UC Irvine
UC Irvine Previously Published Works

Title
Amplify-and-Forward Relay Networks With Variable-Length Limited Feedback

Permalink
https://escholarship.org/uc/item/80p2509n

Journal
IEEE Transactions on Wireless Communications, 15(11)

ISSN
1536-1276

Authors

Liu, Xiaoyi
Jafarkhani, Hamid
Koyuncu, Erdem

Publication Date
2016

DOI
10.1109/twc.2016.2606401

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/80p2509n
https://escholarship.org
http://www.cdlib.org/

1

Amplify-and-Forward Relay Networks with
Variable-Length Limited Feedback

Xiaoyi (Leo) Liu, Student Member, IEEEHamid JafarkhaniFellow, IEEE and
Erdem KoyuncuMember, IEEE

Abstract

We study the channel quantization problem for amplify-&momivard (AF) relay networks and our
target is to design a quantizer to minimize the outage priibabt is priorly known that any fixed-
length quantizer with a finite-cardinality codebook canatiéin the same minimum outage probability
as the case where all nodes in the AF relay networks have sitzgrerfect channel state information
(CSIl). We propose variable-length quantizers with randafmite-cardinality codebooks for the sum
and individual power constraints. We provide theoreticalgbs and numerical simulations to validate
that the proposed quantizers can achieve the full-CSl eupagbabilities with finite average feedback

rates.

Index Terms

Amplify-and-forward, variable-length quantizer, outgg®bability, feedback rate

|. INTRODUCTION

Cooperative diversity techniques have received signifiedtention since they can greatly

enhance the spectraffieiency and extend the network coverage [1], [2]. In a wirelesay
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network, the destination node receives signals from theceonode with the help of relay
nodes in the form of “distributed antennas.” Several coaf@n strategies, such as amplify-
and-forward (AF), decode-and-forward, and compressfandard have been proposed in the
literature. Among these, AF is an attractive solution widrywlow complexity that requires no

decoding at relay nodes.

In the case of point-to-point wireless communication, teefgrmance of the system depends
on the availability of channel state information (CSI) a¢ thhansmitter and the design of the
corresponding finite-rate feedback [3]-[5]. Similarlyetperformance of wireless relay networks
depends on the availability of CSI at the relay nodes and #sirthtion node [6]-[8]. The
destination node can acquire the entire CSI through trgiseguences from the source node
and relay nodes. Meanwhile, although each relay node cae tie knowledge of its own
receiving channel via training sequences from the source nib does not have a direct access
to the channel from itself to the destination node. Thus,réday nodes rely on the feedback
information from the destination node [9]. Perfect CSI & tklay nodes requires an “infinite”
number of feedback bits from the destination node, whichnisalistic due to the limitations
of the feedback links. Hence, in practice, it is desired tsigie dficient transmission schemes

based on quantized CSI for wireless relay networks.

There has been a lot of work on quantized channel feedbackreiess relay networks. In a
cooperative network with a single AF relay in [6], power aohtmethods have been analyzed
to minimize the outage probability with limited feedbacladable at the transmitter. When the
cooperative network has multiple relays, it is shown in [8], that using relay beamforming
achieves the full-CSI performance. Relay selection isiptsso achieve the maximum diversity.
However, it incurs a performance loss in array gain ineWtalompared to relay beamforming
in the full-CSI systems [10]. Moreover, relay beamformirgséd on quantized feedback from
the receiver can be implemented in a distributed mannerowitbomplex coordination between
relays. With the index fed back from the receiver, each reky select the corresponding relay

beamforming vector from the pre-defined codebook. Theegfare only consider the channel
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guantizers using relay beamforming in this paper. In a cape network with multiple AF

relays, the capacity loss and bit error probability withofised feedback have been studied in [7],
when each relay node is subject to an individual power caimgtrAlso, [8] has investigated the
optimal beamforming vector for relay nodes in the full-C8ésario and the outage probability
in the limited feedback scenario when the sum power comstigiimposed on the relay nodes.
Compared to the full-CSI scenario where all relay nodes kttevperfect CSI, the schemes in

[7] and [8] always sfifer from performance loss.

All of these previous schemes have relied on fixed-lengtmtgers (FLQs), in which the
receiver feeds back the same number of bits for every chastatd. In general, the receiver
can send a dlierent number of feedback bits forfidirent channel states, resulting in a variable-
length quantizer (VLQ). Recently, a VLQ has been proposeddoaieve the full-CSI outage
probability with a finite feedback rate for the non-cooperasetting of a multiple-input single-
output (MISO) system [11]. One can thus expect that a VLQcstine will similarly offer high
performance gains in cooperative networks. On the othed,hdne results of [11] for MISO
systems are not directly applicable to the VLQ design prmobie AF relay networks due to
the following reasons: (i) In such AF relay networks, theayehodes are geographically apart
from each other, which, unlike the co-located transmit mmés in a MISO system, prevents
direct access to the CSI of others. (ii) The amplification ofnbsignal and noise from the first
hop brings in a highly-nonlinear dependence on the relaynfi@aning vector and the channel
values to the instantaneous signal-to-noise ratio (SNRyév¥er, in a MISO system, the SNR
is simply given by the inner product of the beamforming andrutel vectors. (iii) Both the
sum and individual power constraints are considered forARerelay networks. As shown in
[9], the individual power constraint causes severe norvexity to the SNR optimization, which
further hampers the limited feedback design. Therefore,distributed nature of the AF relay
networks and the highly complicated SNR expressions résudtreat dificulties in the design

and performance analysis of VLQs.

We overcome theseftiiculties by considering random quantizer codebooks instétuk struc-

May 25, 2016 DRAFT



tured codebooks presented in [11]. We also provide a frametoo analyzing the performance
of random codebooks using limited feedback in AF relay nétaoand the derivations can be
applied to many other scenarios with AF relays. We first ptbeag the outage probabilities of our
proposed VLQs are the same as those of the full-CSI scenaribe sum and individual power
constraints, respectively. Then, for the average feedbatekof the proposed VLQ under the sum
power constraint, we derive its upper bound to show it isdinifor the average feedback rate of
the proposed VLQ under the individual power constraint, e unable to theoretically prove
it is finite due to the complicated SNR expression. Insteasl perform numerical simulations

to verify it is finite and small.

The rest of this paper is organized as follows. The systememadd problem formulation
are described in Section Il. In Section Ill, we first propos¥La) with an infinite-cardinality
random codebook for the sum power constraint, then, we pite@roposed VLQ achieves the
same minimum outage probability as the full-CSI scenariesg@nd provide an upper bound
on the average feedback rate. We deal with the VLQ for theviddal power constraint in
Section IV. Conclusions are drawn in Section V. We also mte\some technical proofs in the

appendices.

Notation: Bold-face letters refer to vectors or matrices. For a vegtanatrixx, X' represents
its transposex’ represents its conjugate transpolpd], is the I>-norm, and ¥J; denotes itg-th
element. The sets of complex, real, and natural numbersea@ed byC, R, andN, respectively.
The probability and expectation are represented bf}Rand E[-], respectively. We use the
notation CN (a,b) to stand for a circularly-symmetric complex Gaussian ramdector with
mean ofa and variance ob. Similarly, IN (a,b) is for a real Gaussian random vector. For any
X € R, | x| is the largest integer that is less than or equad émd[x] is the smallest integer that is

larger than or equal t®. For anyx € C, x* is the conjugate, Read) is the real part, Imagj is the

imaginary part/x = \/[Real(x)]z + [Imag)]” is the absolute value and ary( arctan feas)
is the argument. For a logical statement ST, well&T} = 1 when ST is true, and {ET} =0

otherwise. The column vector formed by stacking two colunectersx; and x, together is
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denoted asX;; X;]. Finally, rand() returns a single uniformly distributed random numberha t

interval (Q1].

variable-length feedback

- NS J
P}?ag: I Ph?g II

Fig. 1: System block diagram.

[I. SystEmM MODEL AND PROBLEM FORMULATION

In the AF relay network depicted in Fig. 1, a source n&&ansmits to a destination node
D with the aid ofN AF relay nodesR,,..., Ry, whereN > 2. Each node is equipped with only
a single antenna. Assume that there is no direct link betv&emd D. Denote the channels
from S to R, andR, to D by f, ~ CN (O, a?n) and g, ~ CIN (O, o-én), respectively. Without
loss of generality, we assurmfrg1 < 052 <...< O'SN. The entire channel state is represented
by H = [fi,..., fn. O ....0n] " € CPN*L We assume a quasi-static channel model, in which
the channels vary independently from one block to anothbilewemain constant within each
block.

In Phase |, the received signal at theh relay nodeR, is

Yr, = VPsfaX+ VR,
where x is the information bearing symbol sent I8/ with E[|x|2] = 1 for each channel state
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(the expectation is over all transmitted symbols), ddis the average transmit power &t

The background noises, for n=1,...,N is independent and modeled @& (0, 1).

In Phase IlI, each relay node normalizes and retransmitsdtsved signayr,. The normalized

signal to be re-transmitted with unit power Rt is

YR, _ VPsfiX+ g,

XRn = = .
E 2 JPs|fo2+ 1
X,VRy |an| Stin

ThereafterR, sends/Pg W:Xg,, WherePg_ is the maximum transmit power &, and P, [wy|*

is the actual-consumed transmit power. Without loss of g@itg Ps = Pg, = P is assumed.
Results for other values dPs and Pg, can be obtained similarly. The received signal at the

destination nod® is

N
Vb = Z On \/I3W;qu +Vp
n=1

§ Pw; fagnX S \/|3WrﬁgnVRn

= + + Vp
1 \PIf2+1 =t (PIf P41
_ \/EZN:VW fnOn o
= L ———X+ Up, Q)
n=1 \”fnlz + %
wherevp = Zr'}' 1 r/r% +Vp andvp ~ CIN(O, 1) is the background noise &. Given f, and

On, Vp is distributed as;y ~ CIN (O, 1+ Z,’le W2 lf'?z” 1) From Eq. (1), the signal-to-noise ratio
(SNR) atD is given by
2
N fI"I n
‘Z“ﬂm{:‘ \/|fn?2 1

2 b
E S il 5

F'(w,H) = (2)

wherew = [wy,...,wy] " is the relay beamforming vector.

1In the remainder of this paper, we referRaas the transmit power instead of the average power overaaimnitted symbols
for conciseness.
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A. Sum Power Constraint

Consider the sum power constraint for which the sum of thastrat power of all relay
nodes is limited byP, i.e., w, should satisfy}" , Wa? = 1, or |wl* = 1 equivalently. The SNR

expression oD in Eq. (2) can be reexpressed as

w'hh'w
rwH) =P—————, 3
W.H) w' (I + D)w ®)
.
whereh = |22 ™o | '} js theN x N identity matrix andD is a N x N diagonal
VifP+3 Vit
1U™+5 NI+ 5

matrix with then-th diagonal element beingj’;'—fé.

Consider outage probability as the performance measuoeidhout this paper. For a target
data rater, outage occurs i% log, (1 + T (W, H)) < 7, or equivalentlyl’ (w,H) < 2 -1 =q. In
the rest of this paper, we refer toas the outage threshold.

In the full-CSI scenario where all nodes are aware of a pekeowledge ofH, the optimal

(1+D)"th

beamforming vectowg,, that maximizes (w,H) is W, = T=0) Th]

SNR is

[8], and the maximum

r w H>‘P§N] ol 10
SUM? - .
. L o2 4 1gol? + £
~—_—————

=Th

2
|

(4)

The minimum outage probability is then given as

N N
Out (Fullsy) = Pr{T Wy, H) < o} = Pr{z Ty < %} = EHl{Z T, < %} (5)
n=1 n=1

In the limited-feedback scenario, assumerttta relay nodeR, only knows| f,,| and the destina-
tion nodeD knows the entire channel stakte[7], [8].? Define Wy 2 {w ‘W e CNjwl| = 1}.
With an arbitrary quantizeQgsyy : C™N! — Wqw, D mapsH to some beamforming vector
Qsun (H) € Weu, then, feeds the index d®sw (H) back to the relay nodes. The index of

Qsux (H) is decoded at each relay node aQ¢y (H) is recovered as the beamforming vector.

20One possible procedure of revealing the knowledgél db the destination nod® can be found in [7].
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The resulting SNR i$" (Qsyx (H) , H), and the corresponding outage probability is
Out (Qsun) = Pr{I’ (Qsun (H) ,H) < a}.

B. Individual Power Constraint

Alternatively, we assume a maximum transmit power constraiis imposed on each relay
node. With the relay beamforming vectar= [u1,...,un]" (we useu to distinguish it from
the notatiorw used for the sum power constraint), the power consumed at-therelay node
R, is |unl P, thus,u will be subject tolu,| < 1 forn = 1,...,N. The optimal solutioru3,, =
[ﬂ;,...,ug]T that maximized" (u,H) in Eq. (2) is given in [9, Theorem 1] as

1, N=rTy,...,Ti,

Hn = (6)
/1i0¢l’l’ n= Tig+ls -+ +5 TN>

where ¢, = % 1/|fn|2+% forn=1,...,N and¢n;1 = 0; (71,...,7n, Tne1) IS @n ordering of

l+zi |ng|2
m=1 2.1
[frml“+5

(1, ey N + l) Sat|Sfy|ng¢Tl > ¢72 > 2 ¢TN > ¢TN+1 andTN+1 = N + l, /1i = W’ iO |S
the smallest such thati; < ¢;j1. Thus, the minimum outage probability is
Out (FU-]-]-IND) = Pr{r (lu;ND’ H) < a'} . (7)

Define Uy = {/,t peCN il <Ln=1,..., N}. The relay beamforming vector selected
by the quantizeQmp : C™M! — Uy is Qup (H), then, the achieved SNR B(Qup (H) ,H)
and the outage probability But (Qup) = Pr{l’ (Qmp (H),H) < a}.

In the subsequent sections, we will propose two VLQs resmdgtfor the sum and individual
power constraints, and show that the full-CSI outage pritiieb Out (Fullgyy) in Eq. (5) and

out (Fullyyp) in Eq. (7) can be achieved with finite average feedback rates.

I1l. VariABLE-LENGTH LiMiTED FEEDBACK FOR THE SuM PoweR CONSTRAINT

In this section, we first describe the proposed VLQ for theyehetworks subject to the

sum power constraint. Afterwards, we show the proposed VagQ achieve the full-CSl outage
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probaiblity Out (Fullgy) in Eq. (5) with a finite average feedback rate both theoriyi@nd

numerically.

A. Proposed VLQ

For any givenH, we propose a VLQ using the random codebdal,, wherew, € Wy is
independent and identically distributed with a uniformtidlgition on Wy, for i € N [12]. The
random codebook provides a performance benchmark sincertdic average performance is
attained, one deterministic codebook can be found to ssritas average performance. Given

{w;}y, the proposed VLQ is represented by
VLQSUM = {\Ali’Si’bi} 5 (8)

whereS; denotes the channel partition regionwgffor i € N, w; is the adopted relay beamforming
vector whenH € S;, andb; is the binary feedback string representing the indewof

Different from the channel partition regions in FLQs which csensif channel states that
achieve the best performance with the centroid codewoed;ltannel partition regions in VLG,

are set as

o |HTMeH) > UNWH TWH) <al, i=0, o
ClH i TWLH) 2 o n NS (H  TWGH) <o}, i€ N— {0}

Fori € N, {H:T'(w,H) > a} is the set of channels that are in non-outage wiens the
beamforming vector{H : T" (w;, H) < a} is its complementary set. For ahkl with F(w;UM, H) <
a, all beamforming vectors lead to outage, then, \{lQaively choosew, as the beamforming
vector; for anyH with I‘(w;UM,H) > @, VLQgy examines each beamforming vector {im}
sequentially until it finds somw; satisfyingI' (w;,H) > «. In terms of outage probability, the
contribution of suclhw; is identical to that of the optimal beamforming vecw,,.
Variable-length coding is applied to encode the indiceampffor i € N. Concretely, we

let bp = {0}, by = {1}, b, = {00}, bs = {01} and so on for all binary strings in the set
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{0,1,00,01,10,11,.. }.2 The length ofb; is [log,(i + 2)].
Based on the random codebof}y, the outage probability and average feedback rate of the

proposed quantizer VL, are

Out (VLQSUM) = E{Wi}N Pr{F (Wi, H) <a, Yi e N} = EHE{Wi}N [1 {F (Wi, H) <a, Vi e N}] , (10)

FR(VLQgu) = Y Ll0g,(i + 2) x Pr{H € Si} = »"100,(i + 2)] X EnEpwy, [LH € Sil] . (11)

i=0 i=0
B. Outage Optimality

Theorem 1 states that the outage probability of our propgsedtizer VLQy, is the same as
the full-CSI outage probability in Eq. (5). The proof of tHeebrem can be found in Appendix
A.

Theorem 1. For any P> 0O, we have

In the following, we provide an intuitive explanation of thesult in Theorem 1. For a givet

with F(w*

. H) > a, to achieve the same non-outage performance as the opteaaifbrming

vectorw:

s ONe should use a unit-normal vectwre Wy that is “close” enough tevg, such

thatI"(w,H) > @. We show that there exists a non-zero probability regionhm wnit sphere
where all the unit-normal vectors result in non-outage. E\av, to “closely” represemry,, for
any suchH, we need infinitely many beamforming vectors in the codebfwk, to capture
at least one in that non-outage region. Obviously, a FLQ witfinite feedback rate will not
succeed. Whereas our VLQ proposed in EqQ. (8) includes iafininany beamforming vectors

to achieve the full-CSI outage probability while perseraefinite average feedback rate.

3The proposed VLQ in Eg. (8) can be extended to the case of grefixcodes. In other words, there is a prefix-free code
for every quantizer designed in this paper. Supp@sg, is a fixed-structured infinite-cardinality codebook whosefgrmance
is no worse than that of random codebooks. Therefore, it chieee the full-CSI outage probability for the relay nevitoket
the codeword length of; be |; = [2log,(i + 1) + 1] for i € N [13, Example 1]. It is straightforward to show thgf., 27" < 1.
According to the Kraft’s inequality, this code is prefix-&eMoreover, sincé = [2log,(i + 1)+ 1] < 2log,(i + 1)+ 2, the average
feedback rate of this code is also finite following the samevdgons in the proof of Theorem 2.

DRAFT May 25, 2016



11

C. Average Feedback Rate

Theorem 2 provides an upper bound on the average feedbaclofrdfLQgy, the proof of

which is presented in Appendix B.

Theorem 2. For any P> 0, we have

1

FR(VLQgyy) < Co + Cle_ﬁ + PN

14 (%)N], (13)

where G, C; > 0 are constants that are independenteofind P.

Sincee P [é + P—lN] [1+ (%)N] in Eq. (13) is bounded for any outage threshald- 0 and
any transmit poweP > 0, the average feedback rate of VLQis finite. As shown in the

numerical simulations, the average feedback rate canlpcheavery small.

D. Numerical Simulations

We provide numerical simulations of the outage probabiditd the average feedback rate
of VLQqy. We lete = 1, and(0?.02) = (1,08), (0

(a? 05, af) (1,0.8,0.6), (0'91,0'92,0' ) (0.5,0.7,0.9) for three relays; an(b-2 05,05, a$4)

(1,0.8,0.6,0.4), (0%, 02,02 . 0%) = (0.3,05,0.7,0.9) for four relays. Other values af and

oo ) = (0.7,0.9) for two relays;

channel variances will show similar simulation resultst Each value of the transmit powex
a suficiently large number of channel realizations are generstiett that at least, D00 outage
events can be observed. For each channel state realizatiomaewn-outage in the full-CSI case,
a random relay beamforming vectar € Wy is generated repeatedly until one that makes
for non-outage is found. With such simulation settings, @kierage feedback rate is computed
as the average number of feedback bits, and the simulatedeytrobability is the number of
outage incidents divided by the number of all channel seéizations. No endless iteration has
occurred whemw is generated in any channel state realization.

In Fig. 2, whenN = 2, 3 or 4, the simulated average feedback rate is no larger thats per

channel state for ank. In Fig. 3, we compare the outage probabilities of \{,Qand the FLQ
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Fig. 2: Simulated average feedback rates of \{L,Q
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—e-VLQ, 2 Relays|
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—=-VLQ, 3 Relays|
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——VLQ, 4 Relay
-9-FLQ, 4 Relays

10

Outage Probability

25 30 45 50

.....

FLQgy chooses the relay beamforming vector as EQ@) = argma,cuw, _ll"(w, H), thus,

0,..,28

the feedback rate of FLQ, is B bits per channel state. We I& = 2,3,3 for N = 2, 3,4,

4Theorem 1 has shown VL, achieves the full-CSI outage probability in Eq. (5). Henite simulated outage probability
of VLQgy in Fig. 3 is also the simulated full-CSl outage probability.

DRAFT May 25, 2016



13

respectively. These values Bfare close to (but still larger than) the average feedbaasrat
VLQgy, with the same relay network configurations in Fig. 2. Theefd/LQg, shows great

improvement in outage probability as compared to ELQ

V. VaAriABLE-LENGTH LiMiTED FEEDBACK FOR THE INDIVIDUAL POWER CONSTRAINT

In this section, we propose a VLQ design for the relay netvgutbject to the individual power
constraint and prove it can attain the optimal outage prtibaim Eq. (7). Due to the intractable
theoretical analysis on the average feedback rate of theopenl VLQ, numerical simulations

are presented to show it is finite.

A. Proposed VLQ

For any givenH, the relay beamforming vect@r; = [ui1,...,uin]" € Unp in the random

codebookiy;},, is constructed by

Hin = |/li,n| ejarg(ui,n),
Jia] = rand().
arg(uin) = 2r x rand(). (24)

The proposed VLQ for the individual power constraint is esanted by

VLQIND = V‘i’pi, di} s (15)

wherey; is the assigned relay beamforming vector wikkffialls in the channel partition region
i, andd; is the binary representation for the indexuf Similar to Eq. (9), the channel partition

region®; is given by

o H:T(uoH) > al UM (H: T H) <a}, =0, 6

H:T@,H)>a)nN5{H:T(u.H) <a}, ieN-{0).
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The design ford; can also be inherited from that fax in VLQgy, thus, the length ofj; is
[log,(i + 2)]. The key diterence between VL, and VLQy, lies in the construction of the
beamforming vectors in the random codebook.

With {4}, the outage probability and average feedback rate of \} Qe
Out (VLQqyp) = Ey, Pril’ (4, H) < @, Vi € N} = EJEy,, [1{I (4;,H) < @, Vi € N}], a7)

FR(VLQyp) = ZLIogz(i +2)| xPr{H € $} = ZLIogz(i +2)I X EnEy,) [1{H ePi}]. (18)
i=0

i=0
B. Outage Optimality and Average Feedback Rate

The following theorem shows that in the relay network witk thdividual power constraint,
our proposed VLQ achieves the full-CSI outage probabilit¥g. (7). The proof of the theorem
is provided in Appendix C.

Theorem 3. For any P> 0O, we have
Out (VLQIND) = Out (Fu].].IND) . (19)

Due to the highly complicated expressiongf; in Eq. (6) which hinders from further tractable
analysis, we are unable to provide a closed-form upper bamdhe average feedback rate
FR (VLQqyp) to theoretically prove its finity. However, we can still pgmih numerical simulations
to verify this, i.e., Fig. 4 shows the average feedback rallebe finite under diferent simulation
parameters and network configuratidns.

In Fig. 5, we also compare the outage probabilities of Vl;nd the FLQ in [7, Section
V] denoted by FLQ,p. The feedback rates of FL{ are chosen aB = 2, 3,4 bits per channel
state forN = 2, 3, 4, respectively. Although the average feedback rate of @& smaller than
that of FLQ,, with the same network configuration, Vi has obtained much smaller outage

probability compared to FLQ,.

SWe use the same parameters for channel variancesrantl here as in Section IlI-D.
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Fig. 4: Simulated average feedback rates of V};Q
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Fig. 5: Simulated outage probabilities of VIQ and FLQp.

V. CONCLUSIONS

In this paper, we have proposed VLQs for the AF relay netwoéspectively subject to the
sum and individual power constraints, and showed the pexpd4d.Qs can achieve the full-CSlI

outage probabilities with finite average feedback rategshénfuture, we intend to work on the
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VLQ design for the multi-user relay networks with the sum malividual power constraint, and

the goal is still to approach the full-CSl outage probapilitith a finite average feedback rate.

APPENDIX A: PrROOF OF THEOREM 1

Before presenting the detailed proof, let us summarize thanndea behind the proof first.

Based on Egs. (5) and (10), to provet (Fullgyy) = Out (VLQgy), it is equivalent to show:

SuM?

1) For anyH satisfyingl"(w* H) < a,

1{I' Wiy, H) < @} = Egw, [1{T (Wi, H) < @, Vi e N}] = 1; (20)
2) For anyH satisfyingl“(wgw,H) = q,
1{I' Wi, H) < a} fu (H)dH

LE{HECZNXllr(W§UM,H)=(t}

f Egw), [1{T (Wi, H) <, VieN}] fy(H)dH =0, (21)
He{HeCNr(wg, H)=c}

where fy(H) is the probability density function (pdf) d;
3) For anyH satisfyingF(wQUM,H) > a,

1{T Wy, H) < @} = Epy, [L{T W, H) < @, Vi € NJ] = 0. (22)

For convenience, we define

H={H:HeC™ I (Wy.H) <o), H (Wh)={H:HeC™. TW,H)<aVieN|,

23
H' ={H:He T (Wy.H)=0f, H"={H:Hec®™ T (W,H)>a}. 2

suM’

We omit the dependency dff’ ({w;}y) on the realization of the random codebowk}, and use
H' for brevity.

Firstly, to prove Eq. (20), it is dficient to show thalliH € H} = 1{H € 7{'} =1 for any
H € H and{w},. SinceH € H, we havelfH € H} = 1 andF(w;UM,H) < a. By the optimality
of W, T(wi,H) < F(w;UM,H) < a fori € N, then,H € H and :Il{H 67{'} = 1. Thus,
1{HeH) = 1{H € 7{/} = 1 stands for an{H € H and {w;}.
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Secondly, to prove Eq. (21), it is equivalent to show that

f 1{H e H} fy (H)dH = Ewy, [1{H € H'}| fu (H)dH =0, (24)
HeH"”

HeH"

SinceHNH" =0, [, 1{H € H} fu (H)dH = 0. Besides, we have

0< f Egwyy [1{H € H}| fu (H) dH < f (H)dH = Pr{l’ Wy, H) = o} = 0,
HeH"” HeH"”

due to the fact that the probability of a continuous randomatde assuming a specific value

is zero. Thus,f, .~ Eqw, [1{H € 7{}] fu (H)dH = 0, and Eq. (24) holds.

Lastly, to prove Eq. (22), we will shod{H € H} = Ey,, [1{|-| c 7{}] —0forH e X" and
given (Wily. SinceH NH"” =0, 1{H € H} = 0 for H in H". To proveEu,, |1{H ¢ H'}| = 0
for H € H"”, by contradiction, assum@H € H", s.t. Ey,, [1{FI € 7{}] = ¢> 0, then,

Ewiy [1{I:| € 7{}] = Pr{F(wi,ﬁ) <a,Vie N}

3

<Prr(w,H) <a,v0<i<K -1} 2[Pr{r(w.A) <a}|,  (25)

whereK > 1 is an arbitrary finite natural number. The equalify folds becaus& (wi, H) for
i =1,...,K are mutually independent due to the independence;dor i =0,...,K -1 and
givenH. To proceed, we need the following two lemmas, the proofs lithvare in Appendix

D.

Lemma 1. If F(w;UM,

H) > a, there existsIl € (0,1) such that for anywwe Wgyy with

|w—wgy,|| <TI, T (W,H) > a holds. The value off can be

r (w*

SUM?

= 2 5 .
2VNP(2N 1) (1 + 20 755

- H)—a

(26)

Lemma?2. Let Wy £ {WR “Wg € RN Iwg|| = 1}. For a fixed real vectouw Wk, a real number

0 <t <1, and a random real vectov which is uniformly distributed on the real unit sphere
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Wk, we have
1 2N-1 1
Priu'v>t} = §|1_t2 (—2 ’E)’

where L(a,b) = B(le) foz x21(1 — X)P1dx is the regularized incomplete beta functigifa, b) =

X1 - x)P-dx is the beta function [14].

Using Lemma 1, for any givehl, we obtain

Pr{r (wi, H) > o} > Pr{|jw—wg,|| <11} = Pr{Real{w*w;UM} >1- H;} (27)

} Imag{w;UM}]. Sincew is uniformly

Note that Re |WTW§UM} [Realiw} ; Imagiw}]" [Real{wguM

distributed on the complex unit sphef@sy, [Real{w}; Imag{w}]
6 Using Lemma 2, it follows from Eq. (27) that

e R js uniformly dis-

tributed on the unit real spher@d’;.

Pr{r(w.H)<a}=1-Pr{r(w.H) >0} <1- Pr{Real{wTwSUM} S 1o H;}
>1
(12 —
o2t B e g Ten
2 1—(1—%) 2 2 2><,8(2N 1 1)
-1
ﬁal_(l_n_;)z X2 dx - 1‘Hz)]
<1- 2X,8(2N11) <1- W(ZN%):(D<1' (28)

Letting K = [log, €] + 1 in EQ. (25),Emw, [1{I:I € 7{}] < @K = @llogo s+l « @lodos = ¢, which

contradicts the assumption thBgy,,, [1{F| 67{'}] = &. Thus, Ew,, [1{H € 7{}] = 0 for any
]

H ¢ H", which completes the proof.

= WetiW__\wherewg, W, € ]N(Ole, %lme), andwg andw; are mutually

“It is known from [15] thaw is generated by = —Z8C=L,
WRI2+Iw,
_[wew] s uniformly distributed orfW.

independent. ThugReal{w} ; Imag{w}| = N
R |
May 25, 2016
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ApPENDIX B: PROOF OF THEOREM 2

In this appendix, we will prove the upper bound on the averagelback rate in Theorem
2. Recall from Eq. (11) thaFR (VLQgy) = Xisoll0g,(i + 2)] X ExEw,, [L{H € Si}]. Let p =
Pr{I'(w;,H) < a} for any givenH and{w;},. Based on Eq. (23) and the encoding rule in Eq.
(9), fori > 1, we haveEy, [1{H € Si})] = p'(1-p) for H e H" UH", and O forH € H. Since
Llog,(i + 2)] < log,(i +2) < 109,(2i + 2) =1+ log,(i + 1), FR(VLQgyy) is upper-bounded by

FR(VLQgyy) < Z EqEw), [1{H € Si}] + Z log,(i + 1) X EqEw,,, [1{H € Si}]
i=0 i=0

=1+ ) 10g,(i + 1) X EnEqwy, [L{H € Si}]
i=1

:1+f
H |42

i p'(1- p) x log,(i + 1)| fy (H) dH
i=1

=¥

(;) l+f (C2+C3|Ogi) fH (H)dH
i 1-p

:1+C2f fH(H)dH+C3f|Og ! fH(H)dH
H # 1-p

<1

sc4+cgf|og ! fu (H) dH, (29)
a 1-p

=FR

SuM?

whereH = H' UH" = {H : H € C? T (Wg,. H) =PI, Ty > o (T is given in (4)),C; =

@ +3,C3= @ andC, = 1+ C,. The inequality §) is from [16, Lemma 1]%¥ < p(1 - p) +

(73 +2) P? + 230?100 55 < (35 + 3) + 223 log 5. Next, we will establish an upper bound

on p first, then, substitute it into Eq. (29) and derive the uppaural onFR (VLQgyy).
The following lemma provides an upper bound pnwhich originates from Eq. (28) in the

proof of Theorem 1 in Appendix A.

2] *

Lemma 3. We have x 1- FE G wherell =

r WQUM’H)_Q
1 2vRP(y o) {11 2257 )
(26), andB(a.b) = [ x**(1 - x)"*dx is the beta function.

is given in Eq.
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Substituting the upper bound gnin Lemma 3 into Eq. (29) yields an upper boundkmas

2N-1 1
FRsf Iog(2N 1)X'8( ’z)fH(H)dH
2z

N C
n=1 lﬂ”Z_FY’ ( )

:f Iog((ZN 1) x ,8(2N = 1))fH(H)dH
DIPRPES

LJN-1 Iog;sz(H)dH.
2 Joneg 1o (1- 1)

SinceB (252, 1) < 55 +1[17], 1-(1- “72)2 =Z2-0)=2%(2-4)=1 andfm:lrnz% fy (H)dH <

1, the upper bound oFR is further derived as

2 a

=P

FR < log(2N + 3) + 2N - 1f log — fH (H)dH < Cs + cef (Iog 1) fu (H) dH
Z [n2 Zn 1r”2% H

N7 (Z | 2 1 N |gnl?
n=1 gn|) + X1 T2 L
<GCs+ Cef log N - s fu (H) dH
N Th>8 Zn 1Fn__
2N? (Zrll |g”|2)(1 + Zna |fL?2n|+ )
<GCs+GCq |Og ° fu (H) dH
N
Shaln=$ Zn lrﬂ - |3
N
= Cs+Cs |og(2N%) f fy (H) dH + Cs f Iog(Z |gn|2) fy (H) dH
N =% ShiTn2 g n=1
gl 1
+C6f Iog[1+ n JfH (H) dH +C6f log—————fy (H) dH
I Tez Z ol + & DU SCID VAP PR
2Cr+Co f Z IGnl2 | fu (H) 0H +Cs f Iog(l +N max 'g”'z) fu (H) oH
SN T2g SN Te2s n=1..N | f|?
=FR; =FRp
1
+Cs f l0g ————— fu (H) dH, (30)
Snaln2$ n-1ln— 5
=FR3

whereCs = log(2N + 3) + (2N — 1), Cs = 2N — 1, C; = Cs + Cglog (2N?). The inequality £)
arises from the fact tha&N reg fu(H)dH < 1, Iog(Zn 1ol ) (Zn 1ol ) andy N, lf'g|2' - <

N max-1._.n lf'?zn' + < NMmax-1, 'lﬁf”l'z Next, let us derive upper bounds B8R, for k=1,...,3.
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An upper bound orFR; can be

N ) N
FR; < ) f Xfge () dx =)
n=1v0 n=1

In FR,, the cumulative density function (cdf) %’2 is Pr{'g”:2

= Cs. (31)

< x} = —%, then, the cdf of
Ty
T = maX., 'ﬁ”lz is Pr{ < x} = [T\, 35, and its pdf is

()'f

Tan N

N X N o N

_ Tfn Ofn On

=), — [| —m <)~ (Z -
n=1 (X + —") m=Lmzn Xt Tiny n=1 (X + —”)

T fp

Thus, we obtain an upper bound 8R, as

FR, < f log (1 + N) fyy (H) dH
Hec2Nx1

= f log (1 + NT) fy () dY +f log(1+ NY) fe(0)dY
0<NY<] —————— ————

NT>1
<log?2 <log(2NY)=log(2N)+log T
N
o o logT
<log 2+ log(2N) + Z o f g 5dT = Co, (32)
=1 7 IR (T+ min "9“)
n=1,...N 9fn

log(N = +1
whereCq = log 2+ log(2N) + ¥, 2 ( OGN+ oo mlzn l{fg”nf . ))

;HminGL, Zor MiNn-1 7,

The derivation for the upper bound @R; relies on the following Lemma, a proof sketch of

which is given in Appendix E.

Lemma 4. For N > 2, the pdf ofr(W H) _

= Ynaln = Zhh 7 _bPle® s ypper-bounded by

[falP+gnlP+ 3

s . 11 NS X
fon 1, (Q) <& 7 [DOXN Ly Dl(pN T+ ﬁ) +1{N >3} x DZZ (PN_m_l - PN—m)]’ (33)
m=1

where ), D;, D, > 0 are constants that are independent of P. [
Substituting Eg. (33) into Eq. (30), the upper boundr®s can be

- 1 w0
FR3 = f ( v g) fzrr;lzlrn(X)dX = f (|Og ) fZN . (y+ )dy
2 P 0 y
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__a © oy 1 a\N-1 __a 1 1 <y 1
< D& "on fo & ™ (Iog 9) (v+5)  dx+ D™ (pN—l ; ﬁ) fo & (Iog 9) dy

P | 1\~ o 1 a\m
+1{N > 3} x Dye ™o Z (PN_m_l + PN—m)f e o (Iog ;/) (y+ 5) dx. (34)
0

m=1

The integral [~ e 7o (log %)dy in Eq. (34) is computed as

© _y [ 1\, zogi ([ _ez X et <
f e N Iogy dy = f e N zeZdzsf e N zezdzsf ze’dz=1  (35)
0 -0 0 0

. . . o - n .
Similarly, the integralf;” €  (log1)(y+ %) dy for n > 1 is bounded by

oy 1 a\N" a\
i (10g= ) (y+ &) dy<3x2ix (1405, )x (1+ (2] ).
fo e gN(ogy) y+P dy < 3x n><( +0'gN)>< + 5 (36)
Applying Egs. (35) and (36) to Eq. (34), we obtain
- 1\ p.e P a\N (11
FRs < 3% 2V (N - 1)! x (1 + o')?) Doe 1+(E) + D,6 P (PN_l +ﬁ)
————
bk
. N-2 1 1 oM
+1{N > 3} x De ™" Z (PN_m_l + PN_m) X3 X (1+ o-g‘N)x 2"m (1+ (E) )
m=1 —o(LeaN <ON-2(N-2)1 ~————
24+ ] <2+oby) <2[1+(3)"|
PR 04 N-1 e |1 1 e |1 1 (04 N
< Cuoe ™ |1+ ()| +Cue ™ S |+ Cue ™ | S+ |1+ () ]
<l+e (N-D(N-D)N-Log !
__a 1 0% N
< Ciz+ Cppe P 5PN 1+(|3)], (37)

where Cyo = 3x 2Y°%N - 1) x (1+ o)) Do, Cpz = 2Dy, C1o = 1{N 2 3} x Do x 3x (N -
1)12%1(1+ o} ), Cia = Cio+ Croe ™ I(N - 1)N1tt and Cyy = Cyy + Cyo. Substituting Egs.
(31), (32) and (37) into Egs. (30) and (29) completes the fpobdheorem 2. [

AppPENDIX C: PROOF OF THEOREM 3

Based on Eqgs. (7) and (17), to pro®et (Fullqy) = Out (VLQqyp), it is equivalent to show:
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1) For anyH satisfyingI (u3,,.H) < e,
(I (ufyp, H) < a} = E, [1{T (i, H) < @, Vi e N}] = 1, (38)

2) For anyH satisfyingI" (u3,,.H) = «,

f 1{T (u3yp,H) < @} fy (H)dH
He{HeCLr (3. H)=c}

[ Epup [11T (1, H) < o, Vi € N Ty (H)H = 0, (39)
He{HeCLr (s H)=c}

3) For anyH satisfyingI" (u3,,,H) > «,
LT (i, H) < @} = Epyy [L{T (i, H) <@, Vi €NJ] = 0. (40)

We define

H={H:HeC™.T (. H) <af,

H ={H:HeC™LT(,H)<aVieN|,

H' ={H:H e T (ufy.H) > of
The proofs of Eqgs. (38) and (39) are similar to those of Eg8) &hd (21) in Appendix A, thus
omitted. To prove Eq. (40) is equivalent to shiyHLe H} = Ey,, [1{H € 7{}] =0forH in H”
and giveniu;}y. SinceH NH" =0, 1{H € H} = 0 for H in H". To proveky,, [1{H e #'}| = 0
for anyH € H", conversely, we assunigH € H", s.t.Ey,, |[1{H € H'}| = £ > 0, then,

Epy [1{H € H'}| = Pr{[ (. H) < a. Vi e N}

T

<Pr{l (. A) <a,v0 <i <K - 1) = [Pr{r (u,H) <af|".  @41)

whereK > 1 is an arbitrary finite natural number. Using the upper bodedved in Eq. (45),

T .
for any ;= [mi1, ... min]" andpdy, = [y, .y | we obtain

N N
T (o H) = T (i H) < 253 i = puind = B Y [Jai] = [paa] x elorlene)-ardet]
k=1 k=1
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N
~2x 3 (=l 2l o[~ coaratand gl )|

k=1
<3 ’arg(yiyk)—arg(pifk)’z

<1

— 2 2 T(ufyp-H)-a
where= = 2P(Zr“]‘:l|gn|) (1+ N lfL?ZL%). WhenT (g}, H) > a, let 6 = % > 0, then,

for any u; satisfying||u,| - [uix|| < 6 and ’arg(,ui,k) —arg(uf, )| < 27 x 6, we haver (ufy,. H) -
[, H) < EV1+ 472N x 6 =T (u?y,, H) — o, thus,T (ig;, H) > o. ForH, it follows that

Pr{r(u,H) < a} = 1-Pr{r (. A) 2 o}

< 1-Prflltd e =

arg(uix) — arg(ufy)| < 2rx .k =1...., N}

N
=1- l_l Pr ||/l| o = |ik| < 6} X Pr{’arg(p. W) — arg(,uI k) < 27X 6}
k=1
N
Q1-[[Audec=A (42)
k=1
where
A1k = [min(l, ) - max( )]

Ay = [min(l, % + 6) max( g(“' J _ 6)]

The equality ¢) is derived from the fact thei,tzi,k| and ardu;x) are uniformly distributed in (QL]
and (Q 2x], respectively, as defined in Eq. (14). It can be readily olesgthat O< Ak, Aok < 1,
thus, 0< A < 1. Substituting Eq. (42) into Eq. (41), we havg, ,E[ { eH }] < AKX, WhenA =
0, By [ { eH }] = 0< g whenA > 0, lettingK = [log}]+1, we obtain E,, [1{I:| € 7{}] <
Aledi T+ < Al = &, Both contradict the assumption thay,, [1{H € #}| = . Hence,
Efin [1{H € 7{}] =0 for H € H", and the proof is complete. n

AppPENDIX D: ProOOF OF LEMMAS 1 AND 2
A. Proof of Lemma 1

To prove Lemma 1, we first bound the gap beth(éwSUM, ) andI’ (w, H) for anyw € Wgyy.
Then, based on the upper boundIowy,,, )—F(w, H), we find the conditions ofv to satisfy
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Nk

T (W.H) > o for anyH with T (W, H) > a.

In order to upper- bouan( o )—F(w, H), we successively alter each componenwg,
until we reaclw, while keep track of the SNR variation at each step of the-atiten [7, Appendix
B]. Thus,I'(H) = ( SUM,H) —T'(w,H) is decomposed as

N

FW—ZHM=Z T (WD, H) - T (W9, H)|, (43)
k=1

k=1

wherew®® = g, W® = [[Wl ... (W, [Weg|, .- [Wa, | @ndw® =w. Let

~

fo= by A= I W] fignyf Bo= 1 3 [wed] [P

Ac= SN, [w¥] 1 ngn\ﬁ A= (W] — W) g e

B= 1+ 2 W] [ iy = B (Wl - 100042) 042

From Eq. (2),[«(H) = P% -

A 12 A= Weun [w] f f
P@ - P%—P’ ( ]k k) kgk\/_k’ is expanded as

—|2 B N _
rk (H) _ P|Ak|2 _ P%k%Z _ P‘([Wgun]k_[ml;]k;)fkgk \/f_k‘ +2PRe{Ai([W;UM]kl;k[w]k)fkgk \/f_k}

>0

< PlAklz(é;k—Bk) 2I:,|A4<||[w - [W]k||fk| Jad Vi

A [Wag ] W2 2 p A [Wep ] - [Wk| 1ficklodl Ve
=P 55, + 2P

IAkIZiI[WUM]I ~Iwikl2| g fe L op!AdiW] - [w]k||fk| Jad Vi
BkBxk

) ~ ~
< PIAL (W], — (W1 - | (Wl + [WIK] - 10K fic+ 2PIA - |[ W], — (Wi - 1l - Ikl \ﬁ :
(44)

where the inequalitys() is because of the inequalifi:|* — Ic2?| < [c1 — calx ey + Cof for 1, ¢, €
C (the proof is omitted), an@,, B, > 1. Slnce‘[ SUM] + [w]k‘ H SUM] ‘+|[w]k| < 2,|fd \/7 <1
and|A < Z,’Ll’[w("‘l)]n’ X | ol 1Ol \/f: < Sy ol gl \/an < Y110l it follows from Eq. (44)
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that

2 N

[N
|g Wi | — [W] (1+ ]
n | SUM k| o |fn|2 N %

I« (H) < ( |Gl )2| [Weum i [W]k| x |gul* fic + 2P (Z:I:l |gn|) X |[W§um]k - [W]k| X | Okl
< 2P( o )2| (Wi — (Wl x Z:l onl*
+ 2P( 190l ) X | [Watm Ji [W]k| X (Z:I:l |g”|)
(Dstan]

= 2P

Then,I"(H) in Eq. (43) is upper-bounded by

N 2 N 2 N
=y |Gl N
I ( )szp(; |gn|) 1+n§=;| fn|2”+%];l[wsw]k (Wl
NN g N
< 2P 1 i N W | —[W
(nzz; |gn|] +nZ:; |fn|2 %)J kzz:;-“: SUM]k [ ]k‘
NN gl
:zmp(z |gn|] 1y o 1)><||w§UM—w||. 45)
n=1 n=1 |fn| + P
When T (Wg,.H) - @ > 0, letting IT = M When |wz, -w|| < II, T(W,H) =
F(w;UM, ) TH)>T (w;UM,H)—Ex||w;UM—w||>F( SUM,H)—axH:a.

To complete, let us verify that @ IT < 1: (i) sincel (Wg,.H) - @ > 0 andZ > 0, we have

2 r(ws,.H
1> 0; (ii) since " (W, H) = PN, 08 < PN joo? < P(20I0d)*, 1T < rwie )
1 <1. m
2\/N(1+Zr’:‘:1 ”‘9‘2‘21 )
ni“+ 5

B. Proof of Lemma 2

Similar to [15, Eqs.(23)-(24)], we have RFv >t} = 22 where Spyycqp is the surface

area of the spherical cap formed by the intersection of thesaceu’v > t and the real unit

hyper-sphereWy. From [18], we obtainS,y = (N 1), and Santcap = (N’f'l)!ll_tz(ZN %) Then,

Lemma 2 is obtained by dividinG,ntcap BY Son. [}
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AprPENDIX E: PROOF OF LEMMA 4

Induction is applied to prove the upper bound on the pdEdf, lf'f”'& in Eq. (33). We

2 2,1
nl“+lgnl“+5

first derive an upper bound on the pdfiof = Pl Then, the base case whédxe= 2 and

2 2,1+
[fal“+lgn|"+5

the inductive step are proved based on the upper bound ondthef |p,.

2. X
x o x i
e 70 T - B

i e 7 7 dy. By taking derivative

The cdf ofI,, is calculated as RF, < X} = 1—

Tgn

of Pr{Il', < x} with respect tox, the pdf ofl',, is

1 1 2, X - XX 2, X
X X g T 0y XHp 7o 1 © 1 _y _X+p
an(X) =@ i i I T e o Y dy+ (2)(+ _)f —@ 9 Yo dy
O-gn 0 O-gno-fn P 0 y
_ X _ X g o n n P
2 D@ m T 20 T Ki|2 Pl+2 (2x+—)|<0 2 P
O-gn O-fn O-Qno-fn O-Qno-fn P O-Qno-fn
X
M _x (1 1 € “on 1 2X
sevgn( +—)+2 (2x+—K0
0g, Oty 0g,0°1, P V0,01,
0 (1 1 e o 1 2x
<e N |—+—|+2 2X + = | Ko , (46)
0g, Oty 0g,0°f, P V0.0,

where the equality§) is from fow X-le~kr*dx = 2(’;”)% Ky (2 \/,8_7) andK,(2) is the modified
bessel function of the second kind [14, Eq.(3.471.9)]; tregjuality () is becausé, (x) < 1 [7,
Eq.(25)] andKq(-) is a decreasing function [14, Eq.(3.471.9)]; the last usiy (X) is based

on our assumption that; <o <...<o3,.
In the base case wheh = 2, the pdf ofl'; +I'; is the convolution off, (x) and fr,(X), given

by

fror (%) = fo fry (0 fro(x = 1)l

r

X __r 1 1 e_m 1 2r
< e W|—+—|+2 2r + — 1Ko
0 Ogp 01 g0, P VO g0 1y

e v (i + i)+2 €= (2X—2I’ + %)Ko( 2x -2 ﬂdr.

X

Og, g1, Og,0 1, VO 0,0 1,
Using (46), [" Ko(@Xydx = £, [~ K3@Xdx = Z for a > 0 [14, Eq.(6.511.12)-(6.511.13)],
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Ko(X) < § for x> 0 [7, Eqg.(27)] and after basic mathematical calculations,olstain

__X X
X e N e ‘i
fr4r,(X) < Cisxe "o + Cyg +Cir—7s
P P
where

Cic = (1+A)+ s l+i+ s A+i +¢,
15 = n Wog, * opy 0901 \Tgp  7fy VI910f \Tg  Of 7 VTt

C ( ) _ (A N A) bt

16 = 2\/0'920'f T 2\0g 01 \ g 0t Hﬁzl Tgn T fn

Cl7 — maX=1,...N Tgn0 fn )

nr21:l TgnT fn
In the inductive step, given the upper bounds fgp,(x) and fzik:ll—i (X), we derive an upper

bound onfgeap,(X) = I foi (N fr,(x = )dr as

T Lo 1 1
fzilgllri()() < L e ‘9N [Clgr + 1{k > 3} X Clgz (Pk—m—l Pk m) + C2 (m E)

o

| ! 2 1 2X - 2r
xe * + 2x = 2r + = | Ko | ——=
P/ \ Vgt
k-2 m m
< e N C18Xk_1 + 1{k > 3} XCng( k—m—l P m) + Czo(ﬂ + _k)
<Afk+123)=1 i\P P P P

I 1 1 2 1 2X—2r
xf [ + + (2x—2r+—)K0( ]
0 O-gk+1 o fie1 O-gk+1 o fir1 P O-gk+1 o fie1

x [ K1 kz_i X" X" 1 1
<e o CigX™ +1{k+123}><019 (_—+ )+C2 (— —)
£ pk-m-1 pPk-m =15 Pk

T 1 1 2 1
xf [ + + (2y+—)K0(—2y )
0 O-gk+1 g fk+1 O-gk+10- fk+1 P V O-gk+10- fk+1
1 ) 2§2x+%} =x( 1 1 ) n!2x+]]5}

< + — +
(”9k+1 Tiker ) TOk+1%fkpn JEJ (\/"'gk+1"fk+ )dy T+l Tfrr ) 2VTO1 Fpq

O-gk+1 O-fk+1 O-gk+10-fk+1

dy.

After trivial mathematical manipulations, we can obtaire thpper bound Orfzr;rllri()() in Eq.

(33) whenN = k + 1. By the law of induction, Lemma 4 stands for aNy> 2. ]
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