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MESON NUCLEON SCATTERING. I
R. J. Riddell, Jr., and B. D, Fried
Radiation Laboratory, Physics Department
University'of California, Berkeley, California
ABSTRACT

An approximatg quantum mechanical solution of the meson nucleon
B scattering problem for intermediate values of the coupling constant is presented.
The particular case treated here is that of éharged scalar mesons interacting
wiﬁh a static_nﬁcleono In fiﬁding the cross Section, attention is focused ﬁpon
the matrix elements of the field and isotopié spin opérators and on the equations
of motién, no attempt being made to calculate explicitly the scattering state
vector. It is shown that in both the weak and sﬁrong coupling 1limits the
procedure described here gives the scattering correctly. For intermediate
coupling the créss section must be found numerically. . Computations have been
'carried out for'sevefal_intermediate'values of -the coupling constant and the
results are presented in the.form of curves showing cross section vs. meson’
energy. Since certéin informationabout the one nucleon problem (i.e., one real
nucleon and no real.mesons) is needed for these célculations, a detailed
numerical solution of that pfoblem has been Carriedvout using the Tomonaga'
approximation. The relevant results of this work are presented in several
graphéo Although- it is not-avpart of the scaﬁteriﬁg problem, the calculation
of the isobar sépérétidn in the strong'coﬁpling limit.can be carried out so
easily by the methods of this papér that a brief account of it is also given,
In the appendix, a variational méthod of calculating the scattering state
“vector for intermediate coupling is describedo It is shown that this, howefer,

fails to give the correct strong coupling limit.
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MESON NUCLEON SCATTERING. I

R. J. Riddell, Jr. and B. D. Fried

1. Introduction

One of the most fundamental problems of meson field theory is the
task of giving a quantitatively satisfactory explanation of the increasingly
abundant and detailed experimental data on the scatterihg of pions by nucleons.
Since all qualitative'estimates of the meson-nucleon coupling indicate that
it is neither very large nor very small, it is imperative to develop a technique
for calculating the scattering cross section which is vaiid for intermediate
values of the coupling constant. Although it is clear that the problem must
eventually be treated in a compietely relativistic manner, using pseudoscalar
meson theory, to date this has proved so formidéble a task that a critical
examination of the intermediate coupling regién for the much simpler problem
of an infinitely heavy nucleon seems worthwhile. Even with this restriction
no exact solution for all values of the coupling has been found, and so we
must look for suitable approximations.

In this paper we shall study the question of meson scattering from
a fixed nucleon for intermediate values of the coupling constant, g. In
order to avoid the algebraic complications involved in treating both spin
and isotopic spiny; we shall firét discuss the simplest non—trivial case, the
charged scalar field, although the same methods can be used in the more
complicated cases~-e.g., the pseudoscalar, charge symmetric field, which
will be discussed in a subsequent paper.

The non-relativistic one-body problem (i.e., one real, fixed nucleon

and no real mesons) can be treated by Tomonaga's variational procedurel which

1 s, Tomonaga, Prog. of Theor. Phys. 2, 6 (1947).
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uses as trial function a state vector in which only a few meson states are
occupied (although no restriction.is placed on occupation numbers). The
crucial point in -the justification of this method is its validity in both
the weak and ‘strong coupling limits. The ansatz that all mesons are in-the
same spatial state is certainly correct if, as in the weak coupling case,
~the probability of having more than one meson is very small. That this same
approximation will also be successful for large values of the coupling constant -
is less obvious and a demonstration of the agreement beiween the strong coupling‘
1limit of the Toménaga approximation and the conventiohal strong coupling (soco)
theory2 is essential in any'attempt to make plausible the validity of the
Tomonaga ansatz for the intermediate coupling region. In his original paper1
on the subject, Tomonaga showed that his method does indeed give the correct
s.c. value for the isobar separation,

Going on to the two-body problem of one real mesoﬂ and one real nucleon,
‘ it seems natural té look for a consistent method of calculating the sgattering
cross section which shall satisfy the following three criterias
1° For small values of g the cross-section is the same as that

obtained from ordinary perturbation theory.
2° For large g the cross-section agrees'with the result of the
conventional strong coupling theoryzn

3 For intermediate values of g a numerical calculation of the

scattering cross—=section is feasible.

2 B
G. Wentzel, Helv. Phys. Acta 13, 269 (1940) 3 W, Pauli and S. M. Dancoff,

Phys. Rev, 62, 85 (1942); A. Kaufman, Phys. Rev. (to be published).
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The first requirement is satisfied by almost any reasonable procedure; -

*ahd”it‘is“quite easy to find some which also fulfil the third condition; since:
an approximate calculation--e.g., Tomonaga“s—nmay be used to supply such

1nformat10n about the one—body problem as 1s needed in the scattering calculation.

However, 1t 1s con31derably more dlfflcult to flnd a method which in addition

“gives the correct s.c. limit. It may'well happen, of course, that a procedure

which fulfils only two of the conditions will bé closer to the exact answer

in-the 1ntermed1ate coupllng reglon than one whlch satisfies all three° In

particular, our 1n51stence that condltlon 2 be satlsfled may seem unJustlfled

since from qualltatlye indications, such as the failure to detect stable

‘isobars, it appears that the actual valueée of g cahnot be lafge enough'to make

S.C. fheor&‘applicable;t Howeyef, it is equally certain thaﬁlg is not small
enough ﬁo justify the‘use of perturbation theofy and in the ebsence of evidence
to the contrary it seems reasonable to place more confldence in a method
vhich is correct in both the weak and strong coupllng llmltse

: In this paper we sha.ll de,scribe a pro’o_edure (i.e., a set of
epproximetiohs) for solﬁing'ﬁoe meson nucleoﬁ scatteriné problem which
saﬁisfies all three of these requirementsb Subsequent papers will deal with

the application of this same method to the scattering problem for pseudo-

“scalar mesons and with its extension to the case of non-static nucleons.

In section II we briefly discuss the Tomonaga solution of the one=body problem
inoluding some featufes Whichglto_our knowledge, have not been described

before. The solution of the scattering problem is described in section III,

and gfaphs showing the variation of do/df- with energy and coupling constant

are presentedo Section IV shows how the same techniques may be used to find

the s.c. isobar separetion° A general discussion of the method and results '

is given in section V..
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In appendix I a wariational approach to the scattering problem is
discus-sed° This method satisfies conditions lo and 30 but "gives only»order
of magnitude agreement with the s.c. result. Stili another way of finding
the‘écattqring has recently been proposed by Maki, Sato and.Tom‘onagaB° They“_
“have shoﬁn”that it satisfies requirements 10 and 30,.and state that with a

suitable modification the correct s.c. scattering can also be obtained.

Z. Maki, M. Sato and S. Tomonaga, Prog. of Theor. Phys. 9, 614 (1953).

We are indebted to Dr. T. Kinoshita for informing us of this work prior

to its publication.
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2. The One Body Problem in the Tomonaga Approximation

_'Initerms of momentum space annihilation operators A(E),‘B(k) for
positive and negative mesons, respectively; and the usual Pauli isotopic spin

matrices, 7, , the hamiltonian for the charged scalar field isé

H = S‘dg_ {A%(E) AGK) + B (k) B(k) - gR(k) [A(l_c__) T +BKT + coc.,]; ,
o (1)

where

R(k) = (—’(5)/7/240‘ ,
w =+

and e(k) is the Fourier transform of the nucleon source density e(z)

satisfying

i
-

. ‘
' Sd§ e (x)
- As usual, ' '

[A<_19,A’"’(5'>] = [B@)’B*(E')] - St (2)

and other commutators are zero. (We use units in which Fﬁ: c and//&
(meson mass) have the value one.)
To solve the 3Schrodinger equation HF = EF for a state of total charge

Q we introduce Tomonaga's ansatz

G. Wentzel, Quantum‘Theo;y of Fields, (Interscience Publishers, Inc.,

New York, 1949).
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n , -/n" (n+Q) -/n' (n+Q-1)1
(3)
where
a = jdg # (k) Ak) (4)

and b is defined similarly. The state vector N (or P) denotes the state:

"bare neutron (or proton) plus meson vacuum". The cnvm and @ . (which we
3 -

take to be real functions) are to be determined by minimizing <:F, H) F;>

subject to

{FIF) =1 and gd_lg l:¢.t (lf)]z = 1,

i.€.,
2
S{(FlﬁlF) - PLF|F> - -,&SQf-.}_j’;é_ = 0.
(5)
Since
(FIH|F> = (FIHT|F>, | (6)
with
B . ¥ aw,+b buy - [‘ﬁ(g+ a+ g_,. b)) + c,c.,]
(7)
and

, |
Sdl_gw¢+ ) g, :»ggdljfifét s
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the variation with respect to the n,m just leads to a simplified Schrodinger
equation,

HF - &F, (8)

which can be solved anlytically in the weak and str;ng coupling 1imits and -
numerically in the-intermediate coupling region. ‘(The‘Lagrange,multiplier D,
of céursé,‘is just & )

In carrying out the variation with respeqt to. ¢t it is convenient

to use the easily verified relation

+,

'S¢ F = Sdg .&z;, (k) A%(x) a]F | (9)
for the change in F produced by a small variation,

B 0 — 8, (0 + 84, ().
We then have, from (5),

. %, \ : ' .
Crlo-€ | £ aF>+ cco-7) 4 () = 0.

Usiﬁg the commutation relations (2) and noting that by‘(B) and (4)

MK F = af (0F, | (10)
we obtain

[(F la'*(H = EJ) a | F> ¢++ <F'w¢+ a* - gR'T__l 3F>+ chol.;})_"_¢ = 0.

As in (6), H can now be replaced by H so we find

.[N+ (w-w+)+M+g+ -,12'_] ¢+-gM+R-; 0, (11)
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with

N, = 4F|a*a\F>9
%[<F\a T;.‘F>+ceco] .

Since multiplying (11) by ﬂﬁ(k) and integrating gives 1&' = 0 , we have

]

finally

¢+(k) = gM+ e R(gn)
N o (W -+ ey /i)

or

*

809 = (a/m)[R00/ @ - 34)), | (2

where is given in terms of N, by the normalization requirement
+ g & +

on f#, ,

(‘gm/N,,)?' Sdk _E,ZL.IS;L_. = 1. | (13)
- (o - >l+)2 ,

A similar equation holds for g_ .

Npmerical calculations for ¢t and F have been carried out using
the IBM Card Programmed Computer at UCRL, Livermore, California. In Fig. 1
through Fig. 4 we have presented s&me of the results of this work. Curves
corresponding to the charge 2 isobar have been dotted for values of'g
below 8.66, where that state becomes unstable. Since it seems certain that
the total hamiltonian H has no stable bound states of charge 2 or higher, for
small g, we feel that the Tomonaga state vector F, has little physical
meaning in that region. For the same reason, the entire 63, curve is

dotted since Eé - Eal_;>/tb for all values of g which we Psedo
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"Actually, the scattering calculations to be described'in section III
'requife very little informatioh about £h¢ one-body problem., Besides the
isobar energy sebarations, we need only the matrix elements <;O |7; l _1;)
and <l | 7‘5 | l> (for ordinary scattering) and <l |,7_; |2 > and
<:2 l'r;.|3‘:>. (for charge exchange’scat’oering)° Since the variational
calculation of -the Tomonaga state described above is to be carried out anew"
for each-val#e gf the total charge Q of (3), g&_ and all quantities related

-

to the --’) s a, by HT, e,, N4 5 etc.--depend on Q and really ought to carry

p
a label Q which we have omitted in this section for simplicity. Because of
the charge éymmetry of the hamiltonian it is sufficient to solve the one-body

problem for Q > 1 since E,Q = 61=Q‘; --AQI= )1_Q;; 5

N. - 3 etec,

N 1-Q,F

Qt
Since we have used a static approximation for the micleon, it is
necessary to introduce a cut-off in all of the calculations. We have chosen

the one which seems most convenient for calculations:

e, x| <

i k°x
)= 1 | ax Plx) e 77 -
emn? ¢ | 0 , x| >

(14)

where M = 6°62/;L is the nucleon mass.
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3., Meson Scattering.

of the‘three“requirements“discuSsed"in'segtion I, the most difficult
to satisfy ‘seems to be that of agreement with s.c. theory. Thus, usinga
technique“reminiscént.of that theory, we shall work directly with the matrix -
elements of the field and isotopic spin operators in éolving the scattering-
problem. In contrast to the approach customary in perturbation theory, we.
- shall not attempt to calculate explicitly the relevant state vectors. The
latter contain more information than we actuallj require whereas tﬁe maffiX'v
elements are closely related to observable,qﬁahtiti‘es° For instance, suppose
that ‘\ Q‘:> 'ig the state vector of a physical'nucieon (Q = i for proton,
Q = 0 for neutron) while lI Q+ 1, p 1?:> repreéents é state of total charge
Q+ 1 in which a positive meson of momentum P is incident upon the_chargez.

Q nucleon. -(?t is to be emphasized that we mean these to be exact eigenétates-

. of the total hamiltonian: »
nle> = mle>  wlept> =g, lent) )
o ‘ - (15)

Then Q|A)|Qe+1, p+)> is asymptotically equal to the wave function

of the scattered positive meson, i.e.,

: , =3/2 ip-x ipr
(ol ettt ped—meM e T 4ke S
| (16)
: .. o 2 .
for r = |x |——7=KD, and 'q’I gives the scattering cross section. If.
the coupling is strong enough so that stable isobars of higher charge, e.g.;

Q=2 and Q = 3, exist; then charge exchange scattering may also occur for
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w = wp - Esz'ﬂ'” EQ>/4; . In a similar way we can then find the cross

section for that process from <Q +2 | B(:;:E) | Q+1, p +> ; which is

asymptotically the wave function.of the outgoing negative meson,

!

' ’ . ‘3 ' 2 .
Lot 2 ]300 [ah, 2 4Sn G g e T /oo
| (17)

where
1 12 2

In the following we need consider only the case where the incident meson is
positive since it follows from the charge symmetry of the hamiltonian that
TR = 1), ste

In order to find these matrix elements, we turn to the equations of °

motion. From the hamiltonian (1) we obtain the operator equations

N [H A] = -wAt+a&T, (18)
1B = -wB+RT. | (19)
-3 7;_ = g SdE R(A + B%) '}‘3 | (20)
_15; = 2ngER [(A*-l— 3)7;_ - (A+B) ‘)1] | (21)

together with corresponding relations for the Hermitian conjugate operators,
A*, B*, and ‘71 - In a matrix representation of these operators which

uses as basis a éompleﬁe set of energy eigenstates, these equations give rise
"to a set of coupled integral equations for the matrix elements. Of course,
in addition to the matrix elements (16) and (17), an infinite number of

others are included in this set.
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Since we cannot solve these coupled equations exactly; we shall introduce
the approximation of neglecting all but a few of the matrix elements involved.
We shall demonstrate that this procedure can be carried out in such .a way that
all of the‘requirements setvforth in section I are satisfied.

The basis of energy eigenstates will consist of the'following states:

| Q:> 7 nucleon iscobar of charge Q;

lQi—l, P4+ A~ positive meson of momentum p incident on a ;
- : T (22)
nucleon iscbar of charge Q;

|Q==l, £'=;>f\J negative meson of momentum P incident on a

nuclecon isobar of charge Q;

together with states similar to these representing two; three, ;;o incident
mesons. For small values of g, Q may assume only thé values O and 1. However,
when g is large, isobars of higher charge are stable and in that case Q must
aee allowed to take o; all integral values from Q, to 1 - Qm_where Qm is ﬁhe

largest’charge'for which

£
EQm-eEl .——/"b .
(In the extreme s.c. limit Q —>%° since By - Eq-1 1is of order g“za)

The approximations which we shall make are the following, in which

C represents any of the operators A, B,"I; s 73, etec.:

I. We neglect all matrix elements involving states with more than

one incident meson.

II. We set

{Qp 3 \C |Q9 EE j> S:jjv 8(2—2')4Q+1"C|Q't 1,

(23)
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where J, jﬂ are 4 or = and the upper sign is to be used
for J = -9vthe lower for Jj = +
III., We approximate one-body matrix elements by the values obtained

from the Tomonaga solution of the one-body problem

, ,
afela'> = Lrglelrg >, (24)
where FQ is the lowest charge Q eigenstate of the Tomonaga

hamiltonian,

T
HQ Fq = EQFQ i | (25)

In addition, the isobar energies,

= Lalufe> (26)

are approximated by the corresponding Tomonaga values £ .

Q

By actually computing the values of the matrix elements which have
been neglected, it can be shown; a posteriori, that the approximations I
and II are valid in both the weak and strong coupling limits. (That III
is correct in both limits follows from Tomonaga's worklo) In general, I
and II cofrespdnd to the aséumption that the‘physiéal nucleon is not
affected very much by the incident meson. The quantitative justification
of all three assumptions. for intermediate values of g can be accomplished
by an iterative procedure to be described‘in_a subsequeﬁt paper,

To solve the scattering problem, we may begin with the equation

for <o| alip +> . From (18) we find
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(w - ca%) <LQ| A Il EJ+':> = gR <:O ,‘I; Il E-+;>
(27)
since

EQB‘* = EQ;l‘f'Q%,

Solving (27) with the boundary condition indicated by (16) we obtain

<O|A(E)|1_E+> = §k-p+ g R(k) <O|7i.|lp.‘l'>_\,.
T w-a@ i -

(28) .

Thus, to compute the cross-section for ordinary 77’*, neutron scattering,
' 2

d67/dL = hﬂg%gR(g)<0|7:llg+>| > (29)

we need to know <:P ‘71_' 1 p.p;> . From (20), we have

Lol e s fanS Lolir sl Lolgheey,

where | §:> denotes ény eigenstate of H and the summation is over all
values of n. Invoking assumption I, we can reduce this to the much simpler

equation

ol Tlies> < efar ot Bize>

DI LI IEPS R
=t |

or, using assumption II,
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g | |reed = efan (O D W 1ew>
+<0|A+B*| 1g+><0v|73'0>}

(30)

In addition to the one~body matrix elements, which by assumption III are to
be considered as known, we have now introduced the new matrix eleﬁents
i 3 - . cre .
<:l I 73 Il pf+:> and <:O IB ' lp +-:> , 80 we continue writing equations
of motion until we have a closed set (number of equations équal to the number
of unknown matrix elements).
Before cafrying out this procedure in general, we shall consider the
two limiting caSes_(small >g and large g) in order to illustrate the’method

for simple casés and alSOatd demonstrate that conditions 1° and 2° are satisfied.

(a) Weak Coupling

‘In thls.case, the Tomonaga solutlon of the one-body problem (which
here c01n01des with ordlnary perturbation theory) tells us that <LO |A1—B , 1:>
is of order g while - <:9 ljﬁ; :> = 1+ C?Ygz) . LFurthermore, we have
from (19) | | |

<0Bllp+>» 40\ Tlre+>

w+wp | | (31)

S0 thatfif in (30)-we retain,onlyvthe terms of_lowest‘order in g we get

g‘éb <:$5 ,7;.l1 E,+£> - g j;dE R 0 lAI lp 1:>

or, using (28)
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CNY ree>s —enly o

where agaln terms of higher oder in g have been dropped Substituting (32)

into (29), we find for 7}/ + N —-}7+N the cross—section

aw/aft = g W, | (33)

L

in agreement with -perturbation theory . In a similar way we can show that

the cross—section for ZV*¥— Pe—)z}:F P is also given by (33).

(b) * Strong Coupling

When g is very large, the first term on the right side of (30) is-
larger by two orders of g than ﬁhe second term;, in contrast to the situation
forvweak coublingo To see this we note first that according to the Tomonaga
solﬁtion of the one-body problem (which is here the same as conventional
| s.c. theory to leading order in g ), 419 |7J \():> is of order g h,

6
wnile  {o|a+ 8| 1> is of order g (3. In addition, we shall see

. - ‘ *
that 41|7’3|1p+> is of order g~> while <0|A‘+B|lp+>
of order go, so the first term within the curly brackets of (30) is of order

L

g=2 while the second is of order g ‘. Then (30) becomes

| nRlre+d =j:§§ ando|a+s 15| Ty et

“r (34)

From (18) and (19) we find

5

These statements can also be obtained directly from the equations of motion

without recourse to the Tomonaga approximation--cf. section IV,

The a posteriori justification of assumptions concerning the relative
magnitude of various terms is characteristic of most s.c. calculations2o
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P> = fF[> - o [ R[>/

(35)
= 8 R/ZCA)
since the Tomonaga (or s.c.) solution of the one body problem gives7

gl <4 o

Then from (3&),_ v | .‘;' o ' .
llp+> EE R CAVALEED 72N |
| | (37)
Where o B ) N IR :
Kn = 5 dk"Rz/wn- coo T o (38)

Ev:.dently we' now need an equatlon for <l ‘ /r ‘l p+> From

(21) we. obtaln

v>-%<ll7'/3|lp+> :'_2g dkR{<l \ >< \A+B|1p+>
+<1’ , A+B|> <1,7’| >< lA+B llp+>

—<}V\w+><lh+8l>

(39)

where, as in the derlvatlon of (30), we have made use of assumptions I and

TII.  Although” (39) contalns several new matrlx elements 1t is qulte easy to

7

This cerresponds to.the_fact that for large g the physical nucleon involves
~a large number of bound mesons and it is equally likely for the_bare

nucleon to be either a proton or a neutron.
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express them all in_tems of <l l 73 I 1 p+> - and thus obtain the desired

closed set, Thus, from (19) we have

<2|B|1E+>.<‘U“wp+ E2~Eo) = gr{2 |7’=|12+> ,

which, with the boundary condition (17), gives

.<2|B|1£+> - g R — 42'7’_'12-[—>_°

w - va-}-Ez -E, -
(40)

In the s.c. limit where the isobar separation is of order g=2 this reduces to

Clslined = _8E L2 |7 rre>.
| w-wmre T

-Ww =1
F (k1)
In a similar fashion we find
. 2|A* 1'2+ = g R 2|7: 124-. , _
4 I > Bkt < I > (42)
Q‘B*llg.,. - gR O|7/|13+
> Wty < +» | > | (43)

where we have again neglected the isobar separations.

In calculating <1 I']_J/_I 2p -|-> from (20) we follow a procedure

slightly different from that which led to (30). Instead of writing

QlarOBlzae> -3 Gl Bl

)
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we can equally well use
<1‘(A+-B*)7’3lzg+> = Z < |7'3|n><n|A+B*|2E_+>;
n .

(45)

since the isotopic spin operators, 7Jv, certainly commute with the field
operators A and B. The form (45) has the advantage that upon applying
assumptions I and II we obtain on the right hand side no new matrix elements.

Thus, we find

~@q & |lzerd = e fur QR Glar ]y
HGI 12y oo >}

whlch, in consequence of the remarks preceeding (BA)( reduces to

&nfeey = - fan OrF Dy G T 2y

Clilzee> - g & Anlees

if we use (35)° In an entirely similar féshion we find the remaining

matrix elements

,<2 |—r_llg+> _ % <1 ”]’3,13.}_>

(47)

» .
Because of the charge symmetry of the hamiltonian, 4:9 'O:) = =<i,7§ ’l:}

i
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and : | | |
&|7-loet> = §f_‘f_1, o |7*3,1£+>0 e

Substltutlng (28), (35), (37), (41), (L42), (43), (46), (L7), and (1+8) into
(39) we find - ,

” pQ'7’3|lp+> "” 2g5d”{<1 Ir|z>2g h__a

CQP w cqp - i€

F QT reny R Gy (T
w, w _

Joeeog e

W - w -1
P

’ .
_¢& Kl R 7J
<l I 3' lg+>} ° v | (49)

p

Using the Tomonaga (or s.c.) one-body matrix elements7,

4'7’-l°> R R AL S R F AR
| (50)

we find

Gty - 04 .

2 L ]
wp ~hLg K [Klaii(wp)]
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or, in the s.c. limit,
Q| 7 p+> R<p> %y , (51)
2g Kl[l(w)-ZKl]
where
, 2 2 | ,
I(x) = Sag 2B W :de_lg €w . 62
&f - x° - i€ J L '

cz? - x2 - i€

For our choice (14) of -@ ., this becomes

-i(cap)' = _1__[M+E 1c$g"M-p+ 7/115] - (53)

Although I(cd ) dlverges for M‘-—9°0 the denomlnator of (51) remains

finite since

Kl'= 12 [.M'-tan'lM] . : (54)
'Y i .

Thus, with

I(w3) = I(wp) -6 5 . f’ W@ (5w
S ' @ (k -p -:,_15 ) ' ' ,
w_eAfi'r'xd‘ o

() e LEE . 60
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For M finite,
QWTH12+>

and so

]

L
%)M%ﬁ%ﬂ%q , -

(1 ' '7’3 |'1 ‘E+>~M:;w 27/"(% R(B), [g?’,.xl (/“’."'i‘p) ]"’1 .

(58)

Now we are in a position to calculate the desired scattering cross-
sections. From (29) and (58) we find for the ordinary ;7ﬂ# , neutron

cross-section:

- 2 -1

do/d = (hew ) . | - (59)
Moreover, comparing (37) and (L7) we see that -

PR AT B P R A LN

and so it follows from (41) that the cross-section for charge exchange

7?/1L, néutron scattering is also given by (59). Bbth bf_these results are
in agreement with éocoytheory, as are the other croés~sections ( Z?ﬂ‘on proton)
which can easily be found in the same way.
We have now demonstrated that our approximations I, II and III lead
to results for méson scattering which agree ﬁith Bofh the perturbation and
S. C. theories in the appropriate limits. The geﬁeral nature of our procedure
should by now be fairly clear, so we shall simply outline the derivation of

the formulas for the cross-sections in the general case (g arbitrary).
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(c) General Case

In contrast to our procedure in (a) and (b), we must”eow retain in
our equations all matrix elemehﬁs which remain after assﬁmptions I and IT -
have been invoked. For instance, both of the terms on the right side of
(30) must be retained for, as we have seen, one is important for small g, the
other for large g, and we may expeet'them to be of comparable magnitude in
the intermediate coupling region. In addition, assumption III now assumes
its full importance, for while the necessary one-body maﬁrix element s—-
A [2d Gl &lnled = Clns) -
can be found analytically in the weak and Strong couplihg limits, for
intermediate values of g they must be computed numerically from some solution
(e.g., Tomonaga's)'of the one-body problem.

. Except for these two points; the developmeht proceeds in a manner
very similar to that in (b)., Since a few more matrix elements are involved,
the elgebra is somewhat more complicated,'bﬁt the extra effort is not wasted,
If we begin by looking fof the matrix elements which describe the scattering
of the 7Y”Eon neutron, then we find that the closed set automatically
1ncludes the matrix elements needed for the ordlnary scattering of 7f+ on
protono

It appears expeditioﬁs to solve for the A and B matrix elements,
as in (28) and (40), thereby eliminating them from the equations. We are
then left with algebraic equations for the ’7’ matrix elements. To find
the cross-sections we need four of theses: <:O l];_' 1 p~r;>

<2
scattering, <1|'74,|22+> <3|’]’ '2p+> forthe”

proton scattering. By using equations like (30), these may be expressed

| 1 p4i> for the ZV , neutron ordlnary and charge exchange
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in terms of | <1| ‘r , 1 ‘p..'.> (Actually, <3 '7" ,2 p+> involves
<2 lTBl 2 p+> but thls, also, can be expressed in terms of <l I 7’3 ll p-'>

2 2pk = I(0 40,7|1> .1 1§ |

(60)

where
- E2 - El °

We obtain (60) by using, for instance, an equation like (30) for
<l | v l 2 p+.> o) Substituting these into (39) we obtain

CITlrzey = -2em <om|1>{2<1|73|1>
;[I(‘f)p) () ]1—1} g-w +2 ¢* 1(0) <o|7’|1>,
Do (u)p) D+(wp)

10 - Hey) +2g°{I(A)\<l|T|
-D+((%) .D (“)p) »

21)

- ' —l .
e I(A) - I(wl2) R ‘ (61_)
D_ (@ Dy (&) ,) _

where -
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xte Ix) L1 |T5]1>

wp-f- EQ - EQY ) (62)

(o]
|+
—~~
»
—~—
LI}

£

0  for g such that A » 1

1 for g such that A L1 .

Knowing (61) we can compute the 7'.’t matrix elements and from these find
t'he' scattering cross-sections using equations like (29).

In Figs. 5 through 8 the results of these ca.lcu_lations are presented
in the form of curves showing dG=/df (in units (‘h//a,c)z) vs. « for
several values of g, A semi-~log plot has been used so that all curves could
be drawn to the same scale. In Figs, 5 and 7, the ordinary ﬂf,: neutron .and
_ /)’7‘_, proton cross-sections are given for g=1,2, 3, and 5.25. The cross-
sections for higher g values are given i_r{ Figs. '6 and 8, Accorvding to the
Tomonaga solution of the one body problem, the charge 2 isobar is stable for
g > 8066‘ (cf; Fig. 2). Thus, the 7);’-, neutron charge exchange cross-
sections are also shown for g = 10.5 and g = 15, (Since the charge 3 isobar
is not stable for the range of coupling constants which we used, the 77’1-,
proton chargé ;axchange scattering is not considered.) For g = 5.25, 7.46,
10.5, and 15 the one body matrix elements needed in the scattering calculation
(Lo 7;' 1>, Ko |7’3|o> - =<1|’7'3, 1Y, and (T 2>

have been found from a riumerical solution of the Tomonaga problem as described

in section 2. These were also used to draw the curves of Fig. 1, the matrix
elements for other choices of g then being obtained from Fig. 1. As explained

in section 5, all of these éroésmsection curves should be taken seriously only

below the meson production threshold, < < 2,
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L., The S.C. Isobar Separation

It is of interest to note that once the matrix elements for the
scattering cross—section have been found the isobar separation can be
determined by similar techniques. Here we shall carry this through for the

s.c, limit where an analytic solution is possible., From (20) we obtain

Lo-1 |7 |ad>Ee; -5y = ngER{<Q=l|A+B*‘Q>

YLD > gdg (a-1|at8lapidans |T3|Q>}
£ , o )
(63)

or, using the other order for (A.+—B*)‘}§ B

| ’<Q=—l‘|74}. |Q> (Bq., - Eg) ;,g‘Yd&R {<Q-ll’743,Q-l>

% ‘ ’ . N \
'<Q’-'== 1| s+ |Q>+_ E Sdp@«w 1\7'3 ‘Q=1» P 3>@‘192 J [“’B' I.Q>°
o Ex |
(64)
If the scattering problem has been solved, then the only unknowns are the

isobar separation and the one=body matrix elements. Now7

<Q-ll"7;_|Q'> = 5

so using (18) and (19)

{o- l"A|Q> - <Q‘.==1,B*,Q>* = £E 4 6’(;1)
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However, the s.c. limit for 'Z;Q'I'Tgl Q‘>> is of much higher order in
(1/g) ahd cannot be:pbtained from-suqh simple considerationso We calculate
it along with the isobar sepéraﬁion in.tﬁe following way: |
(1) Set Q= 1 in (63). Since E; = E,, the left side is zero and
we can solve for <l| 7-'3 I 1> ;

(i1) Equate the right hand sides of (63) and (6L) and solve for

L7 lay - (a-1]|7le-1>.
(iii) From (i) and (ii) compute <:Q I 73' Q;} .
(iv) From (63) and (iii) éomputé EQ - Eq1 - .
In carrying this out one must be careful to use for the scattering
matrix elements the result obtained before letting M —»e0 ;, since in (63)
and (64) p ranges from O to M, For instance, we must use (57) for
(l |7'3|l£+> and not the M =% form (58). The limit M ~—pe0 must
be taken ohly gﬁ&g{ the integrations in (63) and (64) have been performed.

The result of step (i) is

| -1
& |75 11> = ~(g" ‘Kl)ﬂljdg 0°(r) [2“’: ,J(“’p) lz]
| - (65)

where J(CCb) is defined by (55). The integral (65) has been evaluated

by A. Kaufman>. Using his result we have

S -1 - _ ' -1
Q> = e l:l/K3 - 1/2 Wﬂim*“ & 1 )

(66)
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From (ii) and (iii) we then find
: | L -1 :
o|T5]e)> = -2Q%e KKy (67)
so that -
By - Bga = (@- 1)/6% K | (68)
and |

.2
By, = (Q- H /& Ky + const.

. . 2
which is in agreement with conventional s.c. theory .
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5, Discussion of Method and Results

In the preceding sections wé have seen that our approximate method
of solving the matrix equations of motion is correct in both the weak and
strong coupling limits. To establish its validity in the intermediate region,
the approximations of section 3 could be investigated by an iterative procedure
in which one-body matrix elements and those of the form <:Q IC ,Q“, pJs g’j’))
or (Q, Ejl Cl Q5 2“j"> are calculated from the equations of motion,
using for <Q ’ Cl Q! P.j> s, ete. the values found previously. Since the
latter are only known numerically in the intermediate region, this calculation
is fairly complicated and will be discussed in a subsequent papef°

In some respects our pfocedure resembles the Tamm-Dancoff approximation,
since states with more than one incident meson are neglected. However, the
total number of mesons allowed is considerably iarger than in most Tamm-Dancoff
calculations for no limitation is placed on the number of mesons bound to the
nucleon. Any such restriction would, in fact, preclude agreement with s.c.
theory where the average number of bound mesons is approximately g2K2/2 .

As can be seen from Figs. 5 through 8, the shape of the cross-section
vs, energy curves for intermediate values of g is quite different from the
d§r7a.fl; OG. l/Zﬁe which characterizes the two limiting cases. The ordinate
in these curves is actually the le*.fz or lc*' I 2 of (16) or (17).
These give the scattering cross-section when the energy is below the threshold
for meson production; but when QD) 2 the meson production must be taken
into ac;:ourito Althoﬁgh this will be left for a subsequent paper, we have
here carried the calculations beyond & = 2 to facilitate a discussion
of the variation with g. For g = 2 thé ZV#; proton_curve has a small peak

which moves to the right as g increases. When g = 7.46 this peak is centered
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at W - 4.25 and has become very sharp and extremely large. For higher g
values the peak decreases in height and moves back towards < = 1. The
77#: neutron ordinary scattering curves behave in a similar fashion, while
the charge exchange cross-section in the region of interest. (1 <:<43’<: 2)
~is characterized by a very sharp rise from the threshold.
The essential test of any theory--comparison with experiment--cannot
bé applied to our results since we have used scalar mesons. Nevertheless,
it would perhaps be desirable to "explain" the qualitative nature of the
curves, e.g., in terms of resdnance with a virtual isobar level. Even this
proves difficult since as g increases from 2 t6‘8°66 (where the charge 2 isobar
becomes stable) the peak in the d¢~/d- vs., & curve moves to the ri ht ,
while we would expect that the excitation energy of a virtual isobar should
decrease as g increases. As yet we have not found a simple "explanatioﬁ" for
the variation of (dg~/dfL) with ¢ and g in terms of properties of the
single nucleon, Since the scattering,problem féf intermediate valuves of g
has not been extensively studied heretofore, it is difficult to say whether
our results are "reésonable"o_ This question will be resolved;, however, by a
comparison of the experimental pion, nucleon scattering data with the
results of the calculations for pseudoscalar mesons which are now in progress.
One of the most unpleasant consequences of our static approximation
for the nucleon is the necessity for a cut-off. Since this cannot be avoided
" in a non-relativistic treatment, we can simply hope that it is not very
important for the Low energy mesons. To verify this, we intend to repeat some
of the above calculations using a different choice for the cut-off. Mdreover,
a generalization of the methods described in this paper to include reéoil

and relativistic effects is now being investigated. If a renormalization
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procedure can be found, it will be possible to eliminate the cut-off
altogether. In this connection, it may be ndted that-even in its present,
‘static form this maﬁrix formulation has the advantage that only energy
differences, and not the energies themselves, appear in the quations.

We wish to express our very sincere appreciation to Mr. James Baker
and Mrs. Joan Lafon_for their exceilent Cdmputational work on both the
scattering and the one body problem, and to Messrs. Robert Oeder and
Lawrence Lasnik who carried out the solution for the one body state vectors
on the IBM Card Programmed Calculator at UCRL, Livermore. We are also
indebted to Dr. J. Lepore for many interesting discussions of the Tomonaga

approximation and the strong coupling theory.
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Appendix I, Variational Calculation of Meson Scattering.

The problem of meson scattéring can also be treated by a modification

of the Hulthén variational principle9’ loo For the state vector describing

the scattering of a positive meson of initial momentum p by a proton we

make the ansatgz |
W = w13+ 3>+-¥l]2>; (x.1)

where IQ;> is again the state vector corresponding to the nucleon isobar

of charge Q. The scattering operators ag and b, are defined by

(a7 Ak)
- e
s Sdl-‘ 7&(5)'3(5) 5

where ;a:'(E) is the Fourier transform of a function which for large r

®
1"

(4.2)

o
H

has the form of an incident plane wave plus an outgoing scattered wave,

while ‘;(_ is asymptotically just a scattered wave; viz.

- i po i
X+(§) f—-é(zi) & l:elgf +X e p‘r/g ] s

- (4.3)

X o P e

Hulthén, Kungl, Fysio, Sallskapets Lund Forhand. 14 (1944), 1.

10 :
This approach has been used by R. Christian and T. D. Lee in their

~work on the Tomonaga approximation (to be published).
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The functions ;{+ and the constant )7 are to be determined by making

41}) l E-H ' )7[/> stationary, with

E = B +w, = El"f‘-/.pz_"-/@‘. )

Before carrying out this vafiation, we shall make a few remarks
concerning the choice df'the ansatz (A,1). The firs£ term in (A.1)
Qorrespohds to the ordinafy 77’f-,‘proton scaﬁtering while the second term
takes account of the charge_exchange scattering which can occur when the
coupling.is sufficiently strong. (Since.we are primarily interested in the
S.c. limit fér this method we shall consider first the case in which g is
';arge enough to make the Q = 2 and Q = 3 isdbarsrstable.) The role of the
third tgrm ¢an be‘appfeciated if ‘the variation with réspect tb "? is
'vcdrfied out; We dbtéin'. | A |

8\1* & ll})> = 0
whichishowsfthaﬁ tﬁe value of Wl éimply makes.‘HV orthogonal to 1}2 s

R

B The impdfﬁanéé'ofvinciudihg'£his'term.maj be ﬂndérétéod from the fOIIOWing:

| . 1°. The scéﬁtering problem for é neutraliscalar field, which is
closely reléﬁednib the spc; limit of charged'theofy,»may be treated by an
‘ansatz analogous to (A.1l). * (Of course, it can'aIS§‘bé solved exactly.)
If‘é'térm corresponding to the \\, 2;> of (Aoi) ié included, the correct
answer, dG“/d.ﬂ— = O, is obtained. However, if this term is omitted,

the cross-section is no longer gzero. Instead, we find
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-2

(as/asy - |u{/n’ - (/) 108 (b4 W)/ gt 241

neu+_ (4.6)

2. As shown below, the charged meson écattering may be calculated
by approximating the IQ> - in (A.1) by the corresponding Tomonaga state
vector, FQo If we consider the s.c. limit of the HT problem and retain
only the leading order terms in g, then we obtain dg~/dan- = 0, indicating
that higher order‘ corrections to the Tomonaga state vector must be considered.
If, however, the rl,2> term is omitted, then the cross—-éection turns out

to be just 1/4 of (dg-/d.n-) which does not agree with the correct

neutral _
s.c. result (59). This discrepancy has been pointed out by Christian and Lee
~ In this case it is ciear that higher order corrections to the Tomonaga
approximation could not remove this lack of agreement ,

-A final point concernihg the ansatz (A.l) is that we shall consider
only the case /Lg_é-_c% < 2/(,4,0. At higher energies, addiﬁional term;

would of course be needed in (A.1l) to take account of meson production, etc,

Returning now to the variationél problein

A 8<V|E-H I‘()l)> ;.O

¥
we see that variation with respect to X.'_ gives

Sdli 8)&&) <1'| A(x) [E - H] |1’)> - o.
Commuting A(E) with (E - H) and taking account of (15) and (A.4) we find

@, 41|A(5) l"P> <l|w {;Qg)ég 74’, B(g)l\})> -0
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r‘which by manipulations simi]..ar.'_torthose‘ used in section 2; can be reduced to
@, - ¢>7c++'<wp - _w){ (ala mlnd ot _(79 he
.+<Fl,b;'i ;3|-F3> ‘”3*5, A-f- N éFlI "2 |F2> ¢2+}
SR (ORI SN PIN AN P
+ \1<F1|7+|'F2>;} % ‘

(A.7)

where, according to (A.5),

Tl g e <l ]

(4.8)

_Here we héve made'the appréximatibh of replaéiﬁg | LQ:>- by the corresponding
eigenstate, FQ, of  Hg ; The integral_equation.fér ;{;' can be obtained
from (A°7) by the substiﬁutions |

| a &b

163 (in all subscripts)

wey - Ay

where "QiB = E3 - Elo
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These coupled integral equations for :X;_ and ;X; can be solved
once the Tomonaga matrix elements appearing in (A.7) and (A.8) are known.
Using Tomonaga'’s s.c. solutionl of (8); we have evaluated these matrix
elements in the s.c, 1limit. Table I shows the leading term; and also the
first (i.e., l/gz)-correction thereto, for all of the relevant matrix
elements. (The >ﬁ+ calculated from (13), which are also listed for
convenience, agree with the.expressions given by Tomonagal, who obtained
them in a somewhat different way.)

From Table I, we see at once that the right side of (A.7) contains

terms of order gz, go, oo o However, upon-substituting the various

matrix elements into (A.7) we find that all terms of order g2 cancel., Without

the g=2 corrections to the matrix elements there would be no scattering.

(As pointed out above, this cancellation does not occur if the Yl|2j>
term is omitted from (A.1l).) With the aid of equation (12) and Table I we

obtain’

(@=- )X ) = ~w-cwtd) ) ® = 5K

w{[_l_-prxh" “p

heo [[K3 0 2k5)° 2K

(A.9)

where
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Since we are concerned with terms of order Vgo 5 we may drop ‘A13 which is
of order g.,,z_o Taking the sum and difference of the 7{}_ and )( equations

we find two elementary, uncoupled equations

(e - prX, + 7[3.):‘ = 0 (4.10)

(o - c%))[ = 2J] | (A.11)
According to (A.10)

X0+ XW = §k-p

i.e., 7(+ and (- 7[,3) can differ only by a plane wave so that the direct
and charge exchange scattering cross-sections are equal, in agreement with

s.c. theory. From (A.11) it is easy to obtain a solution of the form.

X® = §k-p)-___f(w) ; (4.12)

- W - Wp - ik
where _f(u)) " can be fouﬁd explicitly by solving a pair of algebraic equations.
In the 1limit of a point source, e(z)—> S (5) s the scattering amplitude
f(o.)p) has the value '

2 =2 -1

= @Y
flewy) [R(;g)] 2 [Kg-t-C( 2) 5

where

y

= (h7f2' wi)-l[% - p log [(p + va)//z]j + 77/}/2 + 71 p]

(4,13)
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Consequently, both the ordinary and charge exchange‘crossfsections have the

value
=2

do/da = “p + %;p - p log P +a, + Wt + ip -
. 2 ,

7 M

i
2}

(A.14)

In Fig. we have plotted the s.c, limt of do~/d#.- as a function

of incident meson energy° The solid curve is the correct s.c. result, (59).
The éne below it represents equation (A.1l4) which is seen to be correct only
in order of magnitﬁde, Lest we be tempted to accept this as a partial
fulfillment of condition 2° of the ihtrodUCtiong we have plotted in Fig.
alsc %(dcr/d.!\.)neutral as given by (A.6), i.e., the result obtained by
omitting the Yl|2;>v term from the ansatz (A.1l). It seems to us that
this spurious neutral scalar cross-section has very little to do with the.
actual charged scalar problem and yet it,‘too, shows what might be called
order of magnitude agreement with the correct'chérged scalar s.c. result.
We conclude from this that nothing less than exact agreement with the s.c.
answer can be accepted as fulfillment of condition 20°

* Finally, in the weak coupling limit the isobars of chargé 2 and 3
do not ex1st so that no question concerning the Yl' :> term arises.

The ansatz (A.l) then simplifies to

)U - ag I 1;> , (A.15)

and an analysis like that which led to (21) gives

(), - w) [7('1— Ny ¢1.,.S)(+ ¢1+] + g R M, J)(*_ g, = O

(4.16)
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As Christian and LeelO have shbwn9 the cross section obtained from (A.16) for
small g agrees with that given by ordinary.perturbation theory, so that
condiéion 1° is satisfied. For intermediate values of g the cross~section can
be found numerically by using for the various Tomonaéavmatrix elements required
~in (A.7) or (A.16) the values computed from a mimerical solution of the one-
body problem, and so this method also satisfies condition 3°,

So far we have discussed only the ﬂ/*-, proton scattering. However,
the problem of Zfﬁk s neutron can be treated in an exactiy analogous fashion,

The appropriate ansatz there is

yu = ‘a: O:>~+-Lb: \ ?:>'+'Y1' \ 1'>>
for large g or

A D N

1y .
for small g. In this case, the Yl ll;) term should be included for all

 values of g, since l %>. (real proton) and ‘(;} (real neutron) are

. S ) o
always stable. Again, conditions 1 and 3o are satisfied but not 2 .
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TABLE I

1]

1
A

v2 [l—ZQv‘"z]

Lv [1?\—(@ - %)v“’z]

£

% v ‘{i'- Q- %)V'z]

1 v3(1 +v ) exp(L v5)

% v(1l +v-2)_exp(% L v_z)

DI

T [t(Q_ - %) -K K3(x2)”2]/g21<3'

-2
1 - Ky Ky (Kg)

. jdg (k) o™

g(Kz)é {1 + 8-2 [1 - K1K3(Ké)-2] (Kz)ul}

v? ,[1-,1— 2(Q -, 1)v=»2‘:|h o :

v(l+ 2 v”z_) exp(: L §;2)

UCRL=-2341
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FIGURE CAPTION

Matrix elements of the cne-body problem computed from the Tomonaga
approximation.
Nucleon iscbar energies computed from the Tomonaga approximationo

The charge 2 isobar is stable for g > 8.66.

)f- vs., g for the isobars of charge 1 and charge 2 in the

Tomonaga approximation as computed from (13).

Average number of positive and negative bound mesons in the meson

cloud surrounding the charge 1 and 2 nucleon isobars.

, : 7
Cross section vs. total energy for Z/ s neutron scattering with
g =1, 2, 3, and 5.25. The result of lowest order perturbation

theory for g = 1L is also shown for comparisono

Cross section vs. total energy for 77’+-, neutron scattering with

g = 7.46, 10.5 and 15, The charge exchange cross section for the
latter two coupling constants is denoted by (ex.). The s.c. theory

result is also inecluded,

Cross section vs. total energy for 77”: proton scattering with
g =1, 2, 3, and 5.75. The result of lowest order perturbation

theory for g = 1 is also shown for comparison.

Cross section vs. total energy for 77/7h s proton scattering with

gz 7T.46;, 10,5 and 15. The s.c., theory result is also included.



Figure 9.

UCRL~-2341

-L3=

S.c, limit of the variational scattering calculation desériﬁéd in
Appendix I. The lower curve is a plot of (A.14) while the upper
curve shows the result obtained if the 17' 2:> term is omitted
from the ansatz (A.1). The s.c. theory2 cross section is also

shown for comparison.



0.0
0

<l |t+|2>////
—

—

CIE M

olts|0p

S.C. LIMIT

Fig.

MU-6617



MU-6618

9
Fig. 2

°3

-0}

_|5_

—20



o

MU-6619

F’ig.i3



Fig. 4

MU-6620




050

0.10

005

001

'0.005

O.OOII

MU-6622

Fig. 5



.00

050

0.10

005

0.0l

0.005-

0.002 |

MU-6623

Fig. 6



050

0.10

005

001

0005

0.001 I

g=3

(g=1)

PERTURBATION THEORY.

6

MU-6624

Fig. 7



1.00

050

0.10

0.05

0.01

0.005 i

-1

-

=

' 0.002'

MU-6625

Fig. 8



03

0.2

0.l

00

“r

VARIATIONAL CALCULATION
WITH 7g]2)
WITHOUT 7 ]2)

CORRECT S.C. CROSS SECTION

MU-6621

Fig. 9






