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Abstract

People and other animals are very adept at categorizing
stimuli even when many features cannot be perceived.
Many psychological models of categorization, on the other
hand, assume that an entire set of features is known. We
present a new model of categorization, called
Categorization by Elimination, that uses as few features as
possible to make an accurate category assignment. This
algorithm demonstrates that it is possible to have a
categorization process that is fast and frugal--using fewer
features than other categorization methods--yet still highly
accurate in its judgments. We show that Categorization by
Elimination does as well as human subjects on a multi-
feature categorization task, judging intention from animate
motion, and that it does as well as other categorization
algorithms on data sets from machine learning. Specific
predictions of the Categorization by Elimination
algorithm, such as the order of cue wuse during
categorization and the time-course of these decisions, still
need to be tested against human performance.

1. Introduction

Hiking through the Bavarian Alps, you come upon a large
bird gliding over a meadow. You pull out your European
bird guidebook to identify it. From the shape of its body,
you assume that this is a bird of prey, so you turn to the
section on raptors in the guide. To determine the exact
species, you next use size to narrow down your search to a
few kinds of hawks; then you use color to eliminate a
couple more species; and finally with one last cue--tail
length--you can make a unique classification. Using only
four cues (or features), you correctly identify this bird as a
sparrow hawk. You could take out your binoculars and
check more cues to support this identification, but for a
rapid decision these few cues are enough.

How would this categorization process proceed if a rabbit
rather than a human were watching the bird? The rabbit
would not be interested in knowing the exact species of bird
flying overhead, but rather would want to categorize it as
predator or not, as quickly as possible--the Rabbit's Guide
to Birds has only two short sections. While the rabbit could
also use several cues to make its category assignment, as

soon as it finds enough cues to decide “predator”--for _
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instance, that this bird is gliding--it will not bother
gathering any more information, and instead will head for
shelter. Obviously, in the case of the rabbit, speed is of the
essence when categorizing birds as predators or
nonpredators. Humans face similar circumstances where
rapid categorization is called for, making use of only
whatever information is immediately available. Being able
to categorize rapidly the intention of another approaching
person as either hostile or courting, for instance, will enable
the proper reactions to ensure the most desirable outcome.

In this paper, we consider the case for a “fast and frugal”
(a la Gigerenzer & Goldstein, 1996) model of categorization,
akin to the lexicographic process of bird identification
described in the first paragraph. This model, which we call
Categorization by Elimination (CBE), uses only as many of
the available cues or features as are necessary to first make a
specific categorization. As a consequence, it often uses far
fewer cues in categorizing a given stimulus than do the
standard cue-combination models, yielding its fast frugality.
This information-processing advantage can be crucial in a
variety of categorization contexts where speed is called for,
as in identifying threats. On the other hand, the accuracy of
this approach typically rivals that of more computationally
extensive algorithms, as we will show. We therefore
propose Categorization by Elimination as a parsimonious
psychological model, as well as a potentially useful
candidate for applied machine-learning categorization tasks.

Categorization by Elimination is closely related to
Tversky’s Elimination by Aspects (EBA) model of choice
(Tversky, 1972). After describing competing psychological
and machine-learning models of categorization in the next
section, we discuss the background of elimination models in
section 3. We present the Categorization by Elimination
model in section 4. Most other recent models of human
categorization focus on the use of two or three cues,
situations in which CBE can show little advantage.
Therefore, we have experimentally investigated a multiple-
cue categorization task in which we can compare our model
with others in accounting for human performance with seven
cue dimensions. We describe this study, which involves
categorizing animate motion trajectories into different
behavioral intentions, in section 5. CBE does as well as
linear categorization methods, and does not overfit the data
as neural networks seem to. Next, in section 6 we look at
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how well our algorithm does alongside some of the
multiple-attribute categorization methods developed in
psychology and machine learning on standard data sets from
the latter field. This comparison shows that Categorization
by Elimination can often compete in accuracy with more
complex methods. Further, if minimizing the number of
cues used is sought to maximize computational speed, CBE
usually emerges as the clear winner. Finally in section 7
we consider some of the challenges still ahead, including
how to test CBE against human learning data.

2. Existing Categorization Models

Many different models of categorization have been
proposed in both the psychological and machine learning
literature.  Psychologists are primarily concerned with
developing a model that best describes human categorization
performance, while in machine leaming the goal is to
develop an optimally-performing model--that is, one with
the highest accuracy of categorization. These two goals are
not necessarily mutually exclusive; indeed, one of the main
findings so far in the field of human categorization is that
people are often able to achieve near optimal performance
(that is, categorize a stimulus set with minimal errors--see
Ashby & Maddox, 1992). As a consequence, some models,
including neural networks and SCA (Miller & Laird, 1996)
are often aimed at filling both roles.

However, the majority of psychological studies of
categorization have used simple stimuli that vary on only a
few (2-4) dimensions, unlike the typical high-dimensional
machine learning applications. It remains to be seen
whether humans can also be optimal at categorizing multi-
dimensional objects. In addition, the predominant
psychological models of categorization have not addressed
the issue of constraints, such as limited time and
information. What might the categorization process be
when there are both time and information constraints, either
because there is an overwhelming number of possible cues
to use or only a subset of cues available? Here we briefly
review some of the currently popular categorization models
for human categorization and machine learning with these
questions in mind. Throughout the remainder of the paper
we use the terms cues, aspects, dimensions, and features, as
appropriate, to all mean roughly the same thing.

The predominant theories of categorization in the
psychology literature include exemplar models (Nosofsky,
1986), decision bound models (Ashby & Gott, 1988), and
neural network models (e.g. ALCOVE-see Kruschke,
1992). Each of these categorization models assumes that the
stimuli may be represented as points in a multidimensional
space. Furthermore, these models all assume that humans
integrate features--that is, combine multiple cues to come to
a final judgment--and that we usually use all of the cues that
are present--that is, do not discard any available information.

Exemplar models (Brooks, 1978; Estes, 1986; Medin &
Schaffer, 1978; Nosofsky, 1986) assume that when presented
with a novel object, humans compute the similarity between
that object and all the possible categories in which the novel
object could be placed. Similarity is a function of the sum
of the distances between the object and all the exemplars in

the particular category. The object is placed into the
category with which it is most similar.

Nosofsky’s (1986) generalized context model (GCM)
allows for variation in the amount of attention given to
different features during categorization (see also Medin &
Schaffer, 1978). Therefore, it is possible that different cues
will be used in different tasks. However, this attention
weight remains the same for the entire stimulus set for each
particular categorization task, rather than varying across
different objects belonging to the same category (in contrast
to our new method, as we will see).

Decision Bound Theory (or DBT--see Ashby & Gott,
1988) assumes that there is a multidimensional region
associated with each category, and therefore that categories
are separated by bounds. An object is categorized according
to the region of perceptual space in which it lies. Similarly,
neural network models (e.g., Kruschke, 1992) leam
hyperplane boundaries between categories, capturing this
knowledge in their trainable weights. In both cases, all of
the cues available in a particular stimulus are used to
determine the region of multidimensional space, and hence
the associated category, in which that stimulus falls,

These psychological models all categorize by integrating
cues and using all the cues available (except in GCM if a
cue has an attention weight of 0). In addition, training these
models to leam new categories is a relatively simple
process. But the memory requirements assumed by these
models do differ: for example, GCM assumes that all
exemplars ever encountered are stored and used when
categorizing a novel object, while DBT does not need to
store any exemplars. In comparison, our CBE algorithm
does not integrate all available cues, is similarly easy to
train, and typically requires little memory.

Another approach to psychological modeling is captured
in the discrete symbol-processing framework of Miller and
Laird’s (1996) Symbolic Concept Acquisition (SCA)
model. Here rules are built up incrementally for classifying
stimuli according to specific features, beginning with very
general rules that test a single feature and progressing to
more detailed rules that must match the stimuli on many
features. While there are similarities between this approach
and CBE (in particular, the order in which features are
processed can be related to our cue validity measure), one
major difference is that new stimuli are first checked against
rules using all available cues, and only when this fails are
fewer cues tested against the more general rules. In contrast,
CBE begins with a single cue, and only adds new ones if
necessary, thereby minimizing computation. The earlier
EPAM symbolic discrimination-net model (Feigenbaum &
Simon, 1984) tests rules in the efficient general-to-specific
method we advocate, but the rest of our approach is distinct.

In machine learning, predominant categorization theories
include neural networks, Classification and Regression
Trees (or CART--see Breiman, Friedman, Olshen, & Stone,
1984), and decision trees (e.g., ID3--see Quinlan, 1993).
The goal of these machine learning models is usually to
maximize categorization accuracy on a given useful data set.
Algorithm complexity and speed are not typically the most
important factors in developing machine learning models, so
that many are not psychologically plausible.



One model that does attempt psychological plausibility
by applying selective attention to unsupervised concept
formation is Gennari’s (1991) CLASSIT. This system
classifies objects initially using a subset of the available
cues determined by their attentional salience. However, all
cues must still be considered before a final decision is
reached, due to a “worst case” stopping rule.

Thus, even though many of the machine leaming models
(e.g., CART and CLASSIT) use only a few cues during a
given categorization, the process of setting up the
algorithm’s decision mechanisms beforehand, including
determining which cues to use, can be very complex. In
contrast, our CBE algorithm has a simple learning phase,
and still maintains comparable accuracy using few cues.

3. Elimination Models

Motivated by the concerns raised in section 1, we wanted
to develop a fast and frugal categorization method that
combines the best aspects of both the psychological and
machine learning models. From the psychological models
we used the concepts of simple training and decision
processes and a small memory load. From the machine
learning models we took the notion of categorizing stimuli
without using all available cues. This combination led us
to look into elimination models.

Classical elimination models were conceived of for choice
tasks (Restle, 1961; Tversky, 1972) In a sequential
elimination choice model, an object is chosen by repeatedly
eliminating subsets of objects from further consideration,
thereby whittling down the set of remaining possibilities.
First a particular subset of the original set is chosen with
some probability, using a particular feature to determine the
subset members. Subsequent subsets are chosen in the
same manner, with successive features, until only one
object remains.

The most widely known elimination model in
psychology is Tversky’s (1972) Elimination by Aspects
(EBA) model of probabilistic choice. One of the motivating
factors in developing EBA as a normative model of choice
was that there are often many relevant cues that may be used
in choosing among complex alternatives (Tversky, 1972).
Therefore, part of any reasonable psychological model of
choice should be a procedure to select and order the cues to
use from among many alternatives. In EBA, the cues, or
aspects, to use are selected according to their utility for
some decision (for instance, to choose a restaurant from
those nearby, what they serve and how much they charge
might be the most important aspects). Possible remaining
choices that do not possess the current aspect being used for
evaluation (for instance, restaurants that do not serve
seafood) are eliminated from the choice set. Furthermore,
only aspects that are present in the most recent choice set are
considered (for instance, if all nearby seafood restaurants are
cheap, then expense will not be used as an aspect to
distinguish further among them). Additional aspects are
used only until a single choice can be made, which is
different from the categorization models described above that
use all cues,
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4. Categorization by Elimination

Our new Categorization by Elimination algorithm is a
noncompensatory lexicographic model of categorization, in
that it uses cues in a particular order, and categorization
decisions made by earlier cues cannot be altered (or
compensated for) by later cues. In CBE, cues are ordered
and used according to their validity. For our present
purposes we define validity as a measure of how accurately a
single cue categorizes some set of stimuli (i.e., percent
correct). This is calculated by running CBE only using the
single cue in question, and seeing how many correct
categorizations the algorithm is able to make. (If using the
single cue results in CBE being unable to decide between
multiple categories for a particular stimulus, as will often be
the case, the algorithm chooses one of those categories at
random--in this case, cue validity will be related to a cue’s
discriminatory power.) Thus if size alone is more accurate
in categorizing birds (or more successful at narrowing down
the possible categories) than shape alone, size would have a
higher cue validity than shape. (There are other ways that
cues can be ordered besides by validity, such as randomly or
in order of salience, which we are currently exploring.)

CBE assumes that cue values are divided up into bins
(either nominal or continuous) which correspond to certain
categories. These bins form the knowledge base that CBE
uses to map cue values onto the possible corresponding
categories. As an example, the size cue dimension for birds
could be divided into three bins: a large size bin (which
could be specified numerically, e.g. “over 50 cm”)
corresponding to the categories of eagles, geese, and swans;
a medium size bin corresponding to crows, jays, and hawks;
and a small size bin corresponding to sparrows and finches.

To build up the appropriate bin structures, the relevant
cue dimensions to use must be determined ahead of time.
At present we construct a complete bin structure before
testing CBE’s categorization performance, but leaming and
testing could also be done incrementally. In either case,
bins can be constructed in a variety of ways from the
training examples--in the next two sections, we present two
possibilities.

A flowchart of CBE is shown in Figure 1. Given a
particular stimulus to categorize, an initial set of possible
categories is assumed, along with the ordered list of cue
dimensions to be used. The categorization process begins
by using the cue dimension C with the highest validity.
Next a subset S of the possible categories is created
containing just those categories that correspond to the first
cue (s value for the current stimulus object (this subset is
determined through the binning map described earlier). I
only one category corresponds to that cue value, the
categorization process ends with this single category. I
more than one category corresponds to the current cue value,
that set of possible categories S is kept, and the cue with the
next highest validity, C*, is checked. The set of categories
S corresponding to the previous cue C’s value is intersected
with the set, S*, of categories corresponding to the present
cue C*’s value. This is CBE’s elimination step.

If only one category remains in the new set intersection,
the algorithm terminates at this point with that one
category. If more than one category remains, this



intersection becomes the new set S of remaining
possibilities, the next cue is checked, and the process is
repeated. If the intersection is empty, then the present cue is
ignored, the prior set S of categories is retained, and the next
cue is evaluated. This process of checking cues and using
them to reduce the remaining set of possible categories
continues until a single category remains, or until all the
cues have been checked, in which case a category is chosen
from the remaining set at random.

This algorithm has several interesting features. It is frugal
in information, using only those cues necessary to reach a
decision. It is non-compensatory, with earlier cues
eliminating category-choice possibilities that can never be
replaced by later cues. The binning functions used to
associate possible categories with particular cue values can
be as simple or detailed as desired, from one-parameter
median cuts to multiple-cutoff mappings. And the exact
order of cues used does not appear to be critical: in
preliminary tests, different random cue orderings vary the
algorithm’s categorization accuracy by only a few percentage
points (but, interestingly, the number of cues used with
different orderings does vary more widely).

CBE is clearly similar to EBA in several aspects, though
there are some important differences. First, EBA is a
probabilistic model of choice while CBE is (in its current
form) a deterministic model of categorization. Second, in
CBE cues are ordered before categorizing so that the same
cue order is used to evaluate each object. In EBA, aspects
are selected probabilistically according to their weight.
Therefore, the order of aspects is not necessarily the same for
each object. Third, as mentioned previously, EBA only

Set possible cat.s
S to categories
corresponding to
prev. cue C’s value

l{ Get next cue C* |

Set pos$b¥e cat.s

S* to categories
corresponding to
current cue C*’s value

L

Set S to
if S contains intersection of if S is
more than 1 cat| S and S* empty
if S contains
1 category

Figure 1: Flow Diagram of CBE
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chooses aspects that are present in the current set of
remaining possible choices, and therefore the process never
terminates with the empty set. However, to select such an
aspect, all candidates must be examined to determine which
aspects are still possible to use. CBE does no such
checking ahead of time for appropriate cues to use, but rather
takes this circumstance into account in its behavior when
the intersection of current and previous possible category
sels comes up empty.

5. CBE and Human Data

Under what conditions might CBE be a plausible
description of human categorization? We expect the most
evidence for CBE to come from situations in which
categorization may be affected by time and cue availability
constraints. As mentioned in the introduction, one specific
domain where time and number of available cues are limited
is in inferring intention from motion. Blythe, Miller, and
Todd (1996) conducted an experiment in which the
subjects’ task was to infer intention from motion of two
animated bugs shown moving about on a computer screen.
The movement patterns had all been previously generated
by other subjects instructed to engage in various types of
interaction by each controlling the motion of a single on-
screen bug. The six possible categories of interactive
motion were: pursuit, evasion, fighting, courting, being
courted, and playing. For example, one subject’s task
would be to have their bug pursue the other bug, while the
other subject would move their bug to evade their pursuing
opponent. Next, new subjects viewed the recorded bug
interactions and through forced choice, categorized the
interactions as a specific type of intentional motion.

Seven salient cues of motion were calculated for each of
the recorded motion patterns (see Blythe, Miller, & Todd,
1996, for details). These cues were used to compare
different categorization models with each other and against
human performance. (While we cannot be sure that these are
the exact cues used by the human subjects, it is a reasonable
set to start with.)

The four models tested were CBE and three traditional
cue-integrating compensatory algorithms: unit tallying
(counting up the total number of cues that indicate one
category versus another, using the same bin mapping as
CBE), weighted tallying (adding up weighted votes from all
the cues that indicate one category versus another, again
using CBE’s binning along with weights determined by
correlation), and a three-layer feed-forward neural network
model trained by backpropagation learning (see Gigerenzer
& Goldstein, 1996, for more details on the first two).

The bin structure used for CBE and the tallying
algorithms were determined by considering the distribution
of cue values for each category and placing the bin
boundaries at points of minimum overlap between
categories. As a result, some cue values could be mapped
onto too few possible categories (e.g. if pursuit was usually
fast and courtship usually slow, the fast velocity bin would
only map to pursuit, and thus would miss all those
instances of rapid, excited courtship motion). Thus this bin
mapping made perfect categorization impossible for CBE in
this domain, and yet it did surprisingly well. Table 1 lists



Table 1: Categorization accuracies and average number of
cues used for subjects and models (chance = 16.7%).

Method Cat Acc Avg Cues
Subject 49.33% ?
CBE 65.33% 3.77
Wially 64% 7
Utally 63.33% 7
Nnet 88.33% 7

the average categorization accuracies of the human subjects,
the categorization accuracies for the four models, and the
average number of cues used (this value is unknown for the
human subjects). Since there were six possible categories,
chance performance is 16.7%.

As can be seen in Table 1, human subjects performed well
above chance in this task, and the four categorization
algorithms performed better still. The neural network did
suspiciously far better than the human subjects, indicating
that it has possibly been overtrained on this data. (When
tested on generalization ability on a further untrained set of
motion stimuli, the network’s performance drops to 68%,
while the other three algorithms hover around 56%.) The
tallying algorithms and CBE are all much closer to human
performance, but CBE achieves its accuracy while using
only about half of the cues of the others.

The difference in accuracy between subjects and the
algorithms can be explained in part by the fact that the
algorithms are “trained” on all the stimuli, either through
the binning process or neural network learning (300 motion
patterns in this case). In contrast, subjects must make their
categorizations without previous exposure to these stimuli
(under the assumption that they would already know the cue
structures of these categories through their experiences
outside the lab). To make a more fine-grained assessment of
how well each categorization algorithm matches the human
data, we are performing analyses of the case-by-case
categorizations made by subjects and algorithms. But even
without this detailed analysis, CBE emerges as a
parsimonious contender among categorization algorithms in
this multi-cue domain, and the clear winner when time and
information-availability constraints are taken into account.

6. CBE and Machine Learning Algorithms

It is difficult to compare CBE to existing categorization
models on multiple-cue human data beyond the domain just
presented, because few other experiments have been
performed with more than three or four cues. Instead, as an
alternative test of CBE’s general accuracy potential, we
examined how well CBE categorized various multi-
dimensional objects using data from the UCI Machine
Leamming Repository (Merz & Murphy, 1996). We
compared the performance of CBE to a standard exemplar
model and a three-layer feed-forward neural network trained
with backpropagation. Results are shown in Table 2 for
categorization performance when trained on the full data sets
and generalization performance when trained on half of each
data set and tested on the other half. In addition, we include
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the best reported categorization performance we have found
for each data set in the machine leamning literature.

For the following comparisons, CBE used “perfect”
binnings for the cue values. This means that the cue-value
bins always map to the entire set of possible categories
associated with those particular cue values (unlike the bins
in the motion categorization example, where only the most
prevalent categories in each bin were returned). With perfect
binning, the same categorization accuracy is always obtained
regardless of the order in which the cues are used. However,
when the cues are ordered by validity, categorizations can be
accomplished using the fewest number of cues.

Table 2 shows the results of these comparisons for three
data sets. The first is the famous iris flower database in
which there are 150 instances classified into three categories
(different iris species) using four continuous-valued features
(lengths and widths of flower parts). The next comparison
used wine recognition data, in which 13 chemical-content
cues are used to classify 178 wines as one of three particular
Italian vintages. The third data set analyzed contains two
mushroom categories, poisonous and edible, with 22
nominally valued dimensions, and 8124 total instances.

Overall, CBE does very well on these three sets of multi-
feature natural objects, while using only a small proportion
of the available cues. CBE even performs well in
comparison with models specifically designed for the best
possible performance on these particular data sets. We were
not expecting CBE to outperform these specialized
algorithms; merely being in the same ballpark is a powerful
testament to this approach’s potential accuracy across varied
domains. Furthermore, these algorithms all employ the full
set of cues, making the contrast with CBE’s high accuracy
through limited information all the more striking.

7. Future Work

The results we have presented here indicate that a fast and
frugal approach to categorization is a viable altermative to
cue-integrating compensatory models. By only using those
cues necessary to first make a categorical decision, CBE can
categorize stimuli under time pressure and information
constraints. Moreover, if certain cues are missing (i.e. some
feature values are unknown or cannot be perceived), CBE
can still use the other available cues to come up with a
category judgment (we are in process of collecting data on
this type of generalization ability across different
categorization algorithms). Yet CBE still performs very
accurately, despite its limited use of knowledge, rivaling the
abilities of much more complex and sophisticated
algorithms (not to mention human subjects!).

The following issues still need to be explored. First,
how should bin structures be created? Incremental leaming
can build the cue-value bins gradually as more and more
stimuli are seen. But how far should this leaming process
go, and in what way should it proceed? We have presented
two alternatives here, and there are many others possible.
One important issue to explore further is the performance
tradeoff between accuracy and the amount of knowledge
captured in the bin structure (CBE’s memory requirements).

Second, more data from human performance on
categorizing multi-dimensional objects needs to be collected



Table 2: Categorization accuracies and average number of cues used for various models on three data sets

Model Train/Test Iris Wine Mushroom
Set Size
Cat Acc Avg Cues Cat Acc Avg Cues Cat Acc Avg Cues
CBE Full 91.33 % 40.00 % 96.63 % 20.74 % 91.71 % 26.11 %
Half 92.40 % 26.24 % 90.37 % 15.83 % 91.66 % 26.16 %
Nnet Full 97.67 % 100 % 100 % 100 % 86.21 % 100 %
Half 97.07 % 100 % 95.95 % 100 %
Best 98 % 100 % 95.00 %
Reported (James, 1985) (Aeberhard et al., 1992)  (Schlimmer, 1987)

and analyzed to compare CBE with other categorization
models. We are particularly interested in investigating the
patterns of misclassifications, learning curves, and predicted
time-courses associated with CBE and human performance.
The intriguing finding in our intention from motion data
that categorization accuracy varied little with changes in cue
order can also be studied experimentally.

Third, category base-rates and payoffs for right and wrong
classifications should be incorporated into the model. For
example, with the mushroom categories described in the
previous section, if a mushroom remains uncategorized as
poisonous or safe even after all the cues have been used, it
seems reasonable to err on the side of caution and guess that
the mushroom is poisonous.

With these further explorations and extensions to CBE,
we will come to understand the algorithm’s behavior better,
and be able to make it a better model of human behavior in
turn. For now, though, we have shown evidence for the
view that the mind need not amass and combine all the
available cues when telling a hawk from a dove, or a threat
from a flirt--fast and frugal does the trick.
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