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RESEARCH Open Access

Non-cancer-related pathogenic germline
variants and expression consequences in
ten-thousand cancer genomes
Zishan Wang1, Xiao Fan2, Yufeng Shen3, Meghana S Pagadala4, Rebecca Signer1, Kamil J. Cygan5,
William G. Fairbrother5, Hannah Carter4, Wendy K. Chung2* and Kuan-lin Huang1*

Abstract

Background: DNA sequencing is increasingly incorporated into the routine care of cancer patients, many of whom
also carry inherited, moderate/high-penetrance variants associated with other diseases. Yet, the prevalence and
consequence of such variants remain unclear.

Methods: We analyzed the germline genomes of 10,389 adult cancer cases in the TCGA cohort, identifying
pathogenic/likely pathogenic variants in autosomal-dominant genes, autosomal-recessive genes, and 59 medically
actionable genes curated by the American College of Molecular Genetics (i.e., the ACMG 59 genes). We also
analyzed variant- and gene-level expression consequences in carriers.

Results: The affected genes exhibited varying pan-ancestry and population-specific patterns, and overall, the
European population showed the highest frequency of pathogenic/likely pathogenic variants. We further identified
genes showing expression consequence supporting variant functionality, including altered gene expression, allelic
specific expression, and mis-splicing determined by a massively parallel splicing assay.

Conclusions: Our results demonstrate that expression-altering variants are found in a substantial fraction of cases
and illustrate the yield of genomic risk assessments for a wide range of diseases across diverse populations.

Background
Recent advances in sequencing technology and targeted
therapeutic development have led to increased clinical
genomic sequencing for patients. In 2015, the American
College of Molecular Genetics and Association for Mo-
lecular Pathology (ACMG/AMP) established criteria for
genetic variant classification on a spectrum from patho-
genic to benign as a guide for consistent clinical inter-
pretation [1]. The ACMG also curated a list of 59

medically actionable, highly penetrant genes (abbreviated
ACMG 59 genes) [2], for which reporting of secondary
findings is recommended. However, pathogenic variants
in non-cancer or cancer-syndrome-related genes have
rarely been systematically evaluated in a large cohort of
cancer patients across diverse ancestries. Furthermore,
many variants are extremely rare, and might be founder
variants exclusive to a specific ancestral population [3].
Extensive genetic analyses across diverse populations will
help to inform future population-based genomic screen-
ing strategies.
Beyond identifying DNA sequence variant, variant in-

terpretation often requires assumptions about the ex-
pression consequences of the variants. For example,
many pathogenic variants are premature stop-codons
presumed to cause mRNA transcript degradation
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through nonsense-mediated decay (NMD) [4]. The di-
minished gene expression impairs cellular function, lead-
ing to disease phenotype. Concurrent observation of
expression aberrations in tissue samples—at both the al-
lelic specific expression (ASE) [5, 6] and gene expression
level—can validate variant functionality. Yet, published
large-scale studies that evaluate expression consequences
of genomic variants mostly represent European popula-
tions with available multi-omics data like Genotype-
Tissue Expression (GTEx) project [7–10]. The Cancer
Genome Atlas (TCGA) project includes DNA/RNA-Seq
data for over 10 K cancer cases of multiple ancestries
[11], providing an opportunity to dissect the expression
consequences of variants.
In this study, we systematically investigated pathogenic

or likely pathogenic genetic variants in human disease
genes not related to cancer or cancer-related syndromes,
herein abbreviated as NC P/LPs (non-cancer-related
pathogenic/likely pathogenic variants), in 10,389 cancer
cases across multiple ancestries. We identified over
twent-nine-hundred NC P/LPs and described the af-
fected genes and population frequencies. Gene-level ex-
pression analyses revealed reduced gene expression
associated with NC P/LPs. Furthermore, NC P/LPs
showing reduced ASE were identified using RNA-Seq
analyses and found to be enriched for nonsense variants.
Splicing-assay data identified several previously classified
missense variants associated with mis-splicing effects. In
summary, our analysis revealed NC P/LPs in ten-
thousand cancer cases and their varied expression
consequences.

Methods
Cohort description and genetic ancestry assignment
We used the clinical data provided by TCGA PanCanA-
tlas and restricted analyses to those with pass-QC blood/
normal sequencing data. The inclusion criteria were de-
scribed by the PanCanAtlas germline working group
[12], where in addition to excluding cases with PanCa-
nAtlas blacklisted germline BAM-files, cases with less
than 60% genotype concordance between sequencing
variant calls and SNP-genotype data were eliminated.
The final cohort consists of 10,389 cases across 33 can-
cer types. Then, genetic ancestry assignments for 10,353
cases were obtained from the PanCanAtlas Ancestry In-
formative Markers (AIM) working group [13]. Of the
remaining 36 cases, 10 cases were further classified
based on the principal component analysis (PCA) in the
TCGA PanCanAtlas Germline project [12], and the
other 26 cases without genetic ancestry assignments in
both projects were considered as the “other” group.
Principal component (PC) values for each case were

obtained from the TCGA PanCanAtlas Germline project
[12]. Briefly, the downloaded PC data were calculated

based on 298,004 variants with MAF > 0.15 and low
missingness. The PC1 and PC2 accounted for 51.6% and
29.2% of the variations across the first 20 PCs, and none
of the trailing PCs accounted for more than 3.2%. Thus,
we subsequently controlled for PC1 and PC2 in gene ex-
pression analysis.

Variant identification and classification
We downloaded CharGer-prioritized variants among the
~ 1.46 billion germline variant calls conducted by TCGA
PanCanAtlas Germline working group [12] and further
required the variants to have sufficient DNA variant read
counts (≥ 5 alternative allele read counts and ≥ 0.2 alter-
native allele read frequency in both the normal and
tumor bam file) retaining 35,911 prioritized germline
variants (sample-variant). We then filtered out variants
associated with cancer or cancer syndromes, retaining
23,928 sample-variants. Non-cancer-related variants
were considered as those not in the curated 152 cancer
predisposition genes by the PanCanAtlas germline group
(Additional file 1: Table S1) nor have “tumor,” “cancer,”
“neoplasia,” or cancer-related “-oma” terms in their cor-
responding ClinVar trait. We noted that the systematic
assessment of the 23,928 variants may miss those show-
ing “Conflicting interpretations of pathogenicity” or with
updated classification on ClinVar [14] since the PanCa-
nAtlas study [12] and/or those showing little other sup-
porting evidence in the ACMG guideline [1]. Some of
these variants could be P/LPs upon close examination
and, particularly, the variants in the ACMG 59 genes
could have critical clinical implication. Thus, we further
extracted all variants in the 34 non-cancer ACMG 59
genes from the original variant call data, filtered with ≥
5 alternative allele read counts, and conducted variant
interpretation.
Variant interpretation of all the unique non-cancer

variants was assigned using the standard ACMG classifi-
cation criteria [1] and variant reviews. Variant interpret-
ation was first screened using our in-house
bioinformatics pipeline based on InterVar [15]. The
pipeline automatically collected 18 out of 28 lines of evi-
dence used in the ACMG guidelines [1]. Potential P/LP
variants identified by the pipeline were then manually
reviewed by a board-certified molecular geneticist using
the ACMG classification criteria. A total of 2920 counts
were identified in 757 unique P/LP variants in 363 NC
genes. The majority (96.0%) of these variants were re-
ported in ClinVar [14] as P/LP. For the remaining newly
identified P/LP variants, 19 (63.3%) of them are rare pre-
dicted loss-of-function variants. Eleven newly identified
missense P/LP variants were classified based upon func-
tional studies provided in the literature, protein domain,
rareness in general populations, P/LP variants at the
same residue, and computational predictions.
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Altogether, the procedure resulted in 2271 unique
(2920 sample-variants) NC P/LPs (Additional file 2:
Table S2). Using Online Mendelian Inheritance in Man
(OMIM), we annotated associated disease and mode of
inheritance to genes with ACMG-classified NC P/LPs.

gnomAD analysis
We analyzed the variant-level frequency of our identified
NC P/LPs using variants of 118,479 non-cancer exomes
sample that pass all filters in the genome aggregation
database (gnomAD-non-cancer) v.2.1 [16].

Gene expression impact analysis
We downloaded a batch-corrected and normalized
TCGA expression data processed by TCGA PanCanA-
tlas from Genome Data Commons (GDC). We calcu-
lated tumor expression percentile of individual genes in
each cancer cohort by using the empirical cumulative
distribution function (ecdf), as implemented in R, and
downloaded consensus measurement of tumor purity in-
formation by using TCGAbiolinks R package. Next, we
used a multivariate linear regression model to assess the
impact of NC P/LPs on expression of affected genes with
at least three carriers in the pan-cancer cohort, where
the changes in gene i mRNA expression, yi, were a linear
function of variant status and covariates (including age,
gender, tumor purity, PC1, PC2, and cancer type) xi:

yi ¼ β0 þ βixi þ εi; i ¼ 1;…; n:

where β0 was the intercept, and βi was the coefficient
for variant status and covariates. Samples lacking the re-
quired covariates or gene expression for the multivariate
linear model are not considered. A total of 7734 cases
and 2005 NC P/LPs had complete data for the model.
Benjamini-Hochberg (BH) procedure was performed to
adjust P-value into FDR (false discovery rate). We se-
lected 0.05 and 0.15 as the FDR cutoff for significant or
suggestive associations affected by NC P/LP,
respectively.

Allelic specific expression (ASE) analysis
Barcodes of TCGA patients were mapped to file ids for
RNA-seq BAM files. To circumvent a potentially large
multiple-testing correction penalities, we constrained the
analyses to rare (MAF ≤ 0.05%) NC P/LPs. For 2640 pa-
tients with cancer variants or NC P/LPs, 3625 file ids for
RNA-seq BAMs were mapped. For 118 TCGA patients,
RNA-seq BAM files were not found. GRCh37 aligned
BAM files were downloaded from TCGA Legacy Archive
using the gdc client and bam-readcount v0.8.0 was used
to extract read counts for GRCh37 variants ids for each
specified patient by providing variant id location and
BAM file. Read counts for each base (A,G,C,T) were

compiled across all BAM files. When multiple RNA-Seq
Bam-files are available for one case, we selected the
Bam-file with the deepest sequencing depth at that allele
for further analysis. We retained variants with at least
six read counts (reference allele + alternate allele ≥ 6)
for ASE analysis. Next, we conducted a one-sided bino-
mial test with a null probability of success 0.5 in a Ber-
noulli experiment to identify ASE, where the alternative
allele shows significantly less expression. Subsequently,
we used BH to adjust p-value into FDR and defined FDR
less than 0.05 and 0.15 as significant and suggestive,
respectively.
Furthermore, the gene-level enrichment of variants

with significant ASE is assessed by constructing a two-
by-two table of variants located in a gene region versus
ASE status and conducting a two-sided Fisher exact test.
We limited the analysis to genes with at least 3 signifi-
cant ASE NC P/LPs and more than 70% of carriers
showing significant ASE. P value is adjusted by BH into
FDR and two FDR cutoffs, 0.05 and 0.15, are selected to
define significant and suggestive enrichment,
respectively.
We used an empirical permutation-based method to

evaluate the enrichment of NC P/LPs for each predicted
variant function class, where the test statistics is the per-
centage of significant ASE NC P/LPs. The ASE statuses
were randomly shuffled for 10,000 times, and each time,
the percentage of significant ASE NC P/LPs was calcu-
lated. We defined P value for each predicted variant
function class as the fraction of significant ASE NC P/LP
proportions under random conditions that were greater
than the observed one.

Variants showing mis-splicing effects
We utilized the data from our recently published Mas-
sively Parallel Splicing Assay (MaPSy) experiment [17].
Based on the raw allelic counts of the reference and in-
duced alternate allele, we calculated the allelic ratio and
significance for each candidate splicing variant. Variants
with BH-adjusted FDR less than 0.05 and allelic ratio
less than -log2(1.5) in both the in vitro and in vivo as-
says were regarded as variants showing mis-splicing ef-
fects. We then match these variants based on their
genomic coordinate, reference, and alternative alleles to
variants we identified in TCGA patients.

Results
NC P/LPs in 10,389 cancer cases
We identified NC P/LPs in the TCGA cohort of 10,389
adult cancer cases across different ancestral populations.
The cohort contained germline genome data that passed
quality control procedures as described by TCGA Pan-
CanAtlas Germline working group [12]. Genetic ancestry
analyses of PanCanAltas AIM and Germline working
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groups [12, 13, 18] stratified the cohort into 305 individuals
of the Latinx/Native American, 971 of the African American,
8279 of the European, 652 of the East Asian, 50 of the South
Asian, 106 of mixed (> 20% genetic admixture) ancestries,
and 26 of other ancestry (Methods, Fig. 1).
In the 10,389 cases, TCGA PanCanAtlas Germline

working group previously conducted variant calling that
resulted in ~ 1.46 billion variants and utilized CharGer
[19] to prioritize variants [12]. Among the CharGer-
prioritized variants as well as all the variants in the
ACMG 59 genes that are not directly associated with
cancer, we systematically filtered them based on allele
read count thresholds and association with cancer or
cancer syndromes, followed by ACMG classification
along with variant reviews by a board-certified molecular
geneticist (Methods). Based on this procedure, we identi-
fied 2916 heterozygous and 4 homozygous NC P/LPs
that were pathogenic or likely pathogenic (Fig. 1A).
These NC P/LPs included 753 unique variants distrib-
uted across 363 non-cancer genes, harbored in 24.1%
(2505/10,389) of the cancer cases (Additional file 3:
Table S3). We further examined the frequencies across
ancestries: 26.75% of European ancestry were found to
harbor NC P/LPs, a higher frequency compared to other
ancestries with more than 100 patients, including
15.08% of the Latinx/Native American, 12.98% of the Af-
rican American, and 11.66% of the East Asian (Fig. 1B).
Overall, putative autosomal dominant (AD) variants af-
fected 2.07% (215/10,389) and autosomal recessive (AR)
variants affected 22.02% (2288/10,389) of the cohort

while showing different frequencies across ancestries
(Additional file 4: Figure S1).
Among the ACMG 59 genes [2], for which reporting

of secondary findings is recommended, 34 were not dir-
ectly cancer-related. These 34 ACMG non-cancer genes
affected 1.48% of the TCGA cancer cases across all an-
cestral groups. Restricting to the P/LPs in genes that are
not directly cancer-related, previous studies have re-
ported 1.0% (95 % confidence interval (CI) 0.4–1.6%)
carriers in 1000 Genome project [20], 1.2% (1.0–1.3%) in
eMERGE [21], 1.1% (0.1–2.0%) in European American
Framingham Heart Study, and 0.5% (0.2–0.7%) in
African-American Jackson Heart Study [22]. The carrier
frequencies may vary depending on genes assessed, evi-
dence available at the time of pathogenicity assignment,
ancestry of participants, and participant ascertainment
method.
Using 94 AR disorders assessed by Haque et al. [23],

we found TCGA carrier frequencies of 10.1% (95 % con-
fidence interval (CI) 9.5–10.8%), 6.2% (CI 4.7–7.7%),
1.7% (0.7–2.7%), and 2.6% (0.8–4.4%) in individuals of
European, African American, East Asian, and Latinx an-
cestry for at least one P/LP variant in the 94 disorders.
Our estimates are slightly higher in European-ancestry
individuals and lower in African American, East Asian,
and Latinx compared with Haque et al. [23] reported
carrier frequencies of 7.7% (7.5–7.9%), 11.3% (10.9–
11.7%), 6.9% (6.3–7.6%), and 6.0% (5.6–6.4%), in the
same ancestral groups. The differences between the two
studies in part reflect differences in knowledge and stan-
dards for classification of variants over time.

Fig. 1. Non-cancer-related pathogenic/likely pathogenic variants (NC P/LPs) in over ten thousand cancer cases. A Schematic overview for
identification of NC P/LPs in 10,389 cancer cases. B Frequency of NC P/LP carriers (left panel) and count of NC P/LPs (right panel) across different
ancestries. The total case number of each ancestry is labeled
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Prevalence of NC P/LPs across ancestral populations
We investigated the genes with the highest prevalence of
NC P/LPs across ancestries. Fourteen of the ACMG 59
genes were affected by NC P/LPs in TCGA (Fig. 2A).

For example, NC P/LPs in KCNQ1, associated with type
1 long QT syndrome, affected 6 European individuals
and 1 individual in East Asian or South Asian in the
TCGA cohort. Many ACMG 59 genes were restricted to

Fig. 2 Prevalence of affected genes across ancestries. A Frequency/count of NC P/LP carriers in each ancestry among the ACMG 59 genes and
the top 10% genes (ranked by sums of all defined ancestry frequencies, excluding Mix and Other). The ACMG genes affected were shown at the
upper panel while the top 10% genes at the lower panel. The genes associated with autosomal-dominantly inherited diseases were labeled red.
B Variant count of predisposing variants in the matched gnomAD ancestry (European of gnomAD is the union of FIN and NFE populations).
TCGA population-specific NC P/LPs, exclusively found in a specific TCGA ancestry, are shown as a triangle. Top NC P/LP or top TCGA ancestry-
specific NC P/LP, ranked by allele counts in TCGA or gnomAD, was labeled

Wang et al. Genome Medicine          (2021) 13:147 Page 5 of 13



individuals of European population in this cohort, such
as LDLR, DSG2, APOB, ATP7B, CACNA1S, FBN1, and
TNNI3 (Fig. 2A and Additional file 5: Table S4).
Across populations, the most commonly identified

predisposing genes—each with at least 100 carriers—in-
cluded SPG7, MPO, and ACADM; all three genes are as-
sociated with autosomal recessively inherited diseases
(Fig. 2A and Additional file 5: Table S4). SPG7 variants
were observed in 100 European carriers (1.21%) and one
carrier each of Latinx/Native American, African Ameri-
can, and South Asian ancestry. Similar to SPG7, MPO
variants were found in 117 European carriers (1.41%),
one carrier of Latinx/Native American and African
American ancestry. ACADM variants were identified in
115 European carriers (1.39%), 2 carriers of African
American and one carrier of mixed ancestry. We also
observed several commonly ancestry-specific genes car-
rying variants that showed occurrences exclusively in
one ancestral population. In addition to those exclusively
identified in the Europeans, we found two ACMG 59
genes whose NC P/LPs only affected East Asians in
TCGA, including SERPINB7 in 8 carriers (1.23%) and
SLC22A12 in 6 carriers (0.92%) (Fig. 2A and Additional
file 5: Table S4). These results highlight the genetic vari-
ants that may disproportionally affect diverse
populations.
We sought validation of NC P/LPs in the gnomAD

non-cancer cohort (abbreviated as gnomAD below),
which had no samples overlapping with the TCGA co-
hort. The carrier frequencies of the TCGA-identified NC
P/LPs were the highest among the gnomAD Ashkenazi
Jewish (ASJ), Non-Finnish European (NFE), and Finnish
(FIN) compared to other ancestral populations (Add-
itional file 4: Figure S2), consistent with ClinGen’s recent
report finding Europeans in gnomAD contained over
half of the information on the clinically relevant variants
on ClinVar [24]. We also examined the gene-level carrier
frequencies of the same variants across different gno-
mAD ancestral populations. Multiple genes, including
SPG7, MPO, and ACADM, showed higher carrier fre-
quencies of this set of NC P/LPs in European individuals
from both the TCGA and gnomAD cohorts (Fig. 2A and
Additional file 4: Figure S3A). ACADS and GALT vari-
ants were present at highest frequency in African Ameri-
cans in both TCGA and gnomAD; similarly SERPINB7
and SLC22A12 variants appeared predominantly in the
East Asian population of both cohorts.
We further investigated the concordance of variant-

level frequencies in the matched ancestries between
TCGA and gnomAD. We found significant correlations
of variant frequencies in East Asian (Pearson R = 0.8, p
value = 2.53e−07), European (Pearson R = 0.83, p value
= 4.13e−143), and African American (Pearson R = 0.82,
p value = 1.35e−12) population, whereas the variant

frequencies in Latinx/Native American ancestry did not
show significant correlations (Pearson R = 0.09, p value
= 0.58, Additional file 5: Table S4), likely due to the
smaller sample size or admixtures in the populations.
Multiple variants found exclusively in one TCGA ances-
try were rediscovered in their respective ancestry cohort
of gnomAD, such as ACADS p.W177R in African
American, MCCC2 p.L355F in Latinx/Native American,
ALPL p.E191K in European, SERPINB7 p.R266* in East
Asian, and ACADSB p.Q99* in South Asian (Fig. 2B and
Additional file 5: Table S4). Replicated across cohorts,
the markedly higher frequencies of these variants in one
population compared to the others support their popula-
tion specificity and potential founder effects.
We further compared the frequency of each NC P/LP

in TCGA vs. gnomAD stratified by population using a
two-tailed Fisher’s exact text. The analyses identified 57
variants (FDR < 0.05) (Additional file 6: Table S5), the
majority of which were TCGA-enriched variants found
in the European ancestry and the most significant ones
included MPO c.2031-2A>C (splice site variant, myelo-
peroxidase deficiency), F11 p.E135* and p.F301L (heredi-
tary factor XI deficiency disease), and ACADM p.K333E
and p.G271R (medium-chain acyl-coenzyme A dehydro-
genase deficiency). In contrast, CYP21A2 p.P454S, TSFM
p.Q307* and ALPL p.E191K showed higher frequencies
in gnomAD compared to TCGA Europeans (Additional
file 4: Figure S3B). Acknowledging the caveat of compar-
ing TCGA vs. gnomAD data from different sequencing
platforms, variant calling pipelines, and sampled sources
and populations, these results suggest a potential differ-
ent distribution of NC P/LPs that may be indirectly asso-
ciated with the cancer phenotype that needs to be
further tested.

Gene expression impacted by NC P/LPs
Many of the identified NC P/LPs are truncating variants
that are presumed to alter expression of the gene prod-
ucts through mechanisms such as NMD. To interrogate
the variant consequences at the gene expression level,
we applied a multivariate linear regression model using
the expression quantile of the affected gene within each
cancer cohort as a dependent variable and variant status
as the independent variable, adjusting for age, gender,
PC1, PC2, cancer type, and tumor purity (Methods). We
found 5 significant and 16 suggestive genes to be differ-
entially expressed, 17 of which showed reduced expres-
sion in variant carriers (Fig. 3A).
We further examined the specific variants that co-

occurred with low gene expression in the bottom quar-
tile of their respective cancer cohorts (Fig. 3B and Add-
itional file 4: Figure S4). The majority or all nonsense
variants carriers of multiple genes showed bottom-
quartile expression of the affected genes, such as IRAK4,
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PHKB, MMACHC, and GFER. Meanwhile, bottom-
quartile HEXB gene expression was observed in 13 car-
riers of the missense variant HEXB p.P417L. Overall, we
observed distinct expression effects of different variant
types. Among 376 nonsense variants, 137 (36.4%)
showed bottom-quartile expression of the respective
genes, confirming the potential effects from NMD. In
comparison, 271 of 1169 (23.2%) missense variants also
showed bottom quartile expression (approximating the
25% in a null scenario, Additional file 7: Table S6), sug-
gesting that many of these missense variants, along with
a fraction of truncating variants, may exert their effects
through mechanisms independent of altering gene
expression.

Allele-specific expression of NC P/LPs
The majority of differentially expressed genes associated
with NC P/LPs showed reduced expression (Fig. 3A).
Further, many pathogenic variants are assumed to alter
gene expression through mechanisms such as NMD,
leading that ASE at the RNA-level would be observed
for a heterozygous individual. To further assess the
mechanism at a variant level, we further identified ASE
showing reduced expression of the alternate allele for
the rare NC P/LPs (MAF ≤ 0.05%) by performing a one-
sided binomial test (Methods). Among the 657 rare NC
P/LPs with sufficient read counts in tumor RNA-Seq
data for analyses, ~ 26.3% (173/657) showed significant
ASE (FDR < 0.05), and another 4.26% (28/657) showed
suggestive ASE (0.05 ≤ FDR < 0.15) (Fig. 4A).
We investigated whether the ASE status of variants

were disproportionally present in a predicted variant

function class by conducting a permutation test
(Methods). Among the predicted variant function class,
nonsense variants were significantly enriched for those
showing ASE (48 %, P < 1E−4), confirming their tran-
scriptional impact that is likely mediated through NMD.
In addition, synonymous variants are also enriched for
those showing significant ASE (7 out of 7, P < 1E−4), al-
though there were only 7 synonymous variants in our
analysis (Fig. 4B and Additional file 8: Table S7), includ-
ing four East Asian carriers of CYP27A1 c.862G>T, one
East Asian carrier of G6PC c.727G>T and two European
carriers of DGUOK c.676G>A.
Next, we identified genes enriched for significant ASE

NC P/LPs using Fisher’s exact test (Methods). We ob-
served that ASE variants were significantly enriched in 6
genes, including ASS1 (FDR = 0.001), SMARCAL1 (FDR
= 0.022), AGXT (FDR = 0.023), KIAA1279 (FDR =
0.023), TMEM216 (FDR = 0.023), and NEK8 (FDR =
0.023) (Fig. 4C). At the variant level, 12 of the 17 ASS1
carriers showed significant ASE, including two carriers of
missense variant p.G324S, nonsense variant p.R344*, all
three carriers of the nonsense variant p.R279* and five car-
riers of missense variant p.G390R (Figs. 4D and 5). Five
out of the six SMARCAL1 p.E848* carriers also showed
significant ASE. All carriers with enough read counts data
of the remaining four genes (AGXT, KIAA1279,
TMEM216, and NEK8) showed significant ASE (Figs. 4D
and 5). Additionally, we identified two genes showing sug-
gestive enrichment of significant ASE NC P/LPs, including
G6PC and LAMA2 (FDR = 0.057) (Fig. 4C). For G6PC,
significant ASE was found in one each carrier of p.R83C,
p.L216, and p.Q347* (Fig. 4D and Additional file 4: Figure

Fig. 3 Impact of NC P/LPs on gene expression. A A volcano plot showing genes whose expression is affected by related NC P/LPs. Color
represents the significance level, and the size represents the gene’s NC P/LP carrier frequency. B Distribution of percentile expression in a specific
cancer at NC P/LP carriers of genes whose expression is significantly/suggestively impacted by NC P/LPs. Color represents variant type. Significant
genes is highlighted in bold
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Fig. 4 Rare variants showing allele-specific expression (ASE) and enriched genes. A Identification of rare NC P/LPs associated with ASE. Color
represents ASE status. B Distribution of NC P/LPs with distinct ASE enrichment status across predicted variant function classes. C Gene
enrichment analysis for NC P/LPs showing significant ASE. Each dot is a gene affected by NC P/LPs. The X-axis represents the number of NC P/LPs
with sufficient read counts located at a specific gene region, of which significant ASE NC P/LP proportion is Y-axis. D Count of NC P/LPs with
distinct ASE enrichment status for ASE NC P/LP enriched genes. Significant genes is labeled bold. Color of B and D were the same as A

Wang et al. Genome Medicine          (2021) 13:147 Page 8 of 13



Fig. 5 Lolliplots showing the positions of NC P/LPs in genes significantly enriched with significant ASE NC P/LPs. NC P/LPs were labeled by the
HGVSp symbol. Different colors on the gene product bar depict different protein domains. The number above variant loci shows the number of
carriers with distinct ASE enrichment status (indicated by fill color). The stroke colors of the circle indicates predicted variant function classes
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S5). For LAMA2, all 3 carriers of p.R1326* showed signifi-
cant ASE, while the only carrier of p.R1826* showed sug-
gestive ASE (Fig. 4D and Additional file 4: Figure S5).
There is no overlap between genes enriched with ASE var-
iants and genes whose expression is associated with vari-
ants. The non-concordance between ASE analysis and
gene expression impact suggested a possible expression
compensation from the reference allele or a lack of power
in the gene expression analysis. Altogether, the observed
ASE validated the expression consequences of many NC
P/LPs.

Mis-splicing effects induced by NC P/LPs
Aside from nonsense variants assumed to undergo
NMD, we also observed significant numbers of variants
showing ASE and gene expression effects (Figs. 3 and 4).
Recent studies have shown that, in addition to canonical
splice sites, many missense variants can also affect spli-
cing [17, 25]. Utilizing data from our recently published
Massively Parallel Splicing Assay (MaPSy) experiment
surveying nearly five thousand variants [17], we system-
atically identified variants showing mis-splicing effects
both in vitro and in vivo matched to the NC P/LPs iden-
tified in TCGA patients. Among 226 NC P/LPs that
overlapped with MaPSy variants, 36 NC P/LPs showed
significant mis-splicing effects, including 30 European
carriers of missense GALT p.Q103R, one European car-
rier of missense SMPD1 p.H423Y, one American carrier
of missense RYR1, two European carriers of nonsense
NDUFAF2 p.R47*, one European carrier of nonsense
HADH p.R236*, and one East Asian carrier of nonsense
BBS1 p.E586*. The carrier of nonsense HADH p.R236*
showing mis-splicing in MaPSy also showed significant
ASE.
To discover additional variants with expression and

possibly functional consequences, we assessed the mis-
splicing effects that may be exerted by all prioritized var-
iants (i.e., the 35,911 variants in Fig. 1A). Among these,
21,008 were non-cancer related NC P/LPs that yielded
insufficient evidence to satisfy a likely pathogenic classi-
fication, and 266 were characterized by MaPSy. Fifteen
of these prioritized missense variants showed mis-
splicing effects, including three European carriers of
DARS2 p.R263Q, one European carrier of CD36 p.I413L,
one European carrier/one African carrier of SLC29A3
p.M116R, and eight East Asian carriers/one Mixed an-
cestry carrier of PLG p.A620T. On ClinVar, DARS2
p.R263Q is classified as pathogenic by a single submitter
associated with the condition of leukoencephalopathy
with brain stem and spinal cord involvement and lactate
elevation, whereas SLC29A3 p.M116R is pathogenic
without assertion criteria and linked to histiocytosis-
lymphadenopathy plus syndrome. The European carrier
of CD36 p.I413L, another MaPSy-identified variant

associated with platelet glycoprotein IV deficiency, also
showed significant ASE along with the suggestive ASE
found in the European carrier of the MaPSy-identified
SLC29A3 p.M116R. These variants have additional func-
tional evidence of mRNA effects in patient samples and/
or functional assays, which strengthen variant interpret-
ation assertions.

Discussion
Assessment of hereditary cancer and tumor sequencing
are the most common use cases for genomic medicine
in adults. As genome sequencing is considered as the
platform for genomic assessment, we sought to under-
stand the expected yield of NC P/LPs variants. We
present one of the largest studies to date on NC P/LPs
in a cancer sequencing cohort. In the TCGA cohort of
over ten thousand adult cancer cases, NC P/LPs in dis-
ease associated genes were found to be about 25% of in-
dividuals. The NC P/LPs corresponded to multiple
diseases, and many genes and variants showed ancestry-
specific patterns validated across the TCGA and gno-
mAD non-cancer cohorts. As expected, a higher fraction
of nonsense variants showed ASEs, although variant-
level ASE did not guarantee the reduced expression of
the affected gene. Some missense variants were also as-
sociated with ASE or low gene expression, and a few
were found to be associated with mis-splicing effects.
The frequency of variants we identified in 34 ACMG

non-cancer or cancer-syndrome-related genes were
slightly higher than those found in previous studies [20–
23]. In addition to the intrinsic cohort difference, the
differences in frequency may reflect the difference in se-
quencing platforms, the advances in variant interpret-
ation over time [14, 26], and the difference in variant
interpretation guidelines [27]. In particular, the TCGA
dataset used herein include samples collected and se-
quenced over a decade ago, and the biased inclusion of
larger tumors and individuals with severe cancer may
not yield generalizable results for current cancer patients
or the overall population.
The higher rate of NC P/LPs found in the European

ancestry is consistent with previous studies and may re-
flect the bias of characterized and reported variants in
those of European ancestry [24]. Much of the non-
European populations are under-represented in existing
sequencing cohorts [28–30]. Fewer counts of pathogenic
or likely pathogenic variants identified in non-Europeans
herein also highlight the limitation of current cohorts in
identifying non-European pathogenic alleles. Current
germline sequencing in non-European patients produces
higher rates of variants of unknown significance (VUSs)
[31, 32] and false-positives [33], limiting the clinical util-
ity of genetic testing for those groups. Ongoing projects,
including CSER [34], eMERGE III [35], UKBioBank [36,

Wang et al. Genome Medicine          (2021) 13:147 Page 10 of 13



37], TopMed [38], Million Veterans Program [39], and
All of Us Research Program, are beginning to address
the challenge for diverse populations. Ancestral popula-
tions in TCGA and gnomAD showed correlations in
their carrier frequencies, suggesting combining evidence
from these ongoing efforts can likely increase confidence
in identifying critical variants within populations.
Many predisposing variants lead to aberrations of gene

expression. Such expression consequences can help as-
sess pathogenicity among VUSs, yet this evidence is
under-utilized. Growing evidence suggests the genomic
context, even in a local genomic region, affects eQTL as-
sociations [40–42]. Thus, as multi-omics cohorts expand
to cover substantial fractions of diverse populations,
evaluating expression consequences of alleles found in
different ancestral groups can help facilitate the inter-
pretation of rare variants. A caveat for the expression
analyses presented herein is that most RNA-Seq data in
TCGA were derived from tumor tissues, which may not
be the tissue directly affected by the disease associated
variant but could provide a surrogate to assess expres-
sion consequences. Additional paired samples with ex-
pression data and genomic data will help assess effects
of synonymous variants on splicing and impact of regu-
latory variants that will improve prediction algorithms to
improve variant interpretation more broadly.
Many rare variants found in disease predisposition test-

ing panels, particularly missense variants, are still of un-
known significance [43] and require alternative
approaches for interpretation. Aside from canonical splice
sites in introns, splicing effects were detected for a consid-
erable fraction of BRCA1 missense [25] and known exonic
variants [17]. Systematic identification of such splicing ef-
fects using mRNA sequencing data from carriers or
functional-screen experiments is critical to identify patho-
genic splice variants that may be labeled as non-splice var-
iants. In the current ACMG guidelines [1] for variant
interpretation, one consideration is “the effect of a variant
on gene/protein function as determined by a well-
established functional assay,” adding either strong support
of a pathogenic (PS3) or benign (BS3) impact. This evi-
dence level is rarely used, and our results showed these
data could be incorporated to increase the accuracy of
variant classification.

Conclusions
Our study represents one of the most extensive studies
to date that evaluated NC P/LPs and their expression
consequences. As clinical genomic sequencing becomes
more common, particularly with the adoption of whole-
exome or genome profiling technologies, the presented
knowledge herein and additional studies in diverse pop-
ulations are valuable to facilitate genome-medicine and

accurately assess an individual’s comprehensive disease
risk profile.
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