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Abstract

Instead of subscribing to the view that people are
unable to perform Bayesian probabilistic inference,
recent research suggests that the algorithms people
naturally use to perform Bayesian inference are better
adapted for information presented in a natural
frequency format than in the common probability
format. We tested this hypothesis on the notoriously
difficult three doors problem, inducing subjects to
consider the likelihoods involved in terms of natural
frequencies or in terms of probabilities. We then
examined their ability to perform the mathematics
underlying the problem, a stronger indication of
Bayesian inferential performance than merely whether
they gave the correct answer to the problem. With a
robustness that may surprise people unfamiliar with
the effects of information formats, the natural
frequency group demonstrated dramatically greater
normative mathematical performance than the
probability group. This supports the importance of
information formats in a more complex context than
in previous studies.

Introduction

Undeniably, reasoning with probabilities can be difficult for
people. This is not because such reasoning is unstudied or
impossible; there is a well-established mathematics of cor-
rect probabilistic reasoning, and we use the term Bayesian
inference (named after Thomas Bayes (1702(7)-1761)) to refer
to a normative inference that agrees with this framework.
Nonetheless, cognitive science is rich with demonstrations
of people’s failures to reason according to Bayesian norms
when presented with many kinds of non-trivial probabilistic
reasoning problems. In an influential summation,
Kahneman & Tversky (1972) take a pessimistic stance,
concluding “In his evaluation of evidence, man is apparently
not a conservative Bayesian: he is not a Bayesian at all.”
Recently, however, Gigerenzer (in press; Gigerenzer &
Hoffrage, 1995; Hoffrage & Gigerenzer. 1996) has suggested
an explanation for human performance on these tasks
without claiming that people lack the ability to function as
Bayesian agents. People do have methods or algorithms for
reasoning about probabilities, but as humans evolved over
the ages, the algorithms for Bayesian reasoning were not
exposed to information expressed as probabilities. Instead,
people gathered information as it came to them, one event at
a time and not with the collective information about a set of
events that probabilities would give. Thus, Gigerenzer sug-
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gests in his framework of Ecological Intelligence that peo-
ple's Bayesian algorithms are adapted for natural frequencies
(e.g., “out of 160 coin tosses, 80 landed heads™) as opposed
to the probabilities (e.g., “50% of the coin tosses landed
heads”) in which information is traditionally presented in
studies that produce anti-normative evidence. This difference
between information formats may not seem dramatic, but in
some contexts it can have important effects.

An example taken from Gigerenzer (in press) demon-
strates the power of presenting information in a natural fre-
quency format as opposed to a probability format. Consider
a physician who just discovered that a symptom-free woman
between 40 and 50 years old has had a positive mammogram
in a routine breast cancer screening. He needs to advise his
patient about the bad news and what to do next, and a first
step is estimating the likelihood of the patient actually hav-
ing breast cancer. Fortunately, he knows all the relevant
information (presented here as in Gigerenzer (in press)):

The probability that a woman has breast cancer is 1% if she is
in the same risk group as this patient.

If a woman has breast cancer, the probability is 80% that she
will have a positive mammogram.

If a woman does not have breast cancer, the probability is
10% that she will still have a positive mammogram.

He can then ask himself:

Imagine a woman (aged 40 to 50, no symptoms) who has a
positive mammogram in your breast cancer screening.
What is the probability that she actually has breast cancer?

To

Unfortunately, a study of 24 physicians done by Gigerenzer
& Hoffrage (Gigerenzer, in press; Hoffrage & Gigerenzer,
1996) showed that, under these conditions, physicians fre-
quently mis-estimate the probability of a patient having can-
cer by nearly a full order of magnitude. The median estimate
of actual breast cancer after a positive mammogram was
70%. However, the correct Bayesian estimate is 7.7%, and
only 2 out of the 24 physicians (8%) gave that response.

In the same study, 24 other physicians were given the
same estimation task, but they were given the information
in a frequency format, as shown here:

Ten out of every 1,000 women have breast cancer.

Of these 10 women with breast cancer, 8 will have a positive
mammogram.

Of the remaining 990 women without breast cancer, 99 will
still have a positive mammogram.
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Imagine a sample of women (aged 40 to 50, no symptoms)
who have positive mammograms in your breast cancer
screening. How many of these women do actually have
breast cancer? out of

With this frequency format presentation, |1 out of 24 physi-
clans (46%) gave the correct estimate, a dramatic improve-
ment over the 8% of physicians in the probability format
case. It does seem that information format can affect doctors’
ability to perform Bayesian inference about issues of great
importance to themselves and their patients.

In general, cognitive algorithms for Bayesian probabilistic
reasoning may be tuned for a natural frequency format rather
than a probability format. Several studies such as the one
presented above seem to support this hypothesis
(Gigerenzer, in press). We further tested it by considering a
difficult puzzle, the notorious three doors problem, a task
not necessarily native to any particular profession. In that
context, we investigated whether a difference in information
format affected the ability of subjects to perform a correct
analysis of the likelihoods underlying the problem.

The Three Doors Problem

The three doors problem (also called the Monty Hall
problem) (Granberg & Brown, 1995; Selvin, 1975a; Selvin
1975b) has been known as a difficult task since its introduc-
tion as the mathematically equivalent three prisoners prob-
lem (Gardner, 1959a; Gardner 1959b), a task on which peo-
ple typically fail to behave as normative Bayesians. In fact,
people choose the incorrect answer to the problem so fre-
quently that it has been used as a scenario in which one can
study regret over making a losing decision (Gilovich,
Medvec & Chen 1995). It recently enjoyed a resurgence in
popular interest due to a series of columns in Parade
Magazine (vos Savant, 1990a, 1990b, 1991a, 1991b) and
related stories in publications including the New York
Times (Tierney, 1991). It can be concisely presented as a
multi-part game involving a player, a host, and three rooms
behind closed doors. In one room is a valuable prize, a car;
in the other two, something nearly valueless, a penny. In
part 1 of the game, the player selects a door, which stays
closed. In part 2, the host opens one of the other two doors
to reveal a penny behind it. In part 3, the player is offered
the chance to stay with the initially chosen door or switch to
the remaining unopened door, and the player keeps whatever
is behind the door finally selected in part 3. The problem: In
part 3, should the player stay or switch?

It has been consistently presumed that people will use the
following two-stage analysis: When the player makes the
choice in stage one, he has a 33% chance of picking the car;
then, in stage two, after seeing the open door and penny be-
hind it, the two remaining doors each have a 50% chance of
hiding the car. People generally choose to stay with their
initial choice under these circumstances but no matter how
counterintuitive it may seem, the player should switch.
When two doors remain unopened, the imitially chosen room
has a 33% chance of containing the car, and the other
unopened room therefore has a 67% chance. One way to
understand this is that the likelihood that the car is behind
the initially chosen door is not affected by opening another
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door, it remains 33%. Since the total probability that the car
is behind one of the doors remains 100%, the probability
associated with the other closed door is 67%. Other more
detailed and varied solutions to this problem are available in
many forms, including a calculation from Bayes' Theorem.
Granberg & Brown (1995) provide an informative starting
point for more information on the problem.

Method

Typically, in presentations of the three doors problem, the
facts necessary for the mathematics involved are presented in
a probability format, and people are rarely able to arrive at a
correct Bayesian analysis of the game. We ran a series of
three closely related studies to examine the effect of
information format on subjects' ability to correctly perform
the mathematics underlying the three doors problem. We
focused not only on subjects' answers to the stay/switch
question but also on whether inducing subjects to reason
with natural frequency formats rather than probability
formats improved their normative mathematical performance
on the way toward the final stay/switch answer. Every
participant was read the same description of the three doors
game (accompanied by Figure 1), designed to avoid
probability or frequency specific terminology as much as
possible' and present the game as unambiguously as
possible. We stated explicitly, for instance, that in every run
of the game, the host opens a door to a room containing a
penny and then gives the player a chance to switch, and that
the host's choices, within the rules of the game, are made
fairly when applicable. Omissions of such details as these
can lead to questions extraneous to our study (see, e.g.,
(Falk, 1992) and (Granberg & Brown, 1995)). In general, we
tried to maximize the number of subjects who understood
the game and its rules without giving information that was
not obvious from the traditional description. If subjects
failed to understand the rules and workings of the game, they
would certainly be unable to perform the desired Bayesian
analysis accurately in this experimental context, regardless
of whether information is presented to them in natural
frequency or probability format. We were not concerned that
our detailed description of the game might result in a
slightly higher rate of correct answers to the stay/switch
question than the traditional presentation, because our focus
was on the mathematics and not simply the stay/switch
answers, and our comparisons were between the two subject
groups (i.e., those given frequency format questions and
those given probability format questions).

After hearing the description of the game, participants an-
swered questionnaires. There were three different
questionnaire types, each determining a different study. For
each of the three types, there were frequency and probability
versions, designed to induce subjects to consider the game
and related information in terms of either natural frequencies

" our presentation agrees with the traditional one in using a
single-game (single-event) description in matters such as
likelihoods of the initial placement of the car. While this may
tend to bias subjects against a natural frequency interpretation,
it affects all subjects equally and should not artificially enhance
any advantageous effects a frequency format might have.



The 3-DOORS GAME

* A car has been placed randomly in one of three rooms and will not be moved
during this round of the game. The other two rooms each contain only a penny.

«» All doors are closed.

* The round begins with the player (P) choosing a door.

A | B 5

T It doesn't mattér i
which door [ choos)
'11 choose A.

* The host (H) must open a door to show the player a room with a penny in it.
* In doing this, he must: 1) Not open the door the player chose.
2) Choose randomly when, after these constraints,
he still has a choice.

‘ = ~
Given what I know about the player';‘ 9600
choice in this round, where the pennies

are in this round, and my need to choose /

.g_f{ndomly when I can. el opcn B. S

I N ‘__/
» The host gives the player a chance to switch
A e i
A B
=) ~< o
0

Player would you like to STAY and keep

what's behind door A, or give it up and
SWITCH and keep what's behind door C?

* After the player decides to STAY or SWITCH, the round ends, and the
player keeps whatever is in the room he chose.

Figure 1. Diagram accompanying spoken explanation of the three doors game.



or probabilities. (Figure 2 shows the frequency format
questionnaire for Experiment 2. Figure 3 shows an elided
version of the probability format questionnaire for
Experiment 2.) Every questionnaire had common features
such as an introduction, the stay/switch question, a number
of questions phrased symmetrically (i.e., if a question is
asked about one door, it is asked about all three) with the
correct answers given to at least the first of the questions,
and a question asking subjects if they were previously
familiar with the three doors problem. For our results, we
considered only subjects for whom the problem was novel.

Jumping to the expected interpretation, that when only
two doors remain closed in the game the chances of the prize
being behind either one are equal, does not require any deep
Bayesian analysis of the sort that a frequency/probability
format variation is likely to influence. Therefore, we needed
to induce subjects to actually compute the likelihoods after
the host opens a door from the likelihoods beforehand, so we
asked a series of computation-based questions leading to the
stay/switch question. To promote frequency format analyses,
we provided an introductory section and questions like those
shown in Figure 2. Similarly, to promote probability
format analyses from subjects, the probability versions
contained a corresponding introduction and questions like
those shown in Figure 3. Within each study, questionnaires
were matched so that corresponding questions asked for the
same (or clearly isomorphic) information to try to ensure
that the questions themselves would not predispose one
group to more correct answers than the other. In general,
differences between the frequency and probability versions
were minimized, except for the differing information
formats. In particular, most of the introduction and the final
stay/switch question were identical on all questionnaires,
across experiments and information format versions.

On each questionnaire, there were three questions imme-
diately before the stay/switch question that were about the
likelihoods of potential car placement after the host opens a
door to a car-less room; we consider these the “math” ques-
tions for determining whether subjects performed the
mathematical analysis correctly. These questions were
identical across experiments. In this paper, we give the per-
centages of subjects who answered the stay/switch question
correctly, regardless of their performance on the math ques-
tions, and of subjects who answered all the math questions
correctly, regardless of their performance on the stay/switch
question. (Only one person answered all the math questions
correctly and missed the stay/switch question.) In all three
experiments, participation was during class time and no
further incentive to participate was given.

Experiment 1

The first experiment attempted to elicit analysis without too
much coaching, using 8 questions on each questionnaire
(numbers 1-7 in Figure 2, plus the stay/switch question) and
giving the correct answer to only the first question. This is
the presentation we intended to use as our closest analogy to
the three doors problem in its traditional form.
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Subjects

112 Cornell students from introductory courses in
psychology, cognitive science, German, and computer sci-
ence were participants. 58 subjects had frequency format
questionnaires; 54 had probability format questionnaires.

Results

21% of the subjects in the frequency version gave the correct
stay/swilch answer, while 18% gave the correct answer 1n
the probability version; y%2=.18, p>.1. On the math
questions, 7% of the subjects in the frequency version gave
correct responses, while 0% of the subjects in the
probability version gave correct answers; x2= 4.0, p < .05.

Discussion

This questionnaire was constructed for minimal coaching to
the correct stay/switch answer and without much help lead-
ing to the correct math, lacking three questions present in
Experiments 2 and 3. The results show no significant effect
of the variation of information format on people’s perform-
ance on the stay/switch question. However, they show a
small but significant effect suggesting that the frequency
format facilitates Bayesian performance on the mathematics
leading to the stay/switch response.

Experiment 2

In Experiment 2, the questionnaires had 11 questions, which
explicitly asked for all the components needed, according to
Bayes' Theorem, trying to elicit information from subjects
without explicitly giving any added facts. The added three
questions would, we presume, encourage deeper analysis
than the Experiment 1 questionnaire. As in Experiment 1,
we gave the correct answer to only the first question,

Subjects

68 Cornell students from introductory courses in psychol-
ogy, cognitive science, and German were participants. 34
had frequency format questionnaires, and 34 had probability
format questionnaires.

Results

29% of the subjects in the frequency version gave the correct
stay/switch answer, while 12% gave the correct answer in
the probability version; 32 = 2.57, p=.1. Considering only
the math questions, 21% of the subjects in the frequency
version gave correct responses, while 0% of the subjects in
the probability version responded correctly; x2=7, p<.0l.

Discussion

We saw a marginally significant effect of information format
on people's performance when considering only the
stay/switch question. However, we saw a robust effect on
performance on the math questions, supporting the notion
that frequency format facilitates Bayesian inference when
figuring out the game's underlying mathematics.



3-Doors

Imagine that you've seen 30,000 rounds of the game played in
which the player chooses door A in part 1 of the round. We will
be asking you questions only about those rounds. We are not
trying to trick you with any of the questions, jusl making sure
you understand the game. We will even give you the first answer
to get you started.

1) Of these 30,000 rounds in which the player chooses door A in
part 1 of the round, in how many is the car actually behind door
A? _10.000

2) Of these 30,000 rounds in which the player chooses door A in
part 1 of the round, in how many is the car actually behind door
B?

3) Of these 30,000 rounds in which the player chooses door A in
part 1 of the round, in how many is the car actually behind door
c?

The next three questions all ask about the host opening door B
in part 2 of a round.

4) Of the rounds in the answer to question 1), the rounds in
which the player chooses A in part 1 and the car is actually
behind door A, in how many of those rounds will the host open
door B in part 2 of the round?

5) Of the rounds in the answer to question 2), the rounds in
which the player chooses A in part 1 and the car is actually
behind door B, in how many of those rounds will the host open
door B in part 2 of the round?

6) Of the rounds in the answer to question 3), the rounds in
which the player chooses A in part 1 and the car is actually

Problem Questionnaire

behind door C, in how many of those rounds will the host open
door B in part 2 of the round?

Keeping in mind your answers to 4), 5), and 6) above...

7) In how many of these 30,000 rounds of the game in which the
player picks door A in part | of the round does the host open
door B in part 2 of the round?

Keeping in mind your previous answers....

8) In how many of those rounds from question 7), the ones in
which the player picks A in part 1 of the round and the host
picks B in part 2 of the round, is the car actually behind door A?

9) In how many of those rounds from question 7), the ones in
which the player picks A in part | of the round and the host
picks B in part 2 of the round, is the car actually behind door B?

10) In how many of those rounds from question 7), the ones in
which the player picks A in part 1 of the round and the host
picks B in part 2 of the round, is the car actually behind door C?

Last: Based on your knowledge, in a round of the game in which
the player chooses door A in part 1 of the round and the host
opens door B in part 2 of the round, what should the player do in
part 3 of the round? Should the player STAY with door A or
SWITCH to door C?

FOR OUR INFORMATION: Had you heard of this game before
today?

Figure 2. Questionnaire for Experiment 2, Frequency format.

3-Doors Problem Questionnaire

We will be asking you questions only about rounds in which the
player chooses door A in part 1 of a round of the game. We are
not trying to trick you with any of the questions, just making
sure you understand the game. We will even give you the first
answer to get you started.

1) In a round in which the player chooses door A in part 1, what
is the probability that the car is actually behind door A? _1/3

(or 33.3%, whichever you prefer)

8) In a round as in question 7), a round in which the player picks
A in part 1 of the round and the host picks B in part 2 of the
round, what is the probability that the car is actually behind
door A?

Last: Based on your knowledge, in a round of the game in which
the player chooses door A in part 1 of the round and the host
opens door B in part 2 of the round, what should the player do in
part 3 of the round? Should the player STAY with door A or
SWITCH to door C?

Figure 3. Questionnaire for Experiment 2, Probability format, elided.

Experiment 3

For Experiment 3, we used the same 11 questions as in Ex-
periment 2, but we gave the correct answers to the first 6 —
nearly all but the math and stay/switch questions. Our goal
was to inhibit any floor effect or paralysis over math dis-
comfort by giving subjects a head start and providing evi-
dence, upon their self-checking, that they either successfully

understood the game or did not understand it and needed to
analyze it further.

Subjects

75 Cornell students from introductory courses in psychol-
ogy, cognitive science, and German were participants. 38
had frequency format questionnaires, and 37 had probability
format questionnaires.



Results

37% of the subjects in the frequency version gave the correct
stay/switch answer, while 27% gave the correct answer in
the probability version; 2 = .67, p>.1. On the math
questions, 26% of the subjects in the frequency version gave
correct responses, while 0% of the subjects in the
probability version responded correctly; x2=10.0, p<.01.

Discussion

We found a similar effect to that in Experiment 2. There was
some concern unique to Experiment 3, however, that some
subjects might have merely copied the answers from
questions 4-6 into the answer slots for questions 8-10,
which would coincidentally have been the correct math
answers in the frequency version. Possibly-copied answers
appeared with negligible frequency in the probability
version, however, and the overall effect in Experiment 3 was
not very different than in Experiment 2, so we consider this
possible copying to be a highly unlikely influence on our
results.

General Discussion

The results compellingly demonstrate that information pre-
sented and manipulated in a frequency format facilitated
Bayesian competence in understanding the mathematics un-
derlying the three doors problem. Given a presentation of the
problem in frequency format, rates of correctness on the
math questions ranged from 7% to 26%, depending on the
experiment. Given a presentation in probability format,
correctness on the math questions was a flat 0% in all
experiments. This supports Gigerenzer's hypothesis about
the importance of information format to normative Bayesian
performance on inference tasks.

Note that the 0% correctness rate on the math questions in
the probability versions does not conflict with past results,
although it does reflect our using a different measure of
performance. Previous studies such as that of Granberg &
Brown (1995) asked merely for a stay/switch answer, not for
evidence of whether responders understood the underlying
mathematics or evidence about which information format
responders might be considering when computing the
relevant likelihoods, so our central result is based upon a
different question. A comparison of like measures yields
compatible results: We found that between 12% and 27% of
our subjects answered the stay/switch question correctly,
depending on the experiment; in their initial study, Granberg
& Brown found 13% of their subjects answered the
stay/switch question correctly. This discrepancy, however, is
unrelated to the crux of our experiment, the value of one
information format over another. Are the algorithms that
people use for mathematical reasoning better tuned for
natural frequencies than probabilities? On this particular
brainteaser, it seems that the change in information format
can indeed open doors for people.

Finally, in addition to suggesting that Gigerenzer's
hypothesis applies to two-stage decision processes such as
the three doors problem as well as simpler contexts already
explored, we hope our results can add a new aspect to the
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current three doors problem literature. There are many
printed and World Wide Web based explanations of the
correct stay/switch answer to the game, but we suggest that
an explanation in frequency format — which seems to be a
highly non-standard approach — might help some of the
many people who are initially skeptical of the Bayesian
answer to understand and accept that answer. This use of the
explanatory power of {requency formal presentations would
be consistent with Gigerenzer's claim that frequency format
explanations render more persuasive and understandable
arguments about likelihoods relevant to the O.J. Simpson
trial, HIV testing, and other topics of widespread popular
interest.
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