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Optimum Filter for determination of the Position of an
Arbitrary Waveform in the Presence of Noise

LBL-11036

J. Llacer
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Summary

This paper presents a general approach to solving the
problem of defining the time of arrival of a signal in
the noise, or the similar one of defining the position
of a peak in a histogram. In particular, it solves the
problem of a signal in white noise, giving the well
know result that the optimum filter before a zero cros-
sing discriminator should have an impulse response
function equal to the derivative of the waveform to be
observed. It then solves the problem of estimating
the position of a peak in a histogram in which the
number of counts in each bin has a variance equal to
the number of counts in that same bin. The resulting
optimum filter is the derivative divided by the func-
tion itself. Examples of applying the results are
given and the uniqueness of the solution to the set of
non-linear simultaneous equations resulting from the
problem is demonstrated.

Introduction

The problem of defining the time of arrival of a
signal is well known in nuclear electronics. A vari-
ety of schemes are in use at present to determine the
arrival time of a particle for the definition of a
nuclear event, for example. The available methods use
some form of linear processing as a step previous to
the observation of the crossing of a threshold, at
which time a timing signal is derived. In the nuclear

“electronics timing problem, the signal to be observed
has an additive white noise component (high frequency
series noise in the first amplifying element) and it
is well known that the optimum linear filter to pre-
cede a zero crossing discriminator is one with an
impulse response function equal to the derivative of
the noise-free waveform to be observed.

A closely related problem is the one of defining
the position of a peak in a histogram with a limited
number of counts. In that case, the histogram can be
convolved with a suitable waveform (presumably antisym-
metric) and the results can be scanned for a zero
crossing. The bin number of that crossing would be
the best estimate of the position of the peak. In the
case of a histogram obtained from a number of indepen-
dent events (as for example in pulse height analysis
of nuclear events), the noise in the histogram bins is
not simply additive to the histogram, but the vari-
ance in the number of counts in a bin is equal to the
expected number of counts in that particular bin.
Under those conditions the optimum filter waveform to
use in the convolution is not known. (see Addendum)

This paper presents a general approach to solving
the position determination problem for an arbitrary
waveform under arbitrary noise conditions and solves
the specific cases of

a) Additive white noise, giving the well known
results indicated above, and

b) Poisson distributed noise in each bin for the
histogram case.

The optimum filter in the latter case is shown to be
the derivative of the noise-free function to be ob-
served divided by the function itself. For the simple
case of a Gaussian distributed function, the filter
function is a ramp.

Tests by computer simulation of the characteris-

tics of the derived filter function are shown and the
uniqueness of the solution is demonstrated.

General formulation

Consider a general waveform f(rq), with values
at discrete points ry, whose position along the
r-axis is to be estimated. Let w(rq) be a weighting
function such that the convolution

9(ry) = 2 wlrgry) f(r) (1)

results in a function g(rp) whose zero crossing
defines the best estimate of the position of f(rq).

In the case with no noise, f(rq) = fo(r ) and the

result of the convolution will be go(r ). We then
’

define the position'r0 of fo(rq) by the equation

golrg) =0 (2)
In the case with noise, g{rg) will not be zero, in

general, and we can calculate the variance of the
error as

) w2(r ) E{[f(r ) -
g q q q
folrg)] § C®
for the case where noise in uncorrelated at different
points of the waveform f(rq).
We are interested in minimizing the error in the

zero crossing of the noisy waveform, which to first
order can be approximated by dividing v by the

(s]ope)2 of go at r = 0. Then, we can state the
problem as: Find the values w(rgq) for all g such
that
2 .
F = vel[d/dr(go)]} = minimum (4)

r=0




The numerator is defined by Eq. (3) and the denominator
is found from Eq. (1) by

d/dr(g ), = w(r_ ) d/dr £ _(r -r) (5)
°'r=o %; q o 4 Ir=o
To simplify notation, we can define the function
f'ogqs the derivative at r=0 of the noiseless wave-
form displaced by rq (or the derivative of f at r =
rqs which is the same) by:
' = —
f oq = d/dr fo (rq r)|r=0 (6)
Then, the minimum of the functional F of Eq. (4) can
be found by setting:

aFlawq =0 (7)
for all g simultaneously and attempt to solve the set

of resulting equations. The variables wy are defined
identically as w(rg).

Solution for Gaussian White Noise

As a check on the method, we calculate first the
optimal filter for determining the position of a wave-
form when additive white Gaussian noise with variance
a 1is present on the signal. We first find the vari-
ance of Eq. (3):

v, = zq)w§ Eg [f(rq)-fo(rq)] 2% -a }c:lng (8)

since, the expected value in brackets is the variance
of the additive Gaussian noise.

The functional to minimize is then,.from Egs. (4),
(5), (6) and (8),

F=a}) wg//[é;wq f'oq] 2 (9)

q

Taking the partial derivatives indicated by Eq.
(7) and simplifying we get:

. 2
wq’zp:wp fcl)p'foq %wp:Ofor any q (10)

-~ Indices p and q run over the whole extension of
the sampling region, and there are, therefore, as many
equations to solve as sampling points. Since the
equations are quadratic we can expect more than one
set of solutions Wg. However, it will be shown that
all possible sets of solutions are simply proportional
to each other, and that, therefore, we only have to
determine one set of wq solutions to yield the opti-~
mum filter function.

Let's consider a set of solutions:

Wwg=wgl for l<ggm (11)

Then, the summations 2, wp1f'opl and > wgl in
pl pl

Eq. (10) are two specific numbers Sy and Ry, respec-
tively. From Eq..{10) we then have:

R

q = §I féql (12)

w

or the optimum filter function 1is proportional to the

derivative of the waveform function f. If we consider
now another set of solutions Wg2s with the summations

taking values Sy and Ry, we find, from Eq. (9):

Ry
@ " 5 fe (13)

and we see that the second solution is also propor-
tional to f'yq. It follows, therefore, that all pos-
sible solution sets are proportional to each other
and we only need to consider one.

w

Solution for Poisson Noise in a Histogram

In that case where the number of counts in a bin fol-
lTows Poisson statistics, as is the case in a histogram
generated from independent events, we start from:

3 3[f(rq)-f0(rq)]2$ = foq (1)

(i.e., the variance in the number of counts is equal
to the expected number of counts).

The functional to minimize is then:

»

F o %wg foq/[%: q fc')q]z (15)

and the resulting set of equations is given by

2
f f1 oo f! -
quq ; wp op foq %‘wp fop 0 for any g (16)

Here, again, we can let 3 wpf'op =S and

p
2_whfop = R for a set of solutions, and we find that:
P

R

Wy Foq T foq (17)
or
fl
0q
W, & (18)
q ’ro—q

with all solution sets being again proportional to
each other., Thus, the optimal waveform for filtering
is the derivative of the waveform divided by the wave-
form itself.

Gaussian Waveform Histogram

A simple and useful application of the above
development is found in determining the best estimate
of the location of a Gaussian-shaped peak in a histo-
gram with a Timited number of counts.

From Eq. (18) we find the optimum convolution
filter to be a ramp,

Wq o« Y'q (19)




The width of the ramp should be truncated, in practice,
at a point where the waveform is not expected to have
any substantial number of counts, or where other histo-
gram features would cause distortion in the results.
The effects of this truncation will be investigated
below.

For Gaussian waveform, it is possible to calculate
the rms error expected_in zero crossing of the filter-
ed signal by finding F from a continuous integral
form of Eq. (15). For a Gaussian of standard devia-
tion ¢ and a total number of counts N within the wave-
form, the rms error e is obtained from:

1/2 ® 1/2
€ = [\IZ_n oS/N:l 3[/w2(r) exp(—rZ/Zaz)dr] /

o0

f row(r) exp(—r‘2/202) dr‘ (20)

=00

The results of calculating Eq. (20) for filters
consisting of a step, a ramp, a parabola and the
derivative of the Gaussian are shown in Table 1. The
rms error values are given in units of o.

A check on the results has been made by computer
simulation. The output of a Gaussian distributed
random number generator has been histogrammed with
four bins per standard deviation, for 100, 200, 1000
and 2000 total counts in one histogram. Convolutions
have been carried out with the filter waveforms, with
half-widths of 1, 2, 4 and 8 standard deviations. The
zero crossing of the results have been obtained by
linear interpolations between adjacent bins. One
hundred histograms have been procesed for each entry
in Table 1, where the expected error (in standard
deviations) has been entered for each case.

The results of a Least Squares fitting to the log
of the histogram values, taking points from the cen-
tral 4ocare also shown at top right.

The effect of reducing the number of waveform
samples from 4 per standard deviation to 2, 1, and 0.5
per ¢ has also been calculated for the optimum fil-
ter case, with a filter half-width of 4 o. It is
found that the calculated expected errors of Table 1
have-to be increased by approximately 1% when 2 sam-
ples per o are used, by 4% for 1 sample per o, and by
23% for 0.5 samples per o¢. The increase in expected
error is somewhat steeper when the number of samples
is Towered than would be calculated from the use of
Eq. (15) for the Gaussian waveform case. The first
order theoretical results are 7% increase at 0.5
samples per o, 35% at 0.4, and 104% at 0.33 points
per o,

Discussion of Results

It is interesting to consider the intuitive aspect
of the two particular solutions investigated in this
paper given by Eqs. (12) and (18). With additive
white noise, it is quite reasonable to find that the
filter (weighting) function emphasizes the sections of
maximum slope of the initial waveform in attempting to
locate its position. For the case with Poisson dis-
tributed noise, Eq. (18) indicates that we want to
emphasize the points with maximum slope provided that
the function itself is not very high there, as noise
increases in absolute terms with signal. The result
that a ramp is the optimum filter for the Gaussian
case can only be understood in that manner. Although

not exhaustibly, the results of Table 1 prove the
correctness of the mathematical treatment.

From the computer simulations of Table 1, for a
Gaussian waveform, it appears that the theoretical
expected error in position determination can best be
approached when the filter half-width h is near 4
standard deviations or more (in the absence of other
disturbing histogram features), It is also clear that
the ramp gives consistently better results in all
situations, except for very narrow h, when at low N a
zero crossing may not be uniquely defined.

Conclusion

The method presented here provides one straight
forward approach to solving the problem of position
determination in the presence of noise. It can be
considered quite general and it should be useful
whenever the variance of Eq. (3) can be calculated or
measured well and the final set of equations can be
solved without excessive pain. The specific result
obtained for the Poisson case can be useful in find-
ing best estimates of energy for nuclear or x-ray
spectral peaks, specially when few counts are obtain-
able. Improvements over Least Squares methods of
better than 40% in expected error are achievable, for
example.
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Addendum

After the completion of the manuscript, it was

“found that the result of Eq. (18) has been obtained by

E. Gatti and V. Svelto (Nuclear Instruments & Methods,
Vol. 39 (1966) pp. 309-312) for optimum filtering of
timing with scintillation pulses.
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Table 1.

Calculated vs experimenté]]y determined zero crossing errors with three kinds of of filters on a

Gaussian waveform of standard deviation 0 and a total of N counts. Results in units of o,

Calculated from Eq. (19)

Computer Simulation (4 bins per o)

€

N € N h=0" h=20 h=40 h=8c LSq
Step Filter e =1.26 GL 100 0.126 100 0.186 0.132 0.1226 0.1226 0.156
1 N2 200 0.0891 200 0.1 0.103 0.093% 0.0939 0.0935
: 1000 0.0398 1000 0.0682 0.0439 0.0392 0.0392 0.0442
2000 0.0282 2000 0.0498 0.0343 0.0304 0.0304 0.0286
e
_]_ h
(filter,
half width)
€
N € N h=o h=2c¢ h=4c h=8c
Linear Ramp g, 100 0.1 100 (*) 0.123 0.108 0.108
N2 200 0.0707 200 (*) 0.0843 0.0735 0.0735
1000 0.0316 1000 0.0640 0.0347 0.0296 0.0296
2000 0.0224 2000 0.0477 0.0268 0.0226 0.0226
(Optimum)
€
N € N h=0 h=20 h=40 h=8c
Quadratic Ramp e =1.085 01 100 0.1085 100 (*) 0.1315 0.112 0.1122
N 200 0.0767 200 (*)  0.0834 0.0736 0.0732
1000 0.0343 1000 0.0660 0.0356 0.0311 0.0309
2000 0.0243 2000 0.0481 0.0267 0.0231 0.0231
= pl
Mgl = g
€
N h=0 h=2¢ h=4c h=8c
Derivative of 100 (*) 0.1285 0.1257 0.1257
Gauss ian 200 (*).  0.0989 0.0964 0.0964
1000 (*) 0.0408 0.0395 0.0395
2000 0.0485 0.0315 0.0306 0.0306

2, 2
Mal = rq exp(-ry/207)

*Gross-errors in the procedure
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