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Abstract

Improving Energy Efficiency in CNC Machining

by

Sushrut S. Pavanaskar

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Sara McMains, Chair

We present our work on analyzing and improving the energy efficiency of multi-axis CNC
milling process.

Due to the differences in energy consumption behavior, we treat 3- and 5-axis CNC
machines separately in our work. For 3-axis CNC machines, we first propose an energy
model that estimates the energy requirement for machining a component on a specified 3-axis
CNC milling machine. Our model makes machine-specific predictions of energy requirements
while also considering the geometric aspects of the machining toolpath. Our model and the
associated software tool facilitate direct comparison of various alternative toolpath strategies
based on their energy-consumption performance.

Further, we identify key factors in toolpath planning that affect energy consumption in
CNC machining. We then use this knowledge to propose and demonstrate a novel toolpath
planning strategy that may be used to generate new toolpaths that are inherently energy-
efficient, inspired by research on digital micrography – a form of computational art. For
5-axis CNC machines, the process planning problem consists of several sub-problems that
researchers have traditionally solved separately to obtain an approximate solution. After
illustrating the need to solve all sub-problems simultaneously for a truly optimal solution, we
propose a unified formulation based on configuration space theory. We apply our formulation
to solve a problem variant that retains key characteristics of the full problem but has lower
dimensionality, allowing visualization in 2D. Given the complexity of the full 5-axis toolpath
planning problem, our unified formulation represents an important step towards obtaining a
truly optimal solution.

With this work on the two types of CNC machines, we demonstrate that without
changing the current infrastructure or business practices, machine-specific, geometry-based,
customized toolpath planning can save energy in CNC machining.
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Chapter 1

Introduction

It is estimated that industrial manufacturing causes 19% of global greenhouse gas (GHG)
emissions [Herzog 2005] and 31% of U.S. energy use [U. S. Energy Information Admin. 2008].
As industrial manufacturing progressed from craft to mass and further to lean production,
machine tools increasingly replaced human powered processes. Most manufacturing machine
tools in industry today are powered by electricity [Mori et al. 2011].

Although virtually clean to consume (when compared to burning coal or oil), electricity
is not a truly clean energy source. In the US, even today, the majority of electricity is
generated by burning non-renewable fossil fuels. Similarly in China — the leader in industrial
manufacturing — more than 60% of electricity is still generated from coal, causing a chronic
and widespread layer of smog above Eastern China [World Nuclear Association 2013]. Thus,
for long term energy independence and also to reduce GHG emissions that cause global
warming [Herzog 2005], we must curb energy demand in manufacturing.

However, steps to reduce energy consumption in manufacturing cannot adversely affect
the economics of business. In other words, when reducing energy consumption, productivity
of industrial manufacturing processes must be maintained or improved. No industry can
revert to craft production for saving energy while still being competitive in the modern world.
Consumers too will never accept products of lower quality or delayed deliveries in lieu of a
cleaner manufacturing process. Therefore, research must find answers to this dilemma: how
to achieve economic growth while protecting the environment [Gutowski et al. 2001]?

1.1 Research Motivation
In the past century, productivity-driven academic and industrial research has transformed

the manufacturing industry. For example, research on lean manufacturing, as reported in
“The Machine that Changed the World,” has identified and removed many muda or waste-
causing practices from traditional American automobile manufacturing [Womack et al. 2007],
enabling American companies to regain competitiveness in the global market. As a result of
a vast body of research on manufacturing processes, most manufacturing processes are now
well-studied in terms of their productivity aspects. Ironically, though, only scant research
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can be found in the literature focused on reducing energy consumption in manufacturing
processes [Duflou et al. 2011]. Thus, in this century, we must put forth the objective of
energy efficiency as well as productivity when researching new and existing manufacturing
processes. In this dissertation, we study CNC milling with this combined objective.

1.2 CNC Milling and Energy Consumption
Milling is one of the older, popularly used, traditional manufacturing processes that use

a rotary cutter to shape a surface being fed into the cutter [Usher 1896]. It is implicitly
assumed that milling is performed on a “machine” powered by electricity. Milling machines
have evolved significantly since this 100 year old definition to today’s modern machines that
can perform complex simultaneous 5+ axis operations and maneuvers requiring computerized
numerical control (CNC).

Figure 1.1 : Energy consumption profiles of three different CNC machines. (Data from [Kordonowy
2002])

Although still electrically-powered and operating on the same basic principles, modern
CNC milling machines are significantly different from older milling machines. [Kordonowy
2002] studied several generations of milling machines in order to compare their electrical
performance. Their work confirms that not all CNC milling machines are equivalent when
electricity consumption is considered. Figure 1.1 is plotted to compare three select results
from Kordonowy’s thesis simultaneously. It can be seen that the oldest Bridgeport TCS, a
3-axis machine, spends most of the consumed energy (65.8%) on material removal processes,
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while in the case of the newest Haas 5-axis machine, only 24.2% of the total drawn energy
is spent on material removal. The Cincinnati machine falls in between the two, spending
about a half of the drawn energy on material removal. Collectively, we draw two inferences
from the figure:

1. Various sources of electricity consumption in CNC machines can be roughly classified
into two categories: (a) sources that draw power highly dependent on material removal
operations and (b) allied processes that draw constant power proportional to the
operation time.

2. As machines become increasingly advanced (Bridgeport 3-axis –> Cincinnati –> Haas
5-axis), the fraction of energy spent (or available) for material removal decreases, while
a larger fraction of energy is spent on non-machining, allied processes that draw a fixed
amount of power irrespective of the cutting activity (e.g. lights, fans, computer).

These inferences suggest an interesting direction for research on energy consumption in
CNC milling. In the case of smaller machines like the Bridgeport, research is required to
analyze the material removal process for its energy consumption effects, while in the case
of advanced machines such as the Haas, the most impact on reducing energy consumption
may be obtained by further research focused on reducing operation time. This idea forms
the basis of this dissertation.

1.3 Research Outline
This research is primarily aimed at analyzing, modeling, estimating, and reducing energy

consumption in CNC milling. We address all point-milling type operations where the
cutter has a single point of contact with the workpiece during cutting (as opposed to flank
milling1 where the cutter has a line contact with the workpiece). Our goal is to develop
the required knowledge and algorithms to analyze the performance of multi-axis CNC point-
milling processes with respect to both economic and environmental objectives. Since CNC
machines differ significantly in construction and energy usage, we realize that no “silver
bullet” methodology can work across the range. Therefore, we divide them into two types
— smaller (3-axis) and advanced (5+ axis) CNC machines — in this dissertation.

Chapter 2, we develop the required background and theory for both 3- and 5-axis CNC
milling. 3-axis CNC milling machines are popularly used due to their high productivity
and accuracy. However, no commercial tools exist to estimate or simulate their electrical
performance to determine operating conditions that optimize cost and environmental
impacts. With this aim, in Chapter 3, we first propose an analytical model of CNC milling
derived from the first principles for metal cutting as well as from experimental observations.
We derive various relationships that are used in developing our model and also demonstrate
the procedure to customize our model to a new CNC machine. Following the model theory,

1See [Ahmadi and Ismail 2010] for details on flank milling
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in Chapter 4, we describe an application of the model: a software tool that can estimate
energy consumption for a proposed machining operation for any 3-axis CNC milling machine.
In Chapter 5, we demonstrate the value this software adds to a shop-floor by demonstrating
several case-studies. We show the effects of process planning decisions on energy consumption
in CNC milling operations in each of the presented case-studies. Learning from the results of
the cases, we propose the concept of generating “inherently energy-efficient” toolpaths and
present a proof-of-concept test case that demonstrates significant energy saving.

As evident in Figure 1.1, 5-axis CNC milling machines are significantly different when
we compare the fraction of energy used in material removal. Due to significant overloads
such as the computer, fans, lights, controllers, and idle servos, machining time dominates
the energy consumption behavior of 5-axis CNC milling machines. Therefore, saving time
in machining has the most impact among all approaches to saving energy. With this
objective, in chapter 7, we describe a configuration-space based unified problem formulation
and solution methodology for 5-axis toolpath planning to optimize the machining time. In
addition to machining time or toolpath length, our approach to 5-axis toolpath planning
offers process planners the ability to generate toolpaths while optimizing a combination of
objectives. We also demonstrate an implementation of the proposed formulation and solution
strategy for a lower-dimensional variant of the full 5-axis toolpath planning problem that
was specially designed to ease visualization of the process.
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Chapter 2

Background and Related Work

2.1 Preliminaries
We define CNC milling as milling operations performed on machines whose axes,

spindle, and other mechanisms are controlled by a computer (CNC controller) that may be
programmed using NC code. NC code is an universally accepted plain-text set of standard
commands that a CNC controller is able to interpret to actuate machining. An NC code is
made up of G/M commands, positional coordinates, and other numerical values. For this
dissertation, we only use generic G/M commands that are common to most CNC machine
controllers such as FANUC, Mori-Seiki, Siemens, etc. CNC milling machines are classified
according to the number of axes the cutting tool (cutter) can simultaneously move in. 3-axis
CNC machines have three translational degrees of freedom (DOFs), while 4- and 5-axis CNC
machines have one or two additional rotational DOFs, respectively. In this dissertation,
we only address two groups of CNC machines: 3-axis or 5-axis. However, all discussion
about 3-axis machines is readily applicable to 2- and 2.5- axis machines, while the treatment
for 5-axis machines can be extended to 4-axis and 5+ axis machines. In the next section
we describe working of CNC machines with special emphasis on their energy consumption
behavior.

2.2 Energy consumption in CNC machines
Most CNC machines rely on electricity as the chief power source [Mori et al. 2011].

As depicted in Figure 1.1, the electric power drawn by a CNC milling machine from a
grid is the summation of electricity drawn by its sub-systems. Figure 2.1(a) and (b) show
simplified graphs of power drawn by typical 3- and 5-axis CNC machines at various times
in a typical machining operation. Once a machine is turned on, its lights, computer fans,
and the controller begin consuming electricity at their rated power until the machine is
switched off (idle power state). Additional energy is required to warm up the machine (jog)
by running a predefined set of commands during initialization. After warm up, NC codes
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may be executed to perform machining. When an NC code is executed on a machine, the
machine draws additional electric power from the grid, as needed, for rotating the spindle,
moving the axes, exerting cutting forces, and running the coolant circuit. The machine
returns to its ready state once the NC code execution is complete and remains in that state
until turned off. The two slender “spikes” of power consumption, also shown in the graphs,
are due to activation of inductors in electric motors. The area under the power-time curve
is the total energy consumed.

Figure 2.1 : Power drawn by a CNC machine as a function of time (symbolic) (a) 3-axis machine,
(b) 5-axis machine.

Although the power states mentioned above are common to every CNC machine
irrespective of the number of axes, 5-axis CNC machines differ significantly from 3-axis
machines when the share of each power state in the total power consumption is compared.
Due to additional DOFs and larger size, many sub-systems in 5-axis machines (e.g. the axis
servos) must be constantly energized (even if not moving) to maintain accuracy. Also, a
sophisticated control system, dampening system, and position control sensors are necessary
in 5-axis CNC machines for repeatable precision. Thus, the ratio of power consumed in
machining to that spent as idle power is small in 5-axis machines. On the other hand, 3-axis
machines are simpler in construction, control, and sensor systems, resulting in small idle
power requirements. When 3-axis machines are used to cut metal, however, the amount
of power required is larger, 5-7 times the idle power. Therefore, in 3-axis machines, most
of the total energy consumed depends on material removal processes, while in the case
of 5-axis machines, this seems to be of relatively less significance. Specific to the two
machines in Figure1.1, the Bridgeport and the Haas, a 50% reduction in energy spent in
machining (material removal) results in about a third of total energy saved in the case of
the 3-axis Bridgeport machine, while only about 12% saving in the case of the 5-axis Haas
CNC machine.

In the next two sections, we outline the past work for each of the two types. First,
in section 2.3, we describe work related to analyzing the 3-axis milling process, with an
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emphasis on analytical energy models. Then, in section 2.4, we review toolpath planning
methods for 5-axis machining to optimize machining time or total path length.

2.3 Analysis and modeling of the 3-axis milling process
We classify the analysis and modeling of the 3-axis milling process in the literature into

four major types of process models: mechanistic force models, measurement-based models,
hybrid models, and most recently, energy models for CNC milling.
Mechanistic models: [Martellotti 1941, Merchant 1944] developed theories based on
cutting forces for point-contact machining processes such as milling, turning, grinding. These
models can be used to predict stable and unstable machining conditions (e.g. stability lobes
proposed by [Tobias 1965]).
Measurement-based models: [Altintas 1992] and [Tlusty and Ismail 1981] proposed
milling process models based on comprehensive experiments with various objectives such
as to minimize chatter (vibrations) or to maximize tool life. Some other measurement-based
models, e.g. [Balogun et al. 2013], were based on experimental measurements on multiple
CNC machines to determine the relative performance of the machines in similar processing
conditions.
Hybrid models: [Feng and Menq 1994] reported a model for ball-end milling based on
mechanistic principles and measured forces. [Tonissen 2009] proposed a model based on
Merchant’s cutting theory that also used experimentally determined constants for customized
predictions. [Yang and Park 1991] presented a model based on geometric analysis of a ball-
end mill’s cutting edge to estimate cutting forces.

Most of the measurement-based and hybrid models rely on empirical constants to
incorporate the effect of real-world conditions when making predictions. [Yun and Cho 2000,
Azeem et al. 2004, Budak et al. 1996], among others, have provided methods to determine
such empirical constants, called cutting force coefficients, from cutting experiments.
Energy models: [Gutowski et al. 2006] introduced a seminal energy model for CNC milling
with the notion of modeling energy use in cutting based on the material removal rate (MRR).
MRR has since been popularly used in estimating energy requirements by many researchers.
[Kara and Li 2011, Diaz et al. 2011, Newman et al. 2012] have developed models using MRR
to compute specific energy (i.e. energy required to remove a unit volume of material) in CNC
milling, while [Mori et al. 2011, He et al. 2012, Balogun and Mativenga 2013] have developed
MRR-based models to estimate energy requirements in machining an entire component.

Most analytical process models reported above consider the actual metal cutting process
as an aggregate function of MRR but rarely isolate the contribution of individual process
parameters, as partially done by [Newman et al. 2012]. Physical machine construction and
toolpath geometry also affect energy consumed in machining as observed by [Altintas 1992,
Balogun et al. 2013], but most energy models consider only simple toolpaths (e.g. [Balogun
et al. 2013, He et al. 2012]), and do not test the effect of toolpath parameters, toolpath
strategy, milling direction, or machine construction when modeling energy consumption. Our
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work on modeling energy consumption in 3-axis CNC machines falls in the fourth category
of models but our model also uses some relations derived in [Altintas 1992], a measurement-
based model. Additionally, our model is different from the existing models because we aim
to perform machine-specific, individual process parameter based, geometric analysis of NC
toolpaths. We explain our 3-axis energy model in Chapter 3.

2.4 Toolpath planning for 5-axis machines
5-axis CNC machines are most suited for manufacturing freeform or sculptured surfaces

and commonly used in the aerospace, automotive, energy generation etc. industries. 5-axis
machines are different from 3-axis machines in their energy consumption behavior (as seen in
Figure 2.1) since a larger fraction of the energy is consumed at a constant rate, irrespective
of material removal requirements. Thus, reducing operation time (cycle time) is likely to
have a larger impact on reducing overall energy consumption than merely reducing energy
consumption in machining state (material removal). A vast body of research on programming
5-axis machines aimed at improving operation time can be found in the literature. A brief
survey is compiled in the next section to introduce the state of the art in this area.

5-axis point milling is characterized by a single point of contact (CC) between the
rotating cutter (located at cutter location CL) and the surface being machined. The cutter
is programmed to follow a fixed sequence of CL points (toolpath) above the surface. Figure
2.2 illustrates these terms for flat and ball-nose end-milling cutters.

Figure 2.2 : Cutter location (CL), cutter contact (CC), toolpath and scallop in point milling of a
freeform surface

Toolpath planning for 5-axis machining consists of two sub-problems: toolpath generation
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(location and connectivity of CL points) and tool orientation computation. Both sub-
problems are widely studied in the literature; surveys of related research can be found in
[Jensen and Anderson 1996, Dragomatz and Mann 1997, Lasemi et al. 2010]. In Table 2.1,
we have compiled a list of relevant research works in either of the two sub-problems, classified
according to the technique used.

Toolapth generation: The objective in the toolpath generation sub-problem is to
determine a set of CL points, their connectivity, and toolpath parameters (e.g. path overlap)
to ensure complete machining of the desired freeform surface in the least machining time.

Methods for computing CL points/path were initially derived from 3-axis toolpath
planning methods that assumed a fixed orientation of the cutter. Basic methods such as
axis-parallel zig-zag toolpaths, contour-parallel spiral toolpaths, and their variations such
as space-filling curves were initially used for generating CL points from the design surface
geometry. Later, iso-parametric, iso-planar, and iso-scallop toolpath planning strategies
were developed by sampling points on the input surface in various ways. Methods were also
developed for non-parametric inputs, compound surfaces, and special materials that heavily
relied on the geometry of the input design surface. Most of the CL path computation
strategies extended from 3-axis machining have limited applications in 5-axis machining
because they require complete accessibility of the surface. Some comparatively newer
methods do not assume complete accessibility of the workpiece surface and are thus suited
for true 5-axis machining components such as turbine blades. These include curvature
matched machining and other curvature-dependent methods, use of isophotes, and some
other geometric techniques that improved productivity by optimizing material removal.
Some techniques use geometric information to transform the toolpath planning problem
into an optimization problem in the configuration space (C-space) of the cutter.

Dedicated methods to compute toolpath parameters (such as forward step, side step, and
feedrate) are also found in the literature. These methods assume an underlying toolpath
topology when computing toolpath parameters for increased productivity.

Tool orientation computation: Tool orientation computation techniques take CL
points and toolpath parameters as their input (along with the design surface) to compute
tool orientation angles such that no gouging occurs at any CL point. Several techniques based
on computing the tool shadow region aimed at preventing local/rear gouging and reducing
computations in the process. Curvature matching based methods were also proposed that
ensured non-gouging toolpaths by matching the equivalent tool curvature with the local
surface curvature. Additionally, some methods optimized material removal by minimizing
deviation from the surface normal. For more complex components that required global
gouging checks, configuration-space (C-space) based methods were proposed. A few other
strategies explicitly modeled the tool orientation sub-problem as an optimization problem.
Finally, some methods assumed an input of feasible orientations to iteratively determine a
smoothed set of orientations such that orientation changes were minimal and gradual.

This treatment of the full 5-axis toolpath planning problem as a sequential problem of
computing a CL path followed by tool orientations implicitly assumes that the two sub-
problems are independent of each other. However, this is not the case, as concluded by
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several researchers including [Wang and Tang 2007].

2.4.1 Interdependence of sub-problems
Although seemingly independent of each other, the two sub-problems of finding cutter

locations and cutter orientations are actually inter-dependent. [Jun et al. 2003] have showed
that the choice of cutter location points affects the feasible range of tool orientations.
Conversely, several alternative cutter locations may be obtained to machine the same CC
point by merely varying the tool orientation [Jensen 1993]. Therefore, solving the two sub-
problems independently or sequentially can never lead to a truly optimal solution of the
complete problem [Wang and Tang 2008, Barakchi Fard and Feng 2009].

Formulating and solving the full 5-axis problem that solves both sub-problems simulta-
neously is a daunting task. The full problem must solve for cutter locations, connectivity,
and cutter orientations simultaneously, while optimizing machining time, material removal
rate, and machining quality. However, just finding connectivity of CL points alone is an NP
hard problem [Castelino et al. 2003]. Therefore, researchers devise and solve parts of the
full problem while assuming a solution for the remaining. Most commonly, as seen in Table
2.1, either the toolpath planning sub-problem or the tool orientation planning sub-problem
is solved independently.

2.5 Summary
In this chapter, we described the working of CNC machines, characteristics of their

constituent sub-systems, and differences in their electricity consumption behavior that
separate 3-axis machines from 5-axis machines. We identified that in 3-axis CNC machines,
the majority of energy is spent in material removal processes (40-60%). Existing research
on analytical process models, particularly for energy modeling in 3-axis machines, identifies
multiple power states of a CNC machine when simulating or estimating energy consumption.
Energy required for material removal is only calculated as an aggregate, proportional to the
MRR in the process. Most of the proposed models perform reasonably well for standardized
components/toolpaths but no model considers (or can be directly extended to consider)
the effect of toolpath geometry and machining parameters on energy consumption in 3-axis
machining.

In 5-axis CNC machines, most of the energy is spent on non-machining processes,
resulting in higher idle power consumption, irrespective of machining operation. Therefore, in
5-axis machines, energy saving may be best realized by reducing the operation time. Toolpath
planning for 5-axis machining with the aim of minimizing operation time consists of solving
two sub-problems: toolpath planning and tool orientation planning. Several independent
approaches exist for solving either sub-problem independently, but due to the problems’
inter-dependence, a truly optimal solution can be obtained only if both sub-problems are
simultaneously solved. Such a formulation and solution is still an unsolved problem.
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Table 2.1 : Past work on 5-axis machining of freeform surfaces

Toolpath
generation

CL path
planning

Extended
from 3-axis

Basic: Zig-zag [Marshall and Griffiths 1994, Misra
et al. 2005], Contour parallel [Held et al. 1994], Space-
filling curves [Anotaipaiboon and Makhanov 2008],
Adaptive space-filling curves [Makhanov 2009], Air-
time minimization [Castelino et al. 2003]
Geometric: Iso-parametric [Lo 1999], Iso-planar [Feng
and Teng 2005], Iso-scallop [Suresh and Yang 1994],
Adaptive iso-curves [Elber and Cohen 1994]
Special purpose: Trochoidal [Elber et al. 2005a], Non-
plunging [Rauch et al. 2009]
Non-parametric input geometry: [Lu et al. 2008,
Kiswanto et al. 2007, Balasubramaniam et al. 2000,
Sun et al. 2001]
Compound surfaces [Sarma and Dutta 1997, Veera-
mani and Gau 1998, Chen et al. 1993]

5-axis
machining
specific

Curvature-based: Curvature matched machining
[Jensen 1993], Curvature loci [Giri et al. 2005], Ma-
chining Potential [Chiou and Lee 2002]
Isophotes [Han and Yang 1999, Han et al. 2001]
C-space based [Choi et al. 1997, Morishige et al. 1997,
Lu et al. 2008]

Process
parameters

Pitch, side
steps

Surface error based [Li et al. 2007], Pitch and orienta-
tions [Farouki and Li 2013]
Artificial immune system [Ulker et al. 2009]

Tool
orientation
computation

Tool
orientations

Shadow based Rolling ball method [Gray et al. 2003]
Arc intersect method [Gray et al. 2005; 2007]

C-space Machining strip width [Barakchi Fard and Feng 2009]
Isoconic [Wang and Tang 2007]

Curvature
based

Curvature matching [Jun et al. 2003, Pi et al. 1998]

Optimization

Least squares [Chen et al. 2009], Relative normal cur-
vature [Gong et al. 2010], Evolutionary multi-objective
[Kersting and Zabel 2009], Kinematic error [Budak
et al. 2009, Ye and Xiong 2008], Inverse kinematics
[Farouki et al. 2013]

Orientation
smoothing

Minimizing
changes

C-distance [Jun et al. 2003], quaternion interpolation
[Ho et al. 2003], visibility maps [Wang and Tang 2008],
tool marks [Chen et al. 2009] Pitch and orientations
[Farouki and Li 2013]
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Chapter 3

Modeling Energy Consumption in
3-axis Milling

If you cannot measure it, you cannot improve it. - Lord Kelvin

In our quest to reduce energy use in machining, we first analyze the energy consumption
in its present state to understand exactly where and how the energy is spent. In this chapter,
we develop this knowledge in the form of an analytical process model of CNC milling. We
first define the nomenclature that we will use in our derivations and applications in Chapters
3-5.

Nomenclature
Ns : Spindle speed
Fi : i axis feedrate
d : Depth of cut
w : Width of cut
D : Cutter diameter
MRR : Material Removal Rate
Fc : Cutting force
Pj : Instantaneous power consumed by sub-system j
Ej : Energy consumed by sub-system j
Ti : Time consumed by sub-system j

3.1 Past work on modeling CNC milling
We briefly outlined the past work on modeling the CNC milling process in section 2.2. In

this section, we further explain models under the fourth type — energy models — since they
are the most relevant to our work. A generalized representation of most existing models can
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be made in the form of:
E =

∑
i

PowerStatei · timei, (3.1)

where E is the total energy required, and PowerStatei and timei are various power states and
corresponding time intervals. Following are specifics of some prominent analytical models.

• [Gutowski et al. 2006] define a single power state and time interval as

E = (P0 +K ·MRR) · t,

where P0 represents the portion of total energy consumed at a constant rate, while
K ·MRR represents energy required for material removal proportional to the MRR.
Use of MRR has since become the norm when modeling energy usage in machining.

• [Diaz et al. 2011] present a model based on separating cutting and air (non-cutting)
power states to obtain an averaged power state for the entire time:

E = Pavg · t = (Pcut + Pair) · t.

• [Mori et al. 2011] identify three power states: basic, cutting, and air-cutting
(positioning) power, where they too compute the power requirement of the cutting state
using MRR. The total process time is divided into cutting and air-cutting times, each
used separately for the respective cutting states. Thus their model can be expressed
as:

E = Pbasic · (tcutting + tair) + Pcutting · tcutting + Pair · tair.

• [Balogun and Mativenga 2013] separate the machine’s power state into three
(partially) overlapping power states of basic, ready, air-cutting, and machining/cutting.
This model, too, uses MRR and a proportionality constant k to compute energy used
in material removal.

E = Pbasic ·tbasic+(Pbasic+Pready) ·tready+Pair ·tair+(Pbasic+Pair+Pcool+k ·MRR) ·tcut

• [He et al. 2012] present a model that explicitly computes energy for various sub-
systems of the machine by considering the total time each sub-system is active. They
also introduce explicit computation of the power drawn by the spindle sub-system (Psp),
the power drawn by the tool-change mechanism (Ptc), and the tare power (Pservo+Pfan).

E =
∫
tsp

Pspdt+
∫
tcut

Pcutdt+
m∑
i=1

∫
tf

Pidt+ Pcooltcool + Ptcttc + (Pservo + Pfan)t

We identify the following key characteristics of this past work:
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1. Most previous models compute the power required for material removal from the MRR
during machining, with or without empirical constants. We intend to explore if there
may be additional research opportunities to study the effect of individual process
parameters as well as the geometric aspects of the toolpath in the milling process.
The process parameters include feed, depth of cut, width of cut, and up/down milling
direction (for details, see [Trent and Wright 2000], Chapter 2) while the geometric
aspects include number of corners, path lengths, prominent cutting direction, and
toolpath strategy.

2. With the exception of [He et al. 2012], no model proposes computing the required
power for feeding or rapid travel separately in the X, Y, and Z directions. This results
from an implicit assumption that the energy required to remove material or move
the axes is the same in all three principle directions of motion (X, Y, and Z). In
practice, however, this assumption does not hold. Generally, the two axes of the table,
for example, have different masses, different bearings, different motors, and different
mounting configurations (one of the axes is typically mounted on top of the other) that
make movements of the axes require different amounts of force (thus different electric
power) depending on the direction of motion.

3. Most previous models are based on constants or conditions that restrict their
applicability to the particular machine used in the research. The experimental
procedure to compute the constants required to apply these models to a new machine
or manufacturing conditions are rarely described. Thus, most models cannot be readily
used on a large variety of CNC machines, outside the research group.

4. Some models use power readings and other parameters from machine handbooks (e.g.
[He et al. 2012]) that may not be easy to obtain or may not be up to date (due to
aging, maintenance, etc.) in an industrial setting, further restricting commercial use
of these models in industrial CAD/CAM software. Based on our experience when
working with industrial research collaborators from Audi AG, we found that it is often
too difficult or impossible for industrial partners to invest resources and time to find
the exact machine parameters. Thus, for easier adaption in the real-life scenarios,
we must develop a model that stands on its own, without the need of any machine
handbook data.

In developing a new energy model for CNC milling, we address some of the above concerns
by moving away from empirical constants and parameters obtained from machine handbooks
to develop a model that explicitly computes energy consumption in each activity during
machining of a workpiece. We also introduce a “customization” method to extend the
application of our model to any CNC machine with a one-time customization step. We
explain the details of our model in the following sections.
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3.2 Our Proposed Model
Energy consumed by a CNC machine (Emachine) can be divided into:

1. Econst: components that consume energy at a constant rate, irrespective of the cutting
operation (e.g. lights, computer, fans), and

2. Evariable: components that consume energy at a variable rate, depending on the cutting
operation (e.g. energy for material removal, table movements, spindle rotation).

Thus, we write:
Emachine = Econst + Evariable. (3.2)

Since the energy required in a machining operation can vary based on machining activities
in the operation, we compute the total energy required by computing the energy requirement
of each activity in its NC code (the program that a CNC machine sequentially executes
in a machining operation). This is a new approach, also found in [He et al. 2012] but
not implemented in any commercial CAD/CAM software. Most commercial CAD/CAM
software instead generalize the manufacturing energy requirements only based on the part
design (e.g. Solidworks [Dassault Systems 2013]). Since a part may be manufactured by
multiple alternative methods, each possible requiring different machining time and energy
depending on the operations performed, we believe that energy requirements to machine a
part are better computed using the NC code used in its machining. Computing block-by-
block energy usage from the NC code also allows us to incorporate the geometric aspects
of the toolpath into the energy computation. The total energy demand is aggregated as a
summation of those over all blocks in the NC code being analyzed:

Emachine = ΣEblock.

For each block of NC code, we write the energy consumption equation as:

Eblock = Pblock · tblock, (3.3)

where Pblock is the electric power drawn by the machine from the grid and tblock is the
machining time for that block (activity) in the toolpath. We compute tblock as done by [He
et al. 2012], using an acceleration value of a = 1m/s2. Most CNC machines used in the
industry and academia have this limiting value for axis acceleration, both in our observation
and as reported in the literature. Thus, as shown in Fig. 3.1, we consider a trapezoidal
profile for feedrate, to make realistic time computation for each block, computing tblock as
the addition of the time required for the axis to accelerate to the rated feed, move at the
rated feed for the programmed distance, and decelerate (if needed) to the rated feed of the
next block.

Similar to eq. 3.2, we further divide Pblock as

Pblock = Pconstant + Pvariable, (3.4)
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Figure 3.1 : Computation of tblock

where

• Pconst constitutes all components in the machine that draw power at a constant rate,
irrespective of the cutting operation or toolpath. Examples of such components include
the controller, lights, coolant pump, etc. For a block of NC code, depending on the
state of the machine, one or many of these contribute a fixed amount of power to the
total power consumption by the machine. In general,

Pconstant = Ptare + Pcoolant_pump. (3.5)

• Pvariable constitutes the power drawn by the machine at a variable rate, according to the
activity in the block. Pvariable is comprised of two major components: Pmoving_axes, the
power drawn by the machine to merely move (table movement, spindle axis movement,
and spindle rotation), and Pcutting_force, the additional power drawn from the grid to
exert the cutting force for removing material (if cutting happens). So,

Pvariable = Pmoving_axes + Pcutting_force. (3.6)

Hence, combining the above equations,

Pblock = Ptare + Pcoolant_pump + Pmoving_axes + Pcutting_force. (3.7)

From our observations, the energy required for mere axis movements is directly
proportional to the programmed feedrate F . Similarly, the energy required to rotate the
spindle is proportional to the programmed spindle speed Ns according to our experiments
and as reported in Balogun and Mativenga [2013].

Thus,

Pmoving_axes = Pspindle_rotation +
∑

i=x,y,z
Pi_move, where,

Pspindle_rotation ∝ Ns, Pi_move ∝ Fi.
(3.8)
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Pcutting_force, the additional power drawn from the grid to exert the required cutting force
Fc, can be computed as follows. From first principles, not all the drawn power (energy) is
converted into cutting force; some energy is always lost in overcoming Coulomb friction, in
damping, and in waste heat. This treatment is identical to Equation 1 in Altintas [1992],
where the authors state that an axis motor’s useful torque is spent in overcoming inertia,
damping, friction, and the rest is converted to cutting torque. We have eliminated the inertia
component because we considered it separately above in Pmoving_axes. Thus, excluding the
unmeasurable waste heat, we write:

Pcutting_force = PCoulomb_friction + Pdamping + Pmaterial_removal. (3.9)

We note from Smith and Tlusty [1991] that the cutting force required to cut the material is
directly proportional to the material removal rate MRR of the cutting process. MRR is a
function of width of cut w, depth of cut d, and feedrate F . From Altintas [1992], Coloumb
friction and damping are directly proportional to the exerted cutting force Fc. Thus,

PCoulomb_friction ∝ Fc,

Pdamping ∝ Fc,

Pmaterial_removal ∝ Fc, and

Fc ∝MRR.

(3.10)

Thus,
Pcutting_force ∝MRR. (3.11)

These inferences of linear proportionality (in Equations 3.8, 3.10) were also verified
experimentally in Altintas [1992], Smith and Tlusty [1991], He et al. [2012], Balogun et al.
[2013].

All discussion up to this point is independent of the construction, the size, and the
scale of the CNC machine in question. In order to use the same basic analytical model
for a wide range of CNC machines (e.g. from small retro-fitted CNC machines to huge
industrial gantry-type machines), we provide a mechanism that incorporates machine-
specific information into our model. This mechanism uses several experimentally-determined
machine-specific constants to relate our analytical model to the CNC machine under analysis.
These constants, called customization constants, are introduced for all proportional relations
derived above in Equations 3.8 and and 3.10. By introducing customization constants, we
obtain linear equalities between the process parameters and their corresponding power usage
contributions. For each such relationship, e. g. between any two variables ζ and ψ that
are linearly proportional to each other, we introduce two constants KA and KB such that
ζ = KA + KB · ψ. This form of linearity is similar to that used in models by [Layek
et al. 2012] and [Diaz et al. 2011]. Also, we compute the customization constants and the
quantities Pmove and Pcut as a summation of those for each of the three principal axes (X,
Y, and Z). Such an individualized calculation for each axis helps in accurate consideration
of toolpath geometry, since each axis may have a different mass and hence a different value
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for customization constants.
Using the customization constants, our final model equation for Pblock can be written as:

Pblock = Ptare + Pcoolant_pump +
∑

i=x,y,z
(KAmove_i + (KBmove_i · Fi))

+ (KAspindle + (KBspindle ·Ns))
+

∑
i=x,y,z

(KAcut_i + (KBcut_i ·MRR)).
(3.12)

Use of customization constants enables us to use the same underlying model in Equation
3.12 for any CNC machine, once customization constants are determined for that machine.
Further, since the constants are determined experimentally, the model does not rely on any
manufacturer specifications or machine-tool handbooks. Also, a machine can be customized
periodically to ensure that the model predicts energy estimates for the current state of the
machine. The procedure to experimentally determine the customization constants for a CNC
machine is described in the next section.

3.2.1 Determination of customization constants
Our main objective in defining customization constants is to individualize the analytical

model to capture the electrical behavior of the machine under analysis as closely as possible.
In essence, the customization constants represent the connection between our analytical
model and the construction/working of physical sub-systems in the CNCmachine in question.
The constants are determined by performing a series of “unit operations” on the CNC
machine and measuring the energy consumption with an in-line energy meter. [Behrendt
et al. 2012] proposed a systematic approach to measuring and analyzing energy consumption
in CNC milling. Many of our requirements are in line with their objectives. Therefore, we
used the test component and measurement methods they recommend. We also ensure that
constants are computed from samples over the entire working range of interest for the power
state being analyzed. The procedure and the computations to determine the customization
constants for the Haas VF-0 3-axis CNC milling machine in the Berkeley ME student machine
shop is described below as an example of the process.

Objectives

For each new CNC machine, the model proposed above requires the following constants:

• KAspindle, KBspindle

• KAmove_x, KBmove_x, KAmove_y, KBmove_y, KAmove_z, KBmove_z

• KAcut_x, KBcut_x, KAcut_y, KBcut_y, KAcut_z, KBcut_z
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• Ptare, Ptool_change, ttool_change

In this section, we will find KAspindle and KBspindle values for the Haas VF-0 CNC
machine. In Appendix A, we describe the complete procedure to determine the values of
all customization constants for a new CNC machine to customize the analyzer for the new
machine.

Apparatus

To measure electrical behavior, we need an energy meter with sufficient resolution and
recording frequency. Ideally, we wish to capture the effect of every action/process/event that
happens during the machine operation in an isolated setting. Also, since the measurements
are for executing an NC code, the recording equipment must be able to correlate electrical
events with events (blocks) in the NC code. Such electrical measurements are best performed
by the same controller that parses and executes the NC code. This, however, is difficult to
achieve with snap-on type laboratory-grade equipment that is not integrated into the CNC
machine controller. Also, it is almost impossible to perform experiments on a perfectly
isolated CNC machine tool (in the electrical sense).

[Behrendt et al. 2012] recommend using the Yokogawa CW240 energy meter for recording
electrical measurements of NC codes as a reasonable alternative to controller-integrated
energy measurements. The CW240 is capable of measuring and recording voltage, current,
power factor, and power (numerically integrated) values for 3 phases and 3 wire loads
simultaneously at 10 Hz. Since the CW240 cannot be synchronized with the NC code
parser, we separate our experiments to record observations for a single parameter in each
trial.

Experimental procedure and data processing

The energy meter (Yokogawa CW 240) measures all electrical parameters (e.g. phase
currents, voltages, active power, etc.) during the trials and records the data. The most
important electrical parameter for the purpose of our trials is the “active power” since that
value represents the actual energy available to do work. The other values of reactive power
and the rest of the power triangle are also available from a Yokogawa CW 240 but we do not
use them in our research. Thus, henceforth in the dissertation we refer to the active power
as the power drawn.

Figure 3.2 shows a typical plot of drawn power against time in an NC machining operation
involving six linear cuts after starting from rest. We observe that there is a single large,
slender spike/peak when the spindle is started, attributed to the energizing of the spindle
motor coil. Following this, the six linear cuts can be identified by portions of steady power
consumption with small power drops in between them when the machine momentarily stops
(changes cutting direction). Additionally, there are six smaller peaks at the beginning of each
linear segment (not noticeable in the Figure 3.2). In a similar but magnified plot, shown in
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Figure 3.2 : Typical power against time curve for a machining operation with six linear cuts
indicating the starting peak/spike in power consumption when the spindle is started.

Figure 3.3 : Typical power against time curve for a machining operation with a single linear
demonstrating both, spindle and axis motor spike.
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Figure 3.3, a separate smaller peak corresponding to starting of an axis motor is clearly seen
for another machining operation involving a single linear cut.

In this version of the energy analyzer, we ignore the spindle related peaks when computing
energy consumption of an NC code because that event (spindle starting from rest) happens
only a few times in an NC code. In contrast, the smaller peaks are noticed every time an
axis motor is started so we consider and model those in our estimates by computing the time
required for acceleration when computing tblock. For these customization trials, however, we
mainly observe power values away from either types of peaks, when the machine has reached
a relatively steady power state. Also, for each customization trial observation, we record
three independent readings, approximated to the nearest tenth W.

We perform three measurements in this trial when computing KAspindle and KBspindle

values for the Haas VF-0 CNC machine. The range of spindle speeds of interest for cutting
aluminum by uncoated High Speed Steel (HSS) tools is 3500 RPM to 7500 RPM. To measure
the customization constants, after connecting the energy meter in line, we operate the spindle
(with a tool but without any load) at three different speeds in the range of operation. In
each trial, the spindle is turned on for 6-10 sec. (the approximate time to achieve a steady
value of power drawn after the peaks have subsided) and then turned off.

We then process data obtained from the Yokogawa CW240 to identify trends and various
power states. We plot the (active) power values against time. To identify power states
in the noisy power data, we compute the moving average (to counter the fluctuations in
measurements) over the span of interest with a trend line. The moving average period for
each trial depends on the spindle speed since each spindle rotation is a distinct electrical
event marked by a “peak” in electricity consumption [Altintas 1992]. To ensure that the
moving average is computed such that no partial current cycles are considered, we use a
moving average period that is the smallest common multiple of spindle speed in RPS and
10, the measuring frequency of the meter. Thus, for the spindle speed of 4000 RPM, we use
the moving average period of 12 (15 for 5000 RPM and so on).

Figure 3.4 (A) shows a combined plot of three trials, where active power values for each
case are plotted against time. The three solid lines indicate moving averages for each of the
three trials. From these plots, we observe that the machine drew 1100 W, 1300 W, and 1520
W (rounded to the nearest 10) when the spindle was rotating at 3000, 4000, and 5000 RPM
respectively.

Now, the power drawn in these cases (1100 W, 1300 W, and 1520 W) is comprised of the
constant power, Pconst, and power required to rotate the spindle, Pspindle_rotation (from Eq.
3.7). Thus, in order to determineKAspindle andKBspindle, we first subtract the starting power
state from each observation. For the Haas VF-0, the value of the starting power state was
measured as 375 W. Thus, we computeKAspindle andKBspindle by fitting a straight line to the
plot obtained by plotting Pspindle_rotation values against corresponding spindle speeds (Figure
3.4 (B)). This plot, along with the obtained values of KAspindle and KBspindle, is shown
in Figure 3.4 (B). Similar experiments were conducted to determine other customization
constants for the Haas VF-0 milling machine in the Berkeley ME student machine shop. In
Appendix A, we describe the complete procedure to determine customization constants for
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Figure 3.4 : (A) Three superimposed plot of power values against time, recorded by a Yokogawa
CW240 on a Haas VF-0 CNC milling machine. (B) Fitting a line to the moving averages of the
power values.
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a new CNC machine that uses a universal, parameterized component to cover all relevant
motions as recommended by [Behrendt et al. 2012].

In the next chapter, we describe the development of software to analyze NC toolpaths
for their expected energy consumption based on the energy model proposed in this chapter.
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Chapter 4

Energy Model Applications

“Tools, metrics, and models to help sort out complex issues related to
environmental concerns in manufacturing, to point directions, and to measure
progress are badly needed.” - [Gutowski et al. 2005]

4.1 Background
In their study on large manufacturing corporations based in the US, Europe, and Japan,

[Gutowski et al. 2005] found that corporations across the world were willing to transform
manufacturing practices to address environmental concerns. However, even today’s CAD
and CAM tools lack the ability to facilitate such transformations because they still maintain
the conventional, purely productivity based view of manufacturing [Mittal and Sangwan
2013]. For example, mainstream CAD tools (e.g. Solidworks) to design/analyze components
for structural, thermal, and mechanical performance lack the ability to correlate the
effects of various design decisions to corresponding environmental impacts. Similarly in
manufacturing, CAM software tools (e.g. ESPRIT) used in manufacturing process planning
for maximizing productivity cannot provide any feedback for optimizing manufacturing
processes to reduce environmental impacts. Although academic research on optimizing
design/manufacturing activities with environmental objectives is abundant, rarely is the
research implemented in a commercial CAD/CAM tool to make tangible progress toward
environmental goals in industry [Bovea and Pérez-Belis 2012]. We address this need in this
work, by developing an independent CAM software tool based on our energy model, that can
be readily used in process planning to save energy in 3-axis CNC machining. In this chapter
we explain various aspects of this software tool that uses the energy model we described in
the previous chapter.
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4.2 Energy analyzer software
In the previous chapter, we reported an analytical energy consumption model for 3-axis

CNC milling that predicts the power drawn by a CNC machine at any stage of operation.
Here, we use this model to develop a software tool that analyzes a planned machining
operation to estimate the energy requirement of the entire operation. With these estimates,
we aim to provide a means to correlate parameter and toolpath choices made in process
planning of an operation to their effects on the energy (electricity) required for the operation.
The intended users of this software are process planners, who can use this software along with
toolpath planning software to make process planning decisions by simultaneously considering
environmental and productivity objectives. We first describe the various software design
decisions made when developing this software.

(Some of the ideas presented in this section were first introduced in our earlier version of
the energy analyzer software with a different energy model in [Choi et al. 2009]. Yusuke Yasui
implemented the analyzer first; we build on the same implementation in this dissertation but
incorporate and implement our energy model for the analysis.)

4.2.1 Software Design
We made the following decisions when developing the energy analyzer software such that

it can be readily used during process planning on a shop floor.

1. Individualized analysis: we designed the energy analyzer with an objective of making
machine-specific energy requirement predictions, while still supporting a wide variety of
CNC machines and machining conditions with the same underlying model. Therefore,
in addition to the use of machine specific customization constants in the energy model,
the software is designed to accept and incorporate case-specific inputs on toolpath
generation parameters used in CAM software (e.g. typical percentage overlap), tool
diameter for each tool, preferred milling direction when generating the toolpath, etc.

2. NC code (G/M commands) as input: This software is intended to be used after a
process planner has generated an NC code for a component using any CAM software.
Instead of computing “typical” energy required for manufacturing a part, merely
based on the part geometry as done in many CAD/CAM software of the present
day (e.g. [Dassault Systems 2013]), we analyze the generated NC code to make
specific predictions of electricity requirements in manufacturing for the selected process
conditions. This method provides case-specific feedback about the environmental
impact of the part’s manufacturing, since the same part could be manufactured by
a number of alternative methods/toolpaths, each possibly requiring different time and
energy.

3. Block-by-block: We parse the provided NC code block-by-block to determine the
time and energy requirements for each block separately using the energy model.
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The cumulative sum of all blocks in the CNC code gives the total time and energy
requirement of the CNC code. This methods also allows us to visualize detailed analysis
of the code for identifying the operations and their environmental impacts individually.

4. Support for common G/M commands: We support all commonly-used G/M commands
in NC codes but do not support any controller-specific commands in the software. This
approach allows the analyzer to be used on NC codes post-processed for any controller
(e.g. Fanuc, Siemens, MoriSeiki, etc.).

5. Web-based implementation: We have implemented the analyzer as a web-based service
to allow its use in a web browser. Thus, it can be readily accessed and used on
a shop-floor, in geographically distributed manufacturing sites, places with limited
computational power, etc. All data processing happens on a remote server and only
the result plots are rendered on the client machine using Google Charts API.

The working of the energy analyzer software is illustrated with the help of a flow-chart
(Figure 4.3) in the next sub-section.

4.3 Energy analyzer process flow
The energy analyzer estimates the time and the energy required to run the provided

NC code on the specified CNC machine. To make machine-specific estimates, the energy
analyzer uses machine-customization data and other user-specified parameters used in CAM
software when generating the input NC code. In addition to estimates of energy (in KW-H)
and time (in seconds), a graph showing block-by-block energy and time requirements is also
provided as an output.

Figure 4.1 shows the process flow chart for the energy analyzer. The software accepts an
ASCII text file NC code as its input. The provided NC code is first parsed to detect all the
tools used in the complete operation using tool change command instances. Then, for each
detected tool, the user is asked to specify a tool diameter and approximate overlap percentage
that is later used in energy computations. The user may also specify other parameters that
were used when generating the NC code in CAM software.

On providing the tool diameters and CAM software parameters, the main execution loop
of the analyzer begins parsing the NC code for the second time, processing one block at a
time , until the end of file is reached or a terminate statement code (M30) is read. During
execution, the three power states of Pconst, Pmove, and Pcut in the proposed energy model
(Equation 3.12) are continually updated by the software. For each block, Eblock is estimated
from Pblock and tblock using Equation 3.3. The total energy and time estimates are updated
after each block by adding the Eblock and tblock values to E and T . In the next section, we
illustrate the working of the energy analyzer using screen-captures for a test NC code.
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Figure 4.1 : Flow-chart for the energy analyzer software
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4.3.1 Software implementation and interface
We have implemented the energy analyzer in a client-server architecture so that it can

be accessed in a browser using any capable device. The server-side scripting is done in PHP.
The software internally uses Google Charts API [Google Inc. 2010-2014] to plot time and
energy estimate graphs in a browser during output display. Following is a description of a
typical run of a software to illustrate various steps in an analysis of an example NC code for
milling a face of a rectangular block.

Figure 4.2 : Face-milling a rectangular face

An analysis task begins with a user generated G/M code. For this example run, we
analyze an NC code for a toolpath to mill a rectangular face by a single directional toolpath,
parallel to X-axis direction (Fig. 4.2). We generated the toolpath in MasterCAM and verified
its correctness, as seen in a screen-capture (Fig. 4.3). The complete NC code obtained from
MasterCAM is attached as Appendix B.

Analysis
Analysis of a typical NC code, such as the one generated for facing in this example, starts

with uploading the NC code to the energy analyzer web-portal. Figure 4.4 shows the input
screen that appears after an NC code is uploaded. On this page, tool details, the starting
z-level, and the typical programmed overlap in the uploaded NC code are obtained from the
user. The user must provide tool diameters for each tool used in the NC code. Providing the
remaining parameters (percentage overlap and z-level), however, is optional. If not provided
(for example, if the NC code was hand-written), the energy analyzer uses the default values
of 50% overlap and the z-level of 0.0.
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Figure 4.3 : Generating and verifying toolpath for a facing operation in MasterCAM

With these inputs and the NC code, the energy analyzer then computes the expected
machining time (in seconds), required energy (in W-sec), and green-house gas (GHG)
emissions (in Kg) based on United States Environmental Protection Agency (USEPA) data
that relates the energy consumption to GHG emissions for 50 United States [U. S. Energy
Information Admin. 2008]. The output screen includes two plots indicating expected block-
by-block time and energy consumption. The output page for “FACE.NC” is shown in Fig.
4.5.

4.4 Validation of energy analyzer predictions
We performed additional validation experiments to corroborate the energy analyzer

predictions with actual energy usage. The objective of these experiments was both to
compare the total energy use as predicted by our software against the observed value, as
well as to compare values of various power states predicted by the software against those
observed instantaneously on an energy meter during actual machining.

The data presented here reflects values averaged over three (or more) trials for each
experiment, since we want to avoid effects of fluctuations in the electricity supply. These
validation trials were performed for a Haas VF-0 3-axis CNC machine in Berkeley ME student
machine shop. In all trials, we used Aluminum 6061 workpieces and 2-fluted uncoated HSS
end-mill tools of 0.375 inch diameter. As described earlier, we used a Yokogawa CW240
energy meter to record electricity consumption data such as the voltage, current, and power
factor for each phase of the 3-phase electricity supply.

Also, to differentiate validation experiments from customization experiments, we mea-
sured various power states of the machine at different values of input parameters than those
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Figure 4.4 : User interface for providing toolpath parameters after uploading an NC code
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Figure 4.5 : The output screen showing the expected time, energy consumption, GHG emissions,
and block-by-block plots

used in the trials to compute the customization constants. For example, to compute the
customization constants related to the spindle power, KAspindle and KBspindle above, we had
used 3000, 4000, and 5000 RPM speeds respectively (Figure 3.4). In the validation trials,
we used intermediate speeds of 5500RPM and 6700RPM to corroborate the energy analyzer
predictions of Pspindle against the measured values. Similarly for movements and cutting, we
used different combinations of X and Y direction feeds and depths of cut than those used
when computing the customization constants. Results from the two types of validation trials
are presented in the next two sub-sections.

4.4.1 Validation of various power states
In the first set of validation trials, we validate the intermediate power states of the CNC

machine as predicted by the energy analyzer. In all these trials, we used the “MDI” mode
of the CNC machine in order to measure a particular power state. By using MDI mode, it
was possible to isolate power consumption easily because unlike a program run, the machine
stops after each MDI command. In Table 4.1, the power states predicted by the energy
analyzer and those measured by the Yokogawa meter are compared. Deviation from the
observed power state values, was within 1-6%.

4.4.2 Validation of complete NC codes (toolpaths)
In the subsequent validation trials, we measured the energy consumption of various

complete NC codes (toolpaths) and compared the measured values with those predicted
by the energy analyzer. These trials were performed in the (usual) program mode with a
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Table 4.1 : Validation of power states
Power State Estimate (W) Avg. Measured (W) [T1, T2, T3] Deviation (%)

Constant Power (tare, coolant pump) (Pconst) 325 323 [323, 320, 325] -0.6
Spindle Power (Pspindle at 5500 rpm) 1257 1270 [1290, 1260, 1260] -1
Spindle Power (Pspindle at 6700 rpm) 1526 1540 [1530, 1540, 1550] -1

X-direction Pmove, 25% Rapid 296 310 [310, 310, 310] -4
X-direction Pmove, 60% Rapid 361 380 [390, 370, 380] -5
Y-direction Pmove, 25% Rapid 365 360 [360, 360, 360] 3
Y-direction Pmove, 60% Rapid 388 400 [390, 400, 410] -3
X-direction Pcut, Feed 30 IPM 314 300 [300, 290, 310] 5
X-direction Pcut, Feed 50 IPM 347 370 [370, 370, 370] -6
Y-direction Pcut, Feed 30 IPM 402 430 [420, 440, 430] -6
Y-direction Pcut, Feed 50 IPM 429 440 [460, 430, 430] -2

Yokogawa CW240 meter connected to the machine to measure the electricity consumption of
the complete NC code. Toolpaths used in these validation trials are shown schematically in
Figure 4.6. In Table 4.2, results of the validation trials for 6 complete NC codes are presented
along with the calculated percentage deviations. Similar to customization constants, each
measured power state is an average power state value of the three independent observations
in the square brackets.

Figure 4.6 : (a-f) Schematics of the six toolpaths used in validation checks.

Table 4.2 : Validation of NC codes (toolpaths)
Time (s) Energy (W-sec) Deviation (%)

Estimated Measured Estimated Measured Time Energy
a. Component 1 (Facing, X directional) 286 290 109,876 106,475 -1 3
b. Component 1 (Spiraling in) 262 265 109,223 114,542 -1 -4
c. Component 1 (Spiraling out) 267 280 123,871 130,652 -4 -6
d. Component 1 (Facing, Y directional) 291 287 147,190 142,601 1 3
e. One contour of a face 17.2 17.3 28,407 27,913 0 1
f. Sides of a face contour 15.6 17 28,012 27,633 -2 1

We found that our energy analyzer successfully predicted the time and the energy usage
for every toolpath within a range of -6% to +3% and that the trends predicted by the
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energy analyzer (e.g. the energy usage of X-directional facing smaller as compared to the Y-
directional facing, the energy usage of spiraling in smaller than that of that of spiraling out)
also matched with the observed values in machining trials. The deviation of the estimates
from the observed values was found on both sides of the observed values.

We believe that the results of the validation checks are promising and that the energy
analyzer can be used with a reasonable faith to estimate time and energy consumption of NC
codes without having to actually execute the codes on a CNC machine. We further propose
that the energy analyzer can also be used to rank different toolpaths against each other since
the trends in the validation checks were consistent with those found in the machining trials.

4.5 Conclusion
In this chapter, we described the development of energy analyzer software based on the

energy model we proposed in the previous chapter. The energy analyzer software is readily
usable in a browser without the need of any additional software or libraries. Once customized
to a target CNC machine using a one-time customization step, the energy analyzer is able to
estimate the expected electricity requirements (in W-sec) and the expected machining time
(in seconds) for any NC code for the target CNC machine. We also validated the energy
analyzer’s estimates by several experiments, as shown in Tables 4.1 and 4.2.

We now have a validated software tool to compare and contrast NC codes (e.g. alternative
toolpaths for the same component by different strategies) on the basis of their expected
energy consumption, without the need of actual cutting. In the following chapter, we
demonstrate this real-world use of the energy analyzer with several case studies that compare
various toolpath alternatives obtained from commercial CAM software for their energy
requirements.
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Chapter 5

Energy Analyzer: Examples

We proposed an energy consumption model for 3-axis CNC milling machines in Chapter
3 and described the development and validation of the energy analyzer software tool based
on the model in Chapter 4. In this chapter, we describe several case studies to illustrate
the use and the importance of the software in practical scenarios. The energy analyzer is
meant to be a supportive CAM tool, positioned between the process planning and actual
machining stages in manufacturing a part. Thus, in most case studies that we present
here, the inputs are components to be machined and NC codes generated for the machining
operations using commercial CAM software (Mastercam). We compare the energy and time
estimates for different alternative NC codes (toolpaths) of components using the energy
analyzer, without actually cutting any of them. Such a estimate-based comparison —
currently not possible by any commercial methods or tools — enables process planners to
make better-informed process planning decisions without wasting any resources or machine
time. As the case studies presented in this chapter indicate, our validated energy analyzer can
help identify energy saving opportunities that may otherwise go unnoticed in productivity-
oriented (traditional) process planning.

In the first case study, we illustrate the energy analyzer’s use to select a toolpath from two
seemingly equivalent toolpath alternatives. The two alternative toolpaths, in this case for
facing a square block, are identical in almost every sense including the expected machining
time. However, significant energy saving potential still exists as it will be seen in the case
study. In the second case study, we demonstrate the importance of various geometric aspects
of the toolpaths and their effects on energy consumption in machining. In the third case
study, too, we compare facing of a similar square block, but with two different toolpath
strategies to identify important energy consumption related trends. This chapter leads into
the next chapter that identifies important energy consumption trends in CNC machining
toolpaths.

5.1 Case study 1: Facing operation alternatives
Objective: In this case study, we use the energy analyzer to compare the energy
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requirements of two nearly-identical alternative toolpaths for facing a square block that
only differ in the direction of cut.
Procedure: Commercial CAM software programs (e.g. MasterCAM) provide many
alternative strategies for facing; we consider the zig-zag machining strategy for this case
study, due to its popularity as the strategy of choice in rough machining operations such
as facing [Lasemi et al. 2010]. We deliberately generate NC codes from two toolpaths such
that other than the primary direction of cut, all other geometric and mechanical parameters
of the two toolpaths being compared are identical. Toolpath A, seen in Fig. 5.1a, has the
majority of cutting in X-axis parallel direction while toolpath B, seen in Fig. 5.1b, has the
majority of cutting in Y-axis parallel direction. Since this case study is for a square block,
both toolpath alternatives have nearly identical machining time for the same cutter diameter
and overlap. Results from running the energy analyzer for the two toolpaths (using NC codes
generated by MasterCAM) are presented side-by-side in Table 5.1.
Observations and inferences: We notice that, although the expected machining time
for the two toolpaths is nearly identical (324 vs. 318 seconds), toolpath A, where most of
the cutting happens along the X-axis, is estimated to require about 20% less energy than
toolpath B, where most of the cutting happens along the Y axis direction. Based on the
observations in the previous chapter during power-states validation, we anticipate that due
to the differences in axis construction, motor capacities, and the bearing sizes, the amount of
energy to move or cut in X-axis direction is more than that in Y-axis direction. Haas VF-0
machine has the X-axis mounted on top of the Y-axis as seen in Figure 5.2. As a result,
when machining in Y-axis direction, the whole mass of the X-axis motors, bearings, guides,
etc. must move, which may be the reason for the difference in energy requirements of the
axes. Both toolpaths require nearly identical machining time (the small difference is due
to difference in positioning) due to the square geometry of the face and identical toolpath
strategy in both cases.

Table 5.1 : Comparison of estimates for facing operation alternatives

Toolpath Energy (W-s) Time (s)
X-directional facing 106,241 324
Y-directional facing 130,497 318

Significance: The observed difference in energy consumption for identical movements
in different axis directions is remarkable. Figure 5.3 shows a CNC machine used in industry
— Heynumill PF 3200. Unlike the Haas VF-0, this much bigger machine has a different
axis configuration. Although one is not mounted on the other, the two principal axes can be
expected to have significantly different energy consumption properties because one of them
carries the additional mass of the spindle and the tool changer magazine (the gantry-styled
axis) while the other (the table) carries the additional mass of the work-piece itself (7,500
Kg against 57,000 Kg). Further, the axis motors used to move the axes have power ratings
of 9.7 KW against 34.2 KW. Thus, in facing a rectangular face on this machine, machining
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Figure 5.1 : Face-milling a square face with cutting primarily in (a) X-axis direction (b) Y-axis
direction

along the first direction may be significantly more energy-efficient when compared to facing
along the other direction.

5.2 Case study 2: Effect of “corners” in toolpath
Objective: In this case study, we use different toolpath strategies to further focus on

the number of corners in a toolpath.
Procedure: We compare the expected energy consumption of two toolpaths alternatives
for facing a square block using two entirely different strategies that are popularly used in
industry. For facing a square block, in MasterCAM, we select a contour-parallel toolpath and
a spiral (inwards) toolpath with the same percentage overlap. The toolpath based on contour-
parallel strategy has significantly more 90-degree turns or corners (Figure 5.4a), while the
one based on the spiral strategy has virtually no sharp turns Figure 5.4b. The expected
machining time (from MasterCAM) for the spiral strategy toolpath is approximately the
same as that for the contour-parallel toolpath.
Observations and inferences: Results from running the energy analyzer for the two
toolpaths (using NC codes generated by MasterCAM) are presented side-by-side in Table
5.2. We find that the spiral strategy is only slightly efficient in terms of machining time but
may save energy (10%) during machining. This behavior may be attributed to frequent and
sudden accelerations or deceleration of the axes motors (at corners) that results in higher
instantaneous power consumption. [Chen et al. 2009] report that a toolpath with numerous
corners, as found in the contour-parallel toolpath in this case-study, may result in tool marks
on the machined surface due to sudden acceleration of the axes.
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Figure 5.2 : Axes mounting in Haas VF-0 indicating X-axis being mounted atop Y-axis
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Figure 5.3 : An industrial CNC machine used in the automotive industry — the Heynumill 3200
PF
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Thus, we can tentatively claim that corners in a toolpath are not favorable for energy
efficiency since they represent lost time and energy in starting and stopping an axis motor.

Figure 5.4 : (a) Contour-parallel (b) Spiral toolpath for a square facing operation

Table 5.2 : Comparison of estimates for spiral and contour parallel toolpaths

Toolpath Energy (W-s) Time (s)
Contour-parallel 88,144 234

True spiral 78,896 219

5.3 Case study 3: Effect of input geometry
Objective: In this example, we highlight the importance of input geometry when

deciding a strategy for machining. We again compare the same two toolpath strategies
(one with and the other without sharp corners) to generate toolpaths a different input face
geometry: a rectangular face with two islands.

Procedure: We compare the expected energy consumption of two toolpaths
alternatives for facing the input geometry with islands using the same two strategies used
in the previous example. We again generate the required toolpaths in MasterCAM, one
with a contour-parallel toolpath strategy and the other with a spiral (inwards) toolpath
strategy with the same percentage overlap. The toolpath based on contour-parallel strategy
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has significantly more 90-degree turns or corners (Figure 5.5a), while the one based on the
spiral strategy has virtually no sharp turns but has many lifts resulting from the islands.
Figure 5.5b.

Observations and inferences: Results from running the energy analyzer for the two
toolpaths (using NC codes generated by MasterCAM) are presented side-by-side in Table
5.3.

Significance: We now find that the spiral strategy is in fact 10% less efficient in terms of
machining time and energy consumption as compared to the contour parallel strategy for this
input geometry. This is in stark contrast to the earlier example where the spiral strategy was
found to be energy efficient as compared to the contour-parallel toolpath strategy. Thus,
we find that although corners are worse for energy consumption of a toolpath (from the
earlier example), the input geometry also plays an important role in deciding a strategy for
machining a component and that no one strategy can be guaranteed to be energy efficient
for all input geometries.

Figure 5.5 : (a) Contour-parallel (b) Spiral toolpath for a facing operation for a face with islands

The three cases explained above illustrate possible use-cases for the energy analyzer
as a supporting software to MasterCAM or any other toolpath planning software to make
decisions aware of the energy costs. Although the analyzer’s predictions were validated for
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Table 5.3 : Comparison of estimates for spiral and contour parallel toolpaths for a face with islands

Toolpath Energy (W-s) Time (s)
Contour-parallel 109,874 311

True spiral 121,710 349

both precision and trends (in the previous chapter), we identify here, some of its limitations
that arise from the data acquisition process or the equipment available for testing in a
university machine shop.

5.4 Energy analyzer limitations
• The time computations in the energy analyzer assume a linear acceleration and

deceleration profile of the axis motors. Since we wanted to avoid reliance on
machine handbook data during customization, this assumption was necessary to obtain
reasonably accurate time estimates. We also use a single, almost universal value of
1m/s2 for the acceleration of an axis. These computations can be further improved
with more accurate computations based on the actual motor curves and acceleration
profiles although it may be difficult to practically determine these without using the
machine handbook data with a low-frequency energy meter like a Yokogawa CW240.
Similarly, the peak corresponding to the spindle start may also be taken into account
in time and energy estimations if its duration and height can be accurately measured.

• The energy estimates in the energy analyzer are based on an inherent assumption
that up-milling and down-milling1 require the same amount of energy if all other
conditions are identical. This, however, is only an approximation. Theoretically, down-
milling requires less energy due to the geometry of cutting forces that tend to force the
workpeice into the table. We investigated this factor during our experimentation but
could not get a clear trend to confirm the difference in power consumption when up-
or down-milling happens. Also, with only NC code of an operation as the input, it is
impossible to know if a block of NC code will cause up- or down- milling. Therefore,
we have not included this factor in the analysis when computing the energy usage.
However, in future, energy analyzer can be improved if up/down milling is separately
considered, perhaps as an additional user input factor.

• [Avram and Xirouchakis 2011] recommend that in order to identify stable cutting
conditions when measuring energy consumption by a CNC machine, a modal analysis
must be performed. Based on the frequency response function of the machine tool,
stability lobe diagrams should be developed using to ensure that during the acquisition,

1Refer to [CNC Cookbook 2014] for definitions
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no oscillation behavior or any other undesired effects occur that may affect the
measured electric signals of voltage and current.

• The data acquisition process suffers from fluctuations in power supply, effects due to the
presence of other electric equipment in the vicinity, and the relatively lower frequency
of measurement of the energy meter – Yokogawa CW240 (10Hz). Ideally, the energy
meter must be integrated with the CNC controller such that energy usage per block is
measured and recorded individually. A meter with higher frequency of measurement
may be necessary for more accurate measurements, particularly if the measurement
signals will be used for online monitoring of machining conditions [Vijayaraghavan
and Dornfeld 2010]. A WattNode energy meter [Continental Control Systems 2009-
2014] may be suitable for this purpose but using a Wattnode meter requires special
dedicated wiring setup that may be difficult to perform on a machine regularly used
in an industry.

5.5 Summary
The objective of the energy analyzer is to provide a means to compare various alternative

toolpaths for a machining task based on expected energy consumption specific to candidate
machine construction, process conditions, and the geometric parameters of the toolpaths.
The analyzer uses our analytical process model for CNC milling tuned to the specific machine
in question by brief customization trials. To our knowledge, no such machine-specific,
validated comparison software exists today to consider environmental aspects in toolpath
planning for CNC milling. As we demonstrated, even with the current limitations, the
energy analyzer has immediate practical applications in industry since it may be used along
with any existing CAM/toolpath planning software, without making any other changes to
the machine or the workpiece design, for tangible energy savings by merely operating the
machines differently and selecting toolpaths based on their expected energy consumption.

Extending the discussion on saving energy in CNC machining, in the next chapter, we
explore a more proactive approach to toolpath planning by generating new toolpaths (as
opposed to the reactive approach of selecting toolpaths from available alternatives) that are
designed to consume less energy for the same task.
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Chapter 6

Toward Energy Efficient Toolpaths

In the previous chapter, we demonstrated three real-life example cases where possible
use of our energy analyzer (described in Chapter 4) was demonstrated in CNC process
planning to make decisions aware of the impacts on energy consumption. In this
chapter, we develop additional knowledge and tools to progress a step further by designing
manufacturing processes such that they are inherently energy-efficient. We first enlist
important characteristics of NC codes/toolpaths that affect energy consumption in CNC
machining followed by the description of a novel method of designing inherently energy-
efficient toolpaths.

6.1 Factors Affecting Energy Consumption
We analyzed several different NC toolpaths for a variety of workpiece geometries, both by

using the energy analyzer and by observing the actual energy consumption using a Yokogawa
CW240 energy meter. We observed the following characteristics of toolpaths, underlying
toolpath strategies, toolpath parameters, and machining conditions that prominently affected
energy consumption in machining.

1. Strategy: We found that no single toolpath strategy (topology) may be universally
adapted as “the most energy-efficient” strategy to follow when generating toolpaths for
3-axis CNC milling. For instance, a true-spiral strategy in MasterCAM was generally
found to be the most time and energy efficient for non-rectangular, circular or oval
pockets but the same strategy failed when there the inputs were rectangular or had
slender islands. Instead, we believe that the energy consumption depends may vary by
the machine, the workpiece geometry, and also the electrical characteristics of various
machine components (e.g. axis motors).

2. Direction: Further, even the same toolpath strategy (topology), when used in different
primary directions, may result in different energy consumption, because a machine may
require a different amount of energy to move/cut in different directions. For example,
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in the Haas VF-0 3-axis CNC milling machine, the X axis is physically mounted on top
of the Y-axis, resulting in a higher power requirement when cutting or moving along
the Y-axis, due to the additional mass of the X-axis that must also move every time
the Y-axis moves. Thus even for the same strategy, a different amount of energy is
required when cutting is done along the X-axis versus along the Y-axis.

3. Machine variability: In addition to not finding a single most effective strategy or
direction, as [Balogun et al. 2013]’s findings suggest, the relative performance of various
toolpaths can too change from machine to machine since machine construction, axis
mounting, etc. may differ. In other words, a toolpath found to be the most efficient
among available alternative toolpaths on Haas VF-0 may or may not be the most
efficient when the same candidate toolpaths are analyzed for a different machine with
different customization constants.

However, we also found several geometric characteristics of toolpaths that tend to result
in lower energy consumption irrespective of the underlying strategy or cutting direction. We
found that:

1. A toolpath that makes fewer and gradual changes in cutting direction is better for
reduced energy consumption. Extensive and frequent changes in tool-path direction
are unfavorable since they cause spikes in the power demand resulting in higher overall
energy consumption in the process. [Lasemi et al. 2010] have also reported that such
sudden acceleration events (jerks) reduce the tool life due to fatigue.

2. Toolpaths that avoid sharp corners and frequent lifts tend to reduce the machining time
and energy consumed. Toolpaths with continuously varying, low curvature (without
sharp corners or turns), avoid repeated acceleration/deceleration events that cause
spikes in power consumption. Also, frequently lifting and repositioning the tool results
in air-cutting causing higher cycle time and energy requirement.

3. Maintaining constant cutting loads by using longer segments with near constant
machining rate results in lower energy consumption. Additionally, these paths are
also favorable for surface finish and tool life.

4. Direction of tool-paths: Wisely choosing the direction to obtain longer paths also help
in significantly reducing the cutting time, and as a result, saving energy. Thus, fewer
long cutting paths in one direction are better than many short paths.

Based on the above observations, we anticipate that toolpath planning for energy efficient
machine may involve some trade-offs. For example, for lower energy machining, a larger
percentage overlap between two adjacent toolpath segments would be detrimental due to
increased number of toolpath segments for the same component. But, a higher overlap is
better if superior surface-finish is also desired after machining. Thus, the toolpath planning
strategy or topology and the process planning software must optimize a weighted combination
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of possibly contradictory objectives. Therefore, we cannot recommend any one strategy or
technique among existing strategies offered by commercial CAM software (e.g. Espirit,
MasterCAM) that could be used to generate toolpaths that will be both productive and
energy-efficient by design.

We were introduced to a research work by [Maharik et al. 2011] in the domain of
computational art that we found inspiring as a foundation to develop toolpaths that will be
energy-efficient by design. The next section describes this work briefly; for a more complete
account of the work, the reader is referred to the original publication [Maharik et al. 2011].

6.2 Digital micrography

Figure 6.1 : Examples of micrographic text arrangements as reported in [Maharik et al. 2011]

The digital micrography technique focuses on generating aesthetically pleasing text
arrangements that convey an underlying 2D shape while still being readable. Micrographic
text arrangements, as shown in Figure 6.1, are a special type of calligraphic arrangement of
text. These are highly artistic arrangements of text that can take hours to create manually.
Maharik et al. generate complex micrographic arrangements automatically, by developing
an algorithm to automatically place the text.

Automatic generation of micrographic images starts with designing a smooth vector-field
over the input geometry, followed by tracing streamlines that act as seed points to place
text. Once streamlines are traced from the designed vector-field, text is placed and re-sized
along the streamlines to generate the final output. This process is shown for an example
shape in Figure 6.2.



6.2. DIGITAL MICROGRAPHY 46

Figure 6.2 : (a)Starting 2D geometry, (b) boundary conditions for a desired vector field, (c) a
suitable vector field that satisfies the set boundary conditions, (d) tracing vector-field streamlines,
orienting and ordering them, and (e) placing text along the streamlines. [Maharik et al. 2011]
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Maharik et al. focused on two principal requirements when generating digital micro-
graphic images: shape recognition and readability of the text. First, for shape recognition
and aesthetic appeal of micrographic figures, the text conforms to the outline shape. Also,
since the text layout defines the outline of the shape, the text line directions are aligned with
the image region boundaries when possible. Specifically, acute angles between boundaries
and text directions are avoided. The text is placed in lines with low curvature, high
coherency, and such that adjacent lines are eqi-spaced. Such lines are important not only
for readability but also for visual appeal. Further, for readability, uniform, left to right
text flow is maintained to help the reader follow the lines of text easily. The lines have low
curvature with no sharp changes in direction. They also have as much length as possible.
Based on these requirements and the trends we identified in section 6.1 above, we postulated
that the underlying technique in generating micrographic images can be extended into a
toolpath strategy (similar to zig-zag or contour-parallel strategies) for generating toolpaths
that inherently have properties of energy efficient toolpaths. This idea lead us to our final
case study.

6.3 Towards inherently energy efficient toolpaths
We explored the idea of using a micrography-like process to generate 3-axis CNC milling

toolpaths because we found that the underlying problems in both toolpath planning and
digital micrography had some distinct commonalities. Our colleagues in the Computer
Aided Design and Manufacturing Laboratory at UC Berkeley (Youngwook Kwon, Sushrut
Pande, and Zhongyin Hu) worked on connecting the streamlines (from digital micrography
process) and generating an NC code (toolpath) using points on the streamlines as cutter
location points for an input shape — the bear, shown in Fig. 6.1(center-bottom) — also
used in the digital micrography paper. The streamlines and the input geometry was kindly
made available by the digital micrography research team. For this dissertation, we compare
the energy performance of this micrography-inspired toolpath with an equivalent toolpath
obtained from MasterCAM.

MasterCAM provides several alternative pocketing strategies (shown in Figure 6.4).
Although it is difficult to select an equivalent toolpath to compare against that obtained
from digital micrography, we decided to fix the depth of the pocket and select a MasterCAM
alternative toolpath that removed the planned material — the bear shape, 0.025inch deep
— in the least amount of time. Thus, in essence, we compared the most time-efficient
MasterCAM toolpath for the same amount of material removed (the most resultant MRR)
against the toolpath based on digital micrography. We compared the time estimates made
by MasterCAM to compare its alternatives (see Table 6.1) and found that the X-parallel
one-way toolpath was the most time-efficient toolpath among the available alternatives to
compare against the novel, micrography-based toolpath. In this comparison, we ignored the
high-speed machining toolpath provided by MasterCAM because although it had the least
expected machining time, it did not result in complete machining of the component.
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Figure 6.3 : Starting 2D geometry

The objective of this case study was two fold: (a) we wanted to test the energy analyzer
on two real-world toolpaths to validate the accuracy of its estimates; (b) we wanted to test
if micrography-based toolpaths were indeed energy-efficient when compared to MasterCAM
generated, commonly used toolpaths. Even for the same machining time and the same
material removed (hence the same MRR), we wanted to know if the followed path had any
effect on the energy consumption.

Table 6.1 : Comparison of MasterCAM’s time estimates for the 6 toolpath alternatives.
Toolpath strategy Estimated machining time Remarks
(A) Constant overlap spiral 32 min. 01 sec.
(B) One way, X parallel 30 min. 16 sec. The least time
(C) Parallel spiral 34 min. 27 sec.
(D) One way, Y parallel 47 min. 30 sec.
(E) True spiral 105 min. 01 sec.
(F) High speed machining 29 min. 12 sec. Some material left

6.3.1 Setup and toolpath generation
Since this trial is focused on comparing the energy performance of the two toolpaths,

we made a conscious effort to keep most other parameters identical for a fair comparison.
We use the same input geometry to generate both — micrography-based and MasterCAM
— toolpaths, use the same workpiece material (Aluminum 6061 alloy) and cutter (3/32
inch, 2-flute, uncoated flat end-mill), and use the same CNC machine for our trials. As
previously described, we selected a toolpath from MasterCAM alternatives that required
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Figure 6.4 : 6 alternative strategies from MasterCAM (A) Constant overlap spiral (B) One-way,
X-parallel (C) Parallel spiral (D) One-way, Y-parallel (E) True spiral (F) High-speed machining

Figure 6.5 : Schematic toolpaths for the bear component: (left) using direction-parallel strategy in
MasterCAM and (right) streamlines generated in digital micrography research that were connected
and used as a toolpath. For connecting, Sushrut Pande developed and implemented an algorithm
that is reported in [Pande et al. 2013].
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the least machining time and performed complete machining of the component. The input
geometry is shown in Figure 6.3, the schematics of the two toolpaths are shown side-by-
side in Figure 6.5, while photographs of the two components, after de-burring, are shown in
Figure 6.6. The resultant cycle times and energy requirements by both the energy analyzer
and as measured are shown in Table 6.2.

Figure 6.6 : Schematic toolpaths for the bear component: (left) using direction-parallel strategy in
MasterCAM and (right) using the streamlines generated in digital micrography research.

6.3.2 Results
Table 6.2 validates reasonable accuracy of the energy analyzer estimates and, more

importantly, indicates that a toolpath generated using principles of energy efficient toolpaths
did in fact result in a toolpath that consumed less electricity than a commercial software-
generated toolpath for the same of material removal rate. The results also suggest that
generating toolpaths by using points on streamlines from the research on digital micrography
is a feasible method for generating toolpaths with inherent energy efficient characteristics.
We understand that this is only an encouraging start and many further experiments will be
needed before guaranteed inherently energy efficient toolpaths can be generated. In the final
chapter of this dissertation, we comment on various other research opportunities that can
be explored to further the ideas of customized, energy-efficient toolpaths.

Table 6.2 : Comparison of time and energy estimates by our energy analyzer with the measured
values for the “bear” component.

Time (s) Energy (W-sec)
Estimated Measured Estimated Measured

Micrography-based 1,480 1,517 2,294,847 2,449,048
X-parallel (MasterCAM) 1,788 1,827 2,618,749 2,893,665
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6.4 Summary
In this chapter, learning from various case studies on CAM software-generated toolpaths

using different toolpath strategies, process parameters, and machining conditions, we
identified important characteristics that make a particular machining operation energy
efficient. Professor Alla Sheffer from UBC, who guided a different research on digital
micrography first proposed that a portion of their research may be suitably extended for
use in toolpath planning. We further identified similarities in the two underlying problems
(digital micrography and energy-efficient toolpath generation) to propose generation of
toolpaths based on streamlines that could be energy-efficient by design. We tested
this hypothesis by analyzing a toolpath generated by our colleagues in our lab using
our energy analyzer to find that the toolpath generated using principles from digital
micrography consumed about 20% less energy than a toolpath generated using a commercial
CAM software for the same machining time. Although more research is required before
generation of energy-efficient toolpaths based on the principles of digital micrography can be
commercially viable; we believe that these results can convince researchers that in addition
to the toolpath strategy and MRR, the workpiece geometry and the intended machine’s
construction must also be considered when generating toolpaths.

This chapter concludes the discussion of the energy efficiency aspects of 3-axis CNC
machining toolpaths. We now shift our focus to the other class of multi-axis CNC machines,
where, as explained in Chapter 1, saving energy by reducing the overall cycle time (as
compared to saving energy in material removal process alone) may have a larger overall
impact due to the energy distribution.
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Chapter 7

Toolpath planning for efficiency in
5-axis CNC machining

7.1 Introduction
In line with the objectives of this dissertation to analyze and reduce energy consumption

in CNC milling, in this chapter, we report our work on improving energy efficiency in 5-axis
CNC milling. Specifically, in the case of 5-axis machining (Section 2.4), reducing operation
time by improved toolpath planning may have the most impact on energy consumption.
Although toolpath planning for 5-axis machining is a well-researched problem, it is also
well-acknowledged that a truly optimal solution to this complex, multi-dimensional problem
is yet to be found [Wang and Tang 2007, Farouki and Li 2013].

5-axis CNC machine tools have three translational and two rotational degrees of
freedom (DOFs). It is due to the inherent complexity in even formulating a problem that
simultaneously accounts for all five DOFs, with multiple, possibly conflicting performance
parameters, that researchers separate the DOFs to only formulate and solve a part of the full
problem. Two major sub-problems result due to this separation: the toolpath planning sub-
problem solves only for translational DOFs, while the tool orientation planning sub-problem
only solves for rotational DOFs. Such a separation of DOFs is only a compromise to make
the problem tractable when ideally the two interdependent sub-problems should be solved
simultaneously.

In this chapter, we propose a novel unified approach to formulate and solve the complete
5-axis toolpath planning problem. Our objective is not to propose yet another method to
solve one of the two sub-problems; instead, we want to take on the task of formulating the
complete 5-axis toolpath planning problem in a general form that can encompass all current
and future aspects (objectives and constraints) of the 5-DOF problem problem without
separating any DOFs in the process. In this chapter, we will:

1. present our proposed formulation of the full 5-axis toolpath planning problem based
configuration space (C-space);
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2. explain nuances in defining, transforming, and solving the proposed C-space based
formulation; and,

3. as a first step toward solving the full 5-axis problem using the proposed formulation,
demonstrate the use of this proposed formulation and solution method by applying
them to a lower-dimensional problem.

7.2 Past work
Table 2.1 summarizes the past research on 5-axis toolpath planning, which consists of a

rich variety of approaches to each of the two sub-problems. The initial research in this area
merely aimed at generating a gouge-free toolpath or tool orientations. Many recent works,
however, have simultaneously improved performance aspects of the machining process such
as the machining time or the surface finish. All approaches presented in the table address
only one of the two sub-problems in an independent setting, without solving the other sub-
problem simultaneously. However, as we showed in Section 2.4.1, the two sub-problems are
inter-dependent and must be solved simultaneously for a truly optimal solution. Some recent
approaches can be seen in this direction, as discussed next.

7.2.1 Beyond independent sub-problem solutions
Some recent research works approach the two sub-problems together, albeit with

limited scope. [Farouki and Li 2013] solve for tool orientations and toolpath parameters
simultaneously to optimize material removal while minimizing angular changes. Although
restricted to open surfaces and pre-defined CL paths, this approach computes tool
orientations and spacing between CL points simultaneously. [Barakchi Fard and Feng 2009]
reported a method with the objective of maximizing machining strip width that considers
tool orientations and feed direction computation simultaneously. This approach too, does
not consider global gouging but has the important distinction of computing the orientations
without fixing the CL points a priori. [Li and Feng 2004] generated iso-scallop toolpaths
and tool orientations simultaneously while maximizing material removal; their approach too,
however, is restricted to only local gouging checks.

These works not only highlight the importance of solving the sub-problems simultane-
ously, but also demonstrate the inherent complexity to be expected in formulating such a
unified problem. In practice, nearly all components manufactured on 5-axis CNC machines
require explicit global gouging checks to avoid tool-workpiece collisions. Hence, to obtain
feasible toolpaths, an approach must include checks for local, rear, and global gouging at
every CL point. Further, multiple, often contradictory objectives must be simultaneously
considered when selecting an optimal toolpath from all feasible alternatives. The recent
approaches mentioned above, although a significant advance toward obtaining an optimal
solution to the complete problem, are still limited and lack the ability to incorporate multiple
objectives. Our formulation in the next sections is based on the idea of optimization since in
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our opinion, that framework is the most suitable way to include multiple objectives (material
removal rate, machining time, etc.), multiple constraints (gouge-avoidance, acceleration
limits, etc.), and multiple DOFs (5 DOFs of the cutter at every CL point) under a single
umbrella problem.

7.3 Unified formulation
We recognize that the fundamental objective of the two sub-problems of finding toolpath

(CL) points and tool orientations is to completely and correctly machine the workpiece to
obtain the design surface. Additionally, due to economical and ecological constrains, the
machining process must also be optimized for its performance and environmental footprint.
Performance of a machining process is indicated by several parameters such as cycle time,
cost, and tool life, while the environmental footprint is characterized by its energy use,
emissions, coolant use, etc. The common constraints include those due to gouging prevention,
scallop height limit, and kinematic limits. We exploit these similarities in the sub-problem
objectives and constraints by expressing them as those of a single optimization problem.
Also, we define the optimization problem in the combined parameter space, which is the full
configuration space (C-space) [Lozano-Perez 1983] of the cutter. We define this “unified”
C-space based problem formulation as follows.

7.3.1 C-space based problem formulation
We formulate the problem by transforming it from a CL path planning/orientation

computation to a multi-objective optimization problem where all objectives (e.g. minimizing
machining time, maximizing surface quality, etc.) are considered together simultaneously,
subject to various imposed constraints expressed as variable bounds or non-linear relations.
The formulation does not limit the ability to consider either additional objectives or
additional constraints, so any number of objectives or constraints can be added as desired.
Optimization is then performed in the machining configuration space (C-space), which is a
multi-dimensional “parameter space” spanned by the five axes representing the five DOFs of
the CNC machine. We achieve this problem transformation as follows:

1. C-space and parameters: The “control variables” in the optimization problem are
DOFs of the cutter: three CL point coordinates and two orientation angles. Thus the
parameter space, i.e. the C-space, is five dimensional, where each point represents a
unique cutter configuration consisting of a CL position [x, y, z] and orientation [θ, φ].
Consequently, a toolpath is represented as an ordered sequence of 5D points in the
C-space.

2. Constraints: “Constraints” (or “obstacles”) are the regions of C-space where configu-
rations cannot exist if they are to be feasible. In CNC machining, every toolpath must
ensure that gouging does not happen, that the complete surface is machined within
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the specified scallop height, the tool orientation change is limited, and that kinematic
limits of the machine tool are never exceeded, etc. Therefore, we identify and remove
portions of the C-space (obstacles) that correspond to each of these conditions, before
searching for a solution toolpath. Any “feasible” toolpath solution must lie completely
outside of all the obstacles.

3. Objective function and optimization: An “objective function” facilitates ranking
and comparison of toolpaths during search for optimal solution from all feasible
solutions. The solution to the 5-axis toolpath planning problem must optimize
the machinist’s objectives such as minimizing machining time or maximizing surface
quality, etc. Thus, in the transformed problem, we define the objective function as
a function of configurations — summed over a toolpath — consisting of weighted
scores that determine the toolpath’s performance with respect to each objective.
The scores result from choices of configurations present in the toolpath; therefore
mathematically minimizing the objective function results in a toolpath containing the
set of configurations that are optimal for the machinist’s objective.

Formally, for a d axis machine tool, we define a toolpath T as an ordered set of n
configurations, where each configuration cj is a d-touple. To obtain the optimal toolpath:

Minimize ḡ =
∑

i∈Metrics

(
wi · fi(T )

)
where T = {c1, c2, c3, ..., cn},

subject to constraints : cj ∈ Cd; cj /∈ Bd; fi(T ) >= Sk

where wi is the weight assigned to performance metric i, fi is the scoring function to
characterize the performance of a toolpath for the ith performance metric, for example, a
cumulative sum of absolute angular orientation change between successive CL points fθ(T ) =∑
T (cn,θ − cn−1,θ); Cd is the full d-dimensional C-space, Bd (Bd ⊆ Cd) are the obstacles

(regions on the configurations space representing infeasible configurations) in the full C-
space, and Sks are various hard constraints on the performance of candidate toolpaths (e.g.
the maximum resultant scallop height for a toolpath candidate).

7.3.2 Optimization search
The above transformation to an optimization problem needs a flexible solution strategy

to solve the resultant 5D optimization problem because the problem’s nature may differ
depending on objective and constraint function definitions. Generally, the nature of the
objective function (e.g. linear vs. non-linear, single vs. multi-objective) helps in determining
the mathematical technique that can be used in its solution. However, due to the flexible
definition of the objective function, we cannot guarantee even basic mathematical properties
(such as differentiability or continuity) of the objective function. In addition, the constraints
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will typically include non-linear inequalities; for example, to maintain scallops less than a
fixed height, non-linear constraints relating consecutive configurations in a toolpath are
necessary. In addition, the higher dimensional C-space Cd itself may or may not be
continuous due to the obstacles Bd. Finally, machining complex industrial components
will require numerous (thousands or millions) of CC/CL points, although it can be seen
that the computations involved are highly parallelizable. Therefore, we must devise an
optimization strategy that can optimize linear or non-linear functions, with possibly non-
linear constraints, in higher dimensional discontinuous parameter space and preferably
manage the computations by parallelizing. The appropriate technique, thus, may be selected
depending on the specifics of the problem.

We now present one example problem — from formulation through solution — to
illustrate the application of the proposed formulation and solution technique.

7.4 Example implementation

Figure 7.1 : Lower dimensional problem setup: (a) design curve and cutter; (b) range of possible
cutter orientations; (c) scallop height; (d) resulting surface after “machining.”

Our formulation and solution technique requires geometric computations in higher
dimensional parameter space. 5-axis toolpath planning will require a 5D C-space that is
difficult to imagine or visualize. As a first step, in the current work we construct and solve a
lower dimensional analog of the full problem by artificially reducing the dimensionality.
Unlike in the classic work of Lozano-Perez [Lozano-Perez 1983], wherein he discusses a
similarly reduced-degree problem for robotic path planning in the plane—a lower-dimensional
problem that itself had real-world applications—our lower dimensional problem has no
practical application. However, we intend to learn key aspects of the problem’s behavior and
the relationship of various inputs to the final toolpaths by being able to easily visualize the
C-space and solutions. Thus, our two primary intentions in designing the lower dimensional
problem are:

• to provide a proof of concept of our formulation and solution strategy that considers
translational and rotational DOFs simultaneously, and
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• to facilitate visualization of the C-space and candidate solutions to help learn more
about the inherent characteristics of the toolpath planning problem.

We must retain key traits of the full problem (including considering both rotational
and translational DOFs) but reduce the computational complexity (dimensionality) when
designing the lower-dimensional problem. Also, we should not relax important constraints
that may seem redundant in lower dimensions. For example, scallop height is an important
consideration, but scallops can occur only when machining a 3D surface and do not arise
when machining a single pass with a connected toolpath in lower dimensions. We must avoid
losing such constraints while reducing the dimensionality.

We have designed the lower-dimensional problem for this work with the following inputs
and assumptions:

• Design surface: A planar parametric curve (Fig. 7.1(a)) that must be obtained.

• Maximum scallop height: Scallops after machining cannot by larger than s units high.

• Cutter: A planar, sufficiently long, ball-nose (semi-circle nose) cutter of radius ρ, that
can translate and rotate in the plane. The cutter’s vertical orientation is denoted by
orientation θ = 0 and the cutter can be rotated to any angle between −90◦ to +90◦ as
shown in Fig. 7.1(b).

• “Machining:” Since a connected machining pass in 2D won’t result in scallops, we
define the “machining” process plan by a set of discrete configurations (SDC) that we
define as a set of CL positions and orientations where the cutter will be placed (and
removed), resulting in the final “machined” curve with scallops as shown in Fig. 7.1(d).

• Objective: The objective in this problem is to generate a SDC that results in lower
cutting time, higher material removal, and maintains scallops below the set limit
subject to the constraints due to gouging. Thus, the objective is defined as a weighted
average of individual objectives of cutting time and material removal, where the weights
can change according to user preference.

We first construct the full C-space for this problem, obtain the feasible C-space by
removing obstacles arising from the constraints, and then perform a search for the optimal
SDC.

Constructing the C-space
We construct the C-space using geometric characteristics of the problem and subtract

obstacles from it to obtain the feasible C-space. Since in point-milling, the 2D cutter may
touch the parametric design curve only at a single point (CC), there exists a unique CL
point for each CC point on the curve. Thus, each CL point can be identified by a unique
parameter value of the design curve. Thus, we can treat the two in-plane translational
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Figure 7.2 : Solving the lower-dimensional variant. (a) The design curve to be machined and its
Bezier control points. (b) Evaluated design curve points. (c) Computed CL path. (d) Concave
and convex regions of the design curve. (e) Feasible C-space left after removing global gouging
obstacles. (f) Feasible C-space left after removing rear gouging obstacles. (g) Common feasible
C-space (intersection of (e) and (f)).

DOFs of the cutter as a single DOF of the parameter — call it t — that represents one
C-space dimension. The second DOF of the cutter — its in-plane rotation — forms the
second dimension of the C-space. Thus, the full C-space of this problem is a 2-dimensional
rectangle whose one dimension is parameter t for the cutter location and the other dimension
is the cutter rotation angle θ (ranging from −90◦ to +90◦).

However, the actual “feasible” C-space is limited due to various constraints on the
problem. Gouging constraints restrict the possible orientations [Jun et al. 2003], while the
scallop height limit restricts both orientations and positions of CL points [Lin and Koren
1996].

We compute and subtract obstacles for local, rear, and global gouging [Lasemi et al. 2010]
individually from the full C-space. Local gouging occurs when the local radius of curvature
is smaller than the cutter radius [Jensen 1993]. Rear gouging occurs when the cutter is
inclined such that its back side collides with the curve [Kiswanto et al. 2007], while global
gouging occurs when the cutter body collides with the design curve [Wang and Tang 2008].
We perform the following steps to identify the gouging obstacles in our problem:

• We sample the curve to determine candidate CC (Fig. 7.4(a-b)) and corresponding CL
points (Fig. 7.4(c)) on the curve. In the optimization phase, we will consider subsets
of these computed CL points as the SDC candidates.

• We determine local gouging obstacles by first dividing the design curve into its concave
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and convex areas (red and green in Fig. 7.4(d)) and computing the local radius of
curvature (r) at each sampled CC point. We check for local gouging (r < ρ, the
cutter radius) and report that portion of the curve as unmachinable with this tool.
Otherwise, there are no C-space obstacles due to local gouging, as is the case for the
curve in Fig. 7.4(a).

• We determine rear gouging obstacles at each CC point using local tangents and the
tool shadow region — the projection of the cutter on the design curve along the local
surface normal. We perform 2D computations following the method for 3D tool shadow
region calculations reported by Kiswanto et al. [Kiswanto et al. 2007] to compute rear
gouging limits on either side of each CC point. One example of a gouging limit is
shown in Fig. 7.3 with angle θ1. Fig. 7.4(e) shows the portions of the full C-space
remaining after removing the rear gouging obstacles for all CC points for the design
curve in Fig. 7.4(a).

• We compute global gouging obstacles by an inverse approach. We use the fact that only
convex regions of the design curve can act as collision sites where global gouging could
happen. But, instead of searching for collision sites from every CC point, we do an
inverse computation of identifying CC points on the design curve corresponding to each
collision site (i.e. convex regions of the curve). We construct and use the “visibility
chart” of the curve [Elber et al. 2005b] to determine and set limits to the “visible” CC
points from every collision site (θ2 in Fig. 7.3). These limits are updated to the smallest
range if the same CC point on the design curve is visible from multiple collision sites.
Fig. 7.4(f) shows the portions of the full C-space remaining after removing the global
gouging obstacles for all CC points for the design curve in Fig. 7.4(a).

When combined, the final feasible C-space (computed by subtracting both rear and global
gouging obstacles) is seen in Fig. 7.4(g). Now, we perform a search for an SDC in this feasible
C-space.

Optimal SDC search
We search for an SDC in the feasible C-space with the two objectives of minimizing

machining time and maximizing material removal rate (MRR). The first objective of
minimizing machining time dictates that the cutter orientations change as little as possible
during the process since time is lost in cutter orientation changes. At the same time, MRR
is maximized only when the cutter orientation is identical to the local surface normal. These
could be contradictory objectives in most freeform surfaces. We must keep varying the
orientation as the surface normal varies for maximum MRR, but we must also not vary it
“too much” to avoid excessive orientation changes. Further, sometimes inclining the cutter
exactly normal to the surface may not be feasible due to global gouging obstacles. Thus,
we need an algorithm to plan an SDC while considering conflicting objectives in a possibly
discontinuous parameter space. Also, we must ensure that CL points are planned so as to
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Figure 7.3 : Computing rear and global gouging obstacles (orientation limits)

“machine” the design curve completely. As discussed in section 7.3.2, we will first define
the mathematical objective function to determine its characteristics in order to choose an
appropriate optimization technique. We can combine the two objectives as:

Min. ḡ = w1 ·
∑
i

(|θi+1 − θi|) + w2 ·
∑
i

(|θi −Ni|) (7.1)

where Ni is the orientation of the curve normal at the ith CC point and w1, w2 are relative
weights assigned to the two objectives of summed angular change (|θi− θi−1|) and deviation
of the cutter orientation from the local surface normal (|θi −Ni|).

In the absence of analytical expressions for C-space boundaries and obstacles, and because
the feasible C-space may be discontinuous, we cannot use gradient based optimization
techniques for this optimization. In addition, deterministic optimization techniques suffer
from numerical instability or error accumulation when numerous computations such as
numerical integration are repeatedly performed in iterative steps. On the other hand,
heuristic optimization techniques such as genetic algorithms (GAs) [Goldberg 1989] may
suit our requirements since GAs do not impose many mathematical conditions on the
objective function. GAs can be applied to any optimization problem without the need
of a differentiable objective function. In addition, parallel versions of GAs are also available
to harness the compute power of multi-core CPUs or GPUs [Knysh and Kureichik 2010]. We
made following implementation decisions when applying GAs to this problem.

• We define a custom chromosome that allows variable length toolpaths with fixed
bits by encoding CL positions into ON/OFF bits such that each chromosome can
have a different set of CL points as its SDC. During fitness computation (computing
the objective function value for a candidate chromosome), we read and decipher the
chromosome and compute its fitness by summing over all CL points that may be turned
ON in that chromosome.
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• In addition to the gouging constraints on the C-space, we set an additional non-linear
constraint during the algorithm run to ensure that every toolpath (chromosome) is
valid by restricting the distance between two consecutive CC points (toolpath interval)
such that the resulting scallop height never exceeds the limit. We use the following
expression from [Loney and Ozsoy 1987, Suresh and Yang 1994] to compute scallop
height (h) from step interval (s) and radius of the tool (R):
s = 2

√
(h(2R− h)).

• We also enforce a constraint such that CL points corresponding to the first and the
last CC points on the curve must be present in any SDC candidate. Together with the
scallop threshold constraint, this ensures that the complete design curve gets machined.

7.5 Results and discussion

7.5.1 Experimental setup
In order to perform truly global search while avoiding local optima in finite time, GA

can be customized based on the problem characteristics by adjusting various algorithm
parameters. We used Matlab’s implementation of GAs in the optimization toolbox. Based
on the recommended problem size to population size relationship for large scale engineering
optimization problems in [De Jong and Spears 1991], we performed several calibration
experiments to conclude that we needed a population size of 20 times the number of evaluated
CC points. The process was less sensitive to other parameter values (we tested for 5%-
35% elite population retention, 0.2-0.8 two-point cross-over probability); we retained the
default Matlab values of 10% elite population retention, roulette wheel selection strategy,
and two point cross-over with 0.6 probability. We set the stopping criterion of weighted
average change in fitness function value over stalled generations (iterations with little or no
improvement in fitness function value) 1e-6 for 50 stalled generations. With these parameters,
we found that the algorithm converged after approximately 1500-1700 generations and
produced repeatable results.

7.5.2 Results: lower dimensional problem
We illustrate two contrasting results in Fig. 7.4 (a) and (b). The green line indicates the

surface normal orientation, red and cyan lines indicate the lower and upper bounds on the
shaded C-space, and the solution SDC is indicated by a blue line connecting purple dots
that indicate CL positions and orientations.

In the first example, Fig. 7.4(a), we set the weights w1 and w2 equal, with an intent to
find a toolpath that will maximize — as much as possible — the MRR (by inclining the tool
closer to the local surface normal), and, at the same time, minimize — as much as possible
— frequent orientation changes. Fig. 7.4(a) shows the resulting toolpath, plotted on the
feasible C-space. We observe that the toolpath follows the surface normals (green curve)
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when they are well within the constraints (inside the shaded region) and avoids sudden
orientation changes.

In the second example, Fig. 7.4(b), we set the weight for MRR lower than the weight for
orientation change. As seen in the plotted toolpath, the obtained toolpath was significantly
different, much “flatter” (indicating fewer orientation changes) and only somewhat influenced
by the surface normal curve, but still remaining inside the shaded region.

Thus, depending on the objective of the machinist, the algorithm can generate optimized
paths that follow the set constraints while optimizing the particular set of objectives the
user intended. This completes the example implementation to solve the lower-dimensional
variant of the problem.

Figure 7.4 : Results obtained after optimization (a) With equal weights to machining time and
MRR (b) With less importance to MRR and more importance to machining time
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7.6 Summary
In this chapter, we have proposed a strategy to formulate the full 5-axis toolpath planning

problem by transforming it to a multi-objective non-linear optimization problem in the C-
space of the cutter. As we identified in the review of literature, a truly optimal solution
to the 5-axis toolpath planning problem necessitates simultaneous solutions of involving
sub-problems but none of the existing approaches formulate such a compound problem
due to the inherent complexity. Our formulation method considers all DOFs of the cutter
simultaneously without making any simplifying assumptions. A 5-axis toolpath planning
system based on our formulation may be able to find the optimal toolpath solution in the
full C-space of feasible solutions — not possible by existing approaches that limit the search
to “slices” of the complete solution space. As a result, our formulation can enable solution to
the two sub-problems of cutter locations and cutter orientations simultaneously. We identify
characteristics of C-space-appropriate optimization techniques (multi-objective, non-linear
optimization in discontinuous multi-dimensional spaces) that can be used when searching for
the optimal toolpath. Our formulation offers flexibility for formulating subset problems (by
changing the constraints) or for considering additional objectives (by changing the objective
function). We illustrate the use of our method with a proof-of-concept implementation
for a lower-dimensional problem: an artificial representative problem that facilitates easy
visualization of the C-space and obtained solutions.

Reducing energy consumption in CNC machining has been the ultimate goal of this
thesis. Work reported in this chapter, in our opinion, is a novel foundation over which,
advanced 5-axis toolpath planning systems may be built to obtain toolpaths that minimize
several, often conflicting objectives, simultaneously. Unlike the research reported on 3-axis
machines in Chapters 3 through 5, that can be readily applied in industrial applications to
save energy, the true potential of the work reported in this chapter may be realized when
this formulation is augmented with further research to develop a complete 5-axis toolpath
planning system.
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Chapter 8

Conclusions and Future Work

In this dissertation, we address energy efficiency in manufacturing specific to multi-axis
CNC milling machines. To improve energy efficiency, we focus on reducing the energy
consumed in machining. We identify and illustrate the inherent differences in energy
consumption behaviors of 3- and 5-axis CNC machines and thus treat them differently, to
analyze, model, and suggest ways to improve energy consumption behavior. The knowledge,
techniques, and software tools developed in this work can be readily used in manufacturing
industry at various stages in the manufacturing cycle of a part, to save energy (electricity).
The major contributions of this dissertations can be summarized as:

1. We demonstrate that energy consumption is an important, independent parameter to
consider when planning CNC manufacturing processes — a view that goes beyond
simply associating energy consumption to the cycle (operation) time or MRR alone.

2. For 3-axis CNC machines:

(a) We propose an analytical model for energy consumption by 3-axis CNC machines
(Chapter 3) and provide evidence based on machining trials that validates the
predictions made by the model. The novelty of our energy consumption model is
that it predicts energy usage for an NC code without the need of any handbook
data or machine specifications, purely based on a one-time customization trial
that customizes the model to a new CNC machine.

(b) We also report the development of an energy analyzer software tool to compare
electrical performance of NC codes (toolpaths) using the proposed energy model.
The energy analyzer (described in Chapter 4) estimates machining time and
electricity consumption for a provided NC code, when executed on the specified
CNC machine. Using the energy estimates for various alternative toolpaths for
a component, process planners can determine the most energy efficient toolpath
for an operation for a specific CNC machine. To our knowledge, no existing tool
can perform such a customized analysis of toolpaths for a specific CNC machine
to predict energy consumption requirements.
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(c) We demonstrate test cases indicating up to 20% electricity saving (for the
Haas VF-0 machine) using the energy analyzer by comparing and selecting an
appropriate toolpath from the available choices obtained using CAM software. We
anticipate even larger energy savings for larger CNC machines found on industrial
shop floors today.

(d) Based on our analyses of numerous NC codes using our energy analyzer, we
identify characteristics of 3-axis NC toolpaths that play an important role in
energy consumption behavior. The identified characteristics include segment
lengths, number of corners, and primary cutting direction.

(e) Further, we propose that inherently energy efficient toolpaths can be generated
by adhering to the identified characteristics of energy efficient toolpaths. As
a proof-of-concept, we show (using actual machining trials as well as energy
analyzer estimates) that a toolpath generated based on some of the identified
characteristics (inspired from research on digital micrography) consumes less
energy when compared with toolpaths generated using commercial CAM software
for the same material removal rate.

3. For 5-axis CNC machines:

(a) We identify that toolpath planning for optimizing machining time holds the
key to improve energy efficiency in the case of 5-axis CNC machines. 5-axis
toolpath planning consists of CL path planning and tool orientation planning:
two sub-problems that must be solved simultaneously for a truly optimal solution.
Further, we provide evidence (based on an extensive literature review) that to our
knowledge, none of the existing approaches formulate or solve such a simultaneous
problem due to the inherent complexity in the parent problem.

(b) Our main contribution in this area is a unified formulation of the complete
problem that avoids approximations or separations of the inherent 5 DOFs. To
our knowledge, no problem formulation reported till date truly considers all 5
DOFs of the problem simultaneously.

(c) Our formulation is based on C-space optimization; we also provide procedures to
translate the complete 5-axis CNC toolpath planning problem to the proposed
C-space based optimization problem.

(d) We also demonstrate — for a lower dimensional analogue — a solution process
to solve the formulated C-space optimization problem using a multi-dimensional
optimization algorithm. Our lower-dimensional implementation is aimed at
providing a proof of concept that the proposed formulation strategy can be used
to simultaneously solve for rotational and translational DOFs of a problem. We
believe that this formulation can be used/further extended to develop a complete
5-axis toolpath planning system that can lead to a more optimal toolpaths that
are not possible to obtain with any of the existing approaches.
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We identify several future research tasks for 3- and 5-axis CNC machining in the following
sections.

8.1 Future work on 3-axis machining
Our work on analyzing, modeling, and estimating energy consumption of 3-axis CNC

milling machines is readily applicable in today’s industry. Further work in this area will
benefit from having the analyzer to quickly compare toolpaths for their energy consumption
on any CNC machine using the energy analyzer saving precious resources in machining trials.
We propose a few extensions to this research as follows.

• Improving usability and accuracy: As we identified in the limitations, energy analyzer
estimates suffer from limitations of the data acquisition process, insistence on not using
the machine handbook data, and from the need of equipment that is not available
today. A custom designed energy meter which is easy to integrate with and install on
a new machine must be developed for this task. Development of MTConnect standard
[Vijayaraghavan et al. 2008] is a promising effort in this direction.

• Energy efficient toolpaths by design: Generating 3-axis toolpaths that are inherently
energy efficient seems a plausible extension of this research. We anticipate, based on
our proof-of-concept analysis in Chapter 6, that opportunities to save energy right
during the toolpath planning stage also exist. If micrography-based toolpaths are
generated, methods to automatically design a suitable vector field, trace equally-spaced
streamlines, and to connect the streamlines efficiently to form a complete toolpath must
be developed.

• Machine specific toolpaths: In addition to inherently energy-efficient toolpaths based
on the workpiece geometry, an interesting area of research may be generating machine-
specific, energy-efficient toolpaths. Machine customization data can be used as an
input in the toolpath generation process to generate such toolpaths. To our knowledge,
none of the existing CAM software have the ability to optimize toolpaths for energy
consumption and/or for a particular CNC machine.

8.2 Future work on 5-axis machining
It is acknowledged in the research community that finding a truly optimal 5-axis toolpath

is still an unsolved problem because none of the existing approaches solve the full 5-DOF
problem without making simplifying assumptions or approximations that result in separation
of the 5 DOFs of the problem. We believe that the work reported in this dissertation advances
the knowledge-front with a unified problem formulation and solution strategy that can, in the
future, lead to a near-optimal solution for the complete 5-DOF problem without separating
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DOFs or making approximations. In developing a 5-axis toolpath planning system based on
our formulation, following aspects may require additional research.

• CL points and connectivity: In 5-axis machining, a CC point can be machined from
several possible CL points due to the 3-dimensional nature of the geometry. As a
result, there is no ont-to-one correspondence between CL and CC points as there
was in the case of the lower-dimensional analogue. Therefore, the feasible C-space
of configurations for each CC point is a 5D solid consisting of all possible locations
of CL points that can machine the CC point along with possible orientation ranges.
Computing and search in such a higher-dimensional space for larger components can
be extremely compute intensive. Adaptive sampling strategies discussed in [Nelaturi
and Shapiro 2013] can be effectively used here to reduce the computational efforts.

• Toolpath connectivity: Multiple strategies to connect CL points are possible in the case
of 5-axis CNC toolpaths, e.g. contour parallel, spiral, zig-zag, etc. This is different from
the lower-dimensional problem where only one logical order of visiting the CC points
(along the parametric direction e.g. left to right) was feasible. Further, depending
on the strategy, the same set of CL points may result in a different machining time
for the operation. Thus, when optimizing, the connectivity of CL points has to be
explicitly considered in the case of true 5-axis toolpaths. This can be achieved in
the optimization process by defining the objective function dependent not only on the
constituent CL points but also the order in which they appear. Additional constraints
may be also required to ensure that the prospective solutions, containing CL points
and their connectivity, do in fact result in complete machining of the component.

• Scallops: The scallops formed around a CC point when machining a 3D component
on a 5-axis CNC machine are affected by both the current and the adjacent CL path.
Thus, in many existing 5-axis toolpath planning algorithms, scallops are computed and
minimized by first fixing a set of CC points, followed by computing tool orientations at
each CC point to maintain or minimize the resulting scallop heights. However, fixing
a set of CC points does amount to separation of DOFs that we want to avoid.
As a remedy, when developing a 5-axis toolpath planning system based on our proposed
formulation, a basic toolpath topology can be enforced on each candidate solution
during the optimization process. The enforced topology can even change between
generations of an evolutionary algorithm. Without fixing the coordinates of CL points,
such a topology restriction will enable the algorithm to compute scallop heights around
any CL point in each solution to ensure it remains under the design constraint. Thus,
in essence, toolpath planning can be done iteratively to maintain scallops below a
minimum by changing both CL points and orientations simultaneously.

• Computational complexity: It is evident that most of the computations in 5-axis
machining will be significantly more complex than the lower-dimensional analogue.
We propose a two-pronged approach to approach realistic solutions in a reasonable
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time-frame. First, we propose sampling the C-space, obstacles, and the boundaries
adaptively such that computations are limited. As observed in the lower dimensional
analogue, C-space boundaries are continuous where sampling adaptively based on the
underlying geometric characteristics results in a reasonable approximation. [Nelaturi
and Shapiro 2013] and [Ilushin et al. 2005] propose adaptive sampling strategies for
5-axis machining and obstacle detection that can be used to limit computations.
Secondly, most of the proposed computations in our approach are data-parallel and can
be performed independently for every CC point on a surface. This makes the approach
a suitable candidate for using parallel computational hardware such as the GPUs to
speed up the computations. Further, the optimization process can be parallelized too
— some examples of such algorithms can be found in [Arenas et al. 2011].

CNC machining encompasses a variety of manufacturing processes including cutting,
milling, turning, and grinding. We focused on CNC point-milling in this dissertation
but most of the treatment related to analysis and modeling can be readily extended to
other CNC manufacturing processes to improve their performance and energy usage. In
this dissertation, we proposed and implemented several ideas (specific to CNC process
planning) that demonstrated the need for considering energy usage as an independent metrics
when designing and comparing manufacturing operations, in addition to the conventionally
considered metrics of process productivity and cycle time. With ever-stricter environmental
standards requiring tangible progress toward saving energy in industrial operations, the
knowledge and the tools developed in this dissertation can be readily used, especially because
they do not require any changes to the existing practices or infrastructure. As we move to
sustainable manufacturing, we hope that efforts to save energy in manufacturing will benefit
from this dissertation research.
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