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Abstract: Windthrow (i.e., trees broken and uprooted by wind) is a major natural disturbance in
Amazon forests. Images from medium-resolution optical satellites combined with extensive field
data have allowed researchers to assess patterns of windthrow tree-mortality and to monitor forest
recovery over decades of succession in different regions. Although satellites with high spatial-
resolution have become available in the last decade, they have not yet been employed for the
quantification of windthrow tree-mortality. Here, we address how increasing the spatial resolution
of satellites affects plot-to-landscape estimates of windthrow tree-mortality. We combined forest
inventory data with Landsat 8 (30 m pixel), Sentinel 2 (10 m), and WorldView 2 (2 m) imagery over
an old-growth forest in the Central Amazon that was disturbed by a single windthrow event in
November 2015. Remote sensing estimates of windthrow tree-mortality were produced from Spectral
Mixture Analysis and evaluated with forest inventory data (i.e., ground true) by using Generalized
Linear Models. Field measured windthrow tree-mortality (3 transects and 30 subplots) crossing
the entire disturbance gradient was 26.9 ± 11.1% (mean ± 95% CI). Although the three satellites
produced reliable and statistically similar estimates (from 26.5% to 30.3%, p < 0.001), Landsat 8 had the
most accurate results and efficiently captured field-observed variations in windthrow tree-mortality
across the entire gradient of disturbance (Sentinel 2 and WorldView 2 produced the second and third
best results, respectively). As expected, mean-associated uncertainties decreased systematically with
increasing spatial resolution (i.e., from Landsat 8 to Sentinel 2 and WorldView 2). However, the
overall quality of model fits showed the opposite pattern. We suggest that this reflects the influence of
a relatively minor disturbance, such as defoliation and crown damage, and the fast growth of natural
regeneration, which were not measured in the field nor can be captured by coarser resolution imagery.
Our results validate the reliability of Landsat imagery for assessing plot-to-landscape patterns of
windthrow tree-mortality in dense and heterogeneous tropical forests. Satellites with high spatial
resolution can improve estimates of windthrow severity by allowing the quantification of crown
damage and mortality of lower canopy and understory trees. However, this requires the validation
of remote sensing metrics using field data at compatible scales.

Keywords: blowdowns; crown damage; forest inventory; extreme wind gusts; natural disturbances;
spatial resolution; Spectral Mixture Analysis

1. Introduction

Windthrows (i.e., trees snapped and uprooted by wind) are the major mechanism
of tree mortality in the Amazon, and can influence forest structure, species composition,
and carbon balance [1–4]. Windthrows are associated with extreme rainfall events, mostly
produced by mesoscale convective systems [5]. Under climate change, the intensity and
frequency of convective storms is predicted to increase [6,7]. Thus, accurately quantifying
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the occurrence of windthrows and associated tree mortality can contribute to understanding
their ecosystem effects, and to predict how forests will respond to altered disturbance
regimes [8–11].

Optical satellite imagery with medium spatial resolution (from 10 m to 39.9 m pixel
size) [12], such as Landsat, combined with field data has allowed researchers to assess
patterns of tree damage and mortality, and to monitor forest recovery over decades of subse-
quent succession in different regions [13–15]. These studies demonstrated that windthrows
affect a large portion of the Amazon and occur with a range of intensities and sizes. The
Central and Northwestern Amazon regions concentrate the highest incidence of large-scale
(>30 ha) events [13,16,17].

Landsat offers broad coverage of the Earth’s surface and long-term imagery
data [18–20], allowing for reliable estimates of windthrow tree mortality at the stand,
landscape, and regional scales [13,14,17]. However, robust estimates of tree mortality
depend on the compatibility between the spatial resolution of optical sensors and the
grain size of targets [21,22]. For this reason, using Landsat to detect windthrows formed
by clusters of less than ~6–8 dead trees is challenging [23]. Even for larger windthrows
(>5 ha), Landsat assessments may underestimate tree mortality by not accurately captur-
ing relatively lower levels of disturbance on the periphery of impacted patches or due to
surviving trees and the relatively fast regrowth of the natural regeneration [13,24].

Obtaining reliable estimates of tree mortality using remote sensing is not a trivial
task. The quality of such estimates is highly dependent on the target of interest (e.g., single
or clustering dead-trees, [25,26]), the methods used to quantify windthrow severity [27],
and the characteristics of the employed sensors (e.g., spatial, temporal, and spectral res-
olutions [21,28,29]). The spatial resolution of satellites has been treated as an important
variable in this process as it can improve the detection capability of small and diffuse vege-
tation damage, and thus minimize the influence of spectral mixing [30]. Spectral mixing
tends to dilute the spectral signature of tree damage and mortality with other elements
within the pixels. This includes shadow, exposed soil, or surviving trees within a matrix of
impacted forest [27,31]. High spatial resolution satellite data, such as QuickBird, IKONOS,
GeoEye, and WorldView, are suitable for detecting small canopy gaps in dense tropical
forests [32–36] and have been shown to be efficient, even for detecting individual tree
mortality in the Amazon [25,26,34,37,38].

In addition to optical satellites, other approaches such as SAR (Synthetic-Aperture
Radar [39,40]), LiDAR [41–43] and aerial photos [44] have been tested to estimate tree-
mortality associated with windthrows. SAR offers data that are less dependent on weather
effects and with spatial resolutions comparable to high- and medium-resolution satel-
lites [45,46]. However, this technology has not yet been tested for the Amazon, and a study
conducted in a temperate forest showed that windthrow detection was not reliable due to
shading and overlap effects that are common in mountainous areas, as well as the polariza-
tion and distortions associated with the angle of incidence during image acquisition [46].
Although aerial photos, LiDAR, and high-resolution satellites provide high-quality data,
they have relatively restricted spatial and temporal coverage, high costs, and variations
in light conditions and angles of view. These aspects restrict the use of such imagery for
assessing patterns of forest damage and recovery [47].

Previous studies have successfully related windthrow tree-mortality recorded in forest
inventories to changes in reflectance by using Spectral Mixture Analysis (SMA) [27] of
Landsat images [13,14,16]. These studies show a consistent correlation between field and
remote sensing data. Recent advances in computational techniques using Machine Learning
have enabled the automatic detection of windthrows in forests outside the Amazon using
high spatial resolution satellite imagery [48–50]. These techniques could enhance future
research results using high spatial resolution imagery [51–53].

Although optical satellites with high spatial resolution (pixel size≤10 m) have become
available for the Amazon in the last decade, they have not yet been applied for mapping
windthrows and quantifying associated tree mortality. Therefore, how windthrow tree
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mortality estimates obtained with high-resolution satellites will be related to ground truth
(i.e., precision and accuracy) in dense tropical forests remains unexplored.

Here, we combined optical remote sensing with forest inventory data across a distur-
bance gradient created by a single windthrow event from 2015 to investigate how spatial
resolution affects the accuracy and precision of tree mortality estimates in the Central
Amazon. Our study provides a framework for future research that aims to assess the
severity of natural disturbances through reliable estimates of tree mortality. We addressed
the following questions: (i) How does spatial resolution affect estimates of windthrow
tree-mortality? (ii) Which sensor (i.e., Landsat 8, Sentinel 2, and WorldView 2) produces the
most reliable estimates of tree mortality across an extent gradient of windthrow severities?

2. Materials and Methods
2.1. Study Area and Sampling Design

This research was conducted in a remote old-growth forest located near Manaus, Brazil
(2◦53′41′′S, 60◦16′26′′W). This forest was impacted by a convective storm that occurred in
November 2015, which propagated destructive wind gusts and rain and caused widespread
tree mortality across an area of ~70 hectares (Figure 1a–c).
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Figure 1. Windthrown forest located near Manaus, Central Amazon, Brazil (a,b), and inventory and
virtual plots used to quantify tree mortality (c–e). Subfigures (c,e) are an RGB-composition from
WorldView 2 image from 27 July 2016.

The windthrown area is covered by a forest transitioning from terra-firme (at the
higher portions of the relief) to campinarana, such as described in adjacent areas [54–57].
Terra-firme is the most common upland forest type in the Amazon basin [58,59]. The lower
portions of valleys (regionally known as baixios) can be temporally flooded by relatively
small streams [60]. The terra-firme forests have a continuous canopy, dense understory, and
high diversity of tree species [1,61–63]. Campinaranas are the predominant forest type that
cover sandy soil patches with low nutrient content and poor drainage during the rainy
season [64]. Compared to terra-firme forests, campinaranas have lower species richness and
a distinct floristic composition due to their oligotrophic conditions [65]. In comparison to
terra-firme, these forests usually have a decreased tree density, basal area, and biomass;
shorter canopy; and are dominated by few tree species [55]. The transition between
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terra-firme and campinaranas can aggregate species from both environments, and thus
produce relatively high species diversity—for instance, having between 63 to 137 species
in a single hectare [54]. Our study site is located in a remote area not affected by previous
human or other large-scale natural disturbances during the last several decades.

The average annual temperature and precipitation in the region of Manaus (40 km
from our study site) is 26.9 ± 0.17 ◦C and 2.231 ± 118 mm, respectively (mean ± 95%
confidence interval for the period of 1970–2016, [2]). This region has an evident dry season
from July to September, with monthly precipitation usually being less than 100 mm [13,16].
Soils on the plateaus have generally high clay content that transition to sandy soils in the
lower portions [66,67]. In general, the soils have low fertility, low pH, high aluminum
concentration, and low organic carbon content [60]. The local relief in our study region
is undulating, including plateaus, slopes, and small valleys associated with perennial
drainages [60,67].

To quantify windthrow tree-mortality in the field, we carried out a detailed forest
inventory following a protocol built up from previous studies [1,2,13,14,23]. Following
previous research conducted across different regions of the Amazon [1,2,4,23], we selected
areas spanning the entire gradient of tree mortality within the affected forest, which
were inspected in the field and through previous assessments that were performed by
following well-established protocols [1,2]. Since this is a remote area for which no accessing
infrastructure was available (e.g., roads and trails), our sampling also considered logistics
limitations and the safety of our field crew. The forest inventory was performed over
two campaigns conducted in December 2016 (~1 year after the windthrow) and April 2017
(~1.5 years after the windthrow). We established three 20 m × 125 m transects, subdivided
into 10 subplots of 10 m × 25 m (250 m2) (total of 30 subplots, hereafter referred to as field
subplots). Our transects crossed the entire disturbance gradient, ranging from areas with
little or no disturbance (i.e., unimpacted old-growth forest) to severely impacted forest
with few or no surviving trees. In the field subplots, we recorded, identified, and measured
the diameter at breast height (DBH) of all living trees with DBH ≥ 10 cm. Due to logistic
and safety issues, we did not count dead trees in severely impacted areas. With this we
also aimed to reduce random errors due to possible missing trees hidden below the large
amount of coarse wood debris that is typical of windthrows (Figures S1–S4) [1,14]. Instead,
we estimated the number of dead trees by subtracting the number of living/surviving trees
recorded in each subplot from 15, which corresponds to mean tree density in adjacent old-
growth forests (i.e., ~590 trees ha−1, or 15 trees in 250 m2, Table S1, [1,4,54–56,68–70]). The
subplots with more than 15 live trees were considered as undisturbed (i.e., no associated
windthrow tree-mortality).

2.2. Spectral Mixture Analysis and Remote Sensing Estimates of Windthrow Tree-Mortality

We used Landsat 8 and Sentinel 2 images acquired before and after the studied
windthrow event (11 September 2015 and 27 July 2016, and 25 August 2015 and 30 July
2016, respectively). For the WorldView 2, we only used an image acquired after the
event (27 July 2016). Landsat 8 and Sentinel 2 were downloaded from the Google Earth
Engine platform (https://earthengine.google.com/, accessed on 25 April 2022) [71], and
WorldView 2 was purchased from Digital Globe. We selected images with the minimum
percent cloud cover, the closest pass dates to each other, and the greatest proximity between
the acquisition date and the occurrence of the studied windthrow (Table S2).

We used Spectral Mixture Analysis (SMA) [72,73] and quantified the fractions of
endmembers [27] following a well-known routine that was established in previous stud-
ies [9,13,14,16,23]. The endmembers contain specific spectral signatures of multiple ele-
ments that make up the forest surface and can be used to compute fraction images for
different targets of interest [74,75]. We quantified the fraction of the following endmem-
bers: green vegetation (GV, i.e., photosynthetically active vegetation), non-photosynthetic
vegetation (NPV, i.e., dead vegetation), and shade (SHD) [27]. Endmembers were extracted
and quantified using the software, ENVI 5.3 [27,76–79].

https://earthengine.google.com/
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We used Landsat 8 and Sentinel 2 imagery with pixel values corrected for top-of-
atmosphere (TOA) reflectance. For WorldView 2, a band-by-band radiometric correction
factor was used to bring pixel values to the same range as Landsat 8 and Sentinel 2 [80]. As
the evaluated satellites have different numbers of bands and respective spectral ranges, we
obtained the spectral signatures of the focal endmembers by using the bands common to all
of them. For Landsat 8 and Sentinel 2, we used the blue, green, red, NIR, and SWIR bands.
Since WorldView 2 has a smaller spectral range, we used the blue, green, red, red edge,
and NIR bands. The selected bands are sensitive to the physical, chemical, and anatomical
characteristics of the leaves and trunks, thereby maximizing the distinction between GV
and NPV [72,74,75].

We used the Purity Pixel Index spectral toolkit ([81], Figure S8) that relied on a well-
established and reliable method that has been extensively used [1,14,16,17] to select the
purest pixels from all images (e.g., areas where all trees were downed versus unaffected
old-growth forest) to acquire the most accurate/representative endmembers of interest [27].
Finally, we conducted a SMA to compute fraction images of GV, NPV, and SHD [73].
Windthrows have a specific spectral signature for the NPV fraction, which originated from
the deposition of large amounts of dead leaves and wood debris on the forest floor [82].
To ensure that the GV fraction represented forest patches not affected by the studied
windthrow, we selected endmembers within the adjacent old-growth forest. The SHD
endmember was selected from rivers in the vicinity of the impacted area.

The SHD endmember quantifies the effects of shading associated with the acquisition
angle of images, canopy roughness, topography, and clouds [27,83]. Shading is highly re-
lated to the biophysical characteristics of trees and a major aspect contributing to variations
in radiance and reflectance of canopies [74]. In tropical forests, shade can represent 30%
of the canopy pixels and this effect can be observed in the red and NIR bands of medium-
and high-resolution imagery [31]. In windthrown forests, a systematic reduction in the
shadow fraction can be expected; however, the shadow fraction remains relatively high
in areas that were less impacted and at the edge of gaps [23]. We conducted our analyses
using the normalized GV and NPV fractions, for which the sum equals to 1 using the
following equation:

NPVnorm =
NPV

(GV + NPV)
(1)

where NPVnorm is the normalized values of the endmembers ranging from 0 to 1 [27]. This
implies that a reduction in one fraction leads to an increase in the other fraction by the same
proportion [27] (Figure S10). The best images were selected according to [84], our field
observations, and the spatial distribution of NPVnorm values across the windthrow patches
visible in the RGB compositions. We checked the histograms of the NPVnorm images and
selected those with more than 98% of the pixels with values between 0 and 1 [85]. We also
used the residual error (RMS) from the SMA as a selection criterium (i.e., the lower the
better) (Figure 2).

The differences between the NPVnorm before (i.e., old-growth) and after disturbance
(∆NPV) provide a quantitative measure of windthrow tree-mortality [9,86]. The larger
the ∆NPV values, the greater the windthrow tree-mortality [9,14,23]. For Landsat 8 and
Sentinel 2, we calculated the ∆NPV fraction using the selected pair of images as described
earlier (Table S6). In addition, we focused on images whose acquisition date was as close
as possible to the windthrow date. We defined the probable date of occurrence based on
the analysis of a time-series of Sentinel 2, which has a shorter revisiting time (~5 days)
compared to Landsat 8 (~16 days).
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This approach could not be implemented for WorldView 2, for which we had a single
image after the windthrow. The NPVnorm and ∆NPV for Landsat 8 and Sentinel 2 varied
with similar ranges and amplitudes (Figures S5 and S6, Tables S5 and S6). As supported
by this pattern and the old-growth stage of forest surrounding the windthrown areas
(i.e., no human or large-scale natural disturbances), comparison analyses were conducted
for NPVnorm of the three satellites.

We calculated NPVnorm at subplot level (Table S3). For this, we converted the NPVnorm
images in raster format to NPVnorm polygons in shapefile format using QGIS [87]. We
further intersected the subplot shapefile polygon with the NPVnorm polygons for isolating
all segments inside respective subplots. Thus, for each field subplot we obtained one or
more segments of NPVnorm. We calculated the area of each NPVnorm polygon to obtain a
weighted NPV value for each subplot [1,2,4] as:

NPV =
NPVnorm∗ A

250
(2)

where NPV is the weighted value within each subplot, NPVnorm is the normalized value
of each pixel, and A is the area of each pixel (m2) that is fully or partially included in the
respective subplot; 250 is equivalent to the area (m2) of each subplot.

Apart from the 30 field subplots, we estimated windthrow tree mortality for
100 virtual subplots (10 m × 25 m; hereafter referred to as virtual subplots) that were
randomly distributed across the disturbed forest (Figure 1d,e). These virtual subplots
were used to evaluate the robustness of tree mortality estimates by the three satellites in
adjacent areas containing a greater variation of windthrow severity (Figure 1e). The NPV
weighted values for virtual subplots were obtained using the same method described for
field subplots.
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2.3. Remote Sensing Estimates of Windthrow Tree Mortality

We fitted a Generalized Linear Model (GLM) [88] relating NPV with field-measured
windthrow tree-mortality (see Section 2.1). The GLMs were fitted for each satellite. We
described the distribution of residuals using the binomial family, and used the logit link
function, in which linear predictors must be reversed to the scale of the observations by
means of an inverse function [88].

We used the field subplots only for model fitting, thus avoiding overfitting prob-
lems for the cases in which the validation was performed using the same subplots [89].
Virtual subplots were not used for validation/training; we focused on evaluating the
performance of the models, and also assessed the Residual Deviance using Analysis of Vari-
ance (ANOVA). For each model we calculated the Akaike Information Criteria (AIC, [90]),
Standard Error of the Estimates (Syx), Root Mean Square Error (RMSE), Residual Standard
Deviation (Sigma), and the Adjusted Coefficient of Determination (R2) computed with
the Kullback-Leibler divergence formula (R2

KL, [91]). The R2
KL is suitable for exponential

family models (e.g., logit), which retains the informative properties of the fit due to the
inclusion of regressors [91,92]. Unlike the linear model, which is based on the Ordinary
Least Squares (OLS) approach, R2 in these models does not represent the proportion of
variability explained, because the binomial distribution does not have the same variability
structure as the normal distribution used in simple linear regression [93]. For this reason,
some methods for measuring the goodness-of-fit of GLM models, in particular for log-link
families (e.g., binomial, exponential, gamma), have been constructed to express one more
diagnostic measure of the nonlinear models. Among the available methods, the R2

KL
(Kullback’s formula) provides a measure of the divergence between the distribution of
observed and estimated values [91,92]. This measure can be used analogously to the R2 for
quantifying how much of the variation of field-measured tree mortality was captured by
the fitted models [94]. The best model was the one with the lower Residual Deviance, AIC,
Syx, RMSE, Sigma, and higher R2

KL.
We assessed the precision (i.e., minimum [Min], maximum [Max], median, and mean)

and accuracy (i.e., standard deviation [SD], standard error [SE], and 95% confidence in-
terval of the mean [hereafter referred to as 95% CI]) of remote estimates of tree mortality.
For comparing our results with those reported for other Amazon regions [2,4], we also
expressed windthrow tree-mortality as categories of severities: old-growth/undisturbed
forest [≤4% of windthrow tree mortality]; low windthrow severity [4% < windthrow tree
mortality ≤ 20%]; moderate windthrow severity [20% < windthrow tree mortality ≤ 40%];
high windthrow severity [40% < windthrow tree mortality≤ 60%]; and extreme windthrow
severity [>60% of windthrow tree mortality]).

2.4. Statistical Analysis

To determine the most appropriate statistical tools for this study, we assessed the
assumptions required for the use of parametric and non-parametric approaches [95]. We
tested whether our measurements and estimates of windthrow tree mortality were nor-
mally and homogeneously distributed using the Shapiro-Wilk and Levene variance tests,
respectively. As our data were not normally distributed and field subplots were nested in
the transects, we further conducted a non-parametric approach. We further applied the
Kruskal-Wallis test on medians [93] to assess possible differences between the distribution
of estimated and measured values of windthrow tree mortality. Differences between field
and remote sensing estimates were assessed using the Mann-Whitney post-hoc test, which
allows for comparing paired data sets. Although the arithmetic mean is not a precise
measure of central tendency for non-parametric data [93], we also reported weighted mean
values of field-measured and remote-estimated tree mortality, as supported by the Central
Limit Theorem [96]. We further analyzed differences among satellites using ANOVA,
followed by the Tukey post-hoc test. Statistical analyses were conducted in the R 4.2.2
software [97] and based on a probability level of 95%.
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3. Results
3.1. How Does Spatial Resolution Affect Satellite Estimates of Windthrow Tree-Mortality?

Across all field subplots (0.75 ha), we sampled 341 live and 121 dead trees. This is
equivalent to 616 ± 13.3 trees ha−1 (455 ± 70.2 and 161 ± 63.7 live and dead trees ha−1,
respectively) (mean± 95% CI). Live trees were distributed across 142 species, 86 genera, and
36 families. The mean windthrow tree-mortality measured in the field was 26.9 ± 11.1%,
with a median of 13%, and minimum and maximum values of 0% and 93%, respectively
(Table S3).

Variations in windthrow tree mortality were efficiently captured by three satellites
evaluated in our study. Overall, the best agreement between field measurements and
satellite estimates (i.e., lower Residual Deviance, AIC, Syx, RMSE, Sigma, and higher R2

KL)
was achieved with Landsat 8, followed by Sentinel 2 and WorldView 2. This result indicates
that increasing the spatial resolution (i.e., from Landsat 8 to Sentinel 2 and WorldView
2) implied a systematic loss of quality of fit of the models. Moreover, increasing the
spatial resolution did not consistently modify the intercept and slope values of models.
Surprisingly, all satellites showed minimum values of tree mortality ranging from ~9–11%
(intercept) and a slope close to one (Table 1).

Table 1. Fitting summary of GLM models used to relate field with remote sensing estimates of
windthrow tree-mortality in a Central Amazon forest, Brazil. AIC = Akaike Information Criteria;
Syx = standard error of the estimates; RMSE = root mean square error; Sigma = residual standard
deviation; R2

KL = Kullback-Leibler coefficient of determination.

Model
Residual
Deviance AIC Syx RMSE Sigma R2

KL
Coefficients

a (Intercept) b (Slope)

Landsat 8 125.33 183.37 0.2096 0.194 2.116 0.4342 9.08 0.9837
Sentinel 2 136.51 194.55 0.2211 0.209 2.208 0.3837 11.21 0.9719

WorldView 2 150.01 208.05 0.2234 0.219 2.315 0.3237 10.61 0.9977

We found a strong and positive correlation between NPVnorm and field measure-
ments of windthrow tree-mortality (p < 0.001, all, Figure 3). The mean and median of
remote estimates were statistically similar for both field (F = 0.003 and p = 0.99 [mean test];
X2

Kruskal-Wallis = 3.23 and p-value = 0.36 [median test]) and virtual subplots (F = 0.70 and
p = 0.49 [mean test]; X2

Kruskal-Wallis = 1.58 and p-value = 0.45 [median test])). Increasing
the spatial resolution of images led to an overall decrease of model uncertainties (lower
standard deviation, standard error, confidence interval, and interquartile interval). There
was an increase in the range of estimated values in a narrower range of distribution across
the disturbed landscape, which also resulted in systematic reductions of the interquartile
ranges (Table 2).

The sensitivity of satellites also varied across the windthrow tree-mortality gradient.
Landsat 8 and Sentinel 2 had a similar trend curve that differed from that of WorldView 2
(Figure 3a). Overall, increasing the spatial resolution systematically decreased the quality of
tree mortality (Figure 3b). Windthrow tree-mortality obtained from Landsat 8 and Sentinel
2 had a more uniform residual distribution than that of WorldView 2, which indicates
that the sensitivity of the former satellites was less susceptible to bias at the extremes of
the severity gradient (Figure 3c). Increasing spatial resolution led to higher sensitivity for
capturing diffuse tree mortality, possible reflecting crown, and minor damage. However, it
also led to underestimated estimates of tree mortality in severely damaged areas (Figure 4).
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3.2. Which Sensor Produces the Most Reliable Estimates of Windthrow Tree-Mortality across an
Extent Gradient of Windthrow Severity?

All satellites produced consistent estimates of windthrow tree-mortality from mod-
erate to high disturbance severity (i.e., 25% to 42% of windthrow tree-mortality). Remote
estimates overestimated field measurements by 5–10% from old-growth forest to moderate
windthrow severity. From moderate to extreme windthrow severity, we found the opposite
pattern—i.e., 10–15% underestimation (Figure 5a). Remote estimates of tree mortality
for our virtual subplots covering a wider disturbance gradient were similar from low to
moderate windthrow tree-mortality. From moderate to extreme windthrow tree-mortality,
Landsat 8 and Sentinel 2 yielded comparable values, which were also different from those
obtained from WorldView 2 (Figure 5b). Although with greater associated uncertainties
at specific ranges of tree mortality (low to moderate and high to extreme severity), Land-
sat 8 and Sentinel 2 captured a relatively higher proportion of the existing variation of
windthrow tree mortality over a wider disturbance gradient.
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Figure 5. Windthrow tree-mortality measured in the field and estimated by remote sensing data for a
Central Amazon forest, Brazil. (a) Windthrow tree-mortality in field subplots; (b) Windthrow-tree
mortality in virtual subplots. In (a,b), we modeled remote estimates of tree mortality as a function of
field measurements using GLMs. The gray-shaded areas in (a,b) indicate the 95% confidence interval.
Field = Windthrow tree-mortality measured in the field; TM = Windthrow tree-mortality.

4. Discussion
4.1. Relating Satellite Data and Field Data

Systematic increase of spatial resolution implied changes on the sensitivity of different
satellites to capture windthrow tree-mortality at the extremes of the disturbance gradient
(i.e., low and severe mortality) (Table 2). In windthrown areas there is an abrupt reduction
of GV followed by a consequent increase of NPV. Nonetheless, the NPV signal can be lost
in less than a year due to the fast growth of pioneer species and survivor saplings and
seedlings originally suppressed at the understory of the forest [1,14,23]. As supported by
our data, the loss of the NPV signal might be critical for medium to high spatial resolution
imagery with relatively small pixel sizes, which are more likely to be influenced by the fast
emergence of photosynthetic/green vegetation (GV) [27] (Figure S10).

The convective storm that impacted our study region occurred about eight months
(November/2015) prior to the acquisition of all satellite imagery (July/2016). Therefore,
our NPV-fraction images may already contain some GV sign of the regenerating forest.
This was evidenced by the relatively high reflectance values in the NIR and red edge bands
(wavelength ~0.83 µm), which indicate a relatively high content of GV (i.e., photosyn-
thetically active vegetation) [27,75] mixed with NPV (i.e., dead vegetation, wood debris)
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(Figure S9). Systematic reductions of spectral mixing with increasing spatial resolution (i.e.,
from Landsat 8 to Sentinel 2 and further WorldView 2) may be related to specific admixture
levels of GV. Although understory trees were not recorded in this study, our data support
previous research indicating that high NPV values related to the dead vegetation tend to
be rapidly diluted due to the fast natural regeneration (Figure S10).

The detection of tree damage and mortality using satellite data can be affected by sev-
eral factors, such as canopy heterogeneity, understory density, angle-of-view/illumination,
and shadow effects [74,78,98]. Overall, gains in spatial resolution improve the detection
accuracy of detecting treefall gaps [33,34,37,42,99] as the spectral information tend to be
highly influenced by geometric features of relatively small targets [32]. However, the
number of pixels needed to capture the physical properties of the surfaces associated with
large-scale windthrows is highly determined by the spectral resolution of imagery [100].
Since the mean reflectance of a given area is strongly influenced by the material with
the highest reflectance values [74], the lower the spatial resolution of the sensor (i.e., the
larger pixel size), the greater the mixture of signals produced by surfaces with relatively
high reflectance. Smaller pixels can reduce these effects [78], which is supported by the
higher sensitivity of WorldView 2 to capture diffuse tree mortality in less-disturbed areas
and at edges of highly disturbed forest patches. WorldView 2 also produced higher tree
mortality estimates than Landsat 8 and Sentinel 2 at low and moderate windthrow severity
(4% < windthrow tree-mortality ≤ 40%). Given the relatively large diameter and area
(mean of ~35 m2, [101,102]) of canopy trees in our study region, this result suggests that
WorldView 2 (4 m2 pixel area) can potentially capture vegetation damage smaller than
that measured in the field (i.e., individual tree-mortality). The intercepts for tree mortality
varied from 9–11%, indicating that all satellites overestimated field values (Table 1). The
variation of intercepts (Figure 3a)may also be related to scaling mismatches between field
and imagery data and fine-scale variations of environmental attributes beyond the scope
of this study. Furthermore, our models indicate that uncertainties associated with remote
estimates of windthrow tree-mortality are larger at the extremes of the disturbance gradient
(Figure 3b). R2 values indicate that our models captured between 43% and 56% of the
variation in field-measured mortality. We believe these values are robust given the variation
of disturbance intensity typical of windthrown forests [1,2,4] and the time gap between the
studied event and the acquisition date of employed images. Estimated tree-mortality was
accurate (i.e., similar to the ground truth) across an extent range of windthrow severity
(25–42%, moderate to high severity). As previously reported, these severities accounted for
decadal changes in floristic composition [1,62,103], biomass stock and balance [2,4], organic
soil carbon stocks [104], and insect diversity [105,106] in other Central and Northwestern
Amazon forests affected by windthrows. Future investigations are needed to improve
the remote detection of smaller canopy disturbances across local-to-regional variations in
topography, climate, soils, and forest attributes [42–44,107].

High-resolution remote sensing models (HR-models) assume that elements are larger
than image pixels; low-resolution models (LR-models) assume the opposite [108]. This
means that the spatial arrangement of varying elements within an image can be detected
directly in HR-models because individual elements can be individualized. This is usually
not achieved with LR-models [21,108]. As predicted from our best model (Landsat 8),
areas of forest that experienced high severity windthrow lost ≥ 50% of live trees. While a
similar estimate of tree mortality can be attributed to two independent areas, they can have
contrasting disturbance gradients given by the spatial distribution of damaged/dead trees
(i.e., contiguous or diffuse) across impacted areas (Figure 3a).

In windthrows, the process of detecting and estimating tree mortality will transit
between HR- and LR-models, depending on the level of disturbance severity and the size
of pixels. For example, in a highly impacted area (e.g., assuming 50% dead trees and
50% live trees) inside one Landsat 30 m × 30 m pixel, the spatial autocorrelation among
the trees is not detected because tree crowns and trunks are, in general, smaller than the
pixel size. In this case, an unique reflectance value (i.e., single pixel) shall represent the
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different targets (live and dead trees). The resulting measurement is highly influenced
by the objects with high reflectance [75,100]. However, in HR-models, the same area is
represented by several pixels (e.g., 2 m × 2 m pixel of WorldView 2). In this case, the spatial
arrangement of the vegetation becomes relevant because trees are larger than the pixels,
which tend to resemble their neighbors because they are likely to capture the signature
of the same homogeneous target [27]. In HR-models, the varying information captured
by several pixels will represent the entire set of live and dead trees. [21]. Depending on
the size and severity of the windthrow in relation to the pixel size, HR- and LR-models
will have different relationships between the number of dead trees in the field and the
spectral/spatial information extracted at pixel level. Our results support that the more
pixels within the subplots, the more detail on the spectral variability across the disturbed
forest. However, tree damage (e.g., defoliation, broken branches, and partial loss of crown)
should also be quantified in future forest inventories to maximize the potential of existing
sensors with higher spatial-resolution than those we employed here (e.g., Planet Scope [109],
Ikonos [110] and QuickBird [111]).

A precise match between field and remote sensing data also improves landscape
estimates of tree mortality. In our study, pixels outside/inside observational subplots may
have been incorrectly accounted for. Our plots were georeferenced with a navigation GPS
(Garmin 64 CSx), which has a nominal spatial resolution usually >5 m. This effect was
likely more relevant for WorldView 2. Geolocation errors for Landsat 8 are at the order of
30 m within the United States, and 50 m globally [112]. For Sentinel 2 and WorldView 2,
global errors are at the order of 12.5 m [113,114] and 3.5 m [115], respectively. However,
previous studies using the same plot size indicated a high correspondence between ground
truth and the NPV signal obtained with Landsat [1,2].

As previously demonstrated, ∆NPV is highly correlated with windthrow tree mortal-
ity [1,2,23]. As supported by our results (Figure S5, Table S5), using NPVnorm for quantify-
ing windthrow tree-mortality also produced robust and unbiased estimates. Nonetheless,
the nature of such a relationship can be affected by variations in forest deciduousness
and disturbance history (e.g., fragmented forests with larger proportion of edges or those
submitted to multiple disturbances). Ideally, imagery covering the target forest should be
available for pre- and post-disturbance conditions, and with the shortest possible time-
interval between scenes.

4.2. Trade-Off between Precision and Accuracy of Satellite Estimates

By increasing spatial resolution and, consequently, the number of pixels represent-
ing a given target, we observed a systematic reduction of uncertainties (SD, SE, and
CI) associated with our estimates of windthrow tree-mortality (Table 2). However, re-
ductions in uncertainty were followed by systematic reductions in the quality of model
fits, mostly due to large errors at the extremes of the disturbance gradient (i.e., low and
extreme windthrow severity). This pattern suggests a trade-off between precision and
accuracy [116]. In this case, precision indicates the reduction of uncertainty around
the mean estimates, and accuracy indicates the closeness of the estimates in relation to
the ground truth. In our study, all satellites delivered tree mortality estimates closer to
the ground truth over a wide range of disturbance (from moderate to high windthrow
severity). Future studies may extend and replicate our methods in regions with different
forest attributes and environmental conditions.

Although we equalized TOA values prior to comparing images, each satellite has a
different setup of imaging angles (Nadir) and spectral resolution. The Nadir angle may
affect the detection of targets with irregular surfaces [74,98], such as in windthrown forests
with high amounts of woody debris, survivor and new trees [1]. Large angles can imply
obscuration of images and consequent distortion of geometric and spectral features of
targets [111,117–119]. Landsat 8 images are acquired under Nadir ~0◦, while Sentinel 2 and
WorldView 2 have off-Nadir angles (~10.4◦ and ~20◦, respectively). These differences may
have reduced the quality of the NPV signal from Sentinel 2, and especially WorldView 2, in
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relation to that obtained with Landsat 8. This may be critical in relatively small gaps or at
the edge of highly impacted areas, where insolation is generally lower and the crown of
given trees can promote strong shading effects on their neighbors [31,120,121]. To mitigate
problems related to this issue, we normalized the fractions for GV and NPV without shade.
This procedure ensures that the shadow fraction is filled by equal proportions of GV and
NPV within the pixel [27]. Distortions due to the technical attributes of the different
satellites were not the objective of the study, but we believe that these effects would not
change the overall patterns we report. Apart from being usually acquired from off-Nadir
angles due to acquisition costs or mission priorities, commercial high-resolution imagery,
such as WorldView 2, can be costly and restricted to small areas [111]. These aspects limit
the application of these for mapping windthrows and monitoring forest recovery across
large regions and over time.

Indeed, our results show that spatial resolution alone does not provide sufficient evi-
dence for the mismatch between field and remote data. Downgrading the spatial resolution
of Sentinel 2 and WorldView 2 to that of Landsat 8 changes the relative weight of the
NPV and GV fractions (i.e., reduction and increase of NPV and GV values, respectively)
(Figure S11). This pattern indicates that spatial resolution has a direct effect on the sensi-
tivity to detect windthrow tree-mortality, as well as to distinguish rapid post-disturbance
regeneration. This has a direct effect on estimated values of windthrow severity at subplot
level. Although higher spatial resolution has the potential to increase the sensitivity to
detect crown damage and branch fall [44], it does not seem to have the potential to strongly
improve stand-to-landscape estimates of windthrow tree-mortality. The accurate and pre-
cise estimates we achieved with Landsat 8 may also be partially related to its large pixel
size (900 m2) as in comparison to subplots (250 m2).

Landsat 8 and Sentinel 2 have broad spectral resolutions and spectral bands that span
from the visible to the shortwave infrared (0.43–2.2 µm) [122,123]. Meanwhile, WorldView
2 has a spectrum restricted to the visible and near infrared (0.4–1.04 µm) [115]. Different
terrain materials mimicking the spectrum of others are common in dense forests, and
the use of more channels (i.e., bands) is a general recommendation for extracting more
suitable endmembers [27]. Thus, the lower spectral resolution of WorldView 2 may af-
fect the process of selecting endmembers, and thus the overall quality of the Spectral
Mixture Analysis.

The characteristics of the satellites we evaluated make them appropriate for specific
conditions. While Landsat 8 and Sentinel 2 are freely available and cover the entire planet,
WorldView 2 has high costs and covers only specific or by-demand regions. WorldView 2
has a 1.1-day revisiting time [115]; Sentinel 2 has a 5-day time [124], and Landsat 8 has a
16-day time [122]. Shorter revisiting time increases the chances of acquiring scenes shortly
before and after the occurrence of windthrows. This aspect is essential to mitigate the
contamination of NPV images due to fast natural regeneration. The high cloud cover in the
Amazon [125] also limits the availability of images, and shorter revisit intervals can help
overcome this limitation.

Landsat has a longer-term collection of images than Sentinel 2 or WorldView 2 [126],
which makes it suitable for landscape-scale studies aiming at mapping windthrows and
monitoring forest recovery over time [2,4]. However, Landsat may be inaccurate for
quantifying and describing disturbances created by clusters of less than 6–8 fallen trees [23].
While restricted for the last 8 years, Sentinel 2 is a promising alternative for stand and
landscape assessments of the extent and severity of forest disturbances at the individual-tree
level. As Sentinel 2 produces estimates with overall low uncertainties, it may also perform
better for quantifying diffuse tree mortality. Due to its continuity over the years [124],
Sentinel 2 may soon allow for concealing longer-term analyses with high precision.

WorldView 2 estimates had lower associated uncertainties and were more accurate
in areas with <20% tree mortality. However, the relatively small collection of images
reduces the potential of using WorldView 2 for monitoring disturbance dynamics and
forest recovery. The recently launched Planet NICFI initiative [109,127] conceals high
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resolution (3–5 m pixel) multispectral imagery with a revisiting interval of less than four
days for most of the Amazon basin [128]. This offers a new possibility for quantifying
and upscaling major mechanisms of tree damage and mortality regulating forest dynamics
and functioning.

5. Conclusions

Increasing the spatial resolution of satellite images reduced the uncertainty of es-
timates of windthrow tree-mortality but did not improve their accuracy. Compared to
WorldView 2 and Sentinel 2, Landsat 8 provided more reliable estimates that reflected our
field measurements at the individual tree-level. These results highlight the feasibility of
Landsat 8 for mapping windthrows and monitoring forest recovery in the Amazon. To
fully benefit from high-resolution images, field surveys used for model calibration should
account for individual tree-damage (e.g., defoliation, crown breakage, and branch fall).
However, high spatial resolution satellite imagery are expensive and restricted to small
areas and time periods, which limits their application for large-scale and long-term assess-
ments of mortality and recovery. Future studies applying high spatial resolution imagery
could focus on overcoming the limitations of coarser sensors in detecting small clusters of
dead trees and quantifying individual tree-damage. This will improve current knowledge
on mechanisms and rates of tree mortality, as well as on associated processes regulating
forest dynamics and carbon balance in Amazon forests.
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