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Research and Applications
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ABSTRACT
Objectives: Tertiary and quaternary (TQ) care refers to complex cases requiring highly specialized health services. Our study aimed to compare
the ability of a natural language processing (NLP) model to an existing human workflow in predictively identifying TQ cases for transfer requests
to an academic health center.

Materials and methods: Data on interhospital transfers were queried from the electronic health record for the 6-month period from July 1, 2020
to December 31, 2020. The NLP model was allowed to generate predictions on the same cases as the human predictive workflow during the
study period. These predictions were then retrospectively compared to the true TQ outcomes.

Results: There were 1895 transfer cases labeled by both the human predictive workflow and the NLP model, all of which had retrospective con-
firmation of the true TQ label. The NLP model receiver operating characteristic curve had an area under the curve of 0.91. Using a model probabil-
ity threshold of �0.3 to be considered TQ positive, accuracy was 81.5% for the NLP model versus 80.3% for the human predictions (P¼ .198)
while sensitivity was 83.6% versus 67.7% (P<.001).

Discussion: The NLP model was as accurate as the human workflow but significantly more sensitive. This translated to 15.9% more TQ cases
identified by the NLP model.

Conclusion: Integrating an NLP model into existing workflows as automated decision support could translate to more TQ cases identified at the
onset of the transfer process.

LAY SUMMARY
Selection and triaging of patients who are under consideration for interhospital transfer present a challenge. Transfer teams responsible for the
intake of patients and determination of patient complexity rely on very little information to classify the level of care these patients may require. The
accurate and timely identification of tertiary and quaternary (TQ) patients, who often require highly specialized services and procedures in intensive
care units, is of vital importance for both patients, who benefit from receiving appropriate level of care and access to needed services faster; and
for hospitals, where more accurate triage allows for improved resource allotment. At our institution, this process was previously dependent solely
on human judgment, that of the transfer team. In this study, we utilized natural language processing and an ensemble neural network to predict TQ
status of potential interhospital transfers. The model exhibited accuracy on par with human predictions and sensitivity (recall) statistically signifi-
cantly better than human predictions. This should translate to improved workflow efficiency and an increase in identified TQ cases.

Key words: natural language processing; machine learning; decision support systems; clinical; computer-assisted decision making

Introduction

Artificial intelligence (AI) has garnered attention for a wide
range of potential applications in healthcare.1–4 There is
ample excitement for the future of AI, but there are relatively
few examples of AI being implemented and studied in opera-
tional workflows for health systems.5,6 Indeed, there is

increasing interest in utilizing the predictive ability of AI for
operational improvement in healthcare, an area ripe for
exploration and study.6–8 Furthermore, the promise of an AI
intervention that offers automated decision support appeals
to many health leaders who plan to implement AI in some
way in the near future.8–10 One such use case is the challenge
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of identifying TQ cases in need of transfer to academic health
centers (AHCs).

The definition and the problem of identifying TQ

Tertiary care is a designation for specialized medical services
not widely available in the community, while quaternary care
represents an extension of tertiary care that includes highly
specialized services, such as experimental medicine and/or
uncommon diagnostic or surgical procedures.11–13 As an
AHC, it is within the scope of the organizational mission to
provide and target resources for TQ services.14 TQ cases are
typically medically complex and require substantial institu-
tional resources.15 There is an intricate mix of quality, patient
safety, financials costs, and potential reimbursement that
incentivizes AHCs to focus on TQ cases.16–19

AHCs are typically regional hubs for escalating care in
complex TQ cases, and the resource constraints associated
with interhospital transfer to these limited capacity facilities is
a high priority issue.20,21 Increased wait times for transfer can
result in canceled referrals and are associated with poorer out-
comes, making early identification and prioritization vital.22

The health system transfer center at the University of Califor-
nia, Los Angeles is a centralized department responsible for
administering interhospital transfer referral requests from var-
ious regional hospitals to our AHC. With ever increasing
demand for patient beds and finite capacity, there is an impe-
tus to improve the identification and prioritization of TQ
cases requested for transfer. However, there is no consistent,
accurate way to predictively identify TQ patients when ini-
tially referred. Currently, a manual workflow involving the
judgment of transfer center staff is used to predict TQ cases,
and there is no requirement to record a prediction, which
leaves some cases unlabeled. This potential for bias in user-
dependent predictive TQ labeling was the primary reason that
operational leaders at our institution sought an automated
decision support tool to provide early TQ identification and
prioritization as an adjunct to the existing human workflow.

Transfer center workflow: the opportunity for

automation

The transfer process begins with an interhospital request to
the transfer center. Intake is recorded by a transfer center staff
member entering information about the case into the elec-
tronic health record (EHR—vendor Epic) via a transfer center
specific navigator (Figure 1). This information includes a free

text box filled in with the diagnosis (eg, transplant), among
other things, as well as 4 discrete data fields of interest entered
on the initial request.

The transfer center staff, composed of all registered nurses,
are then tasked with prospectively evaluating incoming trans-
fer cases and flagging a case as “TQ” (called an FYI flag)
when appropriate, a designation that persists in the patient
encounter record. However, entering this flag is not a manda-
tory component of the workflow, and staff may forget to
complete this step. Of note, there is no “non-TQ” workflow
in which a “non-TQ” label is entered, as this would add time
burden while not ultimately impacting operational or clinical
decisions. Clinical obligations of the transfer center staff
beyond triaging include continued follow-up on patient stabil-
ity for transfer.

When cases have been medically and financially cleared,
the patient placement team prioritizes cases for admission and
bed placement. The TQ flag is used at this point in the work-
flow and is available as a decision aid to help identify which
cases to prioritize. The TQ flag is displayed on a central
screen showing an EHR dashboard called the TC (transfer
center) Log (Figure 2).

The project team performed workflow analysis to assess
where the display of the natural language processing (NLP)
model output would have maximum utility yet minimal dis-
ruption to current workflows. Two potential integration
points were identified: (1) immediately after the initial intake
workflow for transfer requests in the transfer center navigator
and (2) on the TC Log in the transfer center central command
for patient placement staff to see.

Objective

The organizational goal for this NLP project was to create a
consistent, reliable way to predictively identify TQ cases early
in the transfer process. For the transfer center this meant pro-
viding end users with a meaningful, automated output of the
model-generated predictions of TQ integrated into the exist-
ing EHR workflow.

Methods
Model brief
Data characteristics
The 5 features in our model were chosen from the transfer
center staff workflow and extracted from the EHR database

Figure 1. Transfer Center navigator in Epic. VC 2023 Epic Systems Corporation.
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as follows: Diagnosis Free Text, Referring Facility, Transfer
Reason, Requested Level of Care, and Requested Service. The
Diagnosis Free Text box contains one or more sentences,
making it amenable to the application of NLP, and is also cen-
tral to determining TQ status.

The NLP model was trained on transfer center patient
records queried from the EHR between the dates of March 1,
2019 and June 30, 2020. The inclusion criterion was adults
(>18 years old) with referral to the AHC through the transfer
center. During the training phase, model development data
were divided into a 70% training/30% test dataset. The total
number of patient records used in training and testing was
3491 and 1496. Of note, the model was later run in real-time
on a separate data set for direct comparison of the NLP model
to the existing human workflow. This is described in more
detail in “Study Design.”

The outcomes were labeled using a monthly financial report
(here after called Post Hoc Report) that labels a case as TQ by
using a proprietary classification method created by UCLA
Health. There is no specific definition of TQ in the literature
that identifies which conditions should be considered TQ.
Thus, a workgroup of UCLA Health subject matter experts
and organizational leaders convened to create a classification
method to identify TQ cases and prioritize transfers. This
classification method considers patient demographics, diagno-
sis codes, payor-generated data, and other financial data.

Our dataset included cases that were already financially
and medically cleared for transfer to UCLA, were subse-
quently admitted, and then completed hospitalizations at
UCLA. These completed cases were then reviewed against the
Post Hoc Report to label cases as TQ in our data set; any case
without a TQ label on the Post Hoc Report would be labeled
as “non-TQ,” even if the patient had been prospectively
flagged as “TQ” by the transfer center.

Data preparation and transformation
The selected 5 features were concatenated for NLP analysis as
if they were a sentence. Feature preparation and transforma-
tion processes consisted of the following steps:

1) Concatenated text fields were cleaned by removing num-
bers, punctuation, special characters, and extra
whitespace.

2) Stop words—words with no semantic importance, such as
“the”—were removed using the default stop words list

provided in the Natural Language Toolkit (NLTK)
library.23

3) Lemmatization—a process that replaces the suffix of a
word with a different one or removes the suffix of a word
completely to get the basic word form.

4) Medical abbreviations and jargon were expanded using a
custom dictionary.

5) Concatenated sentences were tokenized into unigrams
(individual words) and bigrams (2-word combinations).

6) Tokens were used to calculate term frequency-inverse
document frequency (TF-IDF) scores. TF-IDF scores
decrease the importance of words that show up in all text
fields and increase the importance of words that are unique
to either TQ transfer requests or non-TQ transfer requests.

The concatenation of the free text box, which can contain a
sentence or more, with the additional 4 discrete features
makes this information ripe for the application of NLP. While
some of the features may appear short, NLP enables more
sophisticated and flexible processing of textual information.
For example, among other things, NLP allows for a deeper
understanding of language by considering the context, rather
than the rules, of the text; it can generalize patterns and rules
learned from training data to new, unseen examples; it han-
dles ambiguity, such as homonyms, well; and it is both scal-
able and adaptable.

Model architecture
In the design and development phases, we evaluated several
different traditional and novel machine learning techniques
such as support vector machine, multinomial naive Bayes,
logistic regression, gradient boosting, long short-term mem-
ory (LSTM) using GloVe, and a convolutional recurrent neu-
ral network using GloVe.24–28 All proved inferior to our final
model in sensitivity and precision.

The final model was an ensemble of 6 deep (all 3 layers)
and 3 shallow (all either 1 or 2 layers) neural networks, with
TF-IDF vectors as input, that generated the probability of a
transfer request being either TQ or non-TQ (Figure 3). Each
individual neural network randomly consisted of 1, 2, and 3
hidden layers with 128, 192, and 256 nodes in each layer.
Notably, the construction of an ensemble deep learning algo-
rithm does not typically require tuning of the hyperpara-
meters of the base models because it represents a combination
of multiple deep learning models and produces superior pre-
dictive performance by reducing the errors of bias.

Figure 2. Transfer Center log of transfer cases. VC 2023 Epic Systems Corporation.
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The networks used a dropout of 0.5 and batch normaliza-
tion to prevent overfitting.29,30 The individual layers used the
rectified linear unit (ReLU) activation function.31 Neural net-
work weights were trained using the sparse categorical cross
entropy loss function and the Adam optimizer while using
accuracy for validation.32 The weights were trained for 500
epochs, and data were fed into the model as batches of 64
training examples. The final output probability was the aver-
age of the 9 individual probabilities, calculated in a process
known as soft voting which is based on custom random multi-
model deep learning.33

Model prediction
The predictive thresholds were determined during design
phase. We classified probabilities into 3 likelihood categories:
low, medium, and high. These categories were determined by
a multidisciplinary team of business stakeholders, subject
matter experts, and the data science team and were based on
2 probability thresholds: 0.3 and 0.7. Model probabilities
<0.3 are considered strong negative for predicted non-TQ
and placed in the low category. Model probabilities between
0.3 and 0.7 are considered possibly TQ and placed in the
medium category. Model probabilities >0.7 are considered
strong positive for TQ and placed in the high category.

Study design

The aim of our research was to retrospectively compare the
ability of the NLP model to identify TQ cases compared to
the predictive labeling of the existing human workflow. Both
were compared to the Post Hoc Report for confirmation of
actual TQ designation. The study period was between July 1,
2020 and December 31, 2020, which is after the model was
trained and before the model was implemented into the work-
flow. The study inclusion criteria were as follows: Adult
(>18) patient cases with referral to the AHC through the
transfer center for which data was available from the EHR
and was considered a completed case with data available
from financial claims after hospitalization.

Statistical analysis

We report demographic summary statistics of the study popu-
lation. We report the diagnostic performance of our NLP
model to detect TQ cases using a receiver operating character-
istic (ROC) curve as well as a calibration curve.

To compare the NLP model probabilistic output to the
binary classification of the existing human workflow and the
Post Hoc Report generated TQ label, the model probabilities
were transformed into a binary classification of predicted TQ
or non-TQ. This was done by taking predictive scores gener-
ated by the NLP model and using thresholds determined by
the project team (0.7 and 0.3) to create 2 groupings: NLP—
High (P> .7) and NLP—Medium (P� .3). These 2 groupings
were used as proxies to compare the performance of the
model to the human predictions, with the Post Hoc Report
providing actual TQ classifications.

Performance characteristics were estimated for both NLP
model thresholds compared with the human predictions, and
included sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), accuracy, and
Cohen’s kappa; 95% confidence intervals were obtained for
each parameter using the nonparametric bootstrap; 10 000
bootstrap samples were used, and P-values were reported
based on interval inversion. An additional analysis was per-
formed to identify the probability cut-point maximizing You-
den’s J statistic (the sum of sensitivity and specificity). All
analyses used a 5% significance level and were performed
using R v. 4.1.0.34

Results

Described in detail below are the demographics of the study
population (Table 1); NLP model performance versus human
performance in categorical prediction (Table 2); and perform-
ance characteristics of human predictions versus NLP predic-
tions at 2 distinct thresholds (Table 3).

Figure 3. The implemented ensemble model consists of 9 neural networks; for simplicity, only 3 are shown here. The upper level depicts the “Input

Layer,” which utilizes TF-IDF; the middle level depicts the “Hidden Layer”; and the lower level, consisting of 2 nodes, depicts the “Output Layer.”
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Demographics

Table 1 presents a summary of the main demographic varia-
bles of the study population.

NLP model performance

Figure 4 shows the ROC curve for the NLP model predicted
probabilities with an area under the curve (AUC) of 0.91. We
calculated a calibration curve seen in Figure 5, which shows
that with the NLP model predictions the high probabilities
are overestimated, and the low probabilities are
underestimated.

Model predictions versus human predictions
Of the total sample size of 1895, TQ accounted for 703 cases
and non-TQ for 1192 cases. Table 2 presents the summarized
confusion matrices for the human predictions (Human Work-
flow) and the model performance at 2 thresholds (NLP—
High and NLP—Medium), all compared to the actual out-
come classification of TQ. Table 3 shows the sensitivity, spe-
cificity, PPV, NPV, accuracy, and Cohen’s kappa of the
Human Workflow and the 2 models, with Human Workflow
as the reference category.

NLP—High represents an NLP model threshold of 0.7
(effectively grouping the “medium” category with the “low”)
compared to the actual TQ outcome. In this comparison, all
of the test characteristics for the NLP—High were slightly
better than the Human Workflow, though none achieved
statistical significance. NLP—Medium represents an NLP
model threshold of 0.3 (effectively grouping the medium cat-
egory with high category) compared to the actual TQ out-
come. The comparison between Human Workflow and
NLP—Medium showed statistically significant differences
between sensitivity, specificity, PPV, NPV, and kappa with
P-values <.05.

Table 3. Performance characteristics for human workflow predictions versus NLP—High and NLP—Medium models.

Metrics %, (95% CI) Human workflow (reference) NLP—High NLP—Medium

Sensitivity 67.7 (64.3-71.2) 69.3 (65.9-72.7) 83.6 (80.9-86.4)a

Specificity 87.7 (85.8-89.5) 89.4 (87.7-91.2) 80.2 (77.9-82.5)a

PPV 76.4 (73.1-79.7) 79.4 (76.2-82.6) 71.4 (68.3-74.4)a

NPV 82.2 (80.0-84.3) 83.2 (81.1-85.2) 89.3 (87.4-91.1)a

Accuracy 80.3 (78.5-82.1) 82.0 (80.2-83.7) 81.5 (79.7-83.2)
Kappa 56.7 (52.8-60.6) 60.3 (56.5-64.1) 61.7 (58.1-65.2)b

Significant results are in bold/italics.
a P< .001.
b P¼ .010.

Table 2. Categorical predictions versus actual TQ outcome.

TQ Non-TQ
(N¼703) (N¼1192)

Human workflow (prediction)
TQ 476 (67.7%) 147 (12.3%)
Non-TQ 227 (32.3%) 1045 (87.7%)

NLP—High
P> .7 487 (69.3%) 126 (10.6%)
P� .7 216 (30.7%) 1066 (89.4%)

NLP—Medium
P� .3 588 (83.6%) 236 (19.8%)
P< .3 115 (16.4%) 956 (80.2%)

For columns “TQ” and “non-TQ,” percentages are for each column.

Table 1. Demographic data for evaluation population.

Total
(N¼1895)

Age
Mean (SD) 56.4 (18.8)
Median (Q1, Q3) 59 (42, 70)
Min, Max 17 109

Sex
Male 1003 (53%)
Female 892 (47%)

Ethnicity
Hispanic or Latino 573 (30.2%)
Not Hispanic or Latino 1305 (68.9%)
Unknown 17 (0.9%)

Race
White or Caucasian 956 (50.4%)
Black or African American 244 (12.9%)
Asian or Pacific Islander 127 (6.7%)
Multiple races 29 (1.5%)
Other 513 (27%)
Unknown 26 (1.4%)

Figure 4. NLP model receiver operating characteristic (ROC) curve with

area under the curve (AUC).
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Optimal threshold

We used the evaluation dataset to identify a threshold that
maximizes sensitivity and specificity (also known as Youden’s
J). This generated a cutoff of roughly 0.2. In the dataset, this
had a sensitivity of 88.9%, a specificity of 77.3%, and accu-
racy of 81.6%.

Discussion

Common applications of AI include deep learning using NLP
to mine EHR text to identify and extract meaningful clinical
information, like diagnoses.35 For example, Kaur et al36

applied an NLP model to identify patients who met criteria
for a validated predictive index for asthma and compared the
output to manual chart review, showing high concordance.
Clapp et al37 found similar predictive performances when
comparing an NLP-based model to a validated risk stratifica-
tion tool to identify patients at high risk for maternal mortal-
ity. These studies, which demonstrate similar performance
between the NLP-based AI models and existing non-AI mod-
els, are consistent with our findings.

Model performance

The model performs very well at discriminating between TQ
and non-TQ cases, with an AUC of 0.91. The calibration
curve suggests that the model tends to overestimate higher
probabilities and underestimate lower probabilities. We thus
focused our evaluation on the classification performance of
the dichotomized model predictions.

Interpreting the results of performance metrics

comparisons

Overall, the NLP model modestly outperforms the human
workflow at predicting TQ cases when compared to the Post
Hoc Report actual TQ outcome. Test performance

parameters of sensitivity, specificity, PPV, NPV, accuracy,
and to a lesser degree the kappa statistic act as discrete per-
formance metrics to compare the 2 NLP thresholds against
the human predictions. For these comparisons to be meaning-
ful outside of statistical significance, evaluating clinical inter-
pretation and significance to operational workflow is vital to
identifying the value of each test metric. Operational leaders
want to identify TQ cases quickly, consistently, and as early
as possible in the transfer process to flag them for prioritiza-
tion. For this reason, some test parameters are more impor-
tant to leadership than others. Besides accuracy, operational
leaders want to maximize sensitivity to capture as many true
TQ cases as possible, even at the expense of increased false
positives. Thus, the operational imperative was to create a
model with performance at least similar to the human predic-
tions while allowing for more autonomous and consistent
identification of comparable accuracy and higher sensitivity.

The NLP—High model threshold estimates for all of the
test metrics were slightly better than the human predictions,
though there were not any statistically significant differences.
It can be inferred by the statistical testing that transfer center
staff choosing to flag a case as TQ based solely on the “high”
category to identify TQ cases would result in performance
akin to human judgment while likely also saving time.

Overall accuracy of the NLP—Medium threshold was
slightly better than the human predictions but not signifi-
cantly so (81.5% vs 80.3%, P¼ .198). However, the NLP—
Medium threshold achieved a notable improvement in sensi-
tivity over the human predictions (83.6% vs 67.7%). Since
the model generates a probability score as soon as the data
fields are entered, this translates to 15.9% (n¼112) more
positive TQ cases that could have been caught at the onset of
the transfer process. Of course, this would be at the expense
of more false positives, but the operational team is willing to
tolerate these false positives given the opportunity to increase

Figure 5. NLP model calibration curve.
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true positive TQ cases and subsequent earlier bed placement.
Thus, though the NLP—Medium threshold generated a lower
specificity and PPV compared to human predictions, it was
not outside the bounds of expectations or tolerated differen-
ces of the operational team. Furthermore, the NLP—Medium
threshold NPV was significantly higher than the human pre-
dictions. If the model predicts that a case is in the “low” cate-
gory, it could reasonably be trusted that the case truly was
not TQ compared to a human prediction alone.

Given the operational team’s desire to retain accuracy but
maximize sensitivity, the statistical team identified the optimal
cutoff of 0.2. This cutoff has comparable accuracy and is
more sensitive but less specific than all 3 groups: the Human
Predictions, NLP—High threshold, and NLP—Medium
threshold. In practice, this could translate to lowering the
medium category from 0.3-0.7 to 0.2-0.7. This particular
analysis could inform the thresholds used in the deployment
of the model into the EHR.

The implications for automation in clinical

workflows

Overall, this study shows that there is potential for improving
TQ identification at the beginning of the transfer workflow
using an NLP model. The NLP—Medium threshold per-
formed well against the existing human workflow with a simi-
lar accuracy but significantly improved sensitivity. Assuming
the “medium” and “high” categories (0.3-0.7 and 0.7-1.0,
respectively) displayed to the end-user translate to a user
entered flag of TQ, the NLP model would allow for a higher
rate of true positive TQ identification. Even if the medium
cases do not end up being TQ, the NLP—High threshold
comparison reveals that should only the “high” category lead
to a TQ designation, the model would perform at least as well
as existing human workflow.

The NLP model is being implemented into the transfer cen-
ter workflow as a form of automated decision support in
order to improve upon the current human predictive identifi-
cation of TQ cases and to prioritize TQ cases that are already
medically and financially cleared at the beginning of interho-
spital transfer request intake. We plan to display the model-
generated scores to transfer center staff, who can then use
their best judgment on final TQ designation. Importantly, this
will not be full automation (ie, model output automatically
flags a case as TQ). We believe that the human interaction
with the model output serves as a vital processing point to
allow human judgment to continue to play a role in decisions
that could impact patient care.

Our multidisciplinary team, including stakeholders from
the transfer center, prototyped a build in the EHR for the
model to display. The build is intended to minimize changes
to existing workflows but maximally impact behavior. This
will be done by displaying the model output as a percent
probability TQ and probability category (low, medium, and
high) with a correlated coded color (red, yellow, and green).
The model generates scores almost instantaneously after the
data are entered and will be displayed at 2 workflow points:

1) Transfer Center Navigator—the model output will be dis-
played as a new section in the existing workflow deployed
in the same module as the current transfer center process.

2) TC Log—the model output will be visible as a new column
in the existing transfer center caseload log that patient
placement staff review to make decisions.

Limitations

Though we have tested the performance of the model on a
limited dataset and compared performance metrics against
the existing human predictions, we do not yet know how
deploying and integrating the model directly into operational
workflows will affect outcomes of the transfer process as well
as other important key performance metrics (eg, turnaround
time for TQ cases compared to regular cases). Safety and effi-
cacy evaluations will be the subject of a future study examin-
ing the impact of the deployed model on the human decision-
making process for TQ identification. Furthermore, the Post
Hoc Report only has data for cases that have been completed
in the hospital. Those cases that were initially referred to the
transfer center but whose transfer request was subsequently
cancelled, either for medical or financial reasons, were
excluded from the training data and the final comparative
analysis. These patients could not be used because their TQ
outcomes were never determined. We do not believe that this
exclusion created any bias. Additionally, as with all language
models, performance can degrade over time due to the evolu-
tion of medical terminology. We continually monitor model
performance via a customized and automated dashboard.
Lastly, this model was trained exclusively at one large AHC
and thus may not be directly generalizable to other institu-
tions given that workflows and vernacular may differ.

Conclusion

NLP has the potential to automate and improve upon the
human ability to predictively identify TQ cases referred to
regional transfer centers. Our results suggest that integrating
the NLP model into the existing workflow as an automated
decision support tool could translate to more TQ cases identi-
fied and prioritized at the onset of the transfer process while
saving hospital staff time. Furthermore, NLP and various AI
techniques can be applied to other clinical and operational
workflows, potentially improving performance and optimiz-
ing outcomes. Source code has been shared via GitHub (TQ
model), and further studies to assess generalizability of this
methodology could be informative.
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