UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Student Modeling as Strategy Learning

Permalink
https://escholarship.org/uc/item/80rg86f3

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 5(0)

Author
Langley, Pat

Publication Date
1983

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/80r886f3
https://escholarship.org
http://www.cdlib.org/

Student Modeling as Strategy Learning

Pat Langley
The Robotics Institute
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213 USA

1. Introduction

One of the major prerequisites for intelligent computer aided instiuction (ICAIl) is the ability to
construct a model of the student's knowledge. Some progress in this crea has been made through
carefully studying students’ behavior, and deriving common "bugs" or "inal-rules" that lead to errors.
Unfortunately, this approach requires that each new domain be analyzed in detail before an intelligent
tutor for that domain can be undertaken. More recently, researchers have attempted to develop
generative theories to explain the origin of such bugs. Such theories would help predict bugs in new
domains, and lay the foundation for more general ICA| systems.

However, recent Al learning research suggests an alternate approach to student modeling. In
this paper we describe SAGE. a system that learns search heuristics, and discuss its application to
constructing models of students’ behavior on mathematics problems. SAGE is stated as a production
system, and learns by determining the conditions under which various operators should be applied. In
modeling students’ strategies, the system instead determines the conditions under which students
apply these same operators, whether correctly or incorrectly.

2.Learning Search Heuristics

One of the central insights of Al is that intelligence involves search, and a corollary of this
insight is that learning often involves the acquisition of heuristics for directing search down profitable
paths. We have explored the process of learning search heuristics through SAGE, a program that
begins a task with weak, general methods, and that acquires domain-specific, powerful methods as a
function of experience. The system has been tested on a number of puz:zle-solving tasks such as the
Tower of Hanoi and Slide-Jump, as well on simple algebra problems (Langley, 1982).

SAGE is stated as an adaptive production system. In ather words. its procedures are cast as
condition-action rules, and it modifies its behavior by constructing new condition-action rules. The
system consists of two main components. The first of these contains very general rules for assigning
credit and generating new rules; this component is responsible for l2arning from mistakes. The
second companent is domain-specific, but always takes the form of rules for proposing moves
through some problem space. Initially, these rules contain only the legal conditions for making a
move. As a result, SAGE sometimes makes good moves and sometimes makes bad moves; in other
words, at the outset the system must search for a solution. However, as experience is gained, SAGE
generates more conservative versions of its move-proposing rules with additional conditions.
Eventually, the program arrives at a set of heuristics that propose only useful moves and that avoid
bad moves entirely; that is, SAGE learns to direct its search down desirable paths.

SAGE incorporates a number of methods for assigning credit to dzsirable moves and blame to
undesirable ones. These include techniques for noting loops, unnecessarily long paths, dead ends,
and illegal moves. However, in this paper we will focus only on the most general credit assignment
heuristic: learning from complete solution paths. This method is straightforward., SAGE employs its
initial move-proposing rules to search a problem space, eventually finding one or more optimal
solution paths. The system then retraces its steps, marking those moves lying on the paths as good
instances of the heuristics it is trying to learn. In addition, moves that lead one off the path are labeled
as bad instances, since they do not lead to a solution. As good and bad instances are identified, this



information is passed to SAGE's learning mechanism, which attempts to generate heuristics for
directing search.

SAGE learns through a process of discrimination. Given a bad instance for a move-proposing
rule, the system retrieves the last good instance of the same rule and searches for differences
between the two situations in which the rule was applied. SAGE finds all differences between these
two situations, and constructs a more conservative variant of the rule for each difference that it finds,
with the new conditions based on those differences. Since many differences may occur, and since
some of these may be spurious, SAGE does not automatically assume that all of these variants are
useful. Instead, it requires that a variant be relearned in a number of different contexts before it is
allowed to direct search. This is accomplished by associating a strength with each rule. These
strengths are initially low, but they are increased whenever a variant is relearned; once a variant’'s
strength exceeds that of its parent, the variant is applied whenever it matches. Of course, even
variants based on relevant differences may still be overly general and lead to further errors. In such
cases, the discrimination process is applied recursively and still more specific rules are constructed.
This process continues until SAGE can solve the problems it is given without search.

3. Modeling Subtraction Strategies

The application of SAGE to modeling students' strategies is straightforward. Given a student’s
answers to a set of problems and the legal operators for that domain, SAGE should be able to find
solution paths which give the same answers as did the student. From these solution paths it should
be able to determine the conditions under which that student applied the operators, using its .
discrimination learning algorithm. In other words, the program should be able to learn a strategy that
mimics the student's behavior, and the resulting set of rules would be equivalent to a model of that
student’s strategy.

We have performed initial tests of SAGE's student modeling capabilities in the subtraction
domain, drawing upon earlier analyses by Brown and Burton (1978), Brown and VanLehn (1980), and
Young and O'Shea (1981). These researchers have identified and modeled a variety of subtraction
errors, such as: (1) always borrowing, whether necessary or not; (2) borrowing when the top number
is larger, but not when it is smaller; (3) subtracting the smaller number from the larger, regardless of
pasition; and (4) pattern errors, such as 0 - N = 0and 0 - N = N. Our approach to modeling these
errors is most similar to that of Young and O'Shea, who explained many bugs in terms of missing
rules.

The application of SAGE to student modeling is best understood through an example. The
system is given an initial set of rules incorporating operators for a domain. Table 1 shows the system’s
initial rules for subtraction.! These include operators for finding the difference between two numbers
in a column, for decrementing a number by one, for adding ten to a number, and so forth. However,
the rules in which these operators occur contain only the most general conditions. When the system
is given a subtraction problem and a students’ answer to the same problem, it must search in order to
arrive at a similar answer. Once it has found a sclution path to the same answer, SAGE employs its
discrimination process to determine the conditions on various operators that will produce similar
behavior in the future.

For example, suppose the system is given the problem 34 - 21, along with the student's
(correct) answer of 13. Based on the solution path leading to this answer, SAGE would give the
difference-finding operator precedence over the decrement and add-ten operators (since they were

1We have chosen to paraphrase the rules in English for the sake of clarity. Each line in the table corresponds to a single

condition or action in the actual productions. Words in italics correspond o variables in the actual rules.



never applied). In addition, the system would note that the difference-finding operator was called
upon to find the difference between 4 and 1, but not the inverse difference between 1 and 4.
Comparing these two situations, the discrimination routine would find two differences. In the good
instance, 4 is larger than 1, while in the bad instance, 1 is not larger than 4. Similarly, in the good
instance, 4 is above 1, while in the bad instance, 1 is not above 4. Accordingly, SAGE would construct
two variants, one including a condition based on the larger relation, and the other containing a
condition based on the above relation.

Table 2. Initial production system for subtraction.

find-difference

If you are processing column,
and numberl is in column,
and number?2 is in column,

then find the difference between number1 and number2,
and write this difference as the result for column.

add-ten
If you are processingcolumn,
and numberl is in column,
and number?2 is in column,
and number1 is above number2,
then add ten to numbert.

decrement

If you are processing column,
and column2 is left of column,
and number3 is in column2,
and number3 is above number4,

then decrement number3 by 1.

shift-column
If you are processing column,
and you have a result for column,
and column?2 is left of column,
then process column2.

At this point. one can infer that the student employs at least one of these conditions in deciding
when to apply the difference-finding operator, but we cannaot tell which of the conditions (or both) is
used. However, suppose we next examine a problem in which borrowing is required, such as 43 - 25.
If the student gives the correct answer of 18, then SAGE would infer (after finding a solution path and
discriminating) that the student’s differencing rule contains both of the above conditions. However, if
the student gives the answer 22 instead, then the variant including the Jarger relation would be
retained in favor of the variant including the above relation. The resulling model would always
subtract the larger number from the smaller regardless of position, and would explain the student's
failure to borrow in terms of the missing above condition. We have described only a small part of the
model-building process, since the conditions on other operators must also be determined; however,
this example should give the reader an idea of the basic approach.



4. Directions for Future Research

Although SAGE has been tested in a number of domains as a strategy learning system, our
application of the program to student modeling is still in its initial stages. The most obvious priority is
to test the system mare fully in the subtraction domain. After our analysis of subtraction errors has
progressed, we plan to test SAGE in the domains of algebra and symbolic integration. Like
subtraction, these areas are mainly procedural, but they are sufficiently different to provide an
interesting test of the system’'s generality. Finally, we hope to provide SAGE with the ability to
generate diagnostic problems. Given a set of competing hypotheses as to why an error has occurred,
the system would then be able to design critical experiments to determine which hypothesis best
explained the student's behavior. Together with SAGE's techniques fcr discovering the appropriate
conditions on operators, this method should lead to a general and rcbust system for constructing
models of students’ mathematics strategies. In conclusion, though our research is still in the initial
stages, we are confident that it will lead to insights about the nature of student modeling, the nature of
strategy learning, and the relation between them.

Acknowledgements

This research was supported by Contract NO0014-83-K-0074 from th2 Office of Naval Research. |
would like to thank Derek Sleeman for discussions that led to many of the ideas presented in this
paper.

References

Brown, J. S. and Burton, R. R. Diagnostic models for procedural bugs in basic mathematical skills.
Cognitive Science, 1978, 2, 155-192.

Brown, J. S. and VanLehn, K. Repair theory: A generative theory of of bugs in procedural skills.
Cognitive Science. 1980, 4, 379-427.

Langley, P. Strategy acquisition governed by experimentation. Proceedings of the European
Conference on Artificial Intelligence, 1982, 171-176.

Sleeman, D. Inferring (mal) rules from pupils' protocols. Proceedings of the European Conference on
Artificial Intelligence, 1982, 160-164. '

Young, R. M. and O'Shea, T. Errors in children’s subtraction. Cognitive Science, 1981, 5, 153-177.



	cogsci_1983_143-146



