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REPORT

De Novo Nonsense Mutations in KAT6A, a Lysine
Acetyl-Transferase Gene, Cause a Syndrome
Including Microcephaly and Global Developmental Delay

Valerie A. Arboleda,1 Hane Lee,1 Naghmeh Dorrani,2 Neda Zadeh,3,4 Mary Willis,5

Colleen Forsyth Macmurdo,6 Melanie A. Manning,6,7 Andrea Kwan,6,8 Louanne Hudgins,6

Florian Barthelemy,9 M. Carrie Miceli,9 Fabiola Quintero-Rivera,1 Sibel Kantarci,1 Samuel P. Strom,1

Joshua L. Deignan,1 UCLA Clinical Genomics Center,1 Wayne W. Grody,1,2,10 Eric Vilain,2,10

and Stanley F. Nelson1,10,*

Chromatin remodeling through histone acetyltransferase (HAT) and histone deactylase (HDAC) enzymes affects fundamental cellular

processes including the cell-cycle, cell differentiation, metabolism, and apoptosis. Nonsensemutations in genes that are involved in his-

tone acetylation and deacetylation result in multiple congenital anomalies with most individuals displaying significant developmental

delay, microcephaly and dysmorphism. Here, we report a syndrome caused by de novo heterozygous nonsense mutations in KAT6A

(a.k.a., MOZ,MYST3) identified by clinical exome sequencing (CES) in four independent families. The same de novo nonsensemutation

(c.3385C>T [p.Arg1129*]) was observed in three individuals, and the fourth individual had a nearby de novo nonsense mutation

(c.3070C>T [p.Arg1024*]). Neither of these variants was present in 1,815 in-house exomes or in public databases. Common features

among all four probands include primary microcephaly, global developmental delay including profound speech delay, and craniofacial

dysmorphism, as well as more varied features such as feeding difficulties, cardiac defects, and ocular anomalies. We further demonstrate

that KAT6Amutations result in dysregulation of H3K9 and H3K18 acetylation and altered P53 signaling. Through histone and non-his-

tone acetylation, KAT6A affects multiple cellular processes and illustrates the complex role of acetylation in regulating development and

disease.
Histone-modifying enzymes play key roles in transcrip-

tional regulation and control major cellular processes

such as the cell cycle,1,2 stem cell maintenance, and differ-

entiation.3,4 These enzymes function within multisubunit

protein complexes that target acetyltransferases and deace-

tylases to specific gene loci to provide cell- and tissue-spe-

cific regulation of developmental processes. The combina-

torial effects of epigenetic marks influence the accessibility

of transcription factor binding sites and can control

specific regulatory programs. Epigenetic dysregulation

of chromatin is actively studied in both development

and cancer and alterations in histone acetylation are impli-

cated in regulating stem cells and differentiation.5

In this report, we describe four individual cases in which

the presence of de novo mutations suggested that all of

them had a previously unrecognized rare autosomal domi-

nant disease. Their syndrome was discovered only after

the more routine implementation of clinical exome se-

quencing (CES) for individuals with potential genetic dis-

eases but without a clear diagnosis.6,7 All four individuals

were sequenced with their parents (trio-CES) to empower

the identification of de novo mutations, and all four had
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de novo nonsense mutations in KAT6A. Individuals

1-II-1, 2-II-2 and 3-II-1 underwent trio-CES at the Clinical

Genomics Center at UCLA and 4-II-1 underwent trio-CES

at GeneDx (Figure 1). CES at UCLA was performed using

standard protocols from genomic DNA extraction to data

analysis6,8 in a CLIA-certified laboratory. In these individ-

uals, we identified 21,937 to 23,099 high-quality single

nucleotide, insertion, and deletion variants (SNVs and in-

dels) per individual. On the basis of the clinical history

of probands 1-II-1, 2-II-2, and 3-II-1, each referring physi-

cian generated a list of phenotype keywords that was

used to retrieve a primary genelist from the Human Gene

Mutation Database (HGMD) and Online Mendelian Inher-

itance of Man (OMIM). No likely pathogenic variants were

identified within any known disease genes in the three

individuals sequenced at UCLA. No rare homozygous var-

iants or compound heterozygous variants were identified

for recessive disorders, and no variants were identified in

known autosomal dominant disorders in any of the indi-

viduals. All trio-CES cases are evaluated for potential de

novo mutations, and on average each trio-CES case iden-

tifies 1.1 de novo, rare, and damaging variants in the
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Figure 1. Location ofMutations in KAT6A
(A) Pedigrees of families 1–4.
(B) Photos of probands 1-II-1, 2-II-2, and 4-
II-1 depict the characteristic eye and nasal
features observed in KAT6A syndrome.
(C) KAT6A is located at 8p11.2. All four de
novo mutations are located in exons 16
and 17 (arrows) that are predicted to lead
to a truncated protein (red arrowheads)
that is missing most of the acidic (orange)
and the Serine- and Methionine-rich do-
mains (yellow); NEMM, N-terminal part
of Enok, MOZ, or MORF; PHD, Plant ho-
meodomain-linked zinc finger; HAT, His-
tone Acetyltransferase.
(D) Sequence traces of KAT6A from
genomic DNA of Proband 1-II-1 demo-
nstrates the p.Arg1129* variant and Pro-
band 3-II-1 demonstrates the p.Arg1024*
variant.
proband. In each of the cases presented here, all of them

had a de novo mutation in KAT6A, and two cases had an

additional high-quality de novo variant of uncertain sig-

nificance in other non-clinical genes.

Because KAT6A had not been previously reported in as-

sociation with a genetic disease, this variant was initially

classified in all reports as a variant of uncertain signi-

ficance.9 However, three of the four individuals (1-II-1,

2-II-2, and 4-II-1) exhibited the same nucleotide change

(c.3385C>T [p.Arg1129*], ClinVarSCV000196747), result-

ing in a premature stop codon in the terminal exon of

KAT6A. Individual 3-II-1 had a de novo nonsense variant

(c.3070C>T [p.Arg1024*], ClinVarSCV000196748), result-

ing in a premature stop codon in exon 16 (Table 1,

Figure 1). Both transition mutations are at CpG bases. All

de novo KAT6A mutations identified by the UCLA CGC

were confirmed by Sanger sequencing in the proband

and his/her parents (Figure 2C), and all mutations are pre-

dicted to cause truncation within the acidic domain of the

KAT6A protein, leaving the HAT domain intact (Figure 1C).

Within 1,815 clinical exomes sequenced at UCLA,

no other nonsense, frameshift, or splice-site variants in

KAT6Awere observed. The missense variant rate estimated

from the exome variant server (EVS) data in KAT6A is 0.03

(57 rare [<0.1%] variants predicted to be damaging by Pol-
The American Journal of Human
yPhen2 out of 2004 amino acids).

This is similar to the missense variant

rate of other HAT-encoding genes

(KAT6B, CREBBP, and EP300) that are

known to cause rare autosomal domi-

nant disorders when mutated and

suggests that deleterious missense va-

riations in KAT6A are selected against

in the human population.

In the Exome Aggregation Con-

sortium (ExAC), which houses nearly

65,000 exomes (including EVS), there

are five heterozygous variants (see Ta-
ble S1) that are predicted to result in a truncated protein

and each variant is present in heterozygous form in one in-

dividual out of 65,000 exomes. None of the five variants

are present in the homozygous form. Two variants are

located in intronic regions of the canonical transcript

(NM_001099412.1). Of the remaining three variants,

variant p.Gln1995* is located ten amino acids from the C

terminus and none of the functional domains are disrup-

ted so we predict that the variant is not likely to be patho-

genic. However, the remaining two variants p.Ser1113*

and p.Ile368_Thr369ins* are located upstream and disrupt

multiple known functional protein domains and, based on

our cohort, are predicted to be pathogenic. However, these

variants are exceedingly rare and without having a com-

plete phenotype from either individual it is unclear

whether the individual might be mildly affected with a

similar syndrome as described here.

Because the KAT6A variants in the three individuals

identified through UCLA CES were exceedingly rare, de

novo, and deleterious, the clinical histories of the pro-

bands were more closely evaluated in order to determine

potential overlapping features in their phenotypes. A sys-

tematic review of the four children with their treating phy-

sicians found several cardinal features present in all three

individuals, as well as features that exhibited variable
Genetics 96, 498–506, March 5, 2015 499



Table 1. Exome Sequencing Variants

Total No. Variants
(SNVsþ INDELs)a

No. Variants
MAF < 1%

No. Variants MAF
< 1%þAA Changing

No. De Novo
Variantsb

KAT6A Variant

Genomic
Position

cDNA
Change

Protein
Change Exon

Proband 1-II-1 21937 (20817þ1120) 863 499 2 8:41792353 c.3385C>T p.Arg1129* 17

Proband 2-II-2 22486 (21145þ1341) 949 531 1 8:41792353 c.3385C>T p.Arg1129* 17

Proband 3-II-1 23099 (21739þ1360) 988 571 2 8:41795056 c.3070C>T p.Arg1024* 16

Proband 4-II-1 Unknown Unknown Unknown 1 8:41792353 c.3385C>T p.Arg1129* 17

MAF, minor allele frequency; AA, amino acid; coding position is on transcript NM_001099412.1.
aAll variants were submitted to ClinVar under accession codes SCV000196747 and SCV000196748.
bOnly variants that PASSed after GATK variant recalibration and indel filtration were counted. Only variants that were novel (AF¼ 0%), amino acid changing in the
proband and with QUAL R 500 and coverage R 103 in both the proband and the unaffected parents were counted.
expressivity. Some differences in clinical description were

noted between the probands. Clinical features are summa-

rized in Table 2, and the results of genetic, metabolic, and

radiographic testing are summarized in Table S2.

Proband 1-II-1 was the first child of non-consanguineous

parents conceived through in vitro fertilization. The preg-

nancy was uncomplicated, with normal screening ultra-

sounds. He was delivered via cesarean section and at birth

was noted to be microcephalic with OccipitalFrontal

circumference (OFC) (32 cm, Z ¼ �2.1) but he had a

normal weight and length. At 3 months, poor growth

was noted with poor swallow function. Nasogastric tube

was placed at 8 months followed by gastric tube due to

recurrent aspiration pneumonias for which he was hospi-

talized several times. A large secundum atrial septal defect

(ASD) was repaired at age of 5. He had dysmorphic features

(Figure 1), brachydactyly, intermittent esotropia, and

developmental delay. He was not able to sit independently

until 1 year of age and at 3.5 years he remained unable to

walk and had absent speech.

Proband 2-II-2 was born at 37 weeks as the second child

to non-consanguineous parents. Pregnancy was compli-

cated by preterm labor beginning at 20 weeks and right hy-

dronephrosis diagnosed by fetal ultrasound. Birth weight

was normal, but length (45 cm, Z ¼ �3.1) and OFC

(34 cm, Z ¼ �2.1) were below the third percentile. At birth

she had a cleft palate, intestinal malrotation, ventricular

septal defect, bronchomalacia, and esotropia. MRI showed

no structural brain defects. Since birth she has been hospi-

talized numerous times for recurrent urinary tract and res-

piratory infections. At 9 months, a right pyeloplasty was

performed with improvement of recurrent urinary tract in-

fections. At 11 months, cleft palate was repaired and myr-

ingotomy tubes were placed for recurrent ear infections.

She was diagnosed with autism spectrum disorder at the

age of 2 years and received behavioral therapy, which

improved behavior, social interactions, and eye contact.

Developmentally, she sat independently at 2 years of age

and pulled to stand at 2 years 11 months. At the time of

last examination at 3 years of age she was non-verbal.

Proband 3-II-1 was born at 42 weeks gestation as the first

child of non-consanguineous parents. During the preg-
500 The American Journal of Human Genetics 96, 498–506, March 5
nancy, the mother had preterm bleeding and remained

on bed rest with suspected placental infarct at 36 weeks.

Routine maternal serum screening was normal, and prena-

tal ultrasounds showed intrauterine growth restriction but

were otherwise normal. At birth, weight (1.87 kg, Z ¼
�3.3), length (47.6 cm, Z ¼ �2.6), and head circumference

(exact OFC unknown) were less than the third percentile.

Postnatally, he had bilateral cryptorchidism, strabismus,

feeding difficulty, dysmorphic facial features, and axial hy-

potonia. He was noted to have global developmental delay

without structural neurological defects. He developed a so-

cial smile at 3 months, sat independently at 1 year, and

walked at 4 years 6 months of age. His height and OFC re-

mained less than the third percentile for age but weight

increased appropriately. At 5 years old, he was not commu-

nicating verbally.

Proband 4-II-1 was born at 37 weeks to non-consanguin-

eous parents after an uncomplicated pregnancy with nor-

mal maternal serum screening and ultrasounds. At birth,

she was microcephalic (OFC ¼ 32, Z ¼ �3.0) but with

normal weight and length. She was noted to have distinct

facial features, ASD, chronic ear infections requiring tym-

panic tube placement, insomnia-type sleep disturbances,

and varying degrees of hypotonia and dystonia. Develop-

mentally, she sat independently by one year of age and

by 4.5 years was walking independently but remained

without verbal communication.

All four individuals exhibited primary microcephaly

with a head circumference less than third percentile

(Z scores in Table 1), global developmental delay, profound

speech delay, and dysmorphic craniofacial features

(Figure 1B, Table 2). Photographs of probands from fam-

ilies 1, 3, and 4 were shown to two experienced clinical ge-

neticists and dysmorphologists who noted similar facial

features suggestive of disruption of a common develop-

mental pathway. These include a thin upper lip, epicanthal

folds, broad nasal bridge, and large forehead. Other medi-

cal problems that were present to varying degrees in at least

three out of the four children include feeding difficulties,

gastric reflux, cardiac septal defects, ocular anomalies,

and abnormalities in muscle tone. Many of the features ex-

hibited in these children exist in other well-characterized
, 2015



Figure 2. KAT6A Mutations Do Not Undergo Nonsense-Medi-
ated Decay
(A) RNA from control (ATCC), proband 1-II-1 and proband 3-II-1
dermal fibroblasts were amplified and sequenced by capillary elec-
trophoresis. The mutation in proband 1-II-1 in the last exon of
KAT6A showed equal presence of the WT and mutant transcript.
The mutation in proband 3-II-1 showed allelic preference for the
reference allele.
(B) Quantitative real-time PCR in fibroblasts from proband 1-II-1
and 3-II-1 showed no significant decrease in KAT6A mRNA
compared to control fibroblast samples. All samples were run trip-
licate and normalized against GAPDH. All samples were compared
to biological controls and the (2(-ddCt)) method was used for statis-
tical analysis.
genetic11 syndromes with different genetic etiology, mak-

ing the recognition of this new syndrome difficult based

on phenotype alone. The majority of congenital syn-

dromes have distinctive phenotypes (i.e., genitopatellar

syndrome, GPS [MIM606170], in which genital malforma-

tions and absent patella are cardinal features) or occur with

a relatively high frequency in the general population such

as Trisomy 21, Down Syndrome (MIM 190685). In the

UCLA CES experience, KAT6A de novo mutations have

been a common cause of developmental delay, identified

in 3/298 CES cases thus far.6 With increased application

of CES to children and undiagnosed adults with develop-

mental delay, mutations in KAT6A are likely to be iden-

tified in many other children, which will permit better

characterization of the phenotypic spectrum affiliated

with KAT6A mutations.

In order to understand the molecular mechanisms un-

derlying the phenotype in these children, we obtained

dermal fibroblasts from probands 1-II-1 and 3-II-1 and

expanded them in culture as in previous studies.12 All pro-

cedures followed were in accordance with the ethical stan-

dards of the UCLA IRB and proper informed consent was

obtained. To assess the presence of nonsense-mediated

decay of the mutant transcript, we sequenced cDNA from

fibroblasts to determine whether both the reference and

mutant transcript were present from the affected probands
The Ame
1-II-1 and 3-II-1 (Figure 2A). In 1-II-1, the wild-type (WT)

and mutant transcript (c.3385C>T) were present at equal

levels. However in 3-II-1, the mutant transcript is

decreased there appears to be an allelic imbalance, with

less of the mutant transcript compared to the control.

Quantitative real-time Taqman PCR for KAT6A and

GAPDH (Life Technologies, 4331182 and 4331182) was

performed in triplicate, and no significant decrease in

KAT6A mRNA transcript was observed between control fi-

broblasts and those from probands 1-II-1 and 3-II-1

(Figure 2B). Both the normal levels of KAT6A mRNA and

the equal presence of the WT and mutant transcripts by

Sanger sequencing in proband 1-II-1 indicate that muta-

tions in the terminal exon do not result in nonsense-medi-

ated decay.11 The nonsense variant c.3070C>T is located

in the non-terminal exon (as in proband 3-II-1) demon-

strates allelic imbalance in favor of the WT allele but

without any significant decrease in KAT6A transcript

levels. Therefore, at basal levels, there is no evidence for

substantial nonsense-mediated decay for either KAT6A

variant. However, we cannot rule out the presence of

nonsense-mediated decay or other mechanisms influ-

encing RNA stability when KAT6A is upregulated.

KAT6A (a.k.a.,MYST3,MOZ) is a lysine (K) acetyltransfer-

ase that is located on chromosome 8p11.2 and is a member

of the MYST family of proteins. All members of the MYST

family contain a highly conserved catalytic histone acetyl

transferase (HAT) domain with roles in both histone lysine

acetylation13 and protein lysine acetylation.14,15 KAT6A

was originally identified as a recurrent translocation

t(8;16)(p11;p13) in acute monocytic leukemia.16 Since

then, recurrent translocations of KAT6A with CREBBP,17

EP300,18 and TIF219 have been identified in a subset of in-

dividuals diagnosed with myeloid malignancies who are

refractory to chemotherapy. Additional studies have

shown that histone acetylation by KAT6A regulates Hox

gene expression in human umbilical cord blood stem

cells20 andmouse craniofacial development21 and controls

Tbx1 expression in mouse cardiogenesis. Mutations in

KAT6A have never been associated with a constitutional

genetic syndrome.

Functionally, KAT6A has important roles in gene-specific

histone 3 acetylation22 regulating developmental gene

expression21,23 and in P53 acetylation and signaling.15

Both histone acetylation and p53 pathways have been pre-

viously shown to control a wide range of processes such as

DNA repair and replication, metabolism, cell mobility,

stem cell maintenance,24 and senescence.25–27 To test

whether global histone acetylation patterns were per-

turbed by KAT6Amutations, we performed histone extrac-

tion28 on control fibroblasts (ATCC) and dermal fibroblasts

from proband 1-II-1. Histone extractions were subject to

Western blot and probed using antibodies to core histone

3 and specific acetylated forms of histone 3 as follows:

H3K9, H3K14, H3K18, H3K27, and H3K56 (Acetyl-Histone

H3 Antibody Kit, Cell Signaling 9927), core histones 2A,

2B, and 4 and acetylated H2AK5, H2BK5 and H4K8
rican Journal of Human Genetics 96, 498–506, March 5, 2015 501



Table 2. Common Clinical Features in Individuals with Nonsense Mutations in KAT6A

1-II-1 2-II-2 3-II-1 4-II-1

Karyotype 46,XY 46,XX 46,XY 46,XX

Age at last examination 3 years 3 months 2 years 11 months 5 years 4 years

Neurological

Microcephaly
cm (Z-score)

Birth: 32.8 (�2.1) 34.0(�2.1) unknown 32.0(�3.0)

Last Exam 47(�2.33) 45.8(�2.78) 48.0(�2.52)
at 4.5 years

46.5(�2.81)

Length/Height cm
(Z-score)

Birth: 48.3(�1.7) 45(�3.1) 47.6 (�2.0) unknown

Last Exam 92.8(�1.1) 84.3(�2.6) 97.0(�2.6)
at 4.5 years

98.9(�1.4)

Weight
kg (Z-score)

Birth 3.08(�1.3) 2.8(�1.8) 1.87 (�3.3) 2.95(�1.5)

Last Exam 14.85(0) 10.4(�2.86) 16.92 (�0.7)
4.5 years

14.6(�1.3)

Developmental Delay
(Gross motor)

Pull to stand at 2.5 years Rolling over: 4 mo,
Sat unassisted: 1yr, Pull
to stand at 2.9 years

Sat unassisted: 1 year,
walked:4.5 years

Sat unassisted:1 year,
Pull to stand: 1.5 years

Intellectual disability Absent speech, no words Absent speech, no words Absent speech, no words Absent speech, no words

Social/Emotional development Social smile at 4 months Social smile at 3 months Social smile at 3 months Social smile at 3 months

Disturbances in sleep behavior sleep apnea NE NE sleep disorder-insomnia
type

Facial

Nasal anomalies Prominent bridge, full nasal tip Prominent root short nose, bifid tip lateral nasal build-up

Cleft palate � þ � �

Dental anomalies � þ þ �

Other Rosebud mouth Large upper canines Lower teeth are small
and peg-shaped

�

Ocular

Strabismus þ þ þ �

Epicanthal fold þ (left) � þ (bilateral) �

Optic Nerve Atrophy NE NE þ �

Ptosis � � þ þ (left only)

Myopia � � � þ

Cardiac

ASD þ � NE þ

VSD � þ NE �

Pulmonary

Broncho- or laryngomalacia þ � � �

Chronic Lung Disease þ þ � �

Gastrointestinal

Reflux þ þ þ �

Feeding Difficulty þ a þ a þ �

Intestinal Malrotation � þ � �

Genitourinary

Hydronephrosis � þ � �

Cryptorchidism � NA þ NA

(Continued on next page)
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Table 2. Continued

1-II-1 2-II-2 3-II-1 4-II-1

Hypospadias � � � �

Musculoskeletal

Hypotonia þ � þ (axial) þ

Brachydactyly middle finger/total hand length:
25th percentile,
overlapping toes 2nd over 3rd

� Brachydactyly �

Dystonia þ � � þ

Other L. hand flexed PIP prenatal growth
restriction

NE, not evaluated; ASD, atrial septal defect; VSD, ventricular septal defect.
aWith gastrointestinal tube dependence. For weight and length/height, Z scores were calculated using the CDC charts for children ages 2–20. Head circumference
at birth was calculated using CDC charts for infants. For head circumference in children older than 2, Z score was calculated based on published data.10
(Acetyl-Histone Antibody Sampler Kit, Cell Signaling

9933). All experiments were performed in duplicate. We

observed a decrease in H3K9 acetylation and increase in

H3K18 acetylation in Proband 1-II-1 fibroblasts compared

to the control fibroblasts (Figure 3A). No histone acetyla-

tion was observed in H3K14, H3K27, H3K56, H2AK5,

and H2BK5 in either cell type, and no change in histone

acetylation was observed in H4K8 (data not shown).

KAT6A acetylation of P53 has also been shown to regu-

late downstream P53 signaling.15 KAT6A acetylates resi-

dues K382 and K120 on P5315 in vivo and deletion con-

structs demonstrated the requirement for both the HAT

domain and the Serine and Methionine (SM) rich domain

for interaction with P53. Therefore, we hypothesized that

the truncation of the C terminus of KAT6A results in loss

of the SM domain leading to decreased P53 acetylation

and dysregulation of downstream P53 signaling. We gener-

ated RNA sequencing libraries using Illumina TruSeq RNA

sample prep V2 in duplicate, and libraries were pooled

and sequenced on Illumina HiSeq (UCLA Clinical Microar-

ray Core). All reads were aligned with the STAR aligner29

and processed using Cufflinks.29,30 Because KAT6A is

known to be involved in P53 signaling, we examined

92 genes involved in P53 signaling. We did not observe

any significant changes in TP53 mRNA levels. However,

30 genes showed significant changes in gene expression be-

tween control fibroblasts and fibroblasts from either 1-II-1

or 3-II-1(Figure 3B), based on the q value less than the

determined false discovery rate. These genes were analyzed

through David Functional Annotation Resource31,32 and

showed significant enrichment for genes important in

apoptosis (p < 10�5), nuclear transcriptional regulation

(p < 10�5), and cellular metabolism (p < 10�5). Results

from all genes are in Figure S1 and Table S4. During devel-

opment the truncated KAT6A protein exerts its damaging

effect on organogenesis through dysregulated chromatin

modification and P53 signaling.

Mouse models with homozygous deletion of Kat6a are

lethal during embryogenesis or in the perinatal period

due to vascular and cardiac anomalies. Kat6a�/� mice
The Ame
have abnormalities in the gastrointestinal tract, cardiac

defects, thymic hypoplasia, splenic hypoplasia,33 skeletal

anomalies,21 decreased neural34 and hematopoietic stem

cell,35 and improper B cell differentiation.36 Similar to

the clinical phenotype, there are no structural brain anom-

alies in Kat6a�/� mice. The loss of hematopoietic stem cells

seen in mice is due to specific disruption of the catalytic

HAT domain with maintenance of the transcriptional acti-

vation and repression domains at the N and C termini of

Kat6a.34,36 To date, the children with KAT6A mutations

described here do not have any defects in hematopoiesis

indicating that either a single copy of WT KAT6A or that

together the WT and truncated alleles are sufficient to

maintain hematopoiesis. However, based on the observa-

tions in the mice, these children might experience hema-

tological or immunological problems with time, and it

would be clinically prudent to continually monitor these

individuals with mutations in for evidence of hematopoi-

etic defects.

Nonsense or frameshift truncating de novo mutations in

a highly homologous member of the MYST family, KAT6B

(a.k.a. MYST4, MORF) have recently been described as

the etiology of GPS (MIM 606170)37,38 and Say-Barber-

Biesecker-Young-Simpson Variant of Ohdo syndrome

(SBBVYS [MIM 603736]).39,40 However, the distinctive phe-

notypes between both syndromes are derived from a pre-

dicted differential effect of the multiple functional protein

domains. The common features between GPS and SBBVYS

might be due to a common loss of function of the C-termi-

nal domains,40 whereas phenotypes that distinguish them

are hypothesized to result from expression of the truncated

protein in GPS with potential gain-of-function effects.40

Within our cohort of de novo mutations in KAT6A, we

observe that proband 3-II-1 who has the p.Arg1024*

variant had significant intrauterine growth retardation

that was not seen in the children with the p.Arg1129*

variant. We hypothesize that the differential phenotype

might result from the allelic imbalance seen in the

p.Arg1024* fibroblasts or secondary to effects of KAT6A tar-

geting by the C-terminal domain. However, even among
rican Journal of Human Genetics 96, 498–506, March 5, 2015 503



Figure 3. KAT6A Nonsense Mutations Result in Global Changes in Histone Acetylation and p53 Signaling Pathways
(A) H3K9 acetylation was decreased in histone extracts from proband 1-II-1 dermal fibroblasts relative to control. H3K18 acetylation was
increased in proband 1-II-1 dermal fibroblasts compared to control. All experiments were performed in duplicate.
(B) Genes in the P53 signaling pathway that show significant differences between experimental (Proband 1-II-1 or Proband 3-II-1)
and control fibroblasts growing in culture were assessed using RNaseq. All genes shown were significantly increased or decreased if
the q value was less than the FDR-adjusted p value of the test statistic.
the individuals with identical KAT6A genotype, there is sig-

nificant variability in the phenotype of individuals which

further points to the importance of genetic background

and environment in determining the phenotypic expres-

sion of the mutation.

Beyond syndromes caused by mutations in genes encod-

ing the MYST family of histone acetyltranferases, we re-

viewed genetic syndromes caused by genes that have

histone acetyltransferase or deacetylase function. The ma-

jor commonalities between these syndromes are micro-

cephaly (not reported with mutations in IKBKAP or

HDAC6), global developmental delay, craniofacial dysmor-

phism, and limb anomalies. Individuals with mutations in

acetyltransferase genes more commonly display multi-or-

gan defects, such as congenital heart disease, feeding diffi-

culties, lung disease, and hypotonia, whereas these are less

frequently observed in individuals with HDAC mutations.

Individuals with mutations in HDAC genes were more

likely to experience significant growth retardation and

truncal obesity compared to mutations in histone acetyl-

transferase genes.

Given the high prevalence of mutations in KAT6A

identified in our cohort of exome sequencing cases with

developmental delay, we screened all individuals who un-

derwent UCLA CES for developmental delay (n ¼ 298) for

de novo mutations in 35 genes encoding histone acetyl-

transferases and deacetylases (Table S3). A total of 8 de

novo mutations were identified in genes that modify his-

tone acetyl groups. Causative mutations were identified

in the clinical genes KAT6B, CREBBP, HDAC8, and EP300

(reported in 6). At UCLA, four de novo mutations were

identified in KAT6A, three reported here and a fourth de

novo missense mutation in KAT6A that was identified in

a child for whom CES was performed at UCLA with ponto-

cerebellar hypoplasia.6 However, an alternate mutation in

CASK was also identified in that case and reported as more

likely to be causal of the child’s phenotype. It is possible
504 The American Journal of Human Genetics 96, 498–506, March 5
that KAT6Amissense variants could be a modifier of muta-

tions in other genes. Thus, in our cases of developmental

delay, we have observed three cases with de novo nonsense

mutations, making the frequency of KAT6Amutations one

percent (3/298) of all cases of developmental delay referred

for clinical exome sequencing.

In line with the known role of KAT6A in histone acetyla-

tion, it is tempting to speculate that drug therapies might

restore a more normal acetylation profile and reduce the

developmental delay in individuals with KAT6A muta-

tions. Drugs that inhibit HDAC activity are actively being

studied as therapeutics in cancer,41 neurodegenerative dis-

orders such as Parkinson and Alzheimer disease,41 mus-

cular dystrophies,42,43 and to modulate developmental

delay caused by mutations in histone acetyltransferase

genes CRBBP and EP300.44–46 However, much work needs

to be done to understand complex themolecular pathways

that are perturbed in individuals with KAT6A mutations

and how they affect critical cellular processes in develop-

ment and beyond.

In conclusion, we have identified KAT6A mutations as

a frequent cause of syndromic developmental delay

with microcephaly and dysmorphic features. Given the

incredible rarity of most genetic syndromes, the fact

that three cases had been identified at UCLA out of the

first 298 CES cases performed for developmental delay

makes KAT6A syndrome one of the more common causes

of syndromic developmental delay. Our data demon-

strates that the mutant KAT6A allele alters global acetyla-

tion of H3K9 and H3K18 and affects P53-mediated path-

ways in apoptosis, metabolism, and transcriptional

regulation.
Accession Numbers

The ClinVar accession numbers for the KAT6A sequence reported

in this paper are SCV000196747 and SCV000196748.
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Supplemental Data include one figure and four tables and can be
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ajhg.2015.01.017.
Acknowledgments

We thank the all the families for participating in the study. Individ-

uals who are interested in connecting with other families with

KAT6A can find more information at http://www.chloekat6a.org/.

Expansion of the cell lines was supported by NIH/National Insti-

tute of Arthritis Musculoskeletal and Skin (NIAMS) NIH-P30-

5P30AR057230. NIH/National Center for Advancing Translational

Science (NCATS) UCLA CTSI UL1TR000124 provided support for

cores. The authors would like to thank the Exome Aggregation

Consortium and the groups that provided exome variant data for

comparison. A full list of contributing groups can be found at

http://exac.broadinstitute.org/about. The views expressed in this

article are the authors’ and do not necessarily reflect the official pol-

icy or position of the Department of the Navy, Department of De-

fense, or the U.S. Government. Partial support for this project was

provided by UCLA Translational Pathology Research Fund grant to

V.A.A., S.F.N., and H.L.

Received: October 20, 2014

Accepted: January 20, 2015

Published: February 26, 2015
Web Resources

The URLs for data presented herein are as follows:

ClinVar, https://www.ncbi.nlm.nih.gov/clinvar/

ExAC Browser, http://exac.broadinstitute.org/

NHLBI Exome Sequencing Project (ESP) Exome Variant Server,

http://evs.gs.washington.edu/EVS/

OMIM, http://www.omim.org/
References

1. Doenecke, D. (2014). Chromatin dynamics from S-phase to

mitosis: contributions of histone modifications. Cell Tissue

Res. 356, 467–475.

2. Kim, W., Choi, M., and Kim, J.E. (2014). The histone methyl-

transferase Dot1/DOT1L as a critical regulator of the cell cycle.

Cell Cycle 13, 726–738.

3. McGann, J.C., Oyer, J.A., Garg, S., Yao, H., Liu, J., Feng, X., Liao,

L., Yates, J.R., 3rd, and Mandel, G. (2014). Polycomb- and RE-

ST-associated histone deacetylases are independent pathways

toward a mature neuronal phenotype. eLife 3, e04235.

4. Leung, K.S., Cheng, V.W., Mok, S.W., and Tsui, S.K. (2014). The

involvement of DNAmethylation and histone modification on

the epigenetic regulation of embryonic stem cells and induced

pluripotent stem cells. Curr. Stem Cell Res. Ther. 9, 388–395.

5. Yang, X.J., and Ullah, M. (2007). MOZ and MORF, two large

MYSTic HATs in normal and cancer stem cells. Oncogene 26,

5408–5419.

6. Lee, H., Deignan, J.L., Dorrani, N., Strom, S.P., Kantarci, S.,

Quintero-Rivera, F., Das, K., Toy, T., Harry, B., Yourshaw,

M., et al. (2014). Clinical exome sequencing for genetic

identification of rare Mendelian disorders. JAMA 312,

1880–1887.
The Ame
7. Yang, Y., Muzny, D.M., Reid, J.G., Bainbridge, M.N., Willis, A.,

Ward, P.A., Braxton, A., Beuten, J., Xia, F., Niu, Z., et al. (2013).

Clinical whole-exome sequencing for the diagnosis of mende-

lian disorders. N. Engl. J. Med. 369, 1502–1511.

8. Rehm, H.L., Bale, S.J., Bayrak-Toydemir, P., Berg, J.S., Brown,

K.K., Deignan, J.L., Friez, M.J., Funke, B.H., Hegde, M.R.,

Lyon, E., et al. (2013). ACMG clinical laboratory standards

for next-generation sequencing. Genetics in medicine: offi-

cial journal of the American College of Medical Genetics

15, 733–747.

9. Duzkale, H., Shen, J., McLaughlin, H., Alfares, A., Kelly, M.A.,

Pugh, T.J., Funke, B.H., Rehm, H.L., and Lebo, M.S. (2013). A

systematic approach to assessing the clinical significance of

genetic variants. Clin. Genet. 84, 453–463.

10. Rollins, J.D., Collins, J.S., and Holden, K.R. (2010). United

States head circumference growth reference charts: birth

to 21 years. The Journal of pediatrics 156, 907–913, 913

e901-902.

11. Fang, Y., Bateman, J.F., Mercer, J.F., and Lamandé, S.R. (2013).
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