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A Connectionist Model of Category Size Effects
During Learning

Timothy J. Breen
Boeing Advanced Technology Center

ABSTRACT

This paper reports the results of category learning experiments in which the number of exemplars
defining a category during learning was varied. These results reveal that category exemplars from
larger sized categories are classified more accurately than those from smaller-sized categories. This
was true both early and late in learning. In addition, subjects exhibited a response bias toward
classifying exemplars into larger-sized categories throughout learning. A connectionist model is
developed which exhibits these same tendencies.

INTRODUCTION

This paper reports the results of category learning experiments in which the number of exemplars
defining a category during learning was varied. These results are then compared with the

results of simulations using a connectionist model of category learning. Categorization has a
special status for connectionist models, since the ability of connectionist systems to learn
generalizations from specific instances is frequently cited as one of the most promising aspects of
the connectionist approach (e.g. Norman, 1986, pp. 535-536). Although several examples exist
in which connectionist models have been successfully applied to data from classification
experiments (e.g. Knapp & Anderson, 1984; McClelland & Rumelhart, 1985; Gluck & Bower,
1988) the range of these cases is relatively narrow. Therefore, it is important to evaluate these
models in light of additional empirical findings.

THE EFFECT OF CATEGORY SIZE ON LEARNING RATE

A robust finding in the classification literature is that increasing the number of exemplars
representing a category during learning, under most circumstances, improves transfer performance
on novel category exemplars (e.g. Homa & Vosburgh, 1976). What is not known is whether, or
how, this variable influences category learning. For example, in a task in which subjects are
required to learn the category assignments of members of three different categories, where the
categories contain 3, 6, and 9 members respectively, is one category learned more quickly than the
others? One might suspect for example, that the category with only three members would be
easiest for subjects to learn.

EMPIRICAL FINDINGS

To examine this question, analyses of previously unreported data from a series of experiments
conducted by Breen & Schvaneveldt (1986) are reported below. Breen & Schvaneveldt conducted
three experiments in which subjects learned to classify dot patterns (Posner, Goldsmith & Welton,
1967) into three different categories. Dot pattern categories have been used extensively in the
classification literature, and are constructed by first assigning dots (usually nine) randomly into
cells of a matrix. This dot pattern is referred to the objective prototype of the category. To
generate category exemplars, a statistical distortion rule is applied to the objective prototype that
moves the dots to a new position in the matrix. Additional categories can be created by generating
distortions of a new random objective prototype pattern.

In the these experiments, categories in the learning phase were represented by 3, 6, or 9 dot
patterns. Subjects continued to classify patterns during the learning phase until all 18 patterns were
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classified correctly during a single block of trials. Conditions in the learning phase for all three
experiments were identical, and because transfer performance was of primary interest, the learning
data were not reported earlier. (See Breen & Schvaneveldt, 1986, for further details of the
experimental procedure).

Out of 300 subjects participating in all three experiments, 44 failed to reach learning criterion
(errorless performance in 30 blocks or less in Experiment 1, or 35 blocks or less in Experiments 2
& 3), and these data were excluded from the analyses. The average number of blocks to criterion
for all remaining subjects was 15.5.

Figure 1 shows average correct responses over learning blocks for each of the three category sizes.
To generate these learning functions, errorless performance was assumed after each subject
achieved the learning criterion. For example, if a particular subject met the learning criterion after
10 blocks of trials, it was assumed that no errors would have occurred for blocks 11 through 35.
Since this assumption is probably too strong, the right-hand side of the graph in Figure 1 is most
likely artificially inflated for all category sizes. It is clear, however, that early in learning,
classification accuracy was enhanced for exemplars of the larger categories.

Figure 2 shows a clearer picture of classification accuracy late in learning, in which classification

accuracy is plotted as a function of the — n'" block in relation to each subjects' learning criterion
(backward learning curve, Trabrasso & Bower, 1968). The number of subjects contributing to
each data point is also shown in the bottom of the figure. Surprisingly, Figure 2 suggests that the
larger category sizes maintained their advantage late in learning.

To confirm these results, an analysis of variance was performed on data from the first three blocks
of trials and for the last three prior to reaching the learning criterion for each subject. Because 46
subjects reached criterion in less than seven blocks, these data had to be excluded from this
analysis. The analysis treated category size as a factor with three levels (3, 6, and 9), and blocks
as a factor with two levels (early and late) in a (3 x 2) factorial design. The results revealed a main
effect of blocks [F(1,209) = 687.87, MSe= 29.881, p<.001], and category size [F(2,418) =
24.03, MSe=0.791, p<.001]. Category size did not interact with blocks [F(2,418)=0.34,
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Figure 1. Forward learning curves for category sizes 3, 6, & 9.
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Figure 2. Backward learning curves for category sizes 3, 6, and 9.

MSe=0.006], suggesting that the effect of category size was the same both early and late in
learning.

To summarize, these results suggest that those categories containing a larger number of exemplars
were learned most quickly, and that subjects were more accurate in classifying exemplars from
large categories both early and late in learning. These findings are problematic for at least some
distributed models of learning and memory.

McCLELLAND & RUMELHART'S (1985) MODEL

For example, McClelland and Rumelhart (1985) have proposed a model of category learning and
representation that employs the delta learning rule (Figure 3). Since this model has been described
in detail elsewhere, only a brief description of the general properties of the model will be presented
here. The model consists of a single layer of nodes, with each node in the model connected to
every other node. Each node may receive activation from two sources. One is from outside the
network when a pattern, in the form of a binary feature vector, is presented to the model. The
other is from other nodes in the network through connections which have non-zero weights.

The model is trained by presenting a pattern to the model, allowing activation to spread throughout
the nodes, and then applying the delta rule to adjust the connection weights such that the activity
levels of the nodes match, or come progressively closer to matching, the input pattern. The delta
learning rule is specified by:
- 1
W, =W, _; o, i
where W, is the weight matrix following trial n, 1 is a constant which determines the rate of

learning, i Tn is the transpose of the input pattern on trial n, and §,, is the difference between the

desired and actual output on trial n.
Sp=tn Wp.piy
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Figure 3. McClelland & Rumelhart’s (1985) distributed model of memory.

where 7, is the desired or target output on trial n and W,,_; i ,, is the actual output produced on

trial n. In the McClelland & Rumelhart (M&R) model, the target output value ¢ in the above
equation is the input pattern on a particular learning trial.

The performance of the model is evaluated in terms of the hacking distance between the input
pattern and resulting node activations. This measure is referred to as response strength. The
general idea is that when the pattern of activation produced by the model closely matches the input
pattern, the input pattern has closely matched what is stored in the connection weights. In other
words, if response strength is high, the model has recognized the input as something that it has
learned or knows about. The response strength for input pattern p is the dot product over the
activations of each node and the input pattern, normalized for the number of nodes in the model:

i=n
1
Rsp n z Py

i=0

A SIMULATION

The ability of the M&R model to account for the above results is evaluated in the following
simulation. For the simulation, training patterns from different categories were constructed by first
generating three random binary feature vectors of length 20. These patterns become the category
objective prototypes. Distortions of the objective prototypes were then generated by flipping the
sign of each feature in the objective prototype with a probability of .15. The training set consisted
of 3 distortions of one prototype, 6 distortions of a second, and 9 distortions of a third, for a total
of 18 patterns.

During each trial in the simulation, a training pattern was presented to a model consisting of 20
completely connected nodes, activation was allowed to spread and stabilize throughout the model,
then the connection weights were changed according to the delta learning rule. Each block of trials
consisted of one pass through the 18 patterns, and each simulation run consisted of 30 blocks of
trials. The number of simulation runs, consisting of stimulus generation-model training cycles,
was 100.

Figure 4 plots response strength of the model over learning blocks. Average response strength is
greater for members of the category containing nine patterns early in learning, but average response
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Figure 4. Response strength plotted over 30 learning blocks for category sizes 3, 6, &9.

strength for members of the category containing three members quickly overtakes response
strength for other category members.

Considering the general properties of the model provides some insight into the simulation results.
The model has the ability to represent both general, abstract information, along with specific,
instance information in the same connection weights. In this sense, it is similar to a mixed-
prototype model of categorization (e.g. Homa, Sterling, & Trepel, 1981). One factor which
determines how strongly the model represents general or specific information about a category is
how many distinct patterns comprise a category during learning. In general, the model retains
highly specific information about small categories, and more abstract information about large
categories. Under most circumstances, this results in more accurate generalizations to novel
patterns when trained on greater numbers of distinct category exemplars (Breen, 1988).

The interaction shown in Figure 4 is made clear by considering that on each block of learning

trials, half of the patterns belonged to the largest category. This caused the early advantage for the
category with 9 members, because the model had relatively more experience with that category.
Why the slope of the learning function is steepest for the smallest category is precisely because
there were only three patterns to learn. That is, more interference among same category members
is expected to occur as category size increases, producing a flatter learning function. This property
of the model instantiates the mixed-prototype model assumption that processing capacity limitations
(among other things) encourage abstract representations.

AN EXTENSION OF THE MODEL

A simple extension of the M&R model would involve the addition of a set of output nodes, with
each output node responding to evidence concerning the presence of a particular category. In this
model, shown in Figure 5, the input layer is completely connected and is trained the same way as
before, by using the delta rule to produce a pattern of activity across the nodes that matches the
input pattern. In addition, each node in the input layer is connected to each node in the output
layer. The delta rule is also used to train the output nodes to produce a pattern of activity
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Figure 5. An extension of McClelland & Rumelhart’s (1985) model.

that more closely resembles a categorization response. For example, consider the previous
simulation in which the model is trained on patterns from three categories, with each category
containing either three, six, or nine exemplars during learning. Each node in the output layer can
be trained to take on positive activation depending on which category C3, C6, or C9, an input
pattern belongs. For example, if a pattern from C3 (the category containing 3 exemplars) is
presented to the model, the output layer is trained to produce the activity pattern [1 0 0] (see Figure
> 4

The previous simulation in which category size was varied during learning was repeated using the
model in Figure 5 (referred to as Model 2). All other methodological aspects of the simulation
were identical to the method employed earlier. The sequence of events on each learning trial was
as follows. A pattern was presented to Model 2, and activation was allowed to spread throughout
the network (both input and output layers) until these activation levels stabilized. The activity
levels in the input layer were then matched against the input pattern, and the weights connecting
nodes in the input layer were adjusted using the delta rule. Simultaneously, the activity pattern in
the output layer was compared to the desired category response, which is shown in Figure 5 for
each category, with the delta rule again determining weight adjustments from the input to output
layers.

Figure 5 shows the activity levels of nodes in the output layer for "correct” category nodes, for
example, the average activity level for node C6 when a pattern from the category containing 6
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Figure 6. Average activity levels for “correct category” nodes.

exemplars was presented. The results of this simulation show that the activity level in the output
nodes corresponding to the larger categories remained consistently higher than the activity levels of
the nodes corresponding the smaller sized categories. This can be seen most clearly by comparing
the activity levels of the C3 and C9 nodes in Figure 5. The results of this simulation are more in
line with the results of the Breen & Schvaneveldt experiments.

Recall that one of the reasons cited for the inability of the M&R model to account for this result
was that storing a large number of exemplars from the same category in the connection weights
tends to produce interference in the input layer, producing a flatter learning function. This
interference, however, only concerns the ability of the model to respond strongly to specific (old)
input patterns. More exemplar experience also produces more accurate generalizations With
increased experience, what the model gives up in representing specific information it gains in
representing generality. Interference, per se, is thus not an undesirable quality. The same holds
true for the input layer in Model 2. However, because the output layer of Model 2 is trained to
produce a category level response, increased training on different patterns from the same category

will only facilitate the acquisition of category-level information by the model.!

RESPONSE BIASES

Two further questions can be addressed by an analysis of the Breen & Schvaneveldt learning data
that involve the particular kinds of errors that subjects make while learning to classify exemplars of
categories which vary in size. The first question is whether category size influences the kinds of
errors subjects make during learning. For example, when an error is made when classifying an
exemplar from a category of size six, are subjects more likely to classify it as a member of the
larger (size nine) category? This would be expected if subjects are using information about the
relative size or likelihood of the three categories in making a response. The second question is that
if subjects are prone to a response bias of this nature, will this bias be differentially reflected in
errors occurring early and late in learning? One possibility is that such a bias would more strongly

I'The connections between nodes in the input layer do not play a role in accounting for this category size effect. For
example, an independant-cue model of the type proposed by Gluck and Bower (1988) is able to produce this same
behavior, as well as the "response bias" tendencies in the following section.
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influence responses early in learning, when subjects have less complete knowledge about category
membership. For instance, when subjects are unsure of the correct category assignment when an
exemplar is presented, they may base their response on knowledge about the relative probability of
category exemplars occurring on each trial. And, this may more frequently occur early in learning,
before much category information has been acquired.

EMPIRICAL FINDINGS

Figure 7 shows the breakdown of errors occurring during the first three learning trials (Early) and
the last three trials before criterion (Late) for 210 subjects. It shows that when an exemplar from
one of the three categories (C3, C6, or C9) was presented during learning, subjects were more
likely to make an error by classifying the exemplar into a relatively larger sized category. In
addition, this trend is equally apparent both early and late in learning. The magnitude of the bias
appears to be greatest when a member from C6 is presented. This is consistent with the
explanation that subjects were using probability information about the relative frequency of
occurrence of category exemplars during learning, since C9 and C3 are the largest and smallest
categories.

To confirm these results, an analysis of variance was performed treating Blocks as a factor with
two levels (early and late), Response as a factor with three levels (C3, C6, and C9),and Correct
Category (or category size) as a factor with three levels (C3, C6, and C9). In addition to the main
effects reported above, this analysis revealed a main effect of Response [F(1,209) = 31.010,
MSe=0.937, p<.001]. The Response by Correct Category interaction approached significance
(F(2,418) = 2.797, MSe= 0.076, p<.1], as did the three-way interaction of Blocks, Correct
Category, and Response [F(2,418) = 2.620, MSe= 0.041, p<.1]. Blocks and Response did not
interact [F(1,209) = 1.935, MSe= 0.028, p>.1].

It appears that subjects were prone to bias their responses toward the larger-sized categories to the
same degree both early and late in learning. The finding that Blocks and Response did not interact
was somewhat surprising, because it might be expected that a response bias would be reflected to a
greater degree during the early blocks, when category learning is minimal. However, the
acquisition of knowledge relating to the category membership of particular exemplars was
confounded with the acquisition of knowledge about the relative sizes of each category in these
experiments. Subjects were not told prior to the experiment that each category was represented by
a different number of members during the learning phase. So early in learning, category size
information may have been available to a lesser degree relative to later stages in learning.
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Figure 7. P(error) for first and last three blocks as a function of response and category size.
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Therefore, a model that proposes that frequency information plays a stronger role in the absence of
more "categorical" knowledge may still be consistent with these data. In these experiments, such a
model would assume that with more experience in classifying exemplars during learning, the
quality of both frequency and category information is enhanced. Early in learning, subjects rely to
arelatively greater extent on poor quality frequency information. And late in learning, subjects rely
to a lesser degree on high quality frequency information.

The above discussion, of course, lacks a connectionist flavor. Any model incorporating the notion
of a response bias, which seems most naturally described in terms of rules or strategies, is
inconsistent with the spirit of connectionist modeling. Ideally, a connectionist model's behavior
should exhibit a tendency toward classification into larger sized categories and arise naturally from
the structure of the input population and the architecture of the model.

SIMULATION RESULTS

The potential ability of Model 2 to account for these results can be examined in a straight-forward
manner by observing the model's performance during the previous simulation. In particular, when
a pattern from a particular category is presented during learning we can observe the activity levels
in the nodes corresponding to the incorrect categories. For example, when a pattern from the
category containing six members is presented (C6) to the model during learning, what are the
activity levels of nodes corresponding to C3 and C9? Figure 8 shows these values across 30
learning blocks during the previous simulation.

Figure 8 shows that when Model 2 was learning to classify patterns from three categories
containing either three, six, or nine patterns, and was presented with a pattern from the category
containing six patterns, the activation of the C9 node was consistently higher than the activation of
the C3 node. In fact, during learning, the model showed a general tendency to slightly inhibit
those nodes corresponding to the two alternative categories, and the degree of inhibition depended
upon category size. Nodes corresponding to smaller categories were inhibited to a greater extent
than larger categories on those trials when an alternative category pattern was presented. This is
somewhat interesting behavior from a model that contains no explicit mechanisms for producing a
“response bias" for larger sized categories.
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Although the model as it stands is clearly too underdeveloped to make quantitative predictions
about subjects behavior in this task, the model does exhibit a completely natural tendency toward
inhibiting classification into relatively smaller-size categories. One further note is that when the
learning procedure involves actively inhibiting alternate category responses, it will produce
radically different behavior. For example, if on a particular trial the output layer is trained to
produce the activity pattern [-1 1 -1] instead of [0 1 0] when presented with a pattern from C6, the
model will learn to more strongly inhibit the C9 node, which produces response bias in the
opposite direction than before. This finding produces a further constraint on the particulars of the
learning procedure.

CONCLUSIONS

An extension of McClelland & Rumelhart's (1985) distributed model of learning and memory was
shown to account (at least qualitatively) for subjects behavior in a category learning task in which
category size was varied. Other researchers, no doubt, will fault the model for its inherent
linearity. However, linear models have been found to be surprisingly robust over a variety of
conditions in simulations of categorization tasks (Breen, 1988). All models can be pushed past
their limit, and the present work is intended to provide some useful constraints for further model
development.
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