
UCSF
UC San Francisco Previously Published Works

Title
Siponimod vs placebo in active secondary progressive multiple sclerosis: a post hoc 
analysis from the phase 3 EXPAND study

Permalink
https://escholarship.org/uc/item/80s5904x

Journal
Journal of Neurology, 269(9)

ISSN
0340-5354

Authors
Gold, Ralf
Piani-Meier, Daniela
Kappos, Ludwig
et al.

Publication Date
2022-09-01

DOI
10.1007/s00415-022-11166-z

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/80s5904x
https://escholarship.org/uc/item/80s5904x#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Vol.:(0123456789)1 3

Journal of Neurology (2022) 269:5093–5104 
https://doi.org/10.1007/s00415-022-11166-z

ORIGINAL COMMUNICATION

Siponimod vs placebo in active secondary progressive multiple 
sclerosis: a post hoc analysis from the phase 3 EXPAND study

Ralf Gold1 · Daniela Piani‑Meier2 · Ludwig Kappos3 · Amit Bar‑Or4 · Patrick Vermersch5 · Gavin Giovannoni6 · 
Robert J. Fox7 · Douglas L. Arnold8 · Ralph H. B. Benedict9 · Iris‑Katharina Penner10 · Nicolas Rouyrre2 · Ajay Kilaru2 · 
Göril Karlsson2 · Shannon Ritter2 · Frank Dahlke2 · Thomas Hach2 · Bruce A. C. Cree11

Received: 24 August 2021 / Revised: 29 April 2022 / Accepted: 1 May 2022 / Published online: 31 May 2022 
© The Author(s) 2022

Abstract
Background Siponimod is a sphingosine 1-phosphate receptor modulator approved for active secondary progressive multiple 
sclerosis (aSPMS) in most countries; however, phase 3 EXPAND study data are from an SPMS population with/without 
disease activity. A need exists to characterize efficacy/safety of siponimod in aSPMS.
Methods Post hoc analysis of participants with aSPMS (≥ 1 relapse in 2 years before study and/or ≥ 1 T1 gadolinium-
enhancing [Gd +] magnetic resonance imaging [MRI] lesions at baseline) receiving oral siponimod (2 mg/day) or placebo 
for up to 3 years in EXPAND. Endpoints: 3-month/6-month confirmed disability progression (3mCDP/6mCDP); 3-month 
confirmed ≥ 20% worsening in Timed 25-Foot Walk (T25FW); 6-month confirmed improvement/worsening in Symbol 
Digit Modalities Test (SDMT) scores (≥ 4-point change); T2 lesion volume (T2LV) change from baseline; number of T1 
Gd + lesions baseline–month 24; number of new/enlarging (N/E) T2 lesions over all visits.
Results Data from 779 participants with aSPMS were analysed. Siponimod reduced risk of 3mCDP/6mCDP vs placebo (by 
31%/37%, respectively; p < 0.01); there was no significant effect on T25FW. Siponimod increased likelihood of 6-month 
confirmed SDMT improvement vs placebo (by 62%; p = 0.007) and reduced risk of 6-month confirmed SDMT worsening 
(by 27%; p = 0.060). Siponimod was associated with less increase in T2LV (1316.3 vs 13.3  mm3; p < 0.0001), and fewer T1 
Gd + and N/E T2 lesions than placebo (85% and 80% reductions, respectively; p < 0.0001).
Conclusions In aSPMS, siponimod reduced risk of disability progression and was associated with benefits on cognition and 
MRI outcomes vs placebo.
Trial registration ClinicalTrials.gov number: NCT01665144.

Keywords Siponimod · EXPAND · Active secondary progressive multiple sclerosis · Disability progression · MRI · 
Cognition

Introduction

In most patients, multiple sclerosis (MS) begins with a 
relapsing–remitting course, in which relapses are fol-
lowed by periods of remission [1]. Relapsing–remitting MS 
(RRMS) is often followed by a stage of worsening neuro-
logical function that occurs independently of relapse [2, 
3], known as secondary progressive MS (SPMS). SPMS 
is considered active if there is recent evidence of clinical 
relapses and/or magnetic resonance imaging (MRI) lesion 
activity [3].

SPMS is associated with progressive accumulation of 
physical disability, as defined by the Expanded Disability 
Status Scale (EDSS), which may be evident in patients with 
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EDSS scores as low as 2.0 [3–5]. In addition to physical 
disability, cognitive impairment is common, with 60–90% 
of patients with SPMS experiencing cognitive decline [6–8]. 
Cognitive processing speed is most often affected [9], which 
in turn also affects higher order cognitive processes. Cogni-
tive dysfunction can predict disability progression as defined 
by EDSS [10, 11].

From a pathophysiological perspective, RRMS is believed 
to be driven primarily by peripherally mediated inflamma-
tion [3, 5, 12]. The pathophysiology of SPMS is not fully 
characterized, but it is believed to include chronic inflamma-
tion compartmentalized in the central nervous system (CNS) 
and neurodegeneration associated with the exhaustion of 
myelin repair mechanisms, leading to neuronal death [3, 5, 
12]. Therefore, for a treatment to be effective in patients with 
SPMS, it needs to target peripheral and central inflammation 
and neurodegeneration.

Siponimod is an oral, selective sphingosine 1-phosphate 
(S1P) 1 and 5 receptor modulator. Findings from clinical or 
preclinical studies support a dual mode of action for siponi-
mod, with peripherally mediated anti-inflammatory effects 
through modulation of  S1P1 receptors, resulting in reduced 
lymphocyte egression from the lymph nodes. This limits the 
number of circulating lymphocytes that enter the CNS [13, 
14]. In preclinical studies, siponimod also exhibited direct 
anti-inflammatory and remyelination effects through  S1P1 
and  S1P5 receptors on CNS resident cells [15–19].

The efficacy and safety of siponimod were investigated 
in EXPAND, a phase 3 study in participants with SPMS, 
of whom over 50% required walking aids (EDSS ≥ 6.0) at 
study entry. Siponimod showed superiority over placebo in 
terms of slowing physical disability progression and cog-
nitive impairment, with significantly greater reductions in 
annualized relapse rate (ARR), MRI lesion activity and brain 
volume loss (total and grey matter) and a safety profile simi-
lar to that of other S1P receptor modulators [20–23].

Siponimod is approved for the treatment of active SPMS 
in most countries, or for the treatment of SPMS in some 
countries [21, 24]. In Europe, siponimod is indicated for 
the treatment of adult patients with SPMS with active dis-
ease evidenced by relapses or imaging features of inflam-
matory activity [21, 25], while in the USA, the indication 
is for relapsing forms of MS, to include clinically isolated 
syndrome, relapsing–remitting disease and active secondary 
progressive disease [25].

Many labels across the globe indicate siponimod for 
active SPMS but most available data are for an SPMS 
population that includes some patients with and some 
patients without recent signs of disease activity [23]. Thus, 
there is a need to characterize the efficacy and safety of 
siponimod specifically in patients with active SPMS to 
give physicians an understanding of how siponimod acts 
in these patients. We performed post hoc analyses of 

data from the subpopulation of participants in EXPAND 
with active SPMS (defined as presence of relapses in 
the 2 years before screening and/or at least one T1 gad-
olinium-enhancing [Gd +] lesion at baseline). The same 
primary and secondary endpoints reported for the over-
all population of EXPAND were analysed. In addition, 
a significantly lower risk of having a clinically meaning-
ful (≥ 4-point) sustained decrease in the Symbol Digit 
Modalities Test (SDMT) score and a significantly higher 
likelihood of having a clinically meaningful (≥ 4-point) 
sustained increase in SDMT score were seen in the over-
all EXPAND population with siponimod vs placebo [20]. 
Given the impact that cognitive impairment has on patients 
with SPMS, we also analysed changes in cognitive pro-
cessing speed (an exploratory endpoint in EXPAND) in 
the subgroup of participants with active SPMS.

Methods

Standard protocol approvals, registrations 
and participant consents

The EXPAND study (NCT01665144) adhered to the 
International Conference on Harmonisation Guidelines 
for Good Clinical Practice and to the Declaration of Hel-
sinki [26]. The protocol was approved by an independent 
ethics committee and/or institutional review board at all 
sites and all participants provided written informed con-
sent before commencing the study, which was funded by 
Novartis Pharma AG.

Study design and objectives

The design and primary results of the EXPAND study were 
reported previously [23]. Briefly, the core part of EXPAND 
was a double-blind, randomized, placebo-controlled, event- 
and exposure-driven pivotal phase 3 study of up to 3 years 
in duration (median duration of exposure: 18 months), inves-
tigating the efficacy, safety and tolerability of siponimod 
in participants with SPMS [23]. Participants between 18 
and 60 years of age, with an EDSS score between 3.0 and 
6.5 at screening and no relapse history within the previous 
3 months were randomized (2:1) to receive once daily oral 
siponimod 2 mg or placebo. This post hoc subgroup analy-
sis of EXPAND included participants with active SPMS 
who were randomized and received at least one dose of 
study drug (full analysis set). Active SPMS was defined as 
the presence of one or more relapses in the 2 years before 
screening and/or at least one T1 Gd + lesion at baseline.
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Efficacy outcomes

A list of all prespecified endpoints for the EXPAND study 
was published [23]. The same primary and secondary end-
points and selected cognition exploratory endpoints pre-
specified for the EXPAND overall SPMS population were 
assessed in the subgroup of participants with active SPMS. 
Primary endpoint: time to 3-month confirmed disability 
progression (3mCDP), defined as an increase in EDSS 
score of at least 1.0 if baseline EDSS score was 3.0–5.0, 
or of at least 0.5 if baseline EDSS score was 5.5–6.5, con-
firmed after 3 months. Key secondary endpoints: time to 
3-month confirmed worsening of at least 20% in the Timed 
25-Foot Walk (T25FW), and change from baseline in T2 
lesion volume (T2LV) assessed at month 12, at month 24 
and averaged over month 12 and month 24. Secondary 
endpoints: time to 6-month confirmed disability progres-
sion (6mCDP; defined as the same as 3mCDP but with 
changes in EDSS scores confirmed after 6 months), ARR, 
time to first relapse, change in the 12-item MS Walking 
Scale (MSWS-12; increasing scores indicate worsening 
walking ability), change from baseline in percentage brain 
volume assessed at month 12, at month 24 and averaged 
over month 12 and month 24, cumulative number of T1 
Gd + lesions per MRI scan from post-baseline scans up to 
and including month 24, percentage of participants with no 
T1 Gd + lesions on all post-baseline scans in the group of 
participants with at least one scan post-baseline, number 
of new or enlarging T2 lesions over all visits, and percent-
age of participants with no new or enlarging T2 lesions on 
all post-baseline scans in the group of participants with at 
least one scan post-baseline. Exploratory endpoint: change 
in the oral-response version of the SDMT scores [27] (a 
measure of cognitive processing speed [28]) from baseline 
to month 24. Exploratory analyses: time to 6-month con-
firmed clinically meaningful worsening in cognitive pro-
cessing speed (≥ 4-point decrease in SDMT score), time to 
6-month confirmed clinically meaningful improvement in 
cognitive processing speed (≥ 4-point increase in SDMT 
score), clinically meaningful worsening/improvement in 
SDMT scores sustained on all available assessments, and 
time to 6mCDP and to 6-month confirmed clinically mean-
ingful worsening in cognitive processing speed stratified 
by previous DMT, including any prior DMT, prior inter-
feron (IFN) at any time or prior IFN as the most recent 
DMT (exploratory analyses). IFN was the only treatment 
class with high enough participant numbers to be analysed 
(n = 306 for siponimod vs n = 154 for placebo).

MRI brain scans were performed at baseline, 12 months, 
24 months, 36 months and at the end of the double-blind 
core part of the study (if different from annual visits), 
and were analysed independently at a central reading site 

(NeuroRx Research, Montreal, QC, Canada) by staff una-
ware of participant treatment group assignments.

Safety outcomes

Adverse events and laboratory abnormalities were reported 
descriptively. Adverse events were coded according to the 
Medical Dictionary for Regulatory Activities, version 19.0. 
The percentage of participants with adverse events, the num-
ber of adverse events leading to discontinuation and serious 
adverse events were reported.

Statistical analysis

Time to 3mCDP and to 6mCDP, time to 3-month confirmed 
worsening of at least 20% in the T25FW test, time to first 
confirmed relapse, time to 6-month confirmed worsening/
improvement in SDMT scores and sustained worsening/
improvement in SDMT scores were analysed using a Cox 
proportional hazards model. Treatment, country/region, 
presence of relapses in the 2 years before the study and base-
line EDSS score, or baseline T25FW, or baseline number of 
T1 Gd + lesions, or baseline SDMT score, respectively, were 
included as covariates for all analyses. For time-to-event 
data, efficacy was reported as a hazard ratio (HR), quan-
tifying risk reduction with siponimod treatment compared 
with placebo. Statistical significance was tested at a two-
sided 0.05 level. T2 lesion volume (T2LV) and percentage 
brain volume change were analysed using a mixed model for 
repeated measures with time as a categorical class variable 
and an unstructured covariance matrix. Covariates included 
treatment, country/region, age, baseline T2LV or base-
line normalized brain volume, number of T1 Gd + lesions 
at baseline and presence of relapses in the 2 years before 
screening. ARR and numbers of lesions (T1 Gd + and T2) 
were estimated by a negative binomial regression model 
with treatment, age, baseline EDSS score, baseline number 
of T1 Gd + lesions or T2 lesions and presence of relapses 
in the 2 years before screening as covariates. A repeated 
measures model was used to analyse change from baseline 
in MSWS-12 scores with visit as a categorical factor and 
adjustment for treatment, region/country and baseline score. 
A mixed model for repeated measures was used to analyse 
change from baseline in SDMT scores with visit as a cat-
egorical factor and adjustment for treatment and baseline 
score. The proportion of participants with clinically mean-
ingful change in SDMT scores (≥ 4 points) were analysed 
by a Cox regression model adjusted for predictors treatment, 
country, baseline SDMT score, baseline MS Severity Score 
and superimposed relapses at baseline; comparisons of cat-
egorical proportions were made using the χ2 test. Adverse 
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events, adverse events leading to discontinuation and seri-
ous adverse events were reported using descriptive statistics. 
p values were not corrected for multiplicity for any of the 
assessments.

Results

Participant demographics and baseline 
characteristics

In total, 779/1645 participants (47.4%) who entered the 
EXPAND study (and received at least one dose of study 
drug) had active SPMS according to the defining criteria 
(presence of relapses in the 2 years before screening and/
or at least one T1 Gd + lesion at baseline) and 621 (79.7%) 
completed the study. Participant disposition is summarized 
in Figure S1. To understand the robustness of the active 
SPMS designation, the enrolled ‘non-active’ group was 
checked for signs of activity during the study. Of the par-
ticipants who did not meet the active SPMS definition at 
enrolment and who were randomized to placebo, 149/283 
(52.7%) had evidence of disease activity during the study 
(of these, 8.7% had relapses, 73.8% had MRI activity and 
17.4% had both). Analyses of activity on study in the pla-
cebo group of participants who were active at enrolment 
were also performed. Of the participants who met the active 
SPMS definition at enrolment and who were randomized to 
placebo, 19/91 (20.9%) did not have confirmed relapses or 
MRI activity during the study.

The demographics and baseline characteristics of par-
ticipants in the active SPMS subgroup and the overall 

population from the EXPAND study were broadly simi-
lar, except for the percentage of participants with relapses 
in the 2 years before the study and participants with T1 
Gd + lesions at baseline, per definition. Participants with 
active SPMS also had a slightly higher T2 lesion load (12.4 
vs 10.0  cm3, respectively; Table 1), and tended to be younger 
with shorter disease durations and time since conversion to 
SPMS than the overall population. Table S1 provides the 
demographic and baseline characteristics for the overall 
populations of participants with active or non-active SPMS.

Physical disability and relapses

Siponimod treatment reduced the risk of 3mCDP by 31% 
compared with placebo (HR: 0.69; 95% confidence interval 
[CI]: 0.53, 0.91; p = 0.0094) (Fig. 1; Table 2).

No significant difference was observed in the time to 
3-month confirmed worsening of at least 20% in T25FW 
(HR: 0.85; 95% CI: 0.68, 1.07; p = 0.1747) (Table 2). No 
significant effects on these endpoints related to physical dis-
ability were reported in participants with non-active SPMS 
(Table S2).

Siponimod treatment reduced the risk of 6mCDP by 37% 
(HR: 0.63; 95% CI: 0.47, 0.86; p = 0.0040) compared with 
placebo, an effect that was consistent in participants with 
any prior DMT at any time (HR: 0.67; 95% CI: 0.48, 0.94; 
p = 0.0203), prior IFN treatment at any time (HR: 0.68; 95% 
CI: 0.47, 1.00; p = 0.0496) and IFN as the most recent treat-
ment (HR: 0.52; 95% CI: 0.32, 0.83; p = 0.0063) (Fig. 2).

Change in MSWS-12 scores from baseline (adjusted 
mean [standard error] averaged over all visits) was 2.54 

Table 1  Baseline demographics and participant characteristics of the active SPMS subgroup and overall population from the EXPAND study

Data are mean ± SD unless otherwise specified
EDSS Expanded Disability Status Scale, Gd + gadolinium-enhancing, MS multiple sclerosis, SD standard deviation, SDMT Symbol Digit Modal-
ities Test, SPMS secondary progressive multiple sclerosis

All participants with active SPMS Overall  
EXPAND 
population
N = 1645

Siponimod
n = 516

Placebo
n = 263

Age, years 46.2 ± 8.1 47.2 ± 8.5 48.0 ± 7.9
Women, n (%) 331 (64.1) 166 (63.1) 987 (60.0)
Duration of MS since first symptom, years 15.6 ± 7.9 15.5 ± 8.2 16.8 ± 8.3
Time since conversion to SPMS, years 3.2 ± 3.32 3.1 ± 3.20 3.8 ± 3.5
EDSS score, median (range) 6.0 (2.0, 7.0) 6.0 (2.5, 6.5) 6.0 (2.0, 7.0)
SDMT score 38.1 ± 14.0 38.6 ± 13.2 39.1 ± 13.8
Participants with relapses in the 2 years before screening, n (%) 388 (75.2) 202 (76.8) 590 (36.0)
Proportion of participants with T1 Gd + lesions, n (%) 236 (45.7) 114 (43.3) 351 (21.3)
T2 lesion volume,  cm3, median (range) 12.0 (0.0, 116.6) 12.7 (0.0, 103.6) 10.0 (0.0, 116.6)
Normalized brain volume,  cm3, median (range) 1418 (1171, 1723) 1418 (1228, 1679) 1422 (1136, 1723)
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(0.97) with siponimod and 5.15 (1.20) with placebo 
(between-group difference: − 2.60; 95% CI: − 5.20, − 0.01; 
p = 0.0494) (Table 2).

ARR was lower in the siponimod-treated group than in 
the placebo group (0.093 vs 0.171; rate reduction: 0.54; 95% 
CI: 0.39, 0.77; p = 0.0005) as was the time to confirmed first 
relapse (HR: 0.64, 95% CI: 0.46, 0.89; p = 0.0079).

Cognitive function

Siponimod treatment was associated with benefits in cogni-
tive processing speed, as assessed by SDMT scores (with 
a change of  4 points or more considered to be clinically 
meaningful).

Mean change in SDMT score from baseline to month 24 
was 0.79 with siponimod and − 1.55 with placebo (between-
group difference: 2.34; 95% CI: 0.66, 4.02; p = 0.006; 

Fig. 3a). The risk of 6-month confirmed clinically mean-
ingful worsening in cognitive processing speed was numeri-
cally reduced (by 27%) with siponimod treatment compared 
with placebo (HR: 0.73; 95% CI: 0.53, 1.01; p = 0.060), an 
effect that was consistent in participants with any prior DMT 
treatment (HR: 0.66; 95% CI: 0.46, 0.94; p = 0.0222), prior 
IFN treatment at any time (HR: 0.63; 95% CI: 0.42, 0.93; 
p = 0.0193) and IFN as the most recent treatment (HR: 0.72; 
95% CI: 0.45, 1.14; p = 0.1604) (Fig. 4). Siponimod sig-
nificantly decreased the risk of clinically meaningful SDMT 
worsening sustained over all visits compared with placebo 
(HR: 0.72; 95% CI: 0.56, 0.94; p = 0.0166). The proportions 
of participants with sustained clinically meaningful worsen-
ing in SDMT were 27.3% with siponimod and 38.2% with 
placebo (p = 0.002; Fig. 3b). Siponimod increased the like-
lihood of 6-month confirmed clinically meaningful SDMT 
improvement more than placebo, with a likelihood increase 
of 62% (HR: 1.62; 95% CI: 1.14, 2.29; p = 0.007) as well as 
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pants from EXPAND with active SPMS. 3mCDP 3-month confirmed 
disability progression, 6mCDP 6-month confirmed disability progres-
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the likelihood of sustained clinically meaningful improve-
ment (HR: 1.51; 95% CI: 1.12, 2.04; p = 0.007). The pro-
portions of participants with sustained clinically meaning-
ful improvement in cognitive processing speed were 34.1% 
with siponimod and 22.9% with placebo (p = 0.001; Fig. 3b). 
These proportions were not significantly different in partici-
pants with non-active SPMS (Table S3).

MRI outcomes

Siponimod treatment was associated with smaller increases 
in T2LV and with a reduction in brain volume loss com-
pared with placebo (Table  2). Mean changes in T2LV 

from baseline to month 24 were 13.3   mm3 with siponi-
mod and 1316.3  mm3 with placebo (between-group dif-
ference: − 1303.0  mm3; 95% CI: − 1675.8, − 930.31  mm3; 
p < 0.0001). Adjusted mean percentage brain volume 
change over months 12 and 24 was − 0.62 with siponimod 
and − 0.76 with placebo (between-group difference: 0.141; 
95% CI: 0.020, 0.261; p = 0.0221). A significant effect 
was also observed for participants with non-active SPMS 
(Table S4).

Siponimod treatment was associated with fewer T1 
Gd + lesions and fewer new or enlarging T2 lesions than pla-
cebo (relative rates: 0.15; 95% CI: 0.10, 0.22, and 0.20; 95% 
CI: 0.15, 0.26, respectively; p < 0.0001; Table 2). In addi-
tion, proportionally more participants receiving siponimod 

Table 2  Primary and secondary endpoints in participants with active SPMS

CI confidence interval, Gd + gadolinium-enhancing, HR hazard ratio, MRI magnetic resonance imaging, MSWS-12 12-item Multiple Sclerosis 
Walking Scale, RR rate reduction, SE standard error, SPMS secondary progressive multiple sclerosis, T25FW Timed 25-Foot Walk
a Number of subjects with events/number of subjects included in the analysis (i.e., with non-missing covariates)

Siponimod
(n = 516)

Placebo
(n = 263)

Between-group difference p value

Primary endpoint
Confirmed disability progression at 3 months, n/N (%) 128/515a (24.9) 91/263a (34.6) HR 0.69 (0.53, 0.91) 0.0094
Key secondary endpoints
Clinical
 Worsening of ≥ 20% from baseline in T25FW  

confirmed at 3 months, n/N (%)
213/511 (41.7) 120/263 (45.6) HR 0.85 (0.68, 1.07) 0.1747

MRI
 Change from baseline in total volume of lesions on T2-weighted images  (mm3)
 Month 12, adjusted mean (SE) or [95% CI] 93.485 (129.700) 1117.15 (160.760)  − 1023.7 [− 1355.7, − 691.66]  < 0.0001
 Month 24, adjusted mean (SE) or [95% CI] 13.286 (139.710) 1316.32 (175.924)  − 1303.0 [− 1675.8, − 930.31]  < 0.0001
 Mean over month 12 and month 24, adjusted mean 

(SE) or [95% CI]
53.385 (127.514) 1216.73 (156.977)  − 1163.3 [− 1483.9, − 842.78]  < 0.0001

Other secondary endpoints
Clinical
 Confirmed disability progression at 6 months, n/N (%) 98/515a (19.0) 74/263a (28.1) HR 0.63 (0.47, 0.86) 0.0040
 Annualized relapse rate [95% CI] 0.093 [0.071, 0.121] 0.171 [0.127, 0.230] RR 45.56 [0.387, 0.766] 0.0005

Change in MSWS-12 score from baseline
 Month 12, adjusted mean (SE) or [95% CI] 1.67 (1.033) 4.17 (1.323)  − 2.50 [− 5.42, 0.42] 0.0926
 Month 24, adjusted mean (SE) or [95% CI] 4.48 (1.255) 6.23 (1.632)  − 1.76 [− 5.49, 1.97] 0.3552
 Average over all visits, adjusted mean (SE) or [95% 

CI]
2.54 (0.965) 5.15 (1.202)  − 2.60 [− 5.20, − 0.01] 0.0494

MRI
 Change in percentage brain volume loss from baseline
  Month 12, adjusted mean (SE) or [95% CI]  − 0.385 (0.044)  − 0.559 (0.055) 0.173 [0.064, 0.283] 0.0020
  Month 24, adjusted mean (SE) or [95% CI]  − 0.861 (0.055)  − 0.969 (0.070) 0.108 [− 0.045, 0.261] 0.1657
  Mean over month 12 and month 24, adjusted mean 

(SE) or [95% CI]
 − 0.623 (0.047)  − 0.764 (0.058) 0.141 [0.020, 0.261] 0.0221

Cumulative number of T1 Gd + lesions from baseline up 
to and including month 24, adjusted mean [95% CI]

0.169 [0.130, 0.219] 1.088 [0.807, 1.467] RR 0.155 [0.104, 0.231]  < 0.0001

Mean number of new or enlarging T2 lesions on 
T2-weighted images over all visits, adjusted mean 
[95% CI]

1.147 [0.911, 1.445] 5.811 [4.811, 7.018] RR 0.197 [0.149, 0.261]  < 0.0001
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than those receiving placebo were free from T1 Gd + lesions 
(83.9% vs 54.3%) and from new or enlarging T2 lesions 
(44.8% vs 25.0%) at all post-baseline scans.

Safety outcomes

Safety outcomes in participants with active SPMS are sum-
marized in Table S5.

Adverse events were reported in 86.8% of participants 
with active SPMS receiving siponimod and in 78.3% 
of those participants receiving placebo. Corresponding 

proportions for adverse events leading to treatment discon-
tinuation were 5.8% in the siponimod group and 6.1% in the 
placebo group; for serious adverse events, corresponding 
proportions were 15.1% in the siponimod group and 15.6% 
in the placebo group.

Discussion

In this post hoc analysis of participants with active SPMS, 
the impact of siponimod on reducing the risk of physical 
disability progression compared with placebo was more 

0.1 1 10

HR (95% CI) p value
Risk

reduction 
Siponimod 

n/N
Placebo 

n/N
0.67 (0.48, 0.94) 0.0203 33%80/394 59/203Any DMT

0.68 (0.47, 1.00) 0.0496 32%65/306 46/154IFN at any time

0.52 (0.32, 0.83) 0.0063 48%36/205 33/104IFN as most recent DMT

Favours
siponimod

Favours
placebo

Fig. 2  Time to 6mCDP by previous  DMTa in the subgroup of partici-
pants from EXPAND with active SPMS. 6mCDP 6-month confirmed 
disability progression, CI confidence interval, DMT disease-modi-
fying therapy, HR hazard ratio, IFN interferon, MS-DMT multiple 
sclerosis-DMT, SPMS secondary progressive multiple sclerosis. aAny 
DMT, participants who received and stopped any MS-DMT before 

the first dose of siponimod in EXPAND; IFN at any time, participants 
who received and stopped IFN at any time before the first dose of 
siponimod in EXPAND; IFN as most recent DMT, participants who 
received and stopped IFN as most recent MS-DMT before the first 
dose of siponimod in EXPAND
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pronounced than that observed in the overall EXPAND 
population (31% vs 21% risk reduction in 3mCDP and 37% 
vs 26% risk reduction in 6mCDP, respectively) [23]. Similar 
to the overall study, an effect of siponimod on T25FW in 
participants with active SPMS was not observed, possibly 
owing to the high variability of this measure in a population 
in which many are already dependent on walking aids, which 
may have decreased this measure’s sensitivity to change 
[23]. Safety outcomes in participants with active SPMS were 
consistent with those observed in the overall population of 
EXPAND [23].

In addition to physical disability, progressive cognitive 
impairment in patients with SPMS is a major contribu-
tor to overall disability and loss of employment [29]. The 
SDMT is considered to be the most sensitive performance-
based measure of cognitive status in patients with MS and 
a 4-point change in SDMT is deemed clinically meaning-
ful [28]. In participants with active SPMS, the likelihood 
of sustained improvement in cognitive processing speed 
(≥ 4-point increase in SDMT score) was increased by 51% 
and the risk of sustained worsening (≥ 4-point decrease in 
SDMT score) was reduced by 28% with siponimod com-
pared with placebo; proportionally more participants with 
active SPMS experienced sustained improvement (34% 
vs 23%; p = 0.001) and proportionally fewer experienced 
sustained worsening (27% vs 38%; p = 0.002) in cogni-
tive processing speed with siponimod than with placebo. 
This is consistent with findings in the overall population of 
EXPAND, in which the likelihood of sustained improvement 
in cognitive processing speed increased by 28%, the risk of 
sustained worsening decreased by 21% [20] and the risk of 
6-month confirmed worsening decreased by 25% [21]. This 

suggests that siponimod has the potential to delay or even 
to reverse cognitive deficits related to processing speed in 
patients with SPMS. Furthermore, a recent analysis of the 
EXPAND trial showed that the likelihood of improvement 
in cognitive processing speed is greater in participants with 
active SPMS (62%) than in those with non-active disease 
(19%; Table S3) [30]. These findings suggest that patients 
with active SPMS have a greater capacity for improvement 
in cognitive function with siponimod treatment than those 
with non-active SPMS. However, cognitive worsening is 
slowed at a similar rate across all patients with SPMS (i.e., 
those with active and those with non-active SPMS) [20]. It 
is not immediately apparent why improvements in cognitive 
processing speed occurred more commonly in participants 
with active SPMS than in those with non-active SPMS; dif-
ferences in mean age (46.6 vs 49.5 years in those with active 
vs non-active SPMS), and duration since first MS symptoms 
(15.6 vs 18.1 years in those with active vs non-active SPMS; 
Table S1), and/or other confounders, such as fatigue, depres-
sion or level of education, could have played a role. Given 
that neuronal plasticity and the functional adaptive reserve 
of the brain decrease with greater age and disease duration 
[31], it is possible that participants with active SPMS (being 
younger and/or having shorter disease duration than par-
ticipants with non-active SPMS) have greater neurological 
reserve. This greater reserve may, in turn, allow these par-
ticipants to maximize the effects of siponimod on cognitive 
processing speed compared with non-active participants 
(being older and/or having longer disease duration) [20]. 
Regardless of the explanation, this observation underscores 
the importance of treating as early as possible in SPMS to 
preserve and possibly improve cognitive performance.

0.1 1 10

HR (95% CI) p value
Risk

reduction 
Siponimod 

n/N
Placebo 

n/N

0.66 (0.46, 0.94) 0.0222 34%69/392 53/202Any DMT

0.73 (0.53, 1.01) 0.060 27%91/513 62/262All patients

0.63 (0.42, 0.93) 0.0193 37%57/304 45/153IFN at any time

0.72 (0.45, 1.14) 0.1604 28%42/204 31/104IFN as most recent DMT

Favours
siponimod

Favours
placebo

Fig. 4  Time to 6-month confirmed worsening in cognitive process-
ing speed (decrease of ≥ 4 points in SDMT score) in the subgroup of 
participants from EXPAND with active SPMS (all patients and strati-
fied by previous  DMTa). CI confidence interval, DMT disease modi-
fying therapy, HR hazard ratio, IFN interferon, MS-DMT multiple 
sclerosis-DMT, SDMT symbol digit modalities test, SPMS secondary 

progressive multiple sclerosis. aAny DMT, participants who received 
and stopped any MS-DMT before the first dose of siponimod in 
EXPAND; IFN at any time, participants who received and stopped 
IFN at any time before the first dose of siponimod in EXPAND; IFN 
as most recent DMT, participants who received and stopped IFN as 
most recent MS-DMT before the first dose of siponimod in EXPAND
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Consistent with the findings in the overall EXPAND 
SPMS population, siponimod also reduced inflammatory 
disease activity as measured by ARR and MRI lesion activ-
ity, and the rate of brain volume loss (reaching statistical 
significance during the first 12 months and on average over 
months 12 and 24) in the active SPMS subgroup. Further 
analyses on MRI measures that may provide insights into 
pathological aspects related to neurodegeneration, such 
as grey matter atrophy and magnetization transfer ratio (a 
measure of myelin density), showed pronounced efficacy of 
siponimod in the overall population (with a consistent effect 
in participants with active and those with non-active SPMS 
[32] in line with the significant effects observed on T2LV in 
both active and non-active SPMS).

Thus, in participants with active SPMS, there was a 
greater response on clinical outcomes but a similar response 
on the more sensitive and objective MRI measures related to 
neurodegeneration and tissue integrity, when compared with 
participants in the overall or non-active SPMS groups. This 
suggests that siponimod may work through two (perhaps 
interlinked) pathophysiological pathways affecting inflam-
mation and neurodegeneration. Initiating siponimod early 
in patients with active SPMS may present the best window 
of opportunity to delay physical disability progression, pre-
serve neurological reserve and potentially improve cognitive 
status.

This post hoc analysis in participants with active SPMS 
had important limitations. First, the post hoc nature of the 
study is hypothesis generating and precludes definitive inter-
pretation of the results. Furthermore, the EXPAND study 
was not powered to assess treatment effects in patients with 
active and non-active SPMS separately, but rather in the 
overall EXPAND SPMS population also considering the 
duration of the core study (median 21 months). Findings 
from the EXPAND long-term extension study indeed sug-
gest that participants with non-active SPMS progress more 
slowly than those with active SPMS (based on an approxi-
mate 30–50% longer time needed for 6-month confirmed 
progression on EDSS; Table S6) suggesting that a longer 
follow-up period than used here would be required to see the 
full effect of siponimod [33]. However, on the more sensi-
tive objective MRI measures related to neurodegeneration 
and tissue integrity, consistently significant results were 
observed in both the active and non-active SPMS subgroups, 
in line with the reported results in the overall population 
[32] for the core study. Consistent with these findings, pre-
vious analyses have also suggested that the positive effects 
of siponimod on disability progression may occur indepen-
dently of relapse activity [34]. Moreover, although the time-
to-event design of EXPAND was appropriate for a study 
in participants with SPMS, further timepoint comparisons 
in subgroups were complicated by the variable study dura-
tion and the fact that switching participants with confirmed 

disability progression from receiving placebo to receiving 
open-label siponimod was allowed.

In conclusion, the beneficial treatment effects of siponi-
mod on clinical outcomes during the core study duration 
were more obvious in participants with active SPMS than 
in the overall EXPAND population. This is possibly as a 
result of the combined impact on peripheral anti-inflamma-
tory effects as well as central effects of siponimod, a more 
responsive population who are slightly younger with likely 
still higher reserve capacity [31, 35] and potentially the sen-
sitivity of the different clinical endpoints to assess meaning-
ful changes over a given time period. These data combined 
with a safety profile that was consistent between participants 
with active SPMS and the overall EXPAND population (and 
consistent with that of S1P modulation) support the value of 
siponimod for the treatment of patients with SPMS.
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