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Abstract. This paper elaborates on the geospatial semantics of Sup-
ply Chain Visibility (SCV) and how a Geospatial Knowledge Graph
(GeoKG) helps answering spatio-temporal questions related to the sup-
ply chain. An ontology is developed to provide a generic semantic model
for the SCV domain, based on existing ontologies and ontology design
patterns. Secondly, an early-stage GeoKG is generated in a GeoSPARQL-
enabled semantic triplestore to demonstrate the spatio-temporal query-
ing capability. The focus of this work is on the semantic representation of
spatio-temporal trajectories of material flow as this is the central aspect
of SCV.
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1 Introduction

Spatial and temporal information about objects moving along supply chain net-
works (SCN) are essential parts of the definition of supply chain visibility (SCV)
in [4]. A SCN is defined as “a network of connected and interdependent or-
ganisations mutually and co-operatively working together to control, manage
and improve the flow of materials and information from suppliers to end users”
[1]. Supply chain visibility (SCV) denotes the ability of a focal firm ”to ’see’
from one end of the supply chain to the other” [7]. More precisely, [4] defines
the elements of SCV that we use as reference point of our study: ”identity,
location and status of entities transiting the supply chain, captured in timely
messages about events, along with the planned and actual dates/times for these
events.” In the SCV context entities can be any objects (e.g. product, collec-
tion of orders, container, vessel, etc.) travelling along a SCN. Location refers
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to the position of each entity in the SCN and can be either static or dynamic
[4] – e.g. as stock in a factory waiting for an order or loaded onto a truck on
the way to the customer. These general considerations are consistent with the
stop-move conceptualization of semantic trajectories [8]. Among other things,
product flows, e.g. shipping of customer orders, are to be recorded and tracked
in order to improve performance of the SCN under review [7]. In contemporary
SCNs, various stakeholders with different data storage and applications collect
data. In order to share the collected information in the SCN, data requires to be
integrated overcoming institutional borders. Additionally, SCV applications typ-
ically require fast and reliable system architectures for the processing of (near)
real-time data that evolve over time in their backends, need to be flexible enough
to share data among participating stakeholders for different enterprise systems
and fast enough in terms of reasoning over paths. These requirements can be
met with the help of Semantic Web technologies [10, 9, 15] and graph databases
[2]. Linked Data approaches, open standards and graph-based representation of
data (i.e. RDF-Schema and OWL) can reduce efforts for information integra-
tion and sharing alike, while the value of the information increases [16]. This is
due to the attribution with universally unique identifier systems (URI/IRI) and
semantically enriched data which provide the basis for inferencing capabilities.

According to [6] a knowledge graph (KG) is a data graph, which is potentially
enhanced with information of the intrinsic semantics, e.g. representations of a
semantic, validating and/or emergent schema, identity, context and/or rules.
In this paper we cover aspects of semantic schemas only which are represented
by the World Wide Web Consortium (W3C) standards RDF-Schema (RDFS3)
and the Web Ontology Language (OWL4) . Together they basically allow for
defining classes, properties and axioms for RDF graphs. This information may
be embedded into the data graph to enable inference for data enrichment by
deductive knowledge [6]. If geographic information (GI) is modelled within the
KG, we refer to it as GeoKG [17, 3].

We strive to emphasize the spatio-temporal dimension in the ontology and
contribute to the spatial data science community by modelling a spatio-temporal
supply chain, utilizing existing ontologies (or parts thereof) and ontology de-
sign patterns. This is of particular importance as spatially explicit models are
preliminaries for GeoAI applications [9]. Hence, the paper applies GeoKG and
geographic question answering with the objective to support SCV decisions in
the future, based on spatio-temporal data and semantics.

The remainder of the paper is organized as follows. Section 2 describes the
inductive methodology of ontology engineering and GeoKG development Section
3 presents the preliminary results of the work in progress and demonstrates how
spatio-temporal information of a moving object in the SCN may be queried from
the early-stage GeoKG. Section 4 discusses the results achieved and presents a
critical outlook.

3 https://www.w3.org/TR/rdf-schema/
4 https://www.w3.org/TR/owl2-overview/
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2 Methodology

The methodology followed in this paper is centered around the development
of a domain ontology for SCV, based on existing work. This ontology is later
on utilized in a GeoKG, that is populated with a test data set. Competency
questions show the capability to support spatio-temporal question answering
and reveal the functionalities and limitations thereof.

The requirement for the ontology is that it be kept as generic as possible for
the SCV domain. For the authoring process we used the method of ontology en-
gineering [5] and followed five steps: 1) defining scope and purpose, 2) describing
use cases and competency questions that will help testing if the scope and pur-
pose are met by the ontology, 3) building a list of terms that build the necessary
vocabulary or lexicon of the ontology. This step involves the identification of
existing vocabularies or taxonomies for re-use. We identified GeoSPARQL5 and
OWL-Time6 to be appropriate in order to map the spatio-temporal aspects of the
domain. For provenance we used DC terms7 and SKOS8. The following step 4)
includes writing informal explanations for all terms in natural language as a glos-
sary. And lastly 5), the conceptualization step, where the formal OWL/RDFS
ontology is developed. We made use of Protégé Desktop version 5.5.0 9 and the
plugin HermiT 1.4.3.456 reasoner. The namespaces and prefixes that are used
for the ontology are depicted in fig. 1.

Fig. 1. Excerpt and graphical representation of Supply Chain Visibility Ontology

5 http://www.opengis.net/doc/IS/geosparql/1.0
6 https://www.w3.org/TR/2020/CR-owl-time-20200326/
7 https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
8 https://www.w3.org/TR/2009/REC-skos-reference-20090818/
9 https://protege.stanford.edu/
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For constructing the GeoKG the authors utilized GraphDB Free10, a seman-
tic triplestore. Synthetic test data describing a supply chain are used for test
purposes. The elements of the test data are mapped to RDF and lifted by the
SCV ontology using the built-in RDFizer tool OntoRefine in GraphDB. The
repository uses the OWL-Horst entailment ruleset for consistency checks and in-
ference. The ontology is imported to the default graph of the graph dataset and
data are imported to named graphs. To test and validate the resulting GeoKG
the spatio-temporal competency questions serve as a natural language basis to
code SPARQL queries.

3 Preliminary Results

An excerpt of the ontology is depicted in fig. 1. Since network elements are the
carriers of the moving objects, the ontology models the basic structure of SCN
(denoted as classes :Node and :Edge) and the moving entities (called :Item).
To determine the trajectories, the spatio-temporal components of the item steps
are determined via their recorded traces (denoted as :NetPosition). Depend-
ing on the required level of detail, the exact position on the transport network
is recorded (e.g. via track & trace technology) or an association to a SCN el-
ement (e.g. Item enters/exits :Node or :Edge). The class :NetPosition acts
as a mediator for the n-ary relations [14] that an :Item has to its location at
a certain time stamp or interval (via :atTime). From this follows that data of
class :Item have an indirect spatial dimension via the :atLocation relation
from associated :NetPosition. The class :Node represents the stakeholders and
physical locations involved in a SCN and are linked via objects of class :Edge.
The latter may represent abstract connections, like arbitrary business relations,
or transport routes, e.g. from raw material supplier to production site. Con-
sidering that not every :Node (stakeholder of a SCN) necessarily needs to be
a carrier of an :Item (e.g. the office of a logistics service provider), we intro-
duced a defined class :GeographicNode, that is a subclass of :Node and has
a geo:hasGeometry relation to some sf:Point object. Accordingly, an :Edge

that has a geographic extent is defined in the sublass :GeographicEdge and is
linked to some sf:Curve geometry. Having a geo:hasGeometry relation makes
:GeographicNode and :GeographicEdge automatically a geo:Feature of the
GeoSPARQL ontology and allows distinction between spatial and non-spatial
objects in the resulting GeoKG.

To test and validate the resulting GeoKG the competency questions defined
during the ontology engineering process serve as a natural language basis to code
GeoSPARQL queries. We anticipated the following spatio-temporal competency
questions (QC) that need to be answered and help making informed decisions:

CQ 1 What is the spatio-temporal trajectory of an item?
CQ 2 What is the mean total travel distance and time of an item?
CQ 3 At what time did a certain item reside in a certain SCN position or area?

10 https://graphdb.ontotext.com/documentation/free/
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Listing 1.1. CQ 1 SPARQL query

PREFIX scvo : <http :// example/ onto logy / scvo#>
PREFIX items : <http :// example/ base / items>
PREFIX rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
SELECT ? item ? pos ? l o c a t i o n ? time
WHERE { FILTER (? item = items : product5 )

? item scvo : hasPosSequence | scvo : hasPosSequence /
scvo : nextPos i t i on+ ? pos .

? pos scvo : atLocat ion ? l o c a t i o n .
? pos scvo : atTime ? time .

} order by ? item ? time

We carried out a test run and constructed the early-stage GeoKG. The test
data containing 2,728 rows and a varying number of attribute columns have been
mapped to RDF/Turtle syntax and lifted using the concepts of the ontology. To
complement the mapping & lifting process additional data manipulation and a
SPARQL INSERT query was conducted to implement the ontologically defined
connection between items and their network positions (:NetPosition, see fig. 1).
Each :NetPosition is associated with an :Item via :positionOf as well as with
a :Node or :Edge via the :atLocation relationship. The resulting GeoKG holds
87,445 triples, where 23.1 % (20,242) have been explicitly inserted and 76.9 %
(67,203) are inferred by the OWL-Horst ruleset of the repository and the defined
axioms of the ontology. To demonstrate the early-stage capability of the GeoKG
to answer spatial questions, we use a query that is associated to CQ 1. The query
in listing 1.1 searches the KG for all positions of a certain item and their spatial
and temporal properties. A visual representation of the spatio-temporal track is
depicted in fig. 2.

Fig. 2. Item’s (red) graph view of its spatio (violet) -temporal (yellow) trajectory (blue)
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4 Discussion and Outlook

The paper presents an early stage spatio-temporal ontology excerpt and GeoKG
for enhancing SCV for physical objects. Information and monetary flows were not
considered here, but indicate a direction for further development. The GeoKG
is implemented in GraphDB Free and tested with a synthetic test data set. In
order to evaluate the capabilities to answer spatio-temporal queries related to a
supply chain, we used competency questions defined by the authors. The results
of CQ1 SPARQL Query (listing 1.1) reveal that the spatio-temporal history of
the token can be extracted from the GeoKG. With regard to the applicability of
the GeoKG, further efforts need to be made towards ensuring data consistency
and quality, e.g. introducing further ontology axioms, using Shapes Constraint
Language (SHACL) or Shape Expressions (ShEx). Future research questions
include the spatio-temporal aggregation of resulting data sets, based on geo-
graphic and semantic properties (see e.g. [17, 11]) as indicated by CQ 2 and 3.
Further ontology design patterns concerning semantic trajectories in the spatio-
temporal context ([8, 13]) and the supply chain domain have to be looked at
and checked for their content, whether they represent or contain suitable com-
plements or equivalent classes compared to the SCV ontology presented here.
Moreover spatio-temporal semantic reasoning based on a GeoKG is of interest
to support comprehensible decision making processes especially for the appli-
cation field SCV. The market of commercial SCV platforms just emerges, as
identified by the market research company Gartner, but still lacks prescriptive
analytical capabilities [12] where exchange with representatives from geoscience
and industry would be useful and desirable. Continuing efforts could help reduce
the carbon footprint of global supply chains, as the GeoKG enables the collab-
oration between stakeholders of supply chains - in order to minimize transport
distances and to utilize transport resources more efficiently.
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