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Uncertainty Analysis of Middleware Services for
Streaming Smart Grid Applications

Ilge Akkaya, Student Member, IEEE, Yan Liu, Member, IEEE, and Edward A. Lee, Fellow, IEEE

Abstract—Accuracy and responsiveness are two key properties of emerging cyber-physical energy systems (CPES) that need to
incorporate high throughput sensor streams for distributed monitoring and control applications. The electric power grid, which is a
prominent example of such systems, is being integrated with high throughput sensors in order to support stable system dynamics that
are provisioned to be utilized in real-time supervisory control applications. The end-to-end performance and overall scalability of
cyber-physical energy applications depend on robust middleware services that are able to operate with variable resources and
multi-source sensor data. This leads to uncertain behavior under highly variable sensor and middleware topologies. We present a
parametric approach to modeling the middleware service architecture for distributed power applications and account for temporal
satisfiability of system properties under network resource and data volume uncertainty. We present a heterogeneous modeling
framework that combines Monte Carlo simulations of uncertainty parameters within an executable discrete-event middleware service
model. By employing Monte Carlo simulations followed by regression analysis, we quantify system parameters that significantly affect
behavior of middleware services and the achievability of temporal requirements.

Index Terms—Systems engineering, data-driven design, uncertainty, simulation, middleware, power applications.
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1 INTRODUCTION

SMART grid is the effort of transforming the existing elec-
trical power grid infrastructure to be more intelligent,

accurate and evolving by jointly employing the technologies
in the areas of communications, controls and computing.
Today, power grid systems are incorporating high through-
put sensor devices into power distribution networks. As
Figure 1 demonstrates, power grid operators rely on stream-
ing sensor data to make real-time control decisions. With
high-fidelity and trustworthy phasor data from hundreds
of thousands of measurement points within the Wide Area
Measurement System (WAMS), the future electric power
grid will enable multiple advanced distributed control tech-
niques. Phasor Measurement Units (PMUs) provide real-
time and precisely time stamped measurements, which is
a feature that enables the measurements to be time-aligned
and aggregated for accurate real-time evaluation of the grid
state. The challenge of combining phasor measurements for
Wide Area Monitoring and Control (WAMC) applications
has been extensively investigated by power engineers and
researchers [1], [2], [3]. From a distributed cyber-physical
system (CPS) perspective, the challenge is to autonomously
coordinate the data flow and access within distributed
power systems [4], [5].

Middleware plays an important role in linking appli-
cations and data that may be on different domains, en-
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abling these to work together. Surveys presented in [6],
[7] highlight that middleware services should be developed
as a bridge between systems and operators. [6] proposes a
middleware service architecture design that expands across
three logic layers, namely, transmission, control, and the user.
The transmission layer encompasses generation, distribu-
tion, and communication that provides data transfer to
Advanced Metering Infrastructure (AMI), allowing users
to configure energy consumption through smart devices.
Even within the transmission layer, monitoring, and control
applications based on intensive analysis of measurements
requires certain middleware components to coordinate the
data communication and analysis process.

In this middleware oriented service architecture, a num-
ber of factors that either depend on environmental condi-
tions or cannot be predetermined at the time of deployment
affect end-to-end response times of power applications,
creating a challenge for realizing applications with strict
timing requirements. Such uncertain factors include:

– run time of iterative and approximate distributed
applications, which run until global convergence of
state has been achieved;

– sensor data quality, which is highly affected by sen-
sor failures and environmental conditions;

– sensor placement;
– smart grid partitioning decisions for distributed

sensing and actuation.

These variations in smart grid design lead to consid-
erable jitter in reliability, bandwidth, and latency, which
are characterized as Quality of Services (QoS) attributes of
integrated power applications. A systematic quantification
of these factors gain importance in evaluating typical and
worst-case performance of smart grid applications and be-
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Fig. 1: National Institute of Standards and Technology
(NIST) Smart Grid Conceptual Model: Operations [9]

come metrics that are used in comparing alternative mid-
dleware architectures [8].

In this paper, we present a model-based design approach
to specifying uncertainty parameters in middleware service
architectures. We consider the smart-grid communication
fabric that entails the entire data flow from sensor de-
vices, through network and middleware components, to
distributed application nodes. We pursue a model-based ap-
proach to (i) build executable Discrete-Event (DE) models of
PMU networks, computation nodes, and the network fabric
that interconnects the components, along with the middle-
ware service layer to process and aggregate data streams, (ii)
carry out a Monte Carlo (MC) simulation based approach
to evaluate a parameter space that characterizes available
sensor, middleware services, and network resources in the
distributed model.

This paper is structured as follows: Section 2 presents
an overview of middleware service architecture, Section 3
describes the modeling approach for distributed power ap-
plications, as well as model parameterization and sampling
methods. Section 4 presents methodology and results of
parametric uncertainty analysis and a comparative perfor-
mance analysis of data volume and latency requirements
on two middleware service architectures. Finally, related
work is presented in Section 5, followed by Section 6, which
concludes the article.

2 MIDDLEWARE SERVICE ARCHITECTURE

For the purposes of utilizing sensor streams at power grid
nodes from a large-scale transmission grid in a distributed
application, the entire electric power grid topology is parti-
tioned into non-overlapping subsystems that are connected
via tie lines (buses). Each node of the distributed applica-
tion, usually delegated to a balancing authority (BA) or a
control center of a power utility, is able to run a local sub-
application and consequently exchange data with neighbor-
ing substations for coordination. Middleware services that
mediate data exchange between partitions of the grid are
integrated into the communication infrastructure. In this
paper, we consider two scenarios of a middleware service
architecture that respectively perform (i) aggregation and

Fig. 2: Data Exchange Only Middleware Architecture

dispatching; and (ii) mediation of data exchange only (with-
out aggregation).

For the data exchange only middleware service archi-
tecture, each area is assumed to share its local data stream
with all other participating areas, as shown in Figure 2. No
coordination or mediation is performed at the middleware
level; middleware only relays messages from the source to
the destination. Main components of middleware consists of
the service endpoints defined by a message queuing service
framework and a message broker that relays data streams.

For applications in which data streams collected from
each local area are not fully accessible to other areas or when
only intermediate data need be shared between designated
nodes, a middleware service with aggregation and dispatch
functionality comes into play. Figure 3 demonstrates the
conceptual architecture for an aggregate-and-dispatch mid-
dleware service. In this scenario, local streams from each
area are transferred into the middleware to be aggregated
and time-aligned. Additionally, the middleware fabric de-
tects time-aligned faulty readings from the sensor network,
then merges and broadcasts this information to all remote
participants for situational awareness [4]. An additional
decision component, which is also part of the middleware
service, receives these intermediate results and notifies each
area when a consensus on the power system state has
been made. Centralized aggregation also becomes desirable
for applications, in which broadcasting high intensity data
streams individually would incur significant network load
and would impact end-to-end system latency.

Fig. 3: Aggregate-and-dispatch Middleware Architecture
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2.1 Middleware for Centralized Aggregation

As an example application for which middleware that per-
forms centralized aggregation proves necessary, we consider
a distributed state estimation scenario that operates on PMU
data streams. The middleware coordinates multiple data
sources as inputs to the power application that consumes
(i) PMU sample files that contain measurements from a
power node (typically collected with a sampling rate of 30
Hz), received at minutely intervals from each sensor; (ii) a
SCADA file received at 1-4 minute intervals; and (iii) an
error log file that contains records of time stamp errors from
all PMUs across areas. The middleware components that
process these data sources are highlighted in green in Figure
4. Next, we will characterize the middleware components
that are required for this functional workflow.

Fig. 4: Middleware for coordinating multiple sources of data
streams

Aggregation. At each estimation step, PMU sensor read-
ings from the previous time interval are obtained from the
local areas. The PMU Data Monitor detects the arrival of
the PMU data file, and pipelines the data stream to the
Error Detection component for identification of records
with time stamp errors. An error file containing the records
for local PMUs is then sent to a message broker associ-
ated with a message queue denoted as the Input Queue.
Arrival messages in the input queue are processed by the
Aggregator that combines and aligns the records in the
error index files sent from distinct areas. The aggregator per-
forms time alignment according to the GPS clock reference
obtained via the Time Service that listens to one channel
of PMU data over TCP.

The aggregate time stamp error index file is then broad-
cast to individual areas through the Broadcast Queue.
This enables all the areas to become aware of the time
stamp for which at leas one PMU reported erroneous data
in the previous time interval. All PMU records for any
such time stamp are discarded even when the local PMU
measurements are of good time quality, for consistency
considerations.

Convergence Control. One of the essential functional-
ities of the middleware is to moderate the consistency of

state across participating areas. In our scenario, neighboring
areas exchange state information through peer-to-peer com-
munications. The Causality Control component mon-
itors intermediate states to determine and declare global
convergence.

Listing 1: Monitoring data files and filtering errors in mid-
dleware

1 / / c r e a t e a p i p e l i n e
2 MifPipe l ine p i p e l i n e = new MifPipe l ine ( ) ;
3 / / s e t t h e f i l e c o n n e c t o r
4 MifConnector conn = p i p e l i n e . addMifConnector (

EndpointProtocol . FILE ) ;
5 conn . se tProper ty ( ” streaming ” , t rue ) ;
6 conn . se tProper ty ( ” autoDelete ” , t rue ) ;
7 conn . se tProper ty ( ” poll ingFrequency ” , 60000) ;
8 conn . se tProper ty ( ” f i l eAge ” , 60100) ;
9 conn . se tProper ty ( ”moveToDirectory” ,

DseMiddlewareProps .PMU DSE WORKING DIR) ) ;
10 . . .
11 / / add a component t o p r o c e s s t h e f i l e
12 MifModule pmuAreaAModule = p i p e l i n e .

addMifModule (
13 PmuRemoveErrorsFileProcessor . c lass ,

areaADataAppUri , ” jms :// t o p i c : pmuIndexTopic
” ) ;

14 pmuAreaAModule . setName ( ”AreaA−PMU−RECEIVER” ) ;
15 . . .
16 / / s t a r t a p i p e l i n e ; a f i l e a r r i v i n g w i l l

t r i g g e r P m u R e m o v e E r r o r s F i l e P r o c e s s o r
17 p i p e l i n e . s t a r t ( ) ;

2.2 Middleware Component Implementation
The aggregation and queuing behavior is implemented us-
ing the Apache ActiveMQ service, which is an open-source
message broker [10]. The middleware components that con-
nect to message queues are designed using MeDICi [11], an
open source middleware framework for building services.
MeDICi has been utilized in other data intensive analysis
and its scalability has been demonstrated in coordinating
large scale concurrent data analysis tasks [12].

An example MeDICi implementation for a PMU Data
Monitor routine is given in Listing 1 (lines 1-9). A file
connector is added to a MifPipeline (the execution com-
ponent of MeDICi) that handles any arriving files. The file
connector implements services such as getting the file as a
byte array or an input stream, polling frequency, and auto-
deleting processed files. The file stream is then processed by
PmuRemoveErrorsFileProcessor (line 11-14). This pro-
cessor implements the Error Detection component. It
extracts the records with clock errors and sends the error file
to an aggregator. Its inbound endpoint (reaADataAppUri,
line 13) refers to the directory that the file connector moni-
tors the arriving files. The outbound endpoint specifies the
URL (jms://topic:pmuIndexTopic, line 13) of the Input
Queue.

These MeDICi components and queuing structure form
the aggregation process of the middleware by merging
multiple data sources as inputs to distributed power ap-
plications.

2.3 Uncertainty Parameters of Middleware Services
We evaluate a number of significant parameters that account
for the uncertainty within the middleware level end-to-
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end latency, based on the aggregate-dispatch architecture
presented in Figure 4.

1) Number of PMU streams per area. For each PMU,
the measurements to be extracted are determined
already given by the state estimation algorithm.
Each PMU packet follows the IEEE C37.118 Syn-
chrophasor Standard. It contains multiple measure-
ments of frequency, voltage magnitude and angle,
current magnitude and angle, quality and so on. In
our testbed environment, a Java application listens
to the broadcast from a PMU TCP socket, extracts
measurement data of interests and generates a PMU
data file in a minute cycle. So at the top of every
minute, the middleware is triggered to process PMU
data files as the number of available PMU devices.

2) Middleware Concurrency. Upon arrival of a PMU file,
the MeDICi component automatically creates a new
instance of a thread for concurrent processing. The
aggregation and queuing behavior is implemented
using the ActiveMQ message broker. Application
specific requirements of middleware concurrency
may require determining an optimal level of con-
currency given the expected input data volume. For
critical applications, availability requirements can
be imposed to ensure peak loads are process within
the temporal application deadline.

3) Intermediate data exchange sessions until convergence.
Intuitively, the number of intermediate data ex-
change sessions required until global convergence
depends on the data quality, namely, the accuracy
of PMU measurements. Such a relation is hard to
formulate as it highly relies on state estimation
algorithms as well as the distribution of the noise
level. In [13], the data noise is assumed to have
a linear relation to the number of iterations until
convergence and are investigated under a Gaussian
distribution assumption. For specific applications,
these assumptions may need to be re-calibrated.

Based on our experience discussed in [4], it was expen-
sive and time consuming to install a networked testbed
that connects physical PMU devices to distributed state es-
timators running on remote High Performance Computing
(HPC) clusters. In addition to the cost of the PMU devices,
at least 200 engineering hours were spent solely on the
integration of PMU related software. Moreover, measuring
the middleware and end-to-end response times in a testing
environment has an even higher deployment cost, since it
involves emulation scenarios over hundreds of PMUs for
a single state estimation area alone. Considering the cost
of actual deployments and the status of the developing
state of smart grid technology, for which no standardized
middleware requirements have been set to date, a sim-
ulation based approach that aids in modeling uncertain
parameters as random variables gains further value. We aim
to determine the influence of the three fundamental sources
of uncertainty listed above as a result of our simulation
studies. The variables of uncertainty are sampled from a
parameter space and used to configure a simulation model
to characterize the simulated end-to-end and local latency
behavior of distributed state estimation runs.

3 MODELING APPROACH

The conceptual modeling workflow is depicted in Figure 5.
The end goal of our study is to derive the most significant
uncertain parameters as random variables from the middle-
ware design.

Samples for each of these random variables are gen-
erated by the Monte Carlo (MC) method. MC methods
are a family of algorithms that perform repeated random
sampling from a random space to simulate complex random
variables.

Fig. 5: Middleware design workflow guided by uncertainty
analysis

We use the Ptolemy II [14] framework, which is a hetero-
geneous modeling and simulation environment extensively
used in CPS design, for modeling and simulation purposes.
We provide a hierarchical actor-oriented model of the mid-
dleware components and the data flow through the network
and middleware fabrics to account for the temporal behav-
ior of the system. In this work, some general elements that
need to be modeled in particular are sensors, network and
middleware components. Communication delays, software
scheduling and timing properties are also considerations of
the modeling process.

Note that Ptolemy II is used first to generate MC samples
of tuples of parameters, which are then used to parameterize
a Discrete-Event (DE) sub-model of the end-to-end commu-
nication flow of the distributed power grid application. The
DE model is simulated to yield Monte Carlo samples of end-
to-end completion times of the distributed state estimation
application. Following the Monte Carlo simulation, input
parameters and output samples are utilized for regression
analysis, which is used to identify input variables that are
statistically significant in explaining the temporal variation
at the output.
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3.1 Ptolemy II
Ptolemy II [14] is an actor-oriented design tool that provides
an integrated modeling and simulation environment for the
conceptual procedure in Figure 5. Ptolemy II has extensive
actor libraries for modeling CPS, and has been demon-
strated to be an effective design platform [15], [16], [17].
A CPS model consists of physical processes that interact
with models of network and computation platforms, usually
including feedback relations.

Actors in Ptolemy II are concurrently executed compo-
nents that communicate via events sent and received through
input and output actor ports. An actor in Ptolemy II consists
of a set of input and output ports along with an internal
state, which itself can be a graphical submodel. A director
implements a model of computation (MoC) and mediates
actor execution at each level of the hierarchy, which is
the mechanism that leverages integration of multiple MoCs
within a single model. Passage of time at each compositional
level is governed by a local clock that allows to define
different clock rates, clock drifts and the relation of each local
clock to the wall clock time. For the purposes of uncertainty
analysis, MC sampling is carried out using the Synchronous
Data Flow (SDF) MoC, and the temporal execution of the
middleware communication model uses a Discrete-Event
(DE) submodel within SDF.

Being an actor-oriented framework, Ptolemy II also
presents a clear semantics for defining cross-cutting con-
cerns of the behavioral models by the use of aspects. In the
context of smart grid middleware modeling, network fabric
and middleware models are examples of communication
aspects that characterize aggregation, queuing and delaying
of events within the behavioral model that consists of an in-
terconnection of sensors, intermediate storage components
and computation nodes. Our modeling effort follows this
design pattern.

In aspect-oriented Ptolemy models, when a connection
between two ports need to be delegated to an intermediate
communication aspect, the input port of the destination
actor is annotated with a parameter reference to the rele-
vant CommunicationAspect component. Figure 6 demon-
strates the use of communication aspects. The details of
the aspect-oriented communication models are discussed in
[18].

3.2 Modeling System Architecture
We first model the top level systems architecture and pro-
ceed to developing a hierarchical model that concentrates
on quantifying the uncertainty in middleware coordination.

3.2.1 Top Level Model
In Ptolemy II, the high-throughput devices communicating
over the network with packets can be abstracted to DE com-
ponents communicating via time stamped events, where
each network packet is represented by a discrete event. DE
execution is based on events composed of a tag-value pair,
representing the time stamp and the payload of a token. The
DE scheduler guarantees that events are processed in time
stamp order. Within one hierarchical level of a DE model, all
actors share a global notion of time, namely the model time.
This imposes a global ordering of events within the model

and therefore ensures determinacy. The modeling details of
the domain-specific system entities are presented below.

PMUs. Phasor Measurement Units are the main sources
of phasor data, abstracted as DE events as they are repre-
sented in the Ptolemy execution. We collectively model the
PMUs residing within a local area in the grid as a cluster
and denote this component as a PMUCluster<i>, where
<i> refers to the area index. This actor is parameterized by
the PMUCount parameter and generates the corresponding
number of events every iteration interval (parameterized
by the PMUPeriod). PMUCount is one of the inputs to
the executable model one level up in the hierarchy, and is
sampled from a user-defined prior distribution.

Phasor Data Concentrators (PDCs). A PDC is responsi-
ble for receiving data from multiple PMUs and producing
an aggregated data packet for each PMU at an application
specific rate. We only model the relaying function of the
PDC, where it produces data packets for each PMU and
processes the packets in a FIFO pattern.

Distributed Power Application Workflow. Each dis-
tributed power application is locally run on a computa-
tion cluster and is expected to consist of multiple itera-
tions, interleaved with peer-to-peer communications with
the coordinating areas. We use a generic computation node
model that accepts SCADA and PDC packets and pro-
duces intermediate packets after each algorithm iteration.
The execution time for each iteration is characterized by a
random variable that allows the user to associate a platform-
dependent stochastic profile with the algorithm execution
time at each iteration.

The top-level model is illustrated in Figure 6. In this
architecture, the PMUs of each area produce data at 30
samples per second that are transmitted to the local PDC via
a communication fabric, named PMULink. Data streams are
relayed at the PDC and sent to the local computation node of
each area to be utilized in the periodic power applications.

Network Fabric. We consider the supporting network
fabric (both in PMULink and LocalNet) to follow the
link specifications by the North American SynchroPhasor
Initiative (NASPI) [https://www.naspi.org]. In this case,
each PMU is connected to the local PDC by a T1 line. The
packet size of each PMU message is assumed to be 128
bytes in compliance with the data format of IEEE C37.118
standard [19]. Each of these links is chosen to be 50 miles
long, representing an average physical distance from a bus
to the nearest PDC. We assume each PDC is placed 300 miles
away from the local area and the middleware component is
symmetrically located, at a maximum distance of 350 miles
from the PDCs. The in-depth characterization of network
links are studied in [13].

3.2.2 Middleware Model for Centralized Aggregation
We model middleware components and their interactions
with other systems components in the entire data flow of
centralized aggregation. Figure 6 implements a middleware
aspect MW, that receives intermediate results from three
areas, as well as from PDCs, and performs the following
tasks:

Aggregation. Middleware is responsible for receiving
packets from the PDCs of all distributed areas and aggre-
gating the packets into a universal index file. The functional
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Aspects: PMULink

Aspects: PMULink

Aspects: PMULink

Aspects: LocalNet

Aspects: LocalNet, MW, MWNetwork
PMUCluster1

PMUCluster2

PMUCluster3

PDC1

PDC2

PDC3

Aspects: MW, MWNetwork

Aspects: LocalNet

Aspects:   LocalNet, MW, MWNetwork

Aspects: LocalNet, MW, MWNetwork

Aspects: LocalNet

Aspects: MW, MWNetwork

Aspects: MW, MWNetwork

SCADA

Fig. 6: Top Level Distributed Smart Grid Communication Model with Communication and Middleware Aspects

Fig. 7: Top Level Model of Middleware Aggregation (imple-
mented by the MW aspect)

model of the top-level middleware aggregator is given in
Figure 7. PMU streams from each area are first taken into
a local aggregator (named Aggregator in the Ptolemy
model), where they are processed on a per-file basis. A
synchronization unit, called CombinedIndexFile then ag-
gregates the streams from all areas into one global output
packet.

The local aggregator model is given in Figure 8, where
each received PMU stream is randomly assigned to one of
the process threads, which internally impose a delay on the
packet. The MiddlewareQueue components is designed
as a thread pool, where the per-packet delay is modeled
following benchmarks that will be studied in Section 3.4.
The outputs of all instances are then merged to yield a
stream containing all the processed PMU streams for this
particular area.

Convergence Control. Another important role of the
middleware simulation is to determine whether a dis-
tributed power application has reached a convergence state.
For distributed state estimation and similar iterative power

applications, the number of iterations until convergence
relies on several parameters such as PMU data redundancy
and quality. To be comprehensive, we assume a variable
number of iterations, ranging in the discrete set {1, 2, ..., 20}
until convergence has been declared.

3.3 Data-Exchange Only Middleware Model

We now elaborate on an alternative middleware scenario
for the middleware architecture, in which the centralized
aggregation may require extensive resources and network
fabric, and therefore become infeasible to couple streams
from hundreds of sensors at a centralized node due to
geographical and logical constraints . The data-exchange
only middleware enables each distributed node to share
streams, without the aggregate-dispatch behavior. Figure
9 demonstrates the Ptolemy model that considers such a
middleware functionality.

For the data-exchange only middleware, the task of the
middleware architecture becomes trivially to route each data
stream to its respective destination. For the distributed state
estimation case study, it is assumed that each BA has access
to PMU data from all PMUs (i) within its local substation
and (ii) from the neighboring area(s). According to this
topology, BA1 and BA3 both receive data from PDC2 in
addition to PDCs within their own area. BA2, on the other
hand, remains a neighbor of both BA1 and BA3, therefore,
the middleware must route PMU streams from all areas BA2.

Given the simplified role of routing of the middleware,
whose delays are captured as a part of the LocalNet
component, the local aggregation is performed at a local
middleware, delegated separately to each distributed com-
putation node.

A prototype model utilizing a local middleware is pro-
vided in Figure 9, as a refinement of MW1. For Area 1,
the middleware is responsible for delivering data streams
from PDCs 1 and 2, and does not receive any data streams
from PDC3. The workload on the centralized middleware is
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processed
PMUFileIn

Boolean
Switch

Expression2

Counter2

DE Director

ThreadPoolSwitch

ExpressionCounter

Rician

Server

DE Director

(count % PMUCount == 0) &&
(count != 0)

Fig. 8: The Local Aggregator Model

therefore reduced, at the expense of increased data redun-
dancy over the network.

BA1

BA2

BA3

Fig. 9: Distributed Data-Exchange only Middleware Model

3.4 Model Calibration
For calibrating the model to accurately represent the char-
acteristics of packet processing times in the middleware

layer, we use the data obtained from benchmarks carried
out on the ActiveMQ message broker that implements the
aggregation and queuing behavior of the middleware. The
trend for the cumulative completion times obtained on an
ActiveMQ queue instance is presented in Figure 10. The
pattern suggests that increasing the level of parallelism
in the queue processing level is essential to improve the
end-to-end latency, due to the long-tailed behavior of the
process latency. The benchmarks are not only important for
obtaining an average completion time, but are also essential
to characterize middleware latency distribution.
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Fig. 10: Apache ActiveMQ Benchmark Results on Average
Completion Times for Concurrent Arrivals

Following the distributions for the benchmarked number
of sensor streams per area, we carry out a regression analysis
on the time series obtained by the benchmarks to yield a
distribution fit for the middleware processing overhead. The
maximum-likelihood distribution fit for the benchmarked
data is given by a Rician distribution parameterized as
follows:

Ti ∼ Rice(ν, σ)
ν = 0.0302 · log(NPMUi

) + 0.055 (1)
σ = 0.0007 ·NPMUi

+ 0.0414

where Ti is a random variable that denotes the processing
time in seconds of a PMU stream associated with Area i,
Rice(·) denotes a Rician distribution with parameters ν and
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σ, and NPMUi
is the number of concurrent PMU streams

delegated to Area i.
Figure 11 demonstrates a sample histogram for the dis-

tributions of per-file middleware processing times, obtained
for 250 concurrent PMU files. The Rician distribution fitting
is then used to parameterize the random delay imposed by
the local aggregator as modeled in Figure 8, on a per-event
basis.
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Fig. 11: Histograms for benchmarked [Red] and simulated
[Blue] middleware delay

To further simulate the concurrent queue archi-
tecture, we make use of the Ptolemy actor called
MultiInstanceComposite, which is capable of generat-
ing a user-defined number of copies of a component and
to simulate the instances concurrently. The local aggregator
model allows each received PMU stream to be randomly
assigned to one of the processing unit instances within a
thread pool, each simulating a server with stochastic latency
that follows (1). The outputs of all instances are then merged
to yield a stream containing all the processed PMU streams
for this particular area.

3.5 Monte Carlo Sampling

Smart grid topologies are expected to be highly variable
in the number of PMUs per area and the inter-area net-
work characteristics. Middleware needs to be adaptive and
flexible to support numerous scenarios of data volume and
network characteristics. Monte Carlo simulations integrated
with the distribution system topology is a useful tool to
evaluate the effect of certain model parameters on middle-
ware performance. Figure 12 displays the top level Ptolemy
model that is used to generate Monte Carlo samples of
selected model parameters, characterized in detail in Table
1. The PowerGrid component in Figure 12 is the top-level
power grid to be simulated, and is given in Figure 6. Here,
the parameters are assumed to be uniformly distributed
over a finite set of integer values to avoid any bias towards
a particular fashion for the PMU distribution. However, it
should be noted that the number of iterations may follow
a Gaussian-like distribution in practical applications. As
we explained in Section II, calibrating the distribution for
iteration quantification will require significant engineering
effort. For simplicity, we also assume uniform distribution
of the number of iterations.

DiscreteRandom
Source Scale

PMUCount1

PMUCount2

PMUCount3

concurrencyLevel

num
berO

fIterations

Fig. 12: Monte Carlo sampling in Ptolemy II

TABLE 1: Monte Carlo Variables and Respective Probability
Mass Functions (range format:initial:increment:final )

Parameter Name PMF Range
PMUCount1 Uniform 10:10:500
PMUCount2 Uniform 10:10:500
PMUCount3 Uniform 10:10:500

concurrencyLevel Uniform 2:2:20
numberOfIterations Uniform 1:1:20

For a power system partitioned into three subareas,
we are interested the parameter samples given by the
5-tuple: <PMUCount1, PMUCount2, PMUCount3,
concurrencyLevel, numberOfIterations>. The
model is executed for 6000 seconds in model time for
each parameter sample, roughly corresponding to 100
complete cycles of the application. In the specific case
of the distributed state estimation application, the cycle
deadline is set to 60 seconds, which is equal to the period.
For each 5-tuple that parameterizes the model, maximum
and average end-to-end run times are recorded over model
execution.

4 UNCERTAINTY ANALYSIS

4.1 Influence of Concurrency Level and Number of
PMU Streams on End-to-End Runtime
Following data collection using Monte Carlo methods, we
proceed to polynomial regression analyses to account for
the effect and significance of the model parameters on the
maximum end-to-end delay. We define the variables to be
used in the regression analysis on Table 2.

The initial question addressed is the influence of the
middleware concurrency level and the maximum number

TABLE 2: Variables for Regression Analysis

Variable Explanation
x1 concurrency level
x2 max{PMUCount1,

PMUCount2,PMUCount3}
x3 number of iterations
y maximum end-to-end runtime
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TABLE 3: Polynomial Regression Coefficient Estimates

Coefficient Estimate Confidence Interval
Intercept 18.32 [14.73, 21.93]

x1 -6.9699 [-7.47, -6.46]
x2 0.14869 [0.13, 0.17]
x21 0.73883 [ 0.70, 0.78]
x1x2 -0.01544 [-0.02, -0.01]
x31 -0.02236 [-0.02, -0.02]

TABLE 4: Goodness of fit statistics for polynomial regression
analysis

SSE R2 RMSE AIC BIC
2519 0.968 1.784 3209 3251

of PMUs per area on the end-to-end delay. The polynomial
curve fitting expression given by (2) that uses x1 and x2
as independent variables and y as the dependent variable.
This method reveals that a bivariate polynomial regression
equation that is cubic in x1 and quadratic in x2 is the best-
fitting model in the studied set of polynomial fits. The best
fit is evaluated by the metrics of minimum Bayesian Infor-
mation Criterion (BIC), Akaike Information Criterion (AIC),
and sum-of-squares error (SSE), which were consistent on
the decision.

which are desired to be high, and the sum-of-squares
error (SSE) that should be minimized.

f(x1, x2) = p00 + p10x1 + p01x2 + p20x
2
1 + p22x1x2

+ p02x
2
2 + p30x

3
1 + p21x

2
1x2 + p12x1x

2
2 (2)

Table 3 presents the maximum-likelihood estimates of
the polynomial coefficients for the regression fit, together
with the confidence intervals for the coefficients. The p-
value, which indicates the false alarm probability for the
variable being estimated, is less than 10−6 for all the vari-
ables taken into account. This provides high confidence that
the regression model is accurate and avoids overfitting.

The goodness of fit metrics presented in Table 4 further
confirm that the variables chosen for Monte Carlo simula-
tion sufficiently relate to the trend in the run time distribu-
tion. The R2 value indicates that the independent variables
x1 and x2 account for explaining 96.8% of the observed data.
Moreover, the fit yields the optimal BIC among all bivariate
fits constrained to have at most third order dependence
to each parameter. Since AIC and BIC are goodness of fit
metrics that establish a trade-off between model accuracy
and complexity, considering both helps avoiding parameter
overfitting.

The regression analysis that best fits obtained simulated
outputs with the input data set is given in Figure 13 with
the 95% confidence bounds. The concurrency level of at
least 10 is necessary for the middleware to scale in handling
increasing number of PMUs. The response surface has linear
trend as the number of PMU increases, but remains planar
as the concurrency level increases. This indicates further in-
creasing the concurrency level would have marginal benefit.

Max PMU Count

Concurrency Level

M
ax

 R
un

tim
e 

(s
)

Fig. 13: Polynomial Regression Analysis of Significant
Monte Carlo Variables

4.2 Influence of Number of Iterations on End-to-End
Runtime
We continue uncertainty analysis on model parameters by
considering the impact of DSE iterations on end-to-end run
time. A scatter plot that demonstrates the Monte Carlo
results as a function of DSE iterations is given by Figure 14.
The additional polynomial regression analysis includes the
number of iterations (x3) as the third explanatory variable
candidate. The notation follows from the previous analysis.

The best fit is selected by evaluating the AIC and BIC
on a set of polynomial fits up to order 3 in each explana-
tory variable. AIC favors the model order of {3, 2, 2} and
BIC favors the model of order {3, 2, 3}, respectively, in
{x1, x2, x3}. The AIC-optimal polynomial fit is presented in
Table 5. The significant coefficient estimates are given with
confidence intervals centered around zero, and the higher-
order parameters are omitted from the result.

Comparison of Table 4 and Table 6 reveals that, incorpo-
rating x3 in the regression analysis has little improvement
on the overall fit. Moreover, the coefficient estimates given
in Table 5 that depend on x3 are either numerically insignif-
icant or have confidence bounds that intersect 0, suggesting
that the coefficient values most likely do not express a
significant explanatory relation to the observed variable y.
This result provides more confidence that the number of
iterations is a less significant variable that influences the
maximum run time of the distributed state estimation algo-
rithm, compared to the concurrency level and the maximum
number of PMU streams per area.

To explain the insignificance of number of iterations
in the analysis, we refer to the system model presented
in section 3.2. As only intermediate estimate data on tie-
line buses are exchanged, the data communication load
is only approximately 65K bytes per iteration. Even for a
larger scale power system such as the Western Electricity
Coordinating Council (WECC) with more than 1300 buses
and 6700 loads, the data exchange between neighboring
areas would remain to be a relatively small overhead and
would have little contribution to the end-to-end delay.

4.3 Evaluation of the Influence of Middleware Architec-
ture on Temporal and Resource Constraints
The previous uncertainty analysis considers a centralized
middleware architecture as opposed to a data-exchange
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Fig. 14: Impact of Iterations and Number of PMU Streams
on end-to-end Runtime

TABLE 5: Extended Polynomial Regression Coefficient Esti-
mates

Coefficient Estimate Confidence Interval
x1 12.2991 [7.82, 16.7761]
x2 -6.9866 [-7.49, -6.4822]
x3 0.1743 [0.15, 0.1997]
x21 0.6242 [0.21, 1.0379]
x1x2 0.7524 [0.72, 0.7884]
x22 -0.0162 [-0.02, -0.0145]
x1x3 0.0001 [0.00, 0.0001]
x2x3 -0.0065 [-0.03, 0.0185]
x23 -0.0019 [-0.00, -0.0003]
x31 -0.0091 [-0.02, 0.0064]
x21x2 -0.0225 [-0.02, -0.0214]

only middleware that enables reduced data transfer over
the network layer, at the expense of requiring additional
resources at the distributed computation end.

We initially address the temporal effects of adapt-
ing a centralized middleware architecture that performs
aggregate-and-dispatch versus a data-exchange only mid-
dleware, which requires distributed middleware compo-
nents to aggregate data locally at each node. Figure 15
presents a comparison of end-to-end delay under the two
alternative middleware architectures as a function of worst-
case middleware capacity, obtained for a PMU distribution
of {200,100,100} over the three areas. Note that the dis-
tributed middleware provides marginally lower mean and
worst-case latency, due to the avoided expense of central
aggregation. As middleware capacity is increased beyond
the point where any queuing occurs at middleware level
(for Thread Pool Size greater than 40), the two architectures
are observed to exhibit comparable latency behavior, as the

TABLE 6: Goodness of fit statistics for extended polynomial
regression analysis

SSE R2 RMSE AIC BIC
2093 0.974 1.63 3079 3163
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Fig. 15: End-to-end run time comparison of middleware
architectures with variable concurrency levels

overhead of data aggregation becomes comparable to the
noise level in the per-packet latency.

We would also like to investigate the data volume im-
posed by these two middleware architectures to the network
fabric. Since smart grid applications will likely be publishing
data at high rates and increased resolution, network will
soon become a scarce resource and data level optimizations
will gain importance. Note that the distributed middleware
only requires transfer of the PMU files from PDCs to lo-
cal middleware, after which the per-area state estimation
can be performed in a standalone fashion. On the other
hand, in the case of centralized middleware, PDC-to-MW
communication needs to be followed by MW-to-BA, as well
as peer-to-peer BA-to-BA intermediate communication until
convergence.

Figure 16 demonstrates the data volume exchanged un-
der the two aforementioned middleware topologies, as a
function of partitions within the middleware. It is important
to note that, for a coarse partitioning of the power grid,
where a large number of PMU streams are delegated to
a single area for reduced inter-area communication, a cen-
tralized aggregate-and-dispatch architecture requires lower
total data volume to be transferred over network fabrics,
despite the intermediate data needed until algorithm con-
vergence. The exchange-only distributed middleware archi-
tecture requires high volumes of network traffic, since each
area contains a large number of PMU files that need to
be shared with neighboring areas redundantly. As the grid
becomes finely partitioned, i.e., the number of grid areas are
increased, a distributed topology becomes more advanta-
geous, due to the intermediate data exchange overhead that
dominates data volume in the centralized case.

Figures 15 and 16 provide a well-defined basis for our
decision to utilize the centralized middleware architecture
for the uncertainty analysis provided in Section 4.

The demonstrated model-based design workflow, of
course, applies to a more general set of stream computing
frameworks, such as Apache Spark [20], and InfoSphere
Streams by IBM [21]. For analyzing alternative stream
processing frameworks within the context of smart grid
applications, the presented simulation framework can be
extended to issue service calls to the message queuing
service, and receive processed data in real-time. In fact,
Ptolemy II enables WebSocket based communication to ex-
ternal services [22], which alleviates the process of assessing
a large set of stream processing platforms.
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Fig. 16: Data exchange overhead imposed by middleware
architectures for variable grid partitions

5 RELATED WORK

The power industry has been evolving to incorporate elec-
tric distribution systems with redundant communication
networks, sensor nodes and controllers to form a data-
intensive framework, referred to as the “smart grid”. The
role of middleware in this service-oriented context, which
assembles heterogeneous services, becomes prominent due
to the data-oriented services that are provisioned to grow
exponentially in number [6]. Surveys on middleware de-
sign and architectures [6], [7] present the architecture pat-
terns, principles and existing middleware tools tailored for
transmission, distribution and control services. Quantitative
evaluation of middleware solutions in the smart grid, how-
ever, still demands additional consideration to facilitate the
architecture design of distributed power applications.

Current model-based evaluation methods use various
sets of probabilistic models. Markov chains, petri nets, queu-
ing networks, finite state automata, stochastic processes, de-
pendency graphs, and fault trees are widely-applied models
for evaluating quality attributes of reliability, performance,
safety, energy consumption. A comprehensive survey on the
topic is presented in [23].

These models are mathematically complex, and in gen-
eral, it is an involved task to derive quality metrics as a
function of input distributions. In our approach, we use
MC simulations to account for parametric uncertainty in the
middleware architecture, where the MC simulation is na-
tively composed with the executable DE application model.
Our contribution in this work is to present a highly reconfig-
urable simulation framework for evaluation of middleware-
centric distributed cyber-physical applications and to ac-
count for the feasibility of different middleware architec-
tures for a family of distributed state estimation applications
to be deployed in the future power grid.

One of the key challenges in smart grid application
design is the complexity and heterogeneity of hardware
and software components interacting in the grid. Model-
based design has proven to be an effective way of modeling
complex systems and has been applied in the context of
evaluation of attributes of the smart grid, including a model-
driven analysis framework for smart distribution networks
based on the Common Information Model (CIM) [24], and
for model-based CPES co-simulation [25].

Actor-oriented design tools has gained popularity for
modeling parts of CPES applications. Many examples of
actor-oriented tools exist, including Simulink R©, Ptolemy II
and NI LabView R©, some of which include native interfaces
to numerical computing environments such as MATLAB R©.
To our knowledge, Ptolemy II is one of the most flexi-
ble actor-oriented environment, which has been used for
CPES simulation by many previous studies, as outlined
in Section 1. Additionally, due to its capabilities including
aspect-oriented modeling [18], heterogeneous composition
of a large number of MoCs, as well as support for web
service implementations, Ptolemy II provides a standalone
framework that can be used as a comprehensive evaluation
platform.

6 CONCLUSION

In this paper, a model-based parametric approach for uncer-
tainty analysis of middleware service architectures for smart
grid applications has been presented. The DE models en-
compassed the entire data flow from sensors to application
nodes, being processed through network and middleware
fabrics. Using the Ptolemy II framework, we created an
integrated design environment that supports Monte Carlo
sampling of model parameters and subsequent execution
of the simulation model using the generated parameter set.
We have then carried out regression analysis to discover
significant model parameters and quantified their degree of
effect on the end-to-end run time.

The results show that for both middleware service archi-
tectures that have been evaluated, the maximum number of
PMU streams for each area and the middleware concurrency
level directly influence the maximum runtime of the end-
to-end process. Data exchange triggered by iterations until
convergence is a less effective parameter in determining the
empirical worst-case run time given that only intermediate
data are exchanged. This indicates that power applications
can benefit from scalable middleware services to support
monitoring and control applications with temporal require-
ments. It is key to communicate these results to power
engineers to help calibrate the scale and configuration of
distributed power applications for the future power grid
and to assess the need for extended scalability analyses
using a model-based design approach.
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