3.3 Free-stream conditions: Re = 2.2× 106, M∞ = 0.774. Effect of

transition on transonic conditions of a supercritical airfoil.

The NLR7301 airfoil is tested for free transition, and transonic conditions at angles of attack

α = −2.0◦,−1.0◦, 0.0◦, 1.0◦, 2.0◦, 3.0◦. Figure 6.31 shows the top and bottom wall pressure

and skin friction distributions. While the top surface shock wave moves forward when

increasing the angle of attack, the bottom surface shock moves slightly back maintaining

an almost constant position for the higher angle of attack cases. Figure 6.32(a) shows

the lift coefficient vs. angle of attack for free transition and fully turbulent conditions.

A significant difference is observed. Although the pressure distribution is not shown for

fully turbulent conditions, the free transition shock is delayed with respect to the turbulent

shock which justifies the differences obtained in lift. Figure 6.32(b) shows the predicted

transition positions. Transition is extended almost until the shock position, taking place due

to the laminar separation shown in the skin friction plots of Figure 6.31. The top surface

boundary layer is separated for all angles of attack when encountering the shock, but only

reattaches for the negative angle of attack cases. The bottom surface only separates for

α = −2.0◦,−1.0◦, 0.0◦ and remains detached for α = −2.0◦. Figure 6.33(a) shows the polar

curves for free transition and fully turbulent conditions. The major contribution to the total

drag is due to pressure drag as shown in Figure 6.33(b), while the friction drag remains at

an almost constant value. Negative angles of attack generate higher drag due to the bottom
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(a) (b)

(c) (d)

Figure 6.28: Effect of angle of attack for Mach = 0.2 and Re = 2, 200, 000 in NLR-7301
airfoil. (a) Pressure coefficient for upper surface and (b) lower surface. (c) Skin friction for
upper surface and (d) lower surface.
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(a) (b)

Figure 6.29: (a) Free transition and fully turbulent comparison for subsonic conditions of
NLR-7301 airfoil of lift coefficient dependence on angle of attack. (b) transition position
dependency on lift coefficient.

(a) (b)

Figure 6.30: Free transition and fully turbulent comparison for subsonic conditions of NLR-
7301 airfoil of (a) polar curve, and (b) friction and pressure drag coefficients.
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surface shock being stronger than in the zero angle of attack situation.
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(a) (b)

(c) (d)

Figure 6.31: Effect of angle of attack for Mach = 0.774 and Re = 2, 200, 000 in NLR-7301
airfoil. (a) Pressure coefficient for upper surface and (b) lower surface. (c) Skin friction for
upper surface and (d) lower surface.

135



(a) (b)

Figure 6.32: (a) Free transition and fully turbulent comparison for transonic conditions
of NLR-7301 airfoil of lift coefficient dependence on angle of attack. (b) transition position
dependency on lift coefficient.

(a) (b)

Figure 6.33: Free transition and fully turbulent comparison for subsonic conditions of NLR-
7301 airfoil of (a) polar curve, and (b) friction and pressure drag coefficients.
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Chapter 7

Conclusions Part II

A laminar-turbulent transition model is implemented into our CFD code. The transition

model is of the eN type, where Tollmien-Schlichting waves are responsible for laminar-

turbulent transition. The model needs integral boundary layer parameters as inputs. Instead

of using a highly refined grid close to the wall region to obtain accurate integral boundary-

layer values, an Integral Boundary Layer code is incorporated into our CFD code, only to

generate the inputs needed for the transition model.

The transition position prediction is fed into the CFD code using an intermittency function

to gradually increase the magnitude of the eddy viscosity.

The transition model is validated against free-transition experimental results for the NLF(1)-

0416 and the NACA0012 airfoils. A forced pitching motion on the NACA0012 reveals a better

solution using free-transition than fully turbulent conditions.

The airfoils NACA0012, NACA64A012 and NLR7301 are validated for the available free-

transition experimental results. A sweep of angle of attack is performed for subsonic and

transonic conditions for the three airfoils. The subsonic pressure distribution and lift co-
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efficient are not affected by using free-transition conditions, and the fully turbulent values

almost overlap the free-transition solution. The free-transition drag is lower than the fully

turbulent drag. The largest contribution to drag at subsonic conditions is from friction.

Differences between free-transition and fully turbulent results are observed for transonic

conditions. The effect of free-transition is to bring the shock wave closer to the inviscid

shock position. The laminar boundary layer is thinner than the corresponding turbulent

boundary layer. Therefore, the flow moving around the free-transition airfoil encounters an

effective airfoil (airfoil geometry modified by displacement thickness) between the inviscid

case (pure geometry), and the fully-turbulent case (geometry modified by a larger displace-

ment thickness). Although the major contribution to drag at transonic conditions was from

pressure, due to the shock drag, the free-transition drag was generally lower than the fully

turbulent drag.

It has been found, for transonic conditions, a significant difference in pressure distribution

and lift coefficient between fully-turbulent and free-transition conditions. Lift is the domi-

nant force in heaving of an elastic wing, while the contour of pressure distribution is what

changes the moment coefficient, which affects pitching.
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Part III

Isogai-wing-model flutter in

free-transition flow
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Chapter 8

NACA 64A010 Flutter by the

Navier-Stokes equations with free

transition

The last Part of this dissertation combines the work from the previous two Parts to obtain

the transonic flutter boundary with free laminar-turbulent transition for the NACA64A010

airfoil using the Isogai structural model. The results in this Part are previously presented

in [53].

Section 8.1 performs a grid independence study on free-transition prediction at transonic

conditions. The effect of free-transition on the steady state NACA64A010 airfoil is studied

in Section 8.2. The results of forcing a pitching and heaving motion are shown in Section 8.3.

Section 8.4 presents the flutter boundary at free-transition conditions and Sections 8.2 and 8.3

are referenced to justify the aeroelastic response.
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8.1 Free transition grid independence study of NACA

64A010

The elastic response of the NACA 64A010 airfoil in free transition conditions is analyzed for

Re = 107 at zero angle of attack. A set of fine, medium and coarse grids is designed with

corresponding y+ of 0.66, 1.33 and 2.7 at the wall. The coarse grid is shown in Figure 8.1

with 312 × 72 cells. Each grid level has twice the number of cells in each direction as their

next coarser grid level. Figure 8.2 shows the pressure distribution of the grid independence

study performed for free transition conditions at M∞ = 0.80, α = 0.0◦ and Ncrit = 7. The

transition position results are summarized in Table 8.1 showing a convergence in the result

as the grid intensity increases.

xtr/c
coarse medium fine

0.478 0.496 0.507

Table 8.1: NACA 64A010 transition positions with Ncrit = 7

Figure 8.1: Coarse grid level of NACA
64A010 with 312× 72 cells.

Figure 8.2: Grid independence study for free
transition conditions.

The medium grid of 624×144 cells is chosen for the flutter studies. All the following viscous
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results are obtained with such grid.

8.2 Effect of free transition in steady NACA 64A010

for α = 0.0◦, 0.5◦, 1.0◦, 2.0◦, 3.0◦

A comparison of free transition, fully turbulent and inviscid conditions in Figure 8.3 reveals

significant differences in lift and moment coefficient when increasing the angle of attack. Cl

and Cm are the loading in the structural model used in Equation (2.7) for flutter prediction.

The drag, however, is lower for free transition conditions than in the fully turbulent case, as

expected. The transition position moves forward for higher angle of attack, which seems to

bring the free transition lift and moment curves closer to the fully turbulent ones.

The transition position is delayed due to the favorable pressure gradient shown in Figure 8.4

until the flow separates before the foot of the shock wave. Figure 8.4a shows the same shock

position for the inviscid and free transition conditions. When the angle of attack increases

to α = 1◦, there is a disagreement in the position of the shock for each flow condition.

The pressure distribution is almost identical for the three conditions until the shock wave

appears, where the shock for the free transition conditions is between the inviscid shock and

the fully turbulent shock.

8.3 Effect of free transition in pitching and heaving of

NACA 64A010

A forced motion is imposed to understand the differences in lift and moment for inviscid,

fully turbulent and free transition conditions before the airfoil is set free for flutter analysis.
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Figure 8.3: Comparison of inviscid, fully turbulent and free transition results of lift (a), drag
(b) and moment (c) coefficients. Cm defined positive nose-up, around elastic axis x/c = −0.5.
Free transition transition position prediction for top and bottom surface (d). NACA 64A010
airfoil at Re = 107 and M∞ = 0.85.
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(a) (b)

Figure 8.4: Pressure distribution comparison of NACA 64A010 airfoil for inviscid, fully
turbulent and free transition conditions at Re = 107, M∞ = 0.85 and angle of attack
α = 0.0◦(a) and α = 1.0◦(b).

The initial condition used for flutter studies is a flow field after a pitching motion with a 1◦

amplitude. When the elastic system is unstable, the oscillations start increasing in magnitude

and when the amplitude is 2◦ they are generally set to a consistent growth not affected by

the initial condition transient. An amplitude of 2◦ is therefore chosen for pitching studies.

Two Mach numbers are picked and multiple reduced frequencies are tested. Figure 8.5 is a

summary of lift and moment coefficients, along with a pressure distribution plot at 1/4 of

the period.

The first two rows for M∞ = 0.85 simulate reduced frequencies that cover the entire flutter

range obtained at M∞ = 0.85 found in the coming sections. The low κ = 0.05 case is close

to a quasi-steady situation, and the differences could be related to the results presented for

steady state in Section 8.2. The inclination in the lift and moment plots, and the looping

direction of the arrows, identify major differences in the fully turbulent case, while the free

transition results are closer to the inviscid simulation. The shock wave position shown at

the top surface is also ahead for the fully turbulent condition. The higher κ = 0.3 case still
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8.5: Pitching of NACA 64A010 airfoil at Re = 107 and M∞ = 0.85, 0.95 around
x/c = −0.5, AoA = 0.0◦, amplitude of 2◦, and reduced frequency κ = 0.05, 0.15, 0.3.
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reveals some differences between the three flow conditions, but not as significant as for the

lower κ = 0.05.

The two bottom rows of Figure 8.5 show the pitching results obtained for M∞ = 0.95 and

in this case, the range of reduced frequencies to be covered due to the flutter results found

in the coming section is κ = 0.05 − 0.15. At such a high Mach number, the shock wave is

pushed to the trailing edge, and the three flow conditions show identical results.

Figure 8.6 shows heaving results at the same conditions tested for pitching but with a typical

amplitude obtained at LCO of h/c = 0.06 or h/b = 0.12. The conclusions from this figure

are the same as that obtained for a pitched motion condition. The high Mach number cases

produce an identical response regardless being inviscid, fully turbulent or in free transition.

The M∞ = 0.85 case shows differences in lift and moment, being those more significant for

the low reduced frequency case.

It is therefore shown that pitching and heaving generate similar conclusions, and that the flow

field for M∞ = 0.95 is identical regardless of the flow condition used. However, the forced

pitching and heaving for M∞ = 0.85 produce different flow fields for each flow condition,

showing similarities between the inviscid and the free-transition flow solutions.

8.4 NACA64A010 Flutter for free transition conditions

A range of Mach number from 0.75− 0.95 is simulated for different speed index values (VF )

to obtain the flutter boundary shown in Figure 8.7. Results of inviscid and fully turbulent

conditions from Part I (also reported in Marti and Liu [54]) are included for comparison

purposes. The free transition results agree very well with the inviscid simulations for the

range M∞ = 0.75− 0.85 and M∞ = 0.925− 0.95. Such good agreement is due to the delay

in the shock wave position for free transition conditions which is located close to the inviscid
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8.6: Heaving of NACA 64A010 airfoil at Re = 107 and M∞ = 0.85, 0.95 around
y/c = 0.0, AoA = 0.0◦, amplitude of y/c = 0.06, and reduced frequency κ = 0.05, 0.15, 0.3.
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Figure 8.7: Flutter boundary comparison
for inviscid, fully turbulent and free tran-
sition conditions.

Figure 8.8: Comparison of non-dimensional
frequency at the flutter boundary for invis-
cid, fully turbulent and free transition con-
ditions.

shock position.

For the mid-range M∞ = 0.85−0.9 different physics appear for each flow case. In Part I, we

perform a detailed analysis in comparing the differences between inviscid and fully turbulent

conditions. While the inviscid simulations reveal multiple flutter points for a given Mach

number, the fully turbulent results show multiple equilibrium points for a given {M∞, VF}

couple. Neither of these two scenarios is found in the free transition case.

The frequency response at flutter conditions is shown in Figure 8.8. The frequency is non-

dimensionalized by the structural frequency. The results show a similar behavior as those

in the previous figure. Free transition and inviscid results agree for the low and high Mach

number range, while the three diverge in the mid-range Mach. The inviscid case shows a

high frequency response for the mid-range Mach due to the dominance of the second mode.

Figure 8.9 combines the two previous images to obtain a reduced frequency plot where the
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Figure 8.9: Comparison of reduced frequency at the flutter boundary for inviscid, fully
turbulent and free transition conditions.

frequency at the flutter boundary is non-dimensionalized by the flow conditions using

κ =
1

VF
√
µ

ω

ωα
=
b ω

U∞
(8.1)

For the cases of M∞ = 0.925 − 0.95, the three flow conditions show the same frequency

response. In the previous section, it was determined that for M∞ = 0.95 the heaving and

pitching response were identical for the three flow cases generating the same flow field.

Therefore, differences in the flutter boundary are only due to the dynamic system itself. On

the other hand, for the heaving and pitching case of M∞ = 0.85, the change in shock wave

position creates a different mean flow field as seen in the previous section. Difference between

inviscid, fully turbulent and free transition flutter boundary at M∞ = 0.85 are therefore due

to the different mean flow fields present already in the forced pitching and heaving motions

previously described.

For M∞ = 0.75, the fully turbulent results agree very well with the free transition results

since a shock wave does not exist. Therefore, the effect of free transition is in the shear
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distribution, but the pressure distribution remains the same.

Figures 8.10, 8.11 and 8.12 show an example of the history response for M∞ = 0.875 and

VF = 2.1, 2.3, 2.5 where the flutter boundary is at VF = 2.27. Figure 8.10 shows heaving

and pitching, along with generalized coordinates for each mode. The first mode is always

the dominant one. The solution for VF = 2.3 is not marched until LCO due to the slow

growth rate being very close to the neutrally stable situation. The VF = 2.5 case is run until

LCO showing a kink in heaving which was also present in the fully turbulent simulations

in Part I. Figure 8.11 shows lift and moment coefficients along with transition position. A

centered oscillatory behavior is shown for VF = 2.1, 2.3 in transition, while there is a shift

in the center of the transition range for higher magnitude oscillations at LCO, as seen for

VF = 2.5. The kinks shown in heaving for VF = 2.5, affect the transition history at LCO,

not producing a clean sinusoidal shape. Figure 8.12 reveals a kink in pitching for VF = 2.5

which was difficult to visualize in the previous figures. The phase plots for VF = 2.5 are

almost identical to those reported for fully turbulent conditions [54] .

The effect of the speed index for VF values higher than the flutter boundary is presented in

Figure 8.13 for M∞ = 0.8, 0.85, 0.875. From lower to higher Mach, the corresponding flutter

boundary is at VF = 0.667, 0.488, 2.27. The two lower Mach cases show a heaving amplitude

higher than the pitching amplitude, which is a normal response. For the M∞ = 0.875

case however, the kink shown in Figure 8.10 is responsible for producing a lower heaving

amplitude compared to the pitching one. The second image of Figure 8.13 reveals a similar

trend in the increase of the frequency response with the speed index. The third image, shows

a sharp decrease in the elapsed time to reach LCO with increasing VF . The last image of

Figure 8.13 shows the range of motion of transition position. Generally, heaving and pitching

are in phase, and the peaks in transition position from Figure 8.11 correspond with heaving

and pitching peaks from Figure 8.10. At a peak, the heaving velocity is zero, and most

of the effect of transition position will be due to the high pitching angle. Therefore, the
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Figure 8.10: Heaving and pitching (left) and modal coordinates (right) for free transition
results of NACA 64A010 flutter at M∞ = 0.875, VF = 2.1, 2.3, 2.5.
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Figure 8.11: Lift and moment coefficients (left) and transition position (right) for free tran-
sition results of NACA 64A010 flutter at M∞ = 0.875, VF = 2.1, 2.3, 2.5.
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Figure 8.12: Heaving (left) and pitching (right) phase for free transition results of NACA
64A010 flutter at M∞ = 0.875, VF = 2.1, 2.3, 2.5.
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Figure 8.13: Limit Cycle Oscillation results for M∞ = 0.80, 0.85, 0.875 for multiple speed
index values above the corresponding flutter boundary.

range of transition position seems to be dominated by the magnitude of the pitching motion.

The first image of Figure 8.13 shows a higher pitching amplitude for M∞ = 0.875, followed

by M∞ = 0.8 and M∞ = 0.85. This agrees with the last image of Figure 8.13 where the

higher range for transition position corresponds to M∞ = 0.875, followed by M∞ = 0.8 and

M∞ = 0.85.
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Chapter 9

Conclusions Part III

The effect of laminar-turbulent transition is studied in a fluid-structure interaction of the

NACA 64A010 airfoil for Reynolds number 10 million and Mach number range of 0.75-0.95.

The shock wave in free transition is delayed compared to the fully-turbulent case. This

brings the free-transition shock close to the position obtained for inviscid simulations.

Three freestream Mach ranges are differentiated in the flutter boundary.

The lower range of M∞ = 0.75− 0.85, and the higher range of M∞ = 0.925− 0.95 reveal a

free-transition boundary almost identical to the inviscid flutter-boundary, but different from

the fully-turbulent case. Forced pitching and heaving at those Mach numbers reveal the

flowfield to be very similar for free-transition and inviscid conditions. The forced-motion

flowfield for the high Mach range is almost identical for the three flow conditions. For the

low Mach range, the forced-motion flowfield for free-transition agrees with the inviscid case

but strongly disagrees with the fully-turbulent flowfield.

Therefore, since the forced-motion fully-turbulent flowfield differs from the other two flow

conditions in the low-Mach range, when the system is set free in elastic mode, the fully-
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turbulent flutter-response will also differ.

For the high-Mach range, where the forced-motion flowfield is the same for the three flow con-

ditions, the difference in the fully-turbulent flutter boundary is caused by the new dynamic

system. When adding the two degrees-of-freedom from the structural equations to the many

degrees-of-freedom from the CFD grid, the new dynamic system affects the fully-turbulent

elastic response only.

The mid-range M∞ = 0.875−0.9 shows different flutter responses for inviscid, free-transition

and fully-turbulent conditions. The inviscid solution predicts multiple flutter points, the

fully-turbulent case reveals multiple equilibrium points, and the free-transition simulation

shows a smooth boundary without any of the two phenomena.

Differences in the three flutter boundaries are strongly affected by non-linear effects. In the

low-Mach range, the shock is weak and non-linear effects are not strong which creates a

boundary with a similar trend for the three flow conditions. In the high-Mach range, the

shock is pushed until the trailing edge. Therefore non-linear effects are not dominant since

the shock position is not changing and the flutter-boundary trend is again similar for the

three flow conditions. In the mid-Mach range, a strong shock is moving over the airfoil

surface. Non-linear effects due to the shock motion are responsible for generating different

elastic responses for each flow condition.
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Chapter 10

Future work

While the present work has been successful in proving the existence of Multiple Equilibrium

Points in non-linear flutter, and in assessing the importance of free-transition in transonic

aeroelastic simulations, it has been limited to two-dimensional problems. The structural

model used represents a mid-span section of a three-dimensional sweptback wing.

The future work will extend the results from this dissertation to three-dimensional wings,

and understand if three-dimensional variations will impact the conclusions found in this doc-

ument. Some preliminary results of three-dimensional aeroelastic deformations are included

in appendix C, where a stable loading deforms the wing structure. Appendices A and B

describe the numerical methods needed for three-dimensional structural deformation.

When computing three-dimensional free transition, crossflow instabilities must be included

to obtain realistic results. A first approach can use the present eN model for constant-span

sections, along with a crossflow instability model for the third direction, and use an effective

Ncrit value combining streamwise and cross flow transition. An example of such work is

detailed in [78]. A different approach is using the Reθ − γ turbulence model [46], which

predicts free transition in three-dimensional flow, although at higher computing cost.
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Appendices

A Computational Structure Dynamics for three-dimen-

sional applications

From classic vibration analysis theory, one can express the structural dynamics equation for

a case of linear stiffness and linear damping as

[M ]q̈ + [C]q̇ + [K]q = F (A.1)

where M , C and K are the mass, damping and stiffness matrices, respectively. q is the

vector of displacements and F the external loading.

Normally when using Equation A.1 to perform a vibration analysis of a mechanical device,

the external loading F is a function of time F = F (t). For an aeroelastic computation, the

loading not only depends on time but on the displacement and velocity of the geometry of

study,

F = F (q, q̇). (A.2)
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Discretizing and directly solving Equation A.1 is known as direct analysis. The direct analysis

is time consuming but provides the exact solution. A different and popular approach known

as modal solution is sometimes preferred. The modal analysis performs an eigenvalue and

eigenvector decomposition transforming Equation A.1 into the so-called vibration equation

for generalized coordinates A.7.

Since the geometry of study is represented by a discrete number of grid points, the number

of degrees of freedom and therefore the number of modes (or eigenvectors) is bounded. If

one would solve all the modes with the generalized equations the same solution produced by

the direct analysis would be obtained.

The modal discretization also allows to study the individual contribution of each mode to

the final body motion which facilitates the understanding of the physical phenomenon. The

last and crucial reason for the implementation of a modal solution in ParCAE is the facility

for introducing the structural inputs in our code. While the mathematics behind a modal

analysis are more complicated than those of a direct solution case, the inputs required for a

modal analysis are much simpler. The direct solution requires the user to input the stiffness,

damping and mass matrices and the entire structural geometry. When using a modal anal-

ysis only the modes and eigenfrequencies (or eigenvalues of the free vibration problem) are

required along with the surface of the body; the complete interior structure of the body is

not required. Using a Finite-Element-Method software and analysing the properties of the

entire structural geometry, the eigenfrequencies and eigenvectors are obtained and just the

contribution from the nodes on the surface will be later used in ParCAE. The reason for only

needing the points from the surface of the body is because those are the ones that receive

external loading and therefore, the only ones that contribute to the structural equation in

generalized coordinates (Equation A.7).
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A.1 Modal Analysis

Starting by the eigenvalue and eigenvector decomposition of the free vibration problem [21],

[19]

[M ]q̈ + [K]q = 0 (A.3)

one obtains the eigenvalues

λi = ω2
i = φi

T [K]φi (A.4)

and the eigenvectors ωi of the system. λi denotes the ith eigenvalue and ω refers to natural

frequency. Such task could be done with the help of a Finite-Element-Method external

software. The eigenvectors are the so-called normal modes and the eigenvalues correspond to

the natural frequencies of the system. In a mechanical system where F = F (t) each vibration

mode φi defines the movement of the structure for a particular natural frequency ωi. The

final frequency of the structure will be a combination of the existing natural frequencies.

For an aeroelastic problem, F = F (q(t), ˙q(t)). This means that the natural frequencies and

the associated modes computed from Equation A.3 are not the real natural frequencies of

the system and neither are the associated modes. However, a modal decomposition could

be thought as a complete set of vectors that expand a vector space. As long as the set is

complete the representation of a particular value will be correct no matter which specific

vectors we choose to complete our set. The difference however, will lay on the lack of physical

meaning when using a random set of vectors. Because the natural frequencies of the system

are unknown a priori when F = F (q(t), ˙q(t)), the eigenvalues from Equation A.4 are referred

as eigenfrequencies. Such eigenfrequencies do not represent physical frequencies any more.

The associated eigenvectors are usually still denoted as normal modes which are associated
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with the corresponding eigenfrequencies but not to any physical frequency of the problem.

When analyzing the original problem where F = F (t), a common approach is to use the first

five or six modes to describe the entire motion of the structure. In a vector expansion, it

could be thought as a truncated summation of the expansion of a solution. The first modes

of the system are associated with the low natural frequencies of the system, which define the

largest deformations. Therefore, using a few instead of the full set of modes provides a quite

accurate description of the movement of the body and saves computational time.

For an aeroelastic problem where the eigenfrequencies do not correspond to any physical

frequency of the system, the choice of the first modes to describe the vibration of the system

is not so clear. Even if the natural frequencies of the aeroelatic geometry are not the

eigenfrequencies whose associated modes are being used to represent the problem, the final

solution is still proven to be well expanded. While in the original problem the contribution

to the displacement by mode n+ 1 is below the one from mode n, in the aeroelastic problem

this could not be the case. However, when the first five or six modes of the original system

are used to describe the motion of the aeroelatic problem, one confirms that the contribution

to the deformation by some of the higher modes is about two orders of magnitude below the

contribution of the first mode. Therefore, these results validate the use of the original modes

to expand the aeroelastic deformation vector.

Since the information that the modes provide is in the direction and not the magnitude

of the vector, one could scale the modes to his convenience. If one defines the vector of

displacements as

q = ηφ (A.5)
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where η are the so-called generalized coordinates, a convenient scaling for the modes is

φi
T [M ]φi = 1. (A.6)

With Equation A.5 and A.6, one can easily transform Equation A.1 into the structural

dynamic equation for generalized coordinates,

η̈i + 2ζiωiη̇i + ωi
2ηi = Qi (A.7)

where i represents each mode, ζi denotes the modal damping ratio and Qi is the generalized

force expressed as

Qi = φi
TF. (A.8)

Equation A.7 is a decoupled equation for each mode. This is due to the orthogonality of

the eigenvectors with both the stiffness and the mass matrices. By exploring further this

equation, after using the full geometry to determine the eigenfrequencies and eigenvectors,

one must use all the nodes that receive an external loading and therefore, contribute to

Equation A.7. If one wants to use nodes that do not receive external loading just to study

their motion, it will not affect the final solution of the generalized coordinates and it is a

valid option. From this discussion, one could observe that if a body will just receive loading

in force but not in moment, each eigenvector to be used can be shortened by avoiding the

angular terms since they will not contribute to the generalized coordinates. This has been

the approach followed in ParCAE.
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A.2 Temporal discretization of the structural equations

For each mode, Equation A.7 is transformed into a system of two first-order differential

equations [19], [85] by denoting

x1i = ηi, ẋ1i = x2i, ẋ2i = Qi − 2ζiωix2i − ωi2x1i (A.9)

which expressed in matrix notation becomes

Ẋi = [Ai]Xi +Bi (A.10)

with

Ẋi =

x1i

x2i

 , [Ai] =

 0 1

−ω2
i −2ωiζi

 , Bi =

 0

Qi

 . (A.11)

Using the convenient transformation Xi = [Pi]Zi, where

[Pi] =

− ζi+
√
ζ2−1

ωi

−ζi+
√
ζ2−1

ωi

1 1

 (A.12)

one transforms a coupled system of two first-order differential equations inXi (Equation A.10),

into a decoupled system of two first-order differential equations in Zi (Equation A.13).

Żi = [Pi]
−1[Ai][Pi]Zi + [Pi]

−1Bi (A.13)
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Equation A.13 in component notation is,

dz(1,2)i

dt
= ωi

(
−ζi ±

√
ζ2
i − 1

)
z(1,2)i +

√
ζ2
i − 1∓ ζi

2
√
ζ2
i − 1

Qi (A.14)

with Zi = (z1i, z2i)
T .

The last step is to discretize the LHS of Equation A.14. Choosing the same second-order

backward temporal discretization than in the dual-time stepping scheme for the flow equa-

tions,

R∗s(Z
n+1
i ) =ωi

(
−ζi ±

√
ζ2
i − 1

)
zn+1

(1,2)i +

√
ζ2
i − 1∓ ζi

2
√
ζ2
i − 1

Qn+1
i

−
3zn+1

(1,2)i − 4zn(1,2)i + zn−1
(1,2)i

2∆t
(A.15)

where R∗s(Z
n+1
i ) denotes the residual of iteration n+ 1. This formulation is also marched in

pseudo-time like in the CFD case. When the residual tends to zero, a converged value for a

particular real time step has been achieved.

Originally, Equation A.14 was marched in pseudo-time in parallel with the Navier-Stokes

equations. Therefore, the same Runge-Kutta scheme for the pseudo-time marching is used.

In practice, Sadeghi [68] observes that the speed at which the CSD equations converge is

much higher than for the CFD case and this could lead to divergence in the results. Therefore,

Sadeghi [68] chooses to march the CFD equations first, followed by some CSD iterations and

repeating the whole process until convergence in the results is achieved.
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B Fluid-Structure Interface for three-dimensional cou-

pled simulations using Constant Volume Tetrahe-

dron (CVT) method

This Section is divided in two subsections. The first part deals with the Constant Volume

Tetrahedron (CVT) method used to transfer loading and deformation between the CFD and

CSD wings. The second part introduces a Transfinite Finite Interpolation (TFI) method to

deform the entire CFD grid contained in the flow field after the CFD wing is deformed.

The combination of CVT and TFI seems to provide accurate results with fast computational

time and relative facility of implementation. On the other hand, more accurate methods pro-

vide slightly better results but imply longer computational times and significant difficulties

in the implementation.

B.1 Constant Volume Tetrahedron

The CVT method introduced by Richards’ group at the University of Glasgow [28] is a

CFD-CSD interface that adds some relaxation to a rigid CFD-CSD connection case.

It could be a common situation where the structural model (and so the CSD grid) does not

coincide with the CFD geometry. Moreover, CSD surface grids tend to be coarser than the

CFD ones. For such a case, if CFD and CSD maintain a rigid connection, the transfer of

loads will perform well but the transfer of deformations could lead to cells collapsing in the

CFD field. Imposing invariant difference vectors may lead to unphysical deformations in the

CFD geometry. The CVT formulation aims to a relatively accurate transfer of loading using

a relaxed CFD-CSD attachment to prevent the grid points from collapsing.

171



Sadeghi [68] suggests that a fluid-structure interface must transfer smooth loading and defor-

mations, represent exact rigid body motions, maintain physical deformations, and conserve

the principle of virtual work.

If the displacements of the CFD nodes ua are linearly dependent on the CSD nodes displace-

ments us, then

~ua = [G]~us (B.16)

where [G] is the transformation matrix the method is seeking for. The work from both grids

must be equal such that

~fTs ~us = ~fTa ~ua = ~fTa [G]~us (B.17)

~fs = [G]T ~fa (B.18)

where fs is the vector of forces in the CSD geometry, and fa the one for the CFD case. From

Equation B.16 and B.18 [G] must be found to compute: transfer of loading from CFD to

CSD, and transfer of displacement from CSD to CFD.

Even if the above relations suggest a linear dependence to conserve the energy, the CVT

formulation is in origin non-linear, and must be linearized.
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Figure B.1: CVT method: CFD-CSD grid association.

B.1.1 The non-linear formulation

Each node ~xa of the CFD geometry is associated with 3 nodes from the CSD body generating

a tetrahedron (Figure B.1). The restriction of constant volume in the tetrahedron will close

the CVT formulation and give the name to the method: CVT. Vectors ~a, ~b and ~c are

~a = ~xs,3 − ~xs,1
~b = ~xs,2 − ~xs,1

~c = ~xa − ~xs,1.

(B.19)

and α and β which will be constant parameters for the entire CFD-CSD computation take

the form

α =
(~b ·~b)(~a · ~c)− (~a ·~b)(~b · ~c)
(~a · ~a)(~b ·~b)− (~a ·~b)(~a ·~b)

(B.20)

β =
(~a · ~a)(~b · ~c)− (~a ·~b)(~a · ~c)
(~a · ~a)(~b ·~b)− (~a ·~b)(~a ·~b)

. (B.21)
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Before a CSD deformation (variables defined with subindex 0), in order to perform a loading

transfer from the CFD to the CSD nodes, vectors ~a, ~b and ~c are computed. ~d is always

defined as the cross product of ~a and ~b (~d = ~a×~b). The parameter γ is obtained from

γ0 =
~c0 · ~d0

~d0 · ~d0

(B.22)

After a CSD deformation, when the displacements from the CSD geometry must be trans-

ferred to the CFD one, vectors ~a, ~b, ~c and ~d are computed again. The new γ

γ =
~d0 · ~d0

~d · ~d
γ0 (B.23)

is obtained by imposing a constant volume criterion in the tetrahedron.

B.1.2 Linearization

The displacement of ~xa denoted as ~ua can be expressed as

~ua = ~uxp + ∆(γ ~d) (B.24)

where ~uxp is the displacement of the projection of ~xa on the triangular plane formed by

< ~xs,1~xs,2~xs,3 >. Since α and β are constant parameters

~uxp = ~us,1 + α(~us,2 − ~us,1) + β(~us,3 − ~us,1) (B.25)

and Equation B.24 can be expressed as

~ua = ~us,1 + α(~us,2 − ~us,1) + β(~us,3 − ~us,1) + ∆(γ ~d). (B.26)
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Using the definition of γ from Equation B.23, Equation B.26 becomes

~ua = ~us,1 + α(~us,2 − ~us,1) + β(~us,3 − ~us,1) + d2
0γ0∆

(
~a×~b
|~a×~b|

)
. (B.27)

This section started with a discussion about the conservation of energy between the CFD

and the CSD geometry and found that a linear relation between ~ua and ~us,i was needed in

Equation B.16. Equation B.27 is linear in all terms except for the last one which requires

a linearization. Badcock et al. [5] state the linearization point to be the latest time level.

Sadeghi et al. [69] use a mid-deformation position for the linearization which proves to

provide more accurate results. An integral method using Gauss-Legendre quadrature used

by Sadeghi [69] to approximate the non-linear term of Equation B.27 reaches convergence in

a minimum number of iterations.

ParCAE uses a multi-step mid-point linearization method for the evaluation of the following

matrices proposed by Badcock et al. [5].

ua =
3∑
i=1

[G](i)us,i (B.28)

Gij
(1) = δij −Gij

(2) −Gij
(3) (B.29)

Gij
(2) = αδij − γDikC(b)kj (B.30)

Gij
(3) = βδij + γDikC(a)kj (B.31)
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where δij is the Kronecker delta. The cross product matrix C of an arbitrary vector ~z is

defined with the use of the permutation symbol εijk

C(z)kj = εijkzj. (B.32)

Matrix Dij is

Dij = δij −
2

d · d
didj. (B.33)

B.2 Flow Field Grid Deformation

The previous CVT method will still be used for an uncoupled aeroelastic computation for the

load transfer from the CFD to the CSD geometries. The second part of the CVT method,

which is in charge of transferring deformations from the CSD to the CFD geometry, would

not be used. For a coupled study, once this second part of the CVT method has been used

and the CFD geometry is deformed, the grid contained in the flow field must be deformed

too. The present section presents the method that has been implemented in ParCAE to

deform the cells from the entire flow field.

For small grid deformations, one can avoid regenerating the grid around the geometry of

study. Grid regeneration is too time consuming to perform an aeroelastic study. For that

reason, it is important to find an optimum method to deform an existing grid while maintain-

ing the original grid quality. Some algebraic methods use one single processor to compute

the new position of the entire grid which is not efficient. The present method uses the main

processor to compute just the new position of the corners of each block. This information

is then passed to the other processors which individually will obtain the new position of the

grid points from their own block.
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The method was introduced by Tsai et al. [82].

B.2.1 Multiblock approach

The first part of the method from Tsai et al. is originally found in the work of Batina [7].

Batina uses this method for structured [65] and unstructured [8] flow solvers. He defines

a spring stiffness for each edge between two grid points. The nodes on the surface of the

CFD geometry have a prescribed motion and the ones in the farfield are held fixed. The

displacement of the interior points is obtained using static deformation equations for each

grid point.

Tsai et al. [82] use the same technique to obtain the new position of just the corners of each

block. If we enumerate the corner points of the blocks in a structured grid format, one can

define the stiffness of an edge between corner points i and i+ 1 such that

ki+1/2 =
1

[(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2]p/2
. (B.34)

The stiffness is increased by increasing p.

The new position of the corner-block points is obtained using a two-step predictor corrector

scheme. Initially, the displacement δx,y,z of a node i, j, k is estimated from a linear extrapo-

lation of the displacements from the two previous iterations, according to

δ̃xi,j,k = 2δnxi,j,k − δ
n−1
xi,j,k

δ̃yi,j,k = 2δnyi,j,k − δ
n−1
yi,j,k

δ̃zi,j,k = 2δnzi,j,k − δ
n−1
zi,j,k

.

(B.35)
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In the corrector step, the displacements of each corner-block node are obtained from

δn+1
xi,j,k

=
ki+1/2,j,k δ̃xi+1,j,k

+ . . .+ ki,j,k−1/2 δ̃xi,j,k−1

ki+1/2,j,k + . . .+ ki,j,k−1/2

δn+1
yi,j,k

=
ki+1/2,j,k δ̃yi+1,j,k

+ . . .+ ki,j,k−1/2 δ̃yi,j,k−1

ki+1/2,j,k + . . .+ ki,j,k−1/2

(B.36)

δn+1
zi,j,k

=
ki+1/2,j,k δ̃zi+1,j,k

+ . . .+ ki,j,k−1/2 δ̃zi,j,k−1

ki+1/2,j,k + . . .+ ki,j,k−1/2

.

The summation in Equation B.36 goes from 1 to 6 in a 3D hexahedral grid where the

contribution of each edge ending into the grid point i, j, k is considered. Once the new

position of the corner-block points is obtained, it is passed onto each processor to calculate

in parallel the new position of the interior grid points for each block.

B.2.2 Single Block Approach: Trans Finite Interpolation

A Trans Finite Interpolation (TFI) method introduced by Soni [71] is used. The displacement

of the interior points of a block is obtained in three steps. First, the new position of the

points along each of the 12 edges of a block is obtained using a previous parameterization of

the points’ position in the edge and the new position of the corner points. As an example,

an edge is previously parameterized keeping two indices fixed (j∗, k∗), and marching in the

third one (i). Defining Fi,j∗,k∗ as the parameterization of the points along an edge in the i

direction,

s1,j∗,k∗ = 0

si,j∗,k∗ = si−1,j∗,k∗ +
√

(xi,j∗,k∗ − xi−1,j∗,k∗)2 + (yi,j∗,k∗ − yi−1,j∗,k∗)2 + (zi,j∗,k∗ − zi−1,j∗,k∗)2

i = 2, ..., imax.

Fi,j∗,k∗ = si,j∗,k∗/simax,j∗,k∗

(B.37)
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Figure B.2: k∗ plane representing one of the 2 constant k faces of a block.

And the displacement of the edge points will be

∆Ei,j∗,k∗ = (1− Fi,j∗,k∗)∆P1,j∗,k∗ + Fi,j∗,k∗∆Pimax,j∗,k∗ (B.38)

where ∆P1,j∗,k∗ and ∆Pi max,j∗,k∗ are the displacement of the initial and final corner points

of an i− direction edge, respectively.

The second step, once the edge points of a block have been deformed, is to deform the points

contained on each of the 6 surfaces of each block. Following the previous formulation, a

surface defined in the i, j (Figure B.2) plane would compute its surface points displacements

as

∆Si,j,k∗ = Ai,j,k∗∆E1,j,k∗ +Bi,j,k∗∆Eimax,j,k∗ + Ci,j,k∗∆Ei,1,k∗ +Di,j,k∗∆Ei,jmax,k∗

− Ai,j,k∗Ci,j,k∗∆P1,1,k∗ −Bi,j,k∗Ci,j,k∗∆Pimax,1,k∗ − Ai,j,k∗Di,j,k∗∆P1,jmax,k∗

−Bi,j,k∗Di,j,k∗∆Pimax,jmax,k∗

(B.39)
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where ∆S, ∆E and ∆P denote surface, edge and corner point displacement, respectively.

The remaining blending functions are

Ai,j,k∗ = 1− ηi,j,k∗ , Bi,j,k∗ = ηi,j,k∗

Ci,j,k∗ = 1− εi,j,k∗ , Di,j,k∗ = εi,j,k∗
(B.40)

with

Qi,j,k∗ = 1− (Fi,jmax,k∗ − Fi,1,k∗)(Gimax,j,k∗ −G1,j,k∗)

εi,j,k∗ = [G1,j,k∗ + Fi,1,k∗(Gimax,j,k∗ −G1,j,k∗)]/Qi,j,k∗

ηi,j,k∗ = [Fi,1,k∗ +G1,j,k∗(Fi,jmax,k∗ − Fi,1,k∗)]/Qi,j,k∗ .

(B.41)

At this point, each block contained in each processor has already displaced the grid points

from each of the 6 faces of the block. The last and third step is to displace the nodes

from the interior of the blocks. Taking as a reference the previous formulation step from

one-dimensional (Equation B.38) to two-dimensional (Equation B.39), and following the

guidelines from Soni [71] and Tsai et al. [82] we can extend the formulation to the third

dimension.

Being H the analog of F and G for the k dimension, the deformation of the interior points

of the block is determined from

∆Vi,j,k = V1 + V2 + V3 − V12 − V13 − V23 + V123 (B.42)
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with

V1 = (1− Fi,j,k)∆S1,j,k + Fi,j,k∆Simax,j,k

V2 = (1−Gi,j,k)∆Si,1,k +Gi,j,k∆Si,jmax,k

V3 = (1−Hi,j,k)∆Si,j,1 +Hi,j,k∆Si,j,kmax

V12 = (1− Fi,j,k)(1−Gi,j,k)∆E1,1,k + (1− Fi,j,k)Gi,j,k∆E1,jmax,k

+ Fi,j,k(1−Gi,j,k)∆Eimax,1,k + Fi,j,kGi,j,k∆Eimax,jmax,k

V13 = (1− Fi,j,k)(1−Hi,j,k)∆E1,j,1 + (1− Fi,j,k)Hi,j,k∆E1,j,kmax

+ Fi,j,k(1−Hi,j,k)∆Eimax,j,1 + Fi,j,kHi,j,k∆Eimax,j,kmax

V23 = (1−Gi,j,k)(1−Hi,j,k)∆Ei,1,1 + (1−Gi,j,k)Hi,j,k∆Ei,1,kmax

+Gi,j,k(1−Hi,j,k)∆Ei,jmax,1 +Gi,j,kHi,j,k∆Ei,jmax,kmax

V123 = (1− Fi,j,k)(1−Gi,j,k)(1−Hi,j,k)∆P1,1,1

+ (1− Fi,j,k)(1−Gi,j,k)Hi,j,k∆P1,1,kmax

+ (1− Fi,j,k)Gi,j,k(1−Hi,j,k)∆P1,jmax,1

+ (1− Fi,j,k)Gi,j,kHi,j,k∆P1,jmax,1

+ Fi,j,k(1−Gi,j,k)(1−Hi,j,k)∆Pimax,1,1

+ Fi,j,k(1−Gi,j,k)Hi,j,k∆Pimax,1,kmax

+ Fi,j,kGi,j,k(1−Hi,j,k)∆Pimax,jmax,1

+ Fi,j,kGi,j,kHi,j,k∆Pimax,jmax,kmax

(B.43)

A relaxation strategy to prevent grid discontinuities is implemented in ParCAE to treat cases

of mixed block boundary conditions where a face of a block contains part of the geometry

and part of the flow field. Another contribution from Tsai et al. [82] helps to maintain the

original angle of the grid points in contact with a solid wall preventing the crossover of cells

when large deformations occur.
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C Three-dimensional preliminary results of aeroelastic

computations

A steady state deformation is shown in this section. The system is tested in a coupled and

uncoupled mode. For the uncoupled mode, the CFD force distribution from the rigid wing

is transfered at the end of the computation generating a structural displacement. But the

system is uncoupled, since the new structural position is not used in the CFD code to obtain

new loading distributions.

The coupled mode produces an iterative procedure between the CFD and the CSD codes to

obtain a final deformed steady state distribution where both sets of equations are satisfied.

Two different grids are used for CFD and CSD computations due to the CFD grid having

much higher resolution requirements. Images of both grids are shown in Figures C.3 and C.4.

C.1 Coupled and uncoupled static deformation

Cai et al. [14] present different strategies that could be used individually or combined in

order to obtain a static deformation with the minimum number of iterations and avoiding

large non-physical initial deformations that could lead to collapsing cells.

In their work, they suggest to eliminate the inertial term from the structure dynamics equa-

tions to suppress the oscillatory behavior of the solution and reach faster a steady state.

They also recommend increasing the damping coefficient and using a blending for the dis-

placements,

qn+1 = αqn + (1− α)qn+1 (C.44)
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Figure C.3: 3D view of both CSD wings.
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Figure C.4: Top view of both CSD wings.
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Figure C.5: Original wing position (blue), coupled (red) and uncoupled (green) aeroelastic
static deformation wing positions.

where the structural displacement at each time step is blended with the displacement at

the previous time step. For the present computations, α has been taken as 0.5. Blending

the displacement and increasing the damping prevents the system from applying too large

displacements that could lead to collapsing cells. The equations can be marched in pseudo

time to steady state since accuracy in time is not required for a static deformation.

Mach number 0.8, angle of attack 0, and flight conditions at 10 km altitude are tested for

the real wing size.

Figure C.5 shows the original, the coupled and the uncoupled static deformation obtained

for this wing. For the uncoupled case, the flow part of the code has been marched in pseudo-

time to steady state, and a single deformation step has been performed in the modal analysis

type of ParCAE. The results of final loading on the wing for both coupled and uncoupled

cases have been saved. We have input those into NASTRAN to compare the deformation

from NASTRAN with the one we have obtained in ParCAE to validate our structural solver.

The solution from NASTRAN (direct analysis) and ParCAE (modal analysis with 5 modes)

have differences below 0.5% which are probably due to the use of just 5 modes in ParCAE.

Figures C.6 and C.7 show the results obtained for the coupled and uncoupled case in ParCAE.
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Figure C.6: Vertical deflection of leading
edge and trailing edge nodes for a coupled
and uncoupled aeroelastic static simulation.
Z denotes the spanwise dimension, being 0
at the root of the wing.

Figure C.7: Twist angle for the original
wing and the deformed ones by a coupled
and an uncoupled aeroelastic static simu-
lation. Z denotes the spanwise dimension,
being 0 at the root of the wing.

Figure C.6 shows the vertical deflection of the leading edge and trailing edge points, and

Figure C.7 shows the original and final twist angle distribution.
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