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ABSTRACT 

 

Sputtered Gallium Nitride Tunnel Junction Contacts 

 

by 

 

Koosha Daneshi 

 

Gallium nitride LEDs produced for commercialization currently use indium tin oxide 

(ITO) as both a current spreading layer (CSL) and a contact to p-GaN. ITO is known to 

absorb wavelengths in the UV and visible light regions, the primary spectrum of GaN 

devices [20]. Tunnel junctions (TJ) have been proposed as an alternative p-contact and CSL 

which would transmit more light from the active region [20] while generating holes, from 

the electron tunneling, to reach the quantum wells of the LEDs for additional radiative 

recombination [18]-[21]. The fabrication process would also be simplified because the top 

layer of both the p- and n-contacts would be n-GaN and the metal contacts to both could be 

deposited at the same time. However, until now all GaN TJs have been deposited by 

MOCVD or MBE systems despite sputtering machines offering a lower cost and easier to 

use method of depositing GaN [12] [13]. This thesis explores the application of two 

sputtering techniques, the electron cyclotron resonance (ECR) and radio frequency (RF) 

magnetron, to the creation of TJs on blue GaN LEDs. 

Both sputtering methods utilized silicon doped n-GaN targets with the intention of 

depositing the n-GaN layer of the TJs. The films were examined for their transmissivity of 

440 nm light as well as their resistivity. The ECR system was observed to produce GaN that 
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lost around 5% of the emitted light when N2 in conjunction with argon was used in the 

sputtering gas. Substrate heating did not meaningfully affect the transmissive property of the 

deposited GaN. Despite the good optical quality, the GaN remained resistive. Secondary ion 

mass spectrometry (SIMS) of the n-GaN target found it contain many impurities. High 

amounts of carbon, hydrogen, oxygen, magnesium, and calcium among other elements were 

discovered to be within the target. This stopped the research to produce a tunnel junction 

with the ECR system, but with a cleaner target it could still be a viable option. 

The RF magnetron machine also relied upon nitrogen within the sputtering gas mixture 

to produce transparent GaN films. In general, the higher the rate of N2 the less absorption of 

the tested 440 nm light. Substrate heating did improve the transparency of the GaN when 

sputtered with the RF magnetron machine. For a gas mixture of 38:25 sccm of N2:Ar and a 

temperature of 800 ⁰C, the GaN layer absorbed less than one percent of the blue wavelength. 

Hall-effect measurements showed greater substrate heating also increased the carrier 

concentration with films reaching the high 1019 and low 1020 cm-3 ranges. 

During the course of this work the RF magnetron system was modified and the 

maximum substrate temperature was lowered to 650 ⁰C. Some previous films had been 

grown at 600 ⁰C and this temperature was kept for continuity, but a silicon target was co-

sputtered with the n-GaN target to raise the carrier concentration of the GaN. Hall 

measurements of these samples presented them to have higher mobilities compared to the 

GaN sputtered with only the GaN target. Sputtering the silicon target at 35 W of power was 

determined to give the highest carrier concentration of 1.137x1018 cm-3. 

A tunnel junction was created utilizing the RF magnetron sputtering system on a UCSB 

blue LED structure deposited on a sapphire substrate with a MOCVD machine. Silicon was 

co-sputtered at 35 W and the nitrogen and substrate temperature were set to 38 sccm and 650 
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⁰C, respectively, to create the n-GaN layer of the TJ. LEDs with an area of 0.1 mm2 were 

fabricated and required only two photolithography steps compared to the three steps 

necessary for ITO GaN LEDs. After a chlorine etch performed by a RIE machine to create 

the LED mesas, the MOCVD n-GaN around the mesas was noted to be rough in some areas 

of the wafer. When metal contacts were deposited on these areas, the metal did not stick to 

the n-GaN. Many LEDs were created in the smoother regions and were observed to emit 

blue light. These were tested for their current-voltage relationships and were found to have 

turn-on voltages of approximately 6.5 V with the least resistive devices reaching almost 5 

mA at 10 V. These are the first reported GaN tunnel junctions deposited onto LEDs with a 

sputtering system. 
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I. Introduction 

A. Epitaxial Gallium Nitride 

The III-V Nitride semiconductors consisting of InN, GaN, AlN, and their ternary and 

quaternary alloys have been the focus of intense research for the last few decades because of 

their direct and wide band gaps. The nitrides system band gaps can be engineered in a 

continuous range from 0.8 (InN) to 3.4 (GaN) to 6.2 eV (AlN) which allows for devices 

emitting from the infrared to ultra-violet (UV) range, respectively [1]. GaN, in particular, has 

been essential in creating high-brightness blue light-emitting diodes (LEDs) and laser diodes 

(LDs) [2]. The wide band gap also allows the nitrides to be used to create electronics, such 

as the high electron mobility transistor (HEMT), which can withstand high temperatures, 

powers, and frequencies [3]. 

The research done on the III-Nitrides started early in the 20th Century with more intense 

focus and attention given to the system as the century wore on. AlN was reported in 1907. In 

1937, the crystal structure of GaN was described [2]. Maruskas and Tietjen grew GaN films 

on sapphire using hydride vapor phase epitaxy (HVPE) in 1969 [4]. Growth of GaN using 

metal-organic chemical vapor deposition (MOCVD) was achieved in 1971 [2]. Due to its 

high throughput, MOCVD is the most common commercial method of growth for GaN 

today [1]. 1974 showed the growth of GaN using molecular beam epitaxy (MBE), another 

popular growth method, by Akasaki and Hayashi. Yoshida used MBE to deposit an AlN 

buffer layer between sapphire and GaN in 1983. By depositing the buffer layer, his GaN film 

showed better optical performance than previous growths. Amano and Akasaki then used an 
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AlN buffer film to subsequently grow smooth GaN films in 1986 which yielded further 

increases to the optical and electrical properties of the epitaxy [2].  

Throughout this time magnesium was used as a dopant in an attempt to create p-type 

GaN. However, due to its incorporation as a Mg-hydrogen complex the acceptors were 

electrically passivated and the resulting films showed resistivities on the order of ~104 Ω cm 

[1] [5]. Akasaki and Amano activated the Mg using low energy electron beam irradiation 

(LEEBI) in 1989 [1] and produced p-GaN with a hole density in the range of 1016 cm-3 [2]. 

In the same year, they created a p-n junction blue LED using GaN [2]. Nakamura achieved a 

larger hole concentration of 3x1017 cm-3 with a resistivity of 2 Ω cm by thermal annealing 

with nitrogen in 1992 [2] [5] [23]. 

Nakamura went on to create InGaN/AlGaN double heterostructure blue LEDs allowing 

Nichia Chemical Industries to produce them for the public by 1994. He also created green 

single quantum well InGaN LEDs the next year diversifying the applications of GaN devices 

in the visible spectrum. These devices have been found to have lifetimes of at least 50,000 

hours. Further broadening nitride optoelectronics in 1996 were Nakamura’s blue-violet 

electrically injected laser diodes (LDs) under both pulsed and continuous wave conditions 

[2]. Epitaxial lateral overgrowth (ELO) was used by him to reduce threading dislocations 

(TDs) in GaN which led to lifetimes reaching 10,000 hours for the lasers in 1997 [1]. 

Devices fabricated from the III-Nitrides have found a variety of applications, both 

potential and realized, with many taking advantage of their direct and wide band gaps. UV 

LEDs, LDs, and photodetectors have been demonstrated. UV LEDs can be utilized in 

biological particle detection, water and air purification, and medical treatment and diagnosis. 

UV LDs can also be adopted within medical equipment. AlGaN UV photodetectors are 

sensitive in the range 200-365 nm depending on the amount of aluminum incorporated 
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allowing for ozone and solar UV detection. Also, the atmosphere absorbs solar radiation 

under 300 nm which allows for the spectrum range 250-300 nm to be monitored by the 

photodetectors without background noise from the sun. This allows for the photodetectors to 

sense fires and missile launches or other combustion [1]. 

Optical storage is another application for the short wavelength lasers fabricated using the 

nitrides. Optical discs store data using spots limited by the wavelength (λ) of the light used 

to read them [1] [2]. Smaller wavelengths mean higher storage densities, increasing by λ-2, 

and faster reading [2]. LDs used to read DVDs have a wavelength of 780 nm [2] and were 

created with AlGaAs [1]. Violet InGaN lasers with a wavelength of 405 nm are currently 

being used in Blu-ray discs which can store 27 GB of data on a single-layer side [1]. Laser 

printers can also utilize shorter wavelengths to achieve higher resolutions [2]. 

Most notably, nitride LEDs can be used to replace incandescent and fluorescent lamps. 

In 2003, the world used around 20% of its electricity to keep the lights on. White light from 

LEDs can be used to bring down the cost [1]. White light is created by mixing blue, green, 

and red light. This is generally achieved with LEDs by covering a blue LED with a yellow 

phosphor [1] [2]. However, red, green, and blue LEDs can also be packaged together to 

create any color by varying the intensity of each color [2]. Traffic lights can also benefit 

from LEDs [1] [2]. Traffic lights using filtered incandescent lamps to create red light lose 

85% of the light and green and amber lose about 30%. These lamps also need to be switched 

out several times a year. LEDs can solve both problems by using less energy to create the 

desired wavelength and with their lifetimes above 5 years [2]. Other applications for nitride 

LEDs are color displays and panel lighting [1] [2]. 

Increasing wireless applications such as cellphones, satellites, and the internet require 

better microwave transistors and amplifiers [3]. The nitrides can be used to fabricate 
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electronics necessary for high power, high temperature, and harsh environments [1] [3] [5]. 

This is possible because the nitrides are non-reactive, radiation resistant, have high 

saturation drift velocities, high breakdown fields, and high thermal stability [5]. The high 

breakdown field and high electron velocities resulting from wide band gaps are especially 

important for achieving higher powers and frequencies [3]. Silicon carbide could also be 

used for its wide band gap, but GaN can form heterojunctions giving it preference in many 

applications [1] [3]. GaN/AlGaN heterostructures are used to fabricate HEMTs [1]. HEMTs 

have high carrier concentration and high electron mobility which translate to high current 

density and low channel resistance, both being critical for higher powers and frequencies. 

The high output power density leads to smaller devices outputting the same amount of power 

and higher voltage operation leads to more efficiency than transistors made from GaAs [3]. 

GaN HEMTs can also withstand high temperatures [1] [3]. They have been shown to operate 

at 500 ⁰C. These advantages of GaN transistors over current ones made from Si and GaAs 

can lead to incorporation in aerospace and automobile manufacturing [1]. 

Homoepitaxial growth, growth of a thin film material on a substrate of the same 

material, is not possible on a large scale with GaN because of the lack of large bulk single 

crystals [1] [2] [4]. This is due to the high vapor pressure of nitrogen at GaN’s melting point. 

High temperature and high pressure growth is utilized to grow single crystal GaN of only 

around 1 cm2 [1]. In order to produce GaN epitaxy on a commercial scale, heteroepitaxy, 

growth of a thin film on a substrate of a different material, is used [1]-[5]. As stated 

previously, MOCVD is the most common method of nitrides growth. The most widely used 

precursors are trimethyl-gallium, -aluminum, and -indium as the group III source and 

ammonia as the nitrogen source [2] [3] [5]. Growth of device quality GaN requires high 
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temperatures, a large partial pressure of ammonia, and methods to prevent mixing of the 

precursors before deposition [1] [5]. 

The general procedure for nitride epitaxy using MOCVD is as follows: the substrate 

undergoes nitridation, a nucleation (buffer) layer, usually AlN or GaN, is deposited at low 

temperature, the buffer layer is annealed, and epitaxial growth is started [1] [4] [5]. 

Depending on the substrate used or the specific nitride being grown, steps could be added or 

modified in the process. Unfortunately, heteroepitaxy of the nitrides comes with problems. 

Some examples are: high inherent n-type doping in films, high temperatures necessary for 

growth, high pressures needed for nitrogen incorporation, reactions between the precursors 

before deposition, lattice mismatches with substrates, and threading dislocations [1] [5].  

Two of the issues that will be discussed here are finding a proper substrate and threading 

dislocations. 

The substrate used in GaN deposition can have consequences upon the properties of the 

epitaxial film. Some examples include: crystal orientation, polarity, polytype, smoothness of 

the surface, amount of strain, threading dislocation densities, inversion domain boundaries, 

and stacking faults [4]. Lattice constant mismatch is usually the guiding property used to 

pick the substrate [1] [4] [5], but other traits, such as: crystal structure, surface, composition, 

reactivity, chemical, thermal, and electrical, are also relevant [4]. Cost of the substrate can 

also be a defining factor [1] [3]-[5]. Many materials including metal oxides, metals, metal 

nitrides, and semiconductors have been researched to find a perfect substrate, but it remains 

elusive [4]. Sapphire, silicon carbide, and silicon will be discussed here. 

Sapphire (Al2O3) is the most commonly used substrate for GaN epitaxy [1] [2] [4] [5]. 

However, there are many problems associated with it. The mismatch between the lattice 

constant (~15%) [4] and thermal expansion coefficient of sapphire and GaN causes a large 
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amount of dislocation densities (109-1011 cm-2) [1]. This leads to lower mobilities, minority 

carrier lifetime, and thermal conductivity in the film causing decreased device operation. 

Stress is also caused in the GaN due to the difference in thermal expansion coefficients [4]. 

Thicker films relieve neither the stress, in fact cracking is observed [4], nor the dislocations 

[1]. Additionally, sapphire does not dissipate heat well, is an insulator requiring contacts to 

be made on the epilayer, and can cause n-type doping with its oxygen. Sapphire continues to 

be used partly because the most amount of time has been spent developing processes for 

deposition on it than other substrates [4]. It is also less expensive than some other substrates 

[3]. C-plane (0001) GaN on c-plane sapphire is the most widely grown film and substrate 

orientation combination [4]. 

The general procedure for GaN epitaxy on sapphire is treatment of the substrate surface, 

nitridation of the substrate, growth of a nucleation layer, heating of the buffer layer, and high 

temperature epitaxial deposition [1] [4]. Sapphire substrates can be rough from polishing 

damage when obtained. Root-mean-square (RMS) values of 0.8-2.1 nm over 1 mm2 are 

observed. Thus, the substrate needs to be smoothed before deposition. This is usually 

achieved by annealing the sapphire under flowing hydrogen at temperatures 1000-1100 ⁰C 

[4]. Nitridation occurs by exposing the substrate to either ammonia [1] or an 

ammonia/hydrogen mixture in MOCVD [4]. The usual process is the use of ammonia at a 

temperature of 1050 ⁰C [1]. Temperature and duration of the nitridation are both important 

and can affect epilayer properties. When using high temperatures (~1000 ⁰C) shorter times of 

less than 3 minutes are preferred. Nitridating for lengths above 3 minutes can lead to 

decreased electron mobility, increased yellow luminescence from defects, and worse surface 

morphology. However, when nitridating at low temperatures (~400 ⁰C) longer durations 

seem to increase film quality. When the substrate is nitridated properly increased electron 
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mobility, decreased defects, decreased yellow luminescence, and better wetting of the 

epilayer are observed [4]. The buffer layer is typically GaN or AlN and is grown at 

temperatures between 450 and 600 ⁰C [1]. The layer is thin, usually between 10 and 100 nm 

[4]. The deposition of a low temperature nucleation layer causes smoother epitaxial films 

[4], lower dislocation densities, and helps with uniform coverage of the substrate [1]. The 

buffer layer is annealed at the growth temperature around 1050 ⁰C [1]. The heating changes 

the layer from amorphous to a c-plane film when using c-plane sapphire and reduces the 

number of low-angle grain boundaries [4]. The epitaxial layer is then deposited at 1050-1080 

⁰C. Hall measurements place electron concentrations in the 1016 cm-3 range for undoped 

epitaxy [1] [5]. Threading dislocation densities of 1010 cm-2 are observed [1] [4] [5]. 

The preceding procedure described the steps for 2D growth of GaN on sapphire. 3D 

growth can be achieved by adding a step of flowing silane and ammonia above the substrate 

after the nitridation and before the buffer layer deposition. Hydrogen gas must also be used 

during the annealing of the nucleation layer. These additions cause the buffer layer to 

coalesce into islands and when epitaxial growth occurs the epilayer grows both laterally and 

vertically from these islands. Using this method, TD densities can be reduced to the 108 cm-2 

range [1]. 

Silicon Carbide (SiC) is another popular substrate for the nitrides and has especially 

found a niche in GaN transistor growth [3]. There are several advantages to using 

specifically 6H-SiC: the lattice constant is much closer to GaN with a mismatch of ~3%, its 

thermal conductivity is higher than sapphire, and it is electrically conductive allowing for 

contacts to be made to the substrate leading to easier device processing [1] [4]. SiC can have 

either a silicon or carbon face [4], but research has shown that growth on the silicon face has 

better surface morphology [1]. Unfortunately, there are several reasons why the substrate is 
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not more widely used. Silicon carbide wafers are more expensive than sapphire [1] [3] [4] 

[5]. Making it worse, the wafers exhibit rough surfaces [2] with an RMS of 1 nm [4] and can 

have bad structure quality [5]. A buffer layer of either AlGaN or AlN is also a requirement 

when growing GaN because of poor wetting between the materials [1] [4]. This leads to an 

increase in resistance between devices and substrate. Additionally, SiC’s thermal expansion 

coefficient is lower than both GaN’s and AlN’s causing the epilayer to be under stress [4]. 

This tensile stress can cause cracks propagating through all layers [1]. Finally, the threading 

dislocation densities of 109 cm-2 are not much better than GaN/sapphire [1] [4]. 

The procedure for nitride deposition on SiC is simpler than sapphire: the surface is 

prepared, a buffer layer is grown, then epitaxial deposition occurs. Substrate preparation is 

critical for SiC because, as stated previously, the surface is very rough upon reception. The 

amount of threading dislocations and epilayer roughness is dependent on the surface 

morphology of the substrate. Etching using hydrogen at high temperatures (~1600 ⁰C) can 

remove all scratches. Any oxides on the substrate must also be removed [4]. The nucleation 

layer is usually composed of AlN or AlGaN [1] [4]. The deposition process for the buffer 

layer varies from system to system, but if AlN is used a high temperature growth above 1100 

⁰C seems best [4]. If a thickness between 30 and 100 nm is deposited, the AlN will not have 

any domains or low-angle boundaries [1]. Annealing the buffer layer can also improve the 

structure of the epitaxial film [4]. Finally, the epitaxial deposition of GaN occurs at 950 ⁰C 

using an MOCVD system. Undoped GaN on 6H-SiC typically has a carrier concentration 

around 1016 cm-3. Red-shifted luminescence is observed due to the tensile stress from the 

substrate. The dislocation density is 109 cm-2, but can be reduced with thicker films [1]. 

Silicon is a highly desirable substrate because of the large-scale manufacturing system 

already in place for the material. This system can produce large, inexpensive silicon wafers 
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with crystal qualities and surface morphologies better than all other substrate candidates [1] 

[4]. Silicon also has thermal stability during GaN deposition [4]. If this technology is 

sufficiently advanced, it could lead to integration of devices made from silicon and GaN on 

the same chip [4] [6]. Unfortunately, the quality of the epitaxial films on silicon is lacking 

compared those on sapphire or SiC [1] [4]. The difference in thermal expansion coefficients 

causes GaN layers to be stressed and can crack if grown thicker than approximately 800 nm 

making the deposition of a buffer layer a necessity [1]. The substrate has been observed to 

create silicon nitride when coming into contact with nitrogen. Non-radiative recombination 

centers are also a problem with nitrides grown on silicon [4]. 

The procedure for epitaxial deposition on silicon is the same as SiC: substrate 

preparation, buffer layer growth, and epilayer deposition. Research has been done for growth 

on both (001) Si and (111) Si [4]. Both wurtzite and zincblende GaN have been deposited on 

(001) Si [4]-[6]. Using MBE, GaN buffer layers between 300 and 900 Å were grown in a 

temperature range of 175-400 ⁰C. Subsequently, approximately 1 µm of epitaxial GaN was 

deposited at 600 ⁰C. It was found that the buffer layers grown at higher temperatures were 

single crystalline while those deposited at low temperatures were either amorphous or 

polycrystalline [6]. Furthermore, the epilayers deposited on the single crystalline buffers 

were single crystalline zincblende GaN while those deposited on the amorphous or 

polycrystalline buffers were polycrystalline wurtzite GaN [5] [6]. 3C-SiC layers on (001) Si 

have been deposited with the intention of growing zincblende GaN on top. This epitaxial 

stack has poor surface morphology and crystal quality which, again, leads to the growth of 

wurtzite GaN. The low growth temperature of MBE has been observed to be advantageous 

when growing zincblende GaN on 3C-SiC/(001) Si compared to the high temperatures of 

MOCVD. However, growth of cubic GaN on (001) Si continues to be a work in progress. 
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Separate buffer layers of sapphire, AlN, and AlGaN have all yielded wurtzite gallium nitride 

[4]. 

(111) Silicon has both problems of SiN formation and cracking of the epilayer. A variety 

of buffer layers have been attempted to fix the problem. An AlN buffer layer can be used to 

stop the SiN from occurring [4]. Multiple layers of AlGaN and GaN can help with the 

cracking [1]. Surface treatments of the silicon must also be implemented to improve 

crystallinity and optical properties of the epitaxial films. Despite these problems, (111) Si 

remains the plane of choice and devices such as LEDs, photodetectors, and transistors have 

been shown using this substrate [4]. 

Threading dislocation densities have been a consistent problem for the nitrides due to 

deposition using heteroepitaxy. TD densities are around 109-1010 cm-2 for GaN growth on 

sapphire or 6H-SiC. It is remarkable that devices created from the nitrides can even work 

with such high dislocation densities [1] [4]. Optoelectronic devices fabricated from other III-

V semiconductors would not operate at those densities [1]. The consensus used to be that 

optical devices would not be efficient with densities of 106 cm-2 and above [4]. As an 

example, blue lasers using a II-VI semiconductor had been created with TD densities around 

105 cm-2, but they would fail due to more TDs being created while emitting light [1]. 

Despite early III-nitride devices working with such high dislocation densities, lowering 

the number of TDs can result in higher efficiency and better performance [1]. In fact, 

complex devices, such as laser diodes, require lower amounts of dislocations. One method of 

decreasing TDs is to use homoepitaxy. As an example, homoepitaxial silicon has close to 

zero dislocations and GaAs homoepitaxy has densities between 102 and 104 cm-2 [1] [4]. 

Homoepitaxy on small bulk GaN crystals has been performed with results showing TD 

densities of 105 cm-2 and below [2] [4]. However, as stated before, homoepitaxial GaN on a 
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large scale is not feasible because of the lack of the ability to produce bulk single crystal 

wafers for substrates [1] [2] [4]. Thus, additional growth steps must be utilized during 

heteroepitaxial growth to decrease TD densities [1] [4]. Nitridation and buffer layers have 

decreased dislocation densities to 108 cm-2 and optimized 3D growth of GaN can reduce 

them further to 107 cm-2, but more complex methods such as epitaxial lateral overgrowth or 

pendeoepitaxy are needed for lower values [1]. 

Epitaxial Lateral Overgrowth uses a selective area epitaxy process to decrease 

dislocation densities by depositing a masking material on top of portions of previously 

grown GaN and then growing a new GaN layer on top of that template. The general 

procedure for ELO has four steps. First, a GaN film several micrometers thick is grown as 

normal on the substrate being used. Second, a dielectric material, usually silicon dioxide or 

silicon nitride, is grown on top of the GaN layer. Third, parallel strips of the dielectric are 

etched away using photolithography thus exposing strips of the underlying GaN next to 

strips with the dielectric still on top. Fourth, GaN growth is started again with GaN only 

growing on top of the strips of exposed GaN. Once the GaN has reached the surface level of 

the dielectric, GaN grows laterally from the exposed strips and covers the mask. Vertical 

growth also continues as normal while lateral growth occurs. Vertical epitaxial deposition 

does not occur on the dielectric before lateral growth because the supersaturation of the 

growth nutrients should be low on the mask. The rate of lateral growth is controlled by many 

factors, some examples are: planar orientation of the GaN epitaxy, temperature during 

deposition, pressure, V/III vapor ratio, and chemical mixture of the carrier gas. For instance, 

research has shown that using a 1:1 ratio of H2 and N2 for the carrier gas leads to the fastest 

growth rate while maintaining a smooth surface morphology [1]. 
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While threading dislocations propagate as normal through the vertically grown film on 

top of the exposed GaN, the dislocations do not occur in the laterally grown film on top of 

the mask. The mask stops the propagation of the dislocations in the epitaxy beneath it and 

thus lowers the dislocation density. Transmission electron microscopy (TEM) and atomic 

force microscopy (AFM) analyses of GaN grown using this ELO method have shown TD 

densities as low as 5x106 cm-2 [1]. 

The previously described procedure is known as one-step ELO. Multiple growths using 

ELO is possible and can achieve lower TD densities. A variety of procedures have been 

created for two-step ELO. After following the normal steps for one-step ELO, one procedure 

calls for stripes of a second deposition of the dielectric to be etched at an angle, 60⁰ or 90⁰, 

with respect to the strips of the original mask. Lateral growth will then occur as in the 

original step. Another method calls for the second set of mask strips to be placed on top of 

the strips of exposed GaN in the first ELO growth. Again, lateral growth will occur as 

before. Nichia has even developed a three-step ELO process for GaN/sapphire. First, one-

step ELO deposition using MOCVD is utilized. Above this template, GaN is grown using 

HVPE. The sapphire is polished away to expose the GaN epitaxy. Finally, one-step ELO is 

utilized on top of the exposed film. This method has reduced TDs to 7x105 cm-2. Using 

ELO, reverse bias leakage current and dark current have been reduced in LEDs and 

photodetectors, respectively. The three-step procedure has allowed Nichia to create LDs with 

lifetimes of 15000 hours [1]. 

Pendeoepitaxy is a modified version of the epitaxial lateral overgrowth procedure. 

Again, the first step is GaN growth on a substrate. However, at this point parallel stripes of 

the epitaxy along with some of the substrate beneath them are etched away. This creates 

ridges and troughs with the bottom of the troughs being the exposed substrate and the sides 
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being composed of epitaxial film on top of the substrate. The remaining GaN is covered by a 

dielectric mask. GaN is then grown laterally from the walls of the troughs and once a bridge 

has been created by the film over the exposed substrate vertical growth occurs. When the 

growing material reaches the dielectric surface, lateral growth occurs again to cover the 

mask. Just like ELO, by masking parts of the originally grown GaN and allowing lateral 

growth, TD densities are reduced. Multistep pendeoepitaxy can be achieved by repeating the 

procedure with a film previously grown using pendeoepitaxy. Despite additional steps in 

both ELO and pendeoepitaxy resulting in lower dislocation density material and thus better 

performing devices, this must be balanced with the increased time and resources put into 

growing such films [1]. 

B. Sputtered Gallium Nitride 

Sputter deposition is another method that can be used for gallium nitride deposition. 

Sputtering involves directing molecules of a gas to bombard a target, the material for which 

deposition is desired, causing the atoms or molecules of the target to be dislodged. Some of 

these freed particles will settle on the substrate placed within the chamber and become the 

deposited layer. The material being deposited can be constituted from solely the target 

material or from chemical bonding of the atoms of the target with the atoms of the gas. The 

substrate is loaded before the sputtering process begins. 

Sputter deposition of GaN is a less widely used procedure compared to MOCVD, MBE, 

and HVPE [7], but there are benefits inherent to the method which have the possibility of 

opening a variety of new applications for GaN. The technique allows for deposition at low 

temperatures [7]-[13] especially compared to the usual MOCVD requirement of 800 ⁰C or 

above [14]. Low temperature growths can lead to better III-Nitride electronic devices such as 
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AlGaN/GaN HEMT biosensors [8] while room temperature deposition can allow for 

integration of GaN layers with silicon complementary metal oxide semiconductor (CMOS) 

devices [10]. Room temperature deposition is desirable for pre-grown silicon devices 

because they could become defective if they are heated during the GaN deposition [10]. 

Electronic devices also require low free electron concentrations in undoped material. 

Samples with concentrations in the 1014 cm-3 range have shown this is achievable with 

sputtering [9]. Although GaN deposition by sputtering mainly results in polycrystalline 

material [12] [13], applications such as transistor displays and solar cells do not need single-

crystalline quality [14]. Persistent photoconductivity has also been observed in sputtered 

gallium nitride layers which could be utilized to record information optically [11]. 

The most attractive feature of sputter deposition is the low cost compared to 

conventional epitaxial methods [7] [10] [12] [13]. This gives the ability to deposit layers on 

large area substrates and subsequently fabricate devices in large quantities. When coupled 

with inexpensive substrates such as silicon or glass, the cost to commercially produce GaN 

optical and electronic devices can be reduced further [7] [10] [13]. Ease of use is another 

desirable trait of the sputter process [8] [12] [13]. This trait leads to improved control of film 

thickness [8] and properties, tailoring them to specific needs of the application [12] [13]. 

High growth rate [7], reduced toxicity, and subsequent deposition of different materials are 

other benefits of the method [8]. 

Two different approaches to sputtering GaN are using gallium as the target and using 

GaN as the target. When utilizing GaN, the material must simply be sputtered onto the 

substrate. If gallium is employed, nitrogen gas must be used during the sputter process so 

that GaN may be created. Procedures and characterizations for both techniques will be 

presented. 
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Usage of a gallium target is a common sputtering method to deposit gallium nitride. 

However, as stated, it must be in conjunction with nitrogen gas so that the gallium and 

nitrogen may chemically bond to form GaN. Many research groups may use nitrogen gas 

within their procedure, but they have added other gases to sputter, deposited on different 

substrates, and varied other parts of the process. 

Zou et al. utilized middle-frequency (MF) magnetron sputtering to deposit onto soda-

lime silicate glass substrates. The frequency was set to 40 kHz. Their gallium targets were 

kept cool with 5 ⁰C water. The substrates were cleaned with acetone and ethanol then 

washed with deionized water prior to being loaded into the machine. In the chamber, glow 

discharge cleaning in argon was also performed on the substrates at 4 Pa (~30 mTorr) with 

the target shielded. The sputtering conditions were normally: 1600 W of input power, 80 ⁰C, 

which Zou et al. called “no substrate heating,” 50 V negative bias, 2.5 A cathode target 

current, sputtering gas of 30% argon and 70% nitrogen, 10 cm between substrate and target, 

and 0.8 Pa (~6 mTorr) of pressure. However, the pressure was changed to observe changes 

in the deposited layer’s characteristics. The GaN film thickness was 3 µm [7]. 

Newman et al. used radio frequency (RF) magnetron sputtering to deposit onto r-plane 

sapphire. The gallium target was sputtered before deposition in 10 mTorr of Ar then 10 

mTorr of 30% Ar and 70% N2 for one hour to nitride the target. The sputtering parameters 

were: 110 W, 6.5 cm between substrate and target, substrate heating was varied from 200 to 

700 ⁰C, nitrogen partial pressure from 1.5-25 mTorr, nitrogen flow from 10 to 285 sccm, and 

the ratio of N2/Ar was varied from 0.1 to 1. The samples were cooled to be under 200 ⁰C 

with 100 mTorr of N2 once deposition was finished [9]. 

Meng et al. also employed RF sputtering to grow a buffer layer of AlN on (111) Si 

followed by a GaN film. The AlN was deposited with the conditions of 1:9.9 Ar:N2 gas 
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mixture, 1.6 mTorr pressure, and at a temperature of 710 ⁰C. The thickness was around 45 

nm. The GaN deposition kept the sputtering parameters of 1.6 mTorr and the ratio of 1:9.9 

Ar/N2 gas, but also followed approximately 14 cm from target to substrate, input power 

ranging from 50 to 300 W, and substrate heating from 550-750 ⁰C. Deposition of GaN was 

only started when the substrate was heated to the desired temperature. The thickness of the 

GaN layer was ~1 µm [15]. 

Miyazaki et al. utilized a RF magnetron system, just as the previous two groups, to 

sputter onto Corning 7059 glass, fused quartz, (100) Si, and 4⁰-off (111) Si as substrates. 

The substrates were cleaned with organic solvents before being placed into the machine. The 

gallium target was cleaned with sputtering preceding the deposition while the substrates 

were protected by a shutter. The deposition parameters were: frequency of 13.56 MHz, 50 

W, 5 cm distance between target and substrate, the pressure ranged from 0.08-2.70 Pa (~0.6 

to ~20.3 mTorr), the substrate was believed to be heated to around 60 ⁰C, but this was not 

intended and seemingly an artifact of growth at 50 W, the sputtering gas was composed of 

either pure nitrogen or a blend of hydrogen and nitrogen gases. Most of the films deposited 

with the N2/H2 mix had a hydrogen partial pressure of 0.07 Pa (~0.53 mTorr), but some were 

sputtered with a partial pressure of 0.01 Pa (~0.075 mTorr). The GaN layer was usually 500 

nm thick [12]. 

In another study by Miyazaki et al., a RF magnetron sputter system was used to deposit 

onto solely 4⁰-off (111) Si substrates employing almost the same procedures and parameters. 

Prior to being placed in the machine, the substrates were cleaned first using organic solvents 

and second with a 10:1 H2O:(49%) HF solution. The HF procedure lasted for 20 s at room 

temperature and was utilized to get rid of any oxides and passivate the surface of the silicon 

with hydrogen bonds. Pre-sputtering of the gallium target was engaged to clean the surface 
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while the substrates were shielded. The sputtering conditions were: 13.56 MHz RF 

frequency, 50 W, 0.08-2.70 Pa total pressure, 5 cm between target and substrate, around 60 

⁰C unintentional heating from the 50 W input power, and all films were sputtered with only 

N2 gas. The target was kept cool throughout with running water. Thicknesses of the GaN 

layers ranged from 200 nm to 1.2 µm [13]. 

X-ray diffraction (XRD) measurements are a common method of characterizing the 

crystallinity and orientation of a deposited film. All of the listed groups performed Ɵ-2Ɵ 

XRD to learn more about their sputtered layers. Newman et al. observed the (11-20) 

direction, the same orientation as the sapphire substrate, for their GaN with the best 

crystallinity, highest peak intensities, occurring when sputtering was performed between 630 

and 680 ⁰C. A full width at half maximum (FWHM) of 25 min. for the peak at 650 ⁰C was 

reported [9]. 

Meng et al. found that c-plane gallium nitride and aluminum nitride grew on the (111) Si 

substrate when deposited at 550-750 ⁰C with 100 W input power. They also performed an ω 

rocking curve scan for the same conditions reporting the GaN and AlN having rocking curve 

widths of 0.61⁰ and 0.85⁰, respectively, at 560 ⁰C and other widths being similar for the 

range 550-750 ⁰C. A more specific comparison of the widths at 560 ⁰C and 650 ⁰C with 

respect to varying the power from 50-300 W showed the widths at the higher temperature 

were narrower. The total width at 650 ⁰C for each of the tested powers was around 0.45⁰. 

This demonstrated that depositing at different powers for the same temperature did not 

notably affect the rocking curve width. These values were close to GaN layers grown with 

electron cyclotron resonance (ECR) MBE on (111) Si, but much wider than epitaxy on 

sapphire using ECR MBE. Lattice distortion in the c-direction was also observed for the 

same RF power range at the temperatures 560 and 650 ⁰C. The strain in the film was lower at 
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650 ⁰C for powers 100 W and above, but the lattice spacing was always higher than the room 

temperature value no matter the deposition temperature nor the power. The lattice strain also 

increased as the sputtering power increased for both temperatures as well. They state this is 

evidence that some of the increased lattice spacing must result from nonthermal sources 

[15]. 

Miyazaki et al. performed XRD on GaN films sputtered solely with N₂ onto 4⁰-off (111) 

Si and N₂/H₂ on (100) Si with the measured pressure ranges being 0.08-2.70 Pa and 0.27-

1.07 Pa, respectively. The hydrogen partial pressure was 0.07 Pa (~0.53 mTorr). All N₂/H₂ 

films were found to be amorphous. C-plane peaks grew stronger as the growth pressure 

dropped, but remained too small to have a crystalline layer. The GaN sputtered with only the 

nitrogen gas was also amorphous for high pressures, but at 1.07 Pa (~8 mTorr) peaks for 

multiple orientations of wurtzite GaN were visible including c-plane. They claim the peaks’ 

positions follow those laid out in the Joint Committee on Powder Diffraction Standards 

(JCPDS) for wurtzite GaN and that the film is polycrystalline. Films grown from 0.53 Pa (~4 

mTorr) and below contained a peak only at the wurtzite c-plane location with the epitaxy at 

0.27 Pa (~2 mTorr) having the best crystallinity. Reflection high-energy electron diffraction 

(RHEED) analysis on the 0.27 Pa sample showed that the GaN is polycrystalline with 

smooth surface morphology [12]. 

In the other study, Miyazaki et al. present much the same results for crystal orientations 

using XRD with respect to total pressure. This paper goes further in describing XRD 

intensity and FWHM of the (0002) plane peaks for films sputtered purely with nitrogen at 

various pressures. They confirm that the greatest intensity occurs at 0.27 Pa while the 

FWHM lowers with higher pressure until approximately 0.5 Pa where the FWHM remains 

close to 0.5⁰ with further pressure increases. Lattice strain in the c-direction with respect to 
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total deposition pressure was also reported. The lower the pressure, the greater the distortion 

of the lattice. The distortion remained below 1% until around 0.6 Pa (~4.5 mTorr) where it 

jumped to ~2% and kept increasing for lower pressures. They state that the higher strain at 

0.6 Pa and below could be the reason behind the larger FWHM at the same pressures [13]. 

Zou et al. recorded XRD measurements for GaN films on glass in the pressure range 

0.51-1.5 Pa (~11.3 mTorr). They also found c-plane to be the favored orientation for 0.67 Pa 

(~5 mTorr) and above and wrote that this was observed for growth on a silicon substrate 

done separately as well. The (0002) GaN peak was not present for depositions 0.51 Pa and 

below. The intensity of the c-plane peaks, however, was in the hundreds of counts/s no 

matter the pressure which was lower than their deposition on silicon and much smaller than 

GaN epitaxially grown using the standard techniques of HVPE, MOCVD, and MBE. They 

attribute the low intensity to the amorphous quality of glass. Another claim is put forth that 

the optimal pressure for crystallinity is between 0.67 and 0.8 Pa (~6 mTorr) due to sputtered 

atoms having low kinetic energy and thus low mobility when reaching the substrate and 

being unable to crystallize properly at high pressures while at low pressures the atoms will 

have energy that is too high and could cause re-sputtering of the deposited GaN [7]. This 

contrasts with the findings of Miyazaki et al. of the best crystal quality occurring at pressures 

0.53 Pa and below [12], but this could be due to the different methods of sputtering with Zou 

using MF [7] while Miyazaki used RF [12]. 

Other characteristics of the sputtered GaN layers were also observed by these groups. 

Newman et al. report that the conditions of a nitrogen partial pressure of 8 mTorr, N2 flow 

rate of 238 sccm, N2/Ar ratio of 4:1, and deposition temperature of 650 ⁰C yields room 

temperature Hall electron carrier concentrations of 8.4x1014 cm-3 with a mobility of 330 

cm2/V*s. This carrier concentration was close to the value 8x1013 cm-3 obtained with MBE 
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which was the best at the time for undoped gallium nitride. When going back to using 70% 

N2 in the sputtering gas, they presented that deposition in the temperature range 625-680 ⁰C 

generated both the best N/Ga ratio, between ~0.8 and ~0.9 with the highest value being at 

~625 ⁰C, and growth rate, between ~1.5 and ~2.5 Å/s, with the growth rate increasing with 

temperature until 670 ⁰C. After 680 ⁰C, the N/Ga ratio and deposition rate decrease just the 

same as the crystal quality mentioned earlier. Newman et al. hypothesize that this could be 

due to one or more of the following: thermal decomposition of the GaN layer, the impinging 

nitrogen and gallium atoms reevaporating before being assimilated into the crystal, the same 

atoms having a lower sticking coefficient, or some other unnamed reason. The resistivity of 

the deposited film at these conditions was observed to decrease as the temperature increased 

starting at around 10 Ω*cm for 600 ⁰C and reducing to about 0.04 for 700 ⁰C. They also 

observed the effect of reducing the RF input power from 110 to 50 W while keeping the heat 

at 650 ⁰C and the N2/Ar ratio at 7:3 to be the N/Ga ratio dropping from 0.92 to 0.66 and the 

deposition rate also dropping from 2.4 to 0.34 Å/s which they believed is proof that 

sublimation of the GaN layer is occurring during the deposition process [9]. 

Meng et al. also noted in their experiment that as the input power increased the 

deposition rate followed suit. Raman spectroscopy was implemented by them as well on 

layers sputtered at 560 ⁰C and 650 ⁰C. The spectra of the lower temperature film contained 

peaks at 562.3 and 728.3 cm-1 with FWHMs of approximately 12 and 20 cm-1, respectively. 

The sample deposited at 650 ⁰C showed peaks at 562.8, 714.7, and 731.9 cm-1 with FWHMs 

of ~9, 39, and 12 cm-1, respectively, within its spectra. The authors concluded that the peak 

at ~562 cm-1 could be from the E2 phonon mode of gallium nitride [15]. The narrowing of 

the peaks at ~562 and ~730 cm-1 [15] could lend additional support to the claim made by 
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Newman et al. that sputtered deposition of GaN with substrate heating at around 650 ⁰C 

leads to the best crystallinity [9]. 

Miyazaki et al. performed Fourier transform infrared spectroscopy (FTIR) on both the 

layers sputtered with pure N2 and N2/H2 gas. For this measurement, both films were 

deposited onto (100) Si while the GaN films deposited with N2 and measured with XRD 

were on 4⁰-off (111) Si. However, they report that no observations were made to suggest that 

the substrate utilized obviously affects the film’s properties. The layer sputtered with pure 

N2 was deposited at a pressure of 0.27 Pa (~2 mTorr) and showed a single vibration peak at 

~555 cm-1. The authors believed this to be created by the GaN lattice absorption band which 

in single-crystalline wurtzite GaN is located at approximately 533 cm-1 and 560 cm-1. The 

GaN:H films were sputtered with a hydrogen partial pressure of 0.07 Pa (~0.53 mTorr) and 

were observed at the total pressures 0.27, 0.53, and 1.06 Pa with the latter two being at ~4 

mTorr and ~8 mTorr, respectively. All these films had peaks at around 555, 1000, and 3200 

cm-1. The latter two peaks were claimed by Miyazaki et al. to be from hydrogen-related 

bonds with the gallium or nitrogen. They also observed the FTIR spectra when the GaN:H 

layers were sputtered at 0.01 Pa (~0.075 mTorr) hydrogen partial pressure for both 0.53 and 

1.06 Pa total pressures and reported that since the spectra contained the same peaks at close 

to the same intensities when the total pressures were kept the same and the partial pressure 

was changed, but not vice versa, that the hydrogen bond density is reliant on the total 

pressure utilized not the amount of hydrogen. GaN and GaN:H films were sputtered onto 

Corning 7059 glass to measure the band gap energy at room temperature. Both were 

deposited at a pressure of 0.27 Pa with the latter using 0.07 Pa partial pressure of hydrogen. 

They found the band gap to be located at 3.38 eV for the sputtered GaN film which is close 

to the standard 3.4 eV value for single-crystalline wurtzite GaN and further confirms that 
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they were able to grow wurtzite GaN. The GaN:H layer was determined to have its band gap 

at 3.7 eV, a higher energy than both wurtzite and cubic GaN with the latter having its value 

at around 3.2 eV [12]. 

In the other paper, where Miyazaki et al. sputtered onto just 4⁰-off (111) Si with only 

nitrogen gas, spectroscopic ellipsometry (SE) was utilized to characterize a sample deposited 

with 0.27 Pa of pressure. They found the gallium nitride layer to be composed of a surface 

layer having a depth of around 17 Å and consisting of 70% voids. Underneath the surface, 

the rest of the sputtered film contained a 4.7% density deficit. AFM was also utilized to 

analyze the same film and an approximate 11 Å rms roughness value was calculated, 

agreeing with the ~17 Å determined with SE. Scanning electron microscopy (SEM) of the 

sample yielded a film without the usual columnar structure expected from sputtered 

deposition. They stated that these columns in sputtered films are responsible for roughening 

the surface and reducing the uniformity, so it is unsurprising that they observed a 

homogenous GaN layer with a smooth surface. The transition from the silicon substrate to 

the gallium nitride was presented to be smooth. The authors claimed this to be from 

sputtering without any additional heating, beyond the 60 ⁰C caused by the input power of 50 

W, since molten gallium damages silicon crystals and deteriorates the surface morphology. 

Miyazaki et al. also observed that changing the sputtering gas from pure N2 to a 50:50 mix 

of N2/Ar helps to flatten the surface of the GaN. AFM analysis of a layer using this gas 

combination revealed a 6 Å rms roughness [13]. 

Zou et al. characterized one of their GaN layers, deposited with their standard parameters 

mentioned earlier, with energy-dispersive x-ray spectroscopy (EDX) and concluded that the 

film has close to a 1:1 Ga/N ratio. SEM of the sputtered layer showed it was columnated [7], 

which is stated to be typical of sputtered films by Miyazaki et al. [13], and stratified. The 
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authors claimed the latter to be a possible indication of a high quantity of surface defects. 

AFM measurements yielded a surface consisting of small crystals of different sizes and a 

7.95 nm rms roughness. Raman spectroscopy performed on GaN layers deposited on both 

soda-lime silicate glass and (111) Si showed peaks at 564 and 730 cm-1. They suggested that 

the peaks could be from the E2 and A1(LO) phonon modes, respectively, citing another study 

that had found the E2 mode at 565 cm-1 and the A1(LO) mode at 735 cm-1 for single-

crystalline GaN deposited on Si using an ultrahigh vacuum RF magnetron sputter system. 

Also referencing Meng et al., Zou et al. noted that the E2 mode FWHM for their layer 

deposited on glass was much broader at 28.72 cm-1 than the 9 cm-1 value measured by 

Meng’s group and that this increased width could be from strain caused by the large input 

power used at 1600 W. Observations made with photoluminescence spectroscopy (PL) on 

films sputtered at 0.8 Pa (~6 mTorr) and 1.5 Pa (~11.3 mTorr) showed broader peaks for the 

layers deposited at the higher pressure. The authors report that this finding could mean that 

higher pressures reduce the crystallinity of the sputtered GaN [7]. This conclusion would 

agree with their own results from XRD [7] as well as the measurements implemented in the 

studies from Miyazaki et al [12] [13]. 

Gallium nitride itself has been used as a target for sputter deposition of GaN films by 

several research groups. Huq et al. employed an ultra high vacuum (UHV) RF magnetron 

sputter machine for their deposition of films on sapphire, glass, and (111) Si substrates. The 

target was cleansed of impurities by pre-sputtering it for 30 minutes before deposition 

commenced. The sputtered growth occurred utilizing the parameters of frequency at 13.5 

MHz, input power range of 15-50 W, and total pressures from 4 to 30 mTorr. Additionally, 

the substrates were rotated between 30 and 60 RPM along with being heated at various 

temperatures of 25 to 700 ⁰C throughout the deposition. These conditions were implemented 
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to improve the sputtered layer’s consistency on all parts of the substrate and decrease the 

number of oxygen atoms settling within the growing film, respectively. Both argon and 

nitrogen gases were used for the sputtering gas, but depositions with different ratios of each 

gas in the mixture were performed. One deposition implemented purely Ar gas, another 

utilized both Ar and N2 with the amount of Ar being higher, a third deposition also 

contained both gases this time with higher N2 concentration, and finally a growth employed 

solely N2 as the sputtering gas. The thickness of the GaN layers was varied [8]. 

RF magnetron sputtering was utilized by Wang et al. to deposit onto p+-(111) Si 

substrates. The silicon was cleaned with a 10:1 HF solution, with the intent of eliminating 

any oxides, blow dried, then placed within the machine. The sputtered growth occurred in 

two stages with common parameters being input power of 50 W, a N2/Ar mixture composing 

the gas, and a pressure of 5 mTorr. A GaN nucleation layer was grown at 400 ⁰C to a 

thickness of around 50 nm. This buffer layer was annealed for 30 min. in nitrogen gas at 500 

⁰C. The sputtering of the main GaN film was performed at 700 ⁰C and it was grown to a 

thickness of 350 nm. Rapid thermal annealing (RTA) was employed when deposition was 

finished in a 0.5 Torr nitrogen atmosphere for one minute at 900 ⁰C. After the annealing, 

some of the samples were irradiated with gamma rays from cobalt with a dosing rate of 100 

rad/s, but for different total dosage amounts ranging from 1 to 12 Mrad, to observe which 

and how properties were affected in the GaN layers when exposed to radiation [16]. 

Devaraju et al. also used a RF magnetron sputter system to grow on p-type (100) Si 

substrates. The deposition was implemented with the conditions of 13.6 MHz frequency, 4 

mTorr total pressure, 2:3 ratio of N2/Ar sputter gas mixture, and no substrate heating (room 

temperature). Separate depositions were performed at RF input powers of 20, 30, and 40 W. 
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The GaN layer thickness was kept close to 300 nm and because of the changing power the 

deposition duration was varied as well [10]. 

Another sputtering procedure involving a RF magnetron unit was employed by 

Maruyama et al. with a gallium nitride powder target to deposit on mainly borosilicate glass 

plates, but for characterization of the binding energy and composition of the GaN layer 

single crystal (100) Si was used as a substrate. The deposition parameters were a frequency 

of 13.5 MHz, pressure range from 0.59 to 200 mTorr, RF power varied from 50 to 300 W, 

target to substrate distance of 48 mm, and either solely Ar or N2 as the sputtering gas with a 

flow rate within the range 5-358 sccm. The substrate temperature was either 90 ⁰C, which 

was labeled as unheated, 200, or 300 ⁰C during sputtered growth [14]. 

Horng et al. deposited onto sapphire substrates with a RF magnetron sputter machine 

utilizing a sintered GaN target. The sapphire was heated at 150 ⁰C with the pressure in the 

chamber under 0.5 µTorr for one hour before sputtering commenced. The deposition 

conditions were 4.2 W/cm2 input power, 500⁰C substrate heating, total pressure of one 

mTorr, and the sputtering gas being a mixture of argon and nitrogen with the amount of 

argon ranging from all to none of the gas, in steps of 20%, while the total gas flow rate was 

kept to 100 sccm. The GaN layers had a thickness of around 200 nm [11]. 

XRD analysis was also commonly implemented by these research groups to characterize 

the crystal quality and orientations of their sputtered GaN films. Huq et al. found when using 

40 W input power and 10 mTorr during deposition that having the nitrogen gas be 60% or 

higher of the total sputtering gas results in the best crystal quality. Below 60%, the GaN 

layers were reported to become amorphous. They claimed the high amount of Ar ions hitting 

the GaN layers in such cases resulted in the films being re-sputtered. Another XRD 

measurement of films grown at 40 W, 5 mTorr, and 700 ⁰C on (111) silicon and sapphire 
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substrates showed polycrystalline wurtzite GaN with multiple orientations for both sputtered 

layers. The silicon sample contained visible peaks for the (100), (002), (101), and (110) 

orientations while the GaN on the sapphire exhibited the (100), (002), and (103) planes. The 

c-plane peak had the highest intensity on both substrates proving to be the preferred growth 

direction [8]. 

Wang et al. presented the effects of gamma ray irradiation on sputtered GaN layers. An 

XRD test on a nonirradiated sample showed peaks at the (10-10), (0002), (10-11), and (11-

20) orientations with the (10-10) wurtzite plane having the highest intensity by far. XRD 

analysis of GaN layers dosed with 1, 4, 8, and 12 Mrad observed the (10-10) direction peak 

lowering in intensity as the radiation increased. Clearly the GaN crystal quality degrades 

with exposure to higher levels of radiation. The authors also reported room temperature 

Hall-effect measurements of all the deposited films, both irradiated and nonirradiated, 

showed them to be n-type which is normal for undoped GaN [16]. 

Grazing incidence XRD (GIXRD) was utilized by Devaraju et al. to characterize GaN 

layers sputtered at 20, 30, and 40 W and the results were checked against the JCPDS. The 

films were found to be of the wurtzite structure and polycrystalline with multiple 

orientations present in the GIXRD data. The layer deposited with 20 W RF power contained 

the gallium nitride planes (1010), (1011), and (1120) along with a peak the authors believed 

could be from gallium oxide. Both the 30 and 40 W sputtered films showed the (1010), 

(0002), (1011), and (1120) directions. The (1011) orientation showed the highest intensity 

when sputtering at 20 W, but the peak lowered in size as the RF power was increased. 

Conversely, the c-plane orientation became more prominent the higher the input power 

utilized, going from being unobserved for the film sputtered at 20 W to the peak with the 

largest intensity for the layer deposited at 40 W. The degree of c-axis orientation (DCO), 
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which estimates the percentage among all discovered GaN plane peaks belonging to the c-

direction, was calculated separately for both the films grown at 30 and 40 W utilizing the 

intensities of all the reported GaN directions in each film’s own GIXRD analysis. The 

percentages were calculated to be 53 and 65%, respectively. This agrees with the visual 

graph from the GIXRD data that as the RF power increases the c-plane progressively 

becomes the preferred orientation. Devaraju et al. also calculated the approximate average 

diameter of the c-plane oriented crystals located in the sputtered layers with Scherer’s 

formula. The 20, 30, and 40 W input powers were computed to have lengths of 20, 18, and 

11 nm, respectively. They reported that the crystal diameters for all the films were close to 

GaN’s Bohr exciton radius of 11 nm [10]. If this is accurate, their crystallites are on the 

verge of becoming quantum dots and shows that sputtering could potentially be used to 

create GaN quantum dots. The authors also observed the FWHM of the c-plane peak to 

broaden with higher powers. The lengths of the a-axis and c-axis of the crystal lattice for the 

films deposited at the three RF powers were also measured and determined to decrease as 

the power increased. The authors suggested the decrease in the size of the lattice parameters 

is due to increasing compressive stress, but noted as well that at smaller RF powers tensile 

stress is found in the deposited layers [10]. 

XRD was performed by Maruyama et al. on GaN films sputtered with 2.3 mTorr, 50 W 

RF power, 90 ⁰C substrate heating (labeled unheated), and either solely nitrogen or argon 

gas. The sample grown with N2 presented polycrystalline reflections at the wurtzite (002) 

and (103) GaN planes with the c-plane having a much larger intensity. The layer deposited 

with Ar gas contained a very broad peak for the (002) direction indicating weak crystal 

quality. The authors concluded that these measurements demonstrated that the gas used 

during sputter deposition affects the crystallinity with the use of nitrogen being more 
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favorable. Another XRD test shown by them of a layer grown with 50 W power, 20 mTorr, 

deposition temperature of 300 ⁰C, and N2 gas also displayed the GaN (002) and (103) 

directions. Maruyama et al. implemented a battery of XRD analyses on sputtered GaN layers 

with the conditions of 50 W, pure N2 gas, pressure range from 0.59 to 40 mTorr, and 

substrate heating of 90, 200, or 300 ⁰C. They claimed all the deposited layers were 

polycrystalline with the best crystal quality occurring at the pressures of 20 and 30 mTorr 

and the poorest GaN being at 35 mTorr or above. The results also showed mixed effects for 

substrate heating on bettering the crystallinity when all other parameters are kept the same 

and only the temperature is increased. The authors went on to claim that decreases in 

crystallinity could be associated with smaller grain sizes which they stated could be observed 

when analyzing the FWHM of the c-plane with the integrated intensity. They also reported 

that their GaN layers were transparent, light yellow, and very electrically resistive [14]. 

Other properties of the deposited GaN films were observed with a variety of 

characterization methods. Horng et al. measured the band gap energy, refractive index, and 

Ga/N ratio of their sputtered layers and compared them against the theoretical values of 3.4 

eV, 2.67, and 1, respectively. The GaN films being investigated were sputtered with varying 

amounts of nitrogen and argon in the gas mixture, specifically 0, 20, 40, 60, 80, and 100% of 

the gas being N2 with the remainder, if any, comprised of Ar. The authors presented that the 

band gap and refractive index have an increasing trend ranging from 2.43-2.87 eV and 2.3-

2.5, respectively, for 20 to 100% of N2 contained within the gas. The amount of gallium was 

usually higher than the nitrogen, but the Ga/N ratio improved with higher amounts of 

nitrogen in the deposition gas and saw the best value of 0.95 at 60% N2 which was the only 

sample that contained more nitrogen than gallium. The deposited films using 80 and 100% 

N2 also had ratios closer to one than the 20% and 40% layers. When sputtering occurred 
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without any nitrogen (only argon gas), the films observed metallic features with the Ga/N 

ratio being 4.97 and the band gap and refractive index were unable to be measured. These 

findings lend additional support to conclusions in other papers that some amount of N2 

should be utilized while sputtering to improve crystallinity. Horng et al. attribute the general 

inability of nitrogen to incorporate in the films during deposition to thermal decomposition 

at high temperatures and the lack of chemical absorption of nitrogen on gallium. They also 

report that the samples using 60% of N2 or above were extremely resistive or insulating. The 

other GaN layers were n-type and conductive due to higher amounts of nitrogen vacancies 

[11]. 

Black layers were described by Huq et al. when depositing with only Ar gas at 40 or 50 

W and 4 or 5 mTorr with N/Ga ratios around 0.16. They also believed these properties to be 

connected to nitrogen vacancies and large amounts of gallium. As mentioned earlier, the 

authors had found usage of 60% or more of N2 in the sputtering gas led to improved crystal 

quality and reduced re-sputtering, but in addition to those benefits the nitrogen incorporation 

is increased for both sapphire and silicon substrates and the extent of target poisoning is 

diminished. Target poisoning if left untreated, they reported, reduces the stoichiometry of the 

sputtered GaN. Another method of counteracting the target poisoning is to increase the total 

deposition pressure to within the 20 to 30 mTorr range, but the tradeoff is lower nitrogen 

incorporation in the sputtered films. They claimed the amount of nitrogen could be raised 

and the target poisoning kept low by decreasing the input power to around 15 W, but the 

growth rate dropped as did the crystallinity to the point of being amorphous. SEM of 

samples deposited with 40% N2 for one hour showed grain sizes around 15 nm, but when 

viewed for a growth duration increased to 2 hours the grains were not as established. The 

atomic percentage of oxygen in the GaN layers was found to be higher than the percentages 
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of both gallium and nitrogen with unheated sputtering when using any amount of N2 in the 

deposition gas and was believed to be originating from oxygen atoms pre-existing in the 

growth chamber. Huq et al. demonstrated that increasing the substrate temperature to 700 ⁰C 

was effective in decreasing the oxygen concentration. In general, they recommended 

sputtering on sapphire or silicon with RF power around 40 W, larger total pressure around 

15 mTorr with 60% or more N2 in the gas, and substrate heating. In contrast to other papers, 

the authors claimed that glass is not a viable substrate [8]. 

PL spectra was examined by Wang et al. for GaN films with and without gamma ray 

irradiation. The sputtered layer not dosed with radiation consisted of a high intensity 

emission at 3.3 eV, which they claimed is an identifying mark of n-type GaN, a small peak at 

2.8 eV, and a broad luminescence around 2.2 eV. The latter was designated the yellow band. 

The authors reported that as the radiation doses increased, the peak at 3.3 eV eroded while 

the deep level 2.8 eV emission became more intense. The yellow band luminescence also 

increased until the total amount of radiation hit 4 Mrad. Further increases of radiation above 

that value caused the yellow band intensity to decrease [16]. 

SEM implemented by Devaraju et al. displayed the surface of their GaN layers to be 

comprised of grains no matter the RF power utilized. They noted that as the input power 

increased, the grain dimensions became smaller. This effect was attributed to the release of 

compressive stress in the films created with deposition at higher powers [10]. TEM of GaN 

sputtered with 30 W showed grains 15 nm in size which corresponds with the proportions of 

the grains found by Huq et al. mentioned earlier [8] [10]. AFM of a sample deposited at 20 

W presented particles with lengths of 25 nm. The observed 15 and 25 nm dimensions for the 

30 and 20 W RF powers were close to their calculated values of 18 and 20 nm, respectively, 
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stated earlier. The authors also reported that changing the power did little to affect the 

coarseness of the GaN layer surfaces [10]. 

The α2 Tauc plots drawn by Maruyama et al. showed that their polycrystalline GaN 

layers sputtered with pure nitrogen gas with a RF power range of 50-300 W, pressure of 2.3 

mTorr, and temperature of 90 ⁰C (unheated) all had direct band gaps in the range 3.38-3.4 

eV which are close to the values of 3.39 and 3.2-3.4 eV of single crystal and polycrystalline 

GaN, respectively. The films also experienced N/Ga ratios in the range 0.97-1.28, refractive 

indices in the range 2.0-2.2, and a-axis and c-axis lattice parameters larger than the sputtered 

GaN powder target. N/Ga ratios close to one mirrored the results of other studies indicating 

that usage of N2 gas enhances the amount of nitrogen in the sputtered GaN layers. The 

higher lattice constants could indicate tensile stress in the films. The authors noted as well 

that the refractive indices were within the range of previously published indices of 2.1-2.3 

for polycrystalline GaN. When using pure Ar as the sputtering gas with the same conditions 

otherwise, they reported weak crystal quality for RF powers of 50 and 100 W, but the 

inability for GaN to form properly when utilizing 200 and 300 W [14]. Just as reported by 

Huq et al., the authors noticed some of the deposited films were black from nitrogen 

vacancies when sputtering with only Ar gas [8] [14]. 

Maruyama et al. also described an effect known as the self-induced negative bias that 

affects the substrate during sputter deposition. When high enough, the effect will cause re-

sputtering, especially of the nitrogen, thus damaging the deposited layer. The bias occurs 

when the input power is increased which leads to a rise in the floating potential level.  

Beyond lowering the RF power and employing N2 gas, the effect could be reduced by 

increasing the deposition pressure. However, they found with pressures above 30 mTorr, 

when sputtering with N2, the GaN became amorphous. This was attributed to the gallium 
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and nitrogen being unable to create proper crystals because they experience a lowered kinetic 

energy at larger deposition pressures. A balance must be found for the pressure where it is 

high enough to improve the self-induced negative bias, but low enough for better 

crystallinity. The authors recommend sputtering in the 20-30 mTorr range which is similar to 

the suggestion made by Huq et al. to deposit at a total pressure of around 15 mTorr [8] [14]. 
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II. Literature Review: Gallium Nitride Tunnel Junctions 

Tunnel Junctions (TJ) are p-n diodes requiring highly doped p-type material and n-type 

material to bend the band structure in such a way to allow an electron to tunnel through the 

depletion layer from the valence band of the p-side to the conduction band of the n-side [17]-

[19]. Degenerately doping the p-n junction brings the valence and conduction bands of the 

p+ material and n+ material, respectively, extremely close to the Fermi level and decreases 

the width of the space charge region, with both results raising the probability of electron 

tunneling [17] [19] [20]. An electric field created by ionized acceptors and donors within the 

junction also aids the electron flow [17]-[19]. While these effects ideally occur without 

added voltage, reverse biasing the diode bends the bands further to improve tunneling [17] 

[20] [21]. If the TJ is grown above optoelectronic devices, the additional holes left within 

the p-side can progress into the quantum wells of LEDs and LDs as carriers to radiatively 

recombine [18]-[21]. 

Esaki was the first to construct a tunnel junction in 1958 by using highly doped p and n-

type germanium to create the structure [17] [20]. TJs have been created using other III-V 

materials [21], such as InP and III-As [20], as well as SiGe [17]. Devices grown with the III-

N material system can benefit from the addition of TJs to the epitaxial structure for two 

reasons: the previously mentioned hole generation and utilizing them as a p-contact [17]-

[21]. As an example of the former, thick p-GaN is currently used within AlGaN UV devices 

for hole carriers, but by replacing it with a TJ, whose structure is thinner, not only will holes 

be created for emission, but the thinner material will increase extraction of the emitted light 

[19]. The resistivity of p-GaN necessitates a current spreading layer (CSL) between it and 

the metallic p-contact [17]-[21]. Transparent conducting oxides (TCO), for example indium 
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tin oxide (ITO), are employed as a solution to the problem [18] [20]. However, ITO absorbs 

some of the emissions in the UV and visible light regions [20]. Implementing a TJ created 

with GaN or a GaN alloy would allow n-GaN to be deposited as a CSL and as the p-contact. 

This would decrease light absorption in the epitaxial structure and keep the resistivity lower 

than when metal is applied on top of p-GaN [17]-[21]. The fabrication procedure of LEDs 

and LDs would also be simplified since a different material, such as ITO, would not be 

needed as a CSL and only the metallic contact to the n-GaN would be deposited to the top 

and bottom of the device [19]-[21]. 

Specific applications of the TJ beyond the general hole generation and p-contact include: 

potential replacement of the p-material in a bipolar transistor [19], facilitating the use of n-

type mirrors instead of p-type in vertical-cavity surface-emitting lasers (VCSEL) [20], 

enabling LEDs with reversed polarization containing the p-GaN below the active region 

[19], a bridging layer between multi-junction solar cells [19] when the TJ is operated in 

forward bias [17] [20], and integration between LEDs in a multi-active region optoelectronic 

device [17] [19] [20]. The latter could ensure the growth and fabrication of a single device to 

create white light with the TJ being a contact layer between the red, green, and blue LEDs 

[19]. Two previously reported methods of designing a TJ with GaN are the standard 

degenerate doping of a p-n junction [20] [21] and a polarized tunnel junction created with 

the inclusion of a GaN alloy, for example InGaN, between the p-GaN and n-GaN of a highly 

doped p-n junction [17]-[19]. Procedures and characterizations of both types of tunnel 

junctions will be discussed. 

The most straightforward technique of creating a tunnel junction is by following the 

same method reported by Esaki in bringing together highly doped p-material and highly 

doped n-material in a p-n homojunction [20]. Jeon et al. applied this technique to gallium 
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nitride using an MOCVD system and grew the TJ above an InGaN/GaN blue LED as a p-

contact. The deposition procedure for the LED and TJ on a c-plane sapphire substrate was as 

follows: 25 nm GaN buffer layer grown at 550 ⁰C, 3 µm n-GaN deposited at 1130 ⁰C, 6 

InGaN/GaN quantum wells with 2 nm/8 nm thicknesses grown at a temperature between 760 

and 800 ⁰C, 150 nm p-GaN, 10 nm p+-GaN for the TJ doped at ~3x1019 cm-3, 10 nm n+-

GaN with ~6x1019 cm-3 doping along with ~3x1013 cm-2 delta doping at the TJ interface, and 

150 nm of n-GaN on top. All layers after the multi-quantum well (MQW) were deposited at 

1130 ⁰C. The p-GaN and n-GaN were doped with magnesium and silicon, respectively. The 

authors reported that with the delta doping, the n-side of the TJ had a concentration of ~1020 

cm-3. Inductively coupled plasma (ICP) was employed to etch part of the structure down to 

the bottom n-GaN layer for the n-contact. Ti/Al was then deposited as a metal contact on 

both the p-contact n-GaN above the TJ and the n-contact n-GaN. The dimensions of the TJ 

LED were 350x350 µm2. Jeon et al. also fabricated standard LEDs without TJs for 

comparison. The structure of the standard LEDs was the same except for the lack of TJ and 

n-GaN on top. The p-contact metal pad for these LEDs was Ni/Au with some of them having 

a Ni/Au layer between the pad and the p-GaN [21]. 

At 20 mA, the voltage and dynamic resistance of the TJ LED and standard LED with a 

Ni/Au layer were found to be 4.9 V and 45 Ω and 3.9 V and 33 Ω, respectively. The authors 

report this to show the tunnel junction having a series resistance. The light output power at 

20 mA was around 4.5 and 2 for the TJ and standard devices, respectively. They attribute the 

increased light to the absence of absorption in the TJ compared to the Ni/Au layer along with 

no current crowding due to the lower resistivity of the n-GaN compared to the p-GaN. Both 

the voltage and power of the TJ LED remain greater than the standard device up to the 

maximum reported current of 100 mA. Electroluminescence (EL) spectroscopy performed at 
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room temperature demonstrated a peak wavelength of 455 nm and FWHM of 20 nm that 

remained close to these values as the current was raised from 20 to 100 mA, a trait of high 

quality material as described by the authors [21]. 

Jeon et al. also compared the current spreading of the TJ LED with that of the standard 

LED without a Ni/Au layer for input currents of 5 to 100 mA. The standard LED showed 

current crowding and light emission around the p-contact metal, which would result in 

blocked light, while the TJ LED spread the current and radiated blue light across the whole 

n-GaN layer. Slight current crowding around the metal on the top n-GaN was observed at 

100 mA for the TJ LED which the authors believed would be improved with higher doping 

of the n-GaN layer. These observations were claimed to be proof of increased light 

extraction efficiency when utilizing tunnel junctions as p-contacts for GaN LEDs [21]. 

Although Jeon et al. used an MOCVD system to create the TJ LED structure, without 

annealing MOCVD p-GaN could remain passivated due to the magnesium within the p-GaN 

bonding with hydrogen. Annealing after depositing n-GaN above the p-GaN is difficult due 

to the hydrogen experiencing a large diffusion barrier in the n-GaN. Sidewall activation of p-

GaN has been attempted, but proved to be inefficient. Thus, many research groups grow 

GaN TJs with MBE which presents a challenge to commercializing GaN TJ optoelectronic 

devices because epitaxy with MOCVD machines is the standard [20]. 

Young et al. sought to overcome this problem by growing the blue LED structure and 

lower p+-GaN part of the TJ with MOCVD while the n+-GaN and top n-GaN layers were 

deposited with NH3 MBE. Two advantages of NH3 MBE given by the authors is its ability to 

integrate high amounts of silicon to create n+-GaN layers and the lower amount of hydrogen 

necessary to grow GaN compared to MOCVD. The decreased hydrogen produces activated 

p-GaN without the need to anneal which then allows for structures with n-GaN on top [20]. 
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N+-GaN layers were tested using Hall measurements of mobility and resistivity against 

carrier concentration to find the optimal doping for the TJ. The epilayers were deposited 

with ammonia MBE at 750 ⁰C on c-plane semi-insulating GaN with sapphire substrates. The 

thickness of the n+-GaN layers varied from 250 to 500 nm. Although the data to be reported 

was for the above structure, the authors stated that the same layers grown on semipolar (20-

21) freestanding GaN with an unintentionally doped (UID) GaN nucleation layer displayed 

the same findings. The general trend was for the mobility and resistivity to decrease as the 

carrier concentration increased. At approximately 1x1020 cm-3, the resistivity was in the 

4x10-4 to 8x10-4 Ω cm range and the mobility was between ~60 and ~125 cm2/V*s. Lower 

growth rates for samples doped around that carrier concentration were found to be associated 

with higher mobilities. At the carrier density 1.5x1020 cm-3, the resistivity and transmissivity 

of the n+-GaN was observed to increase and decrease, respectively. This information caused 

Young et al. to believe the best carrier concentration for the n-side of their TJs to be 1x1020 

cm-3. All n+-GaN for TJs grown after this conclusion were doped to around that level [20]. 

Tunnel junctions were then grown above p-n diodes, under varying conditions, and 

tested for their current density-voltage relationship. These devices had a 25 µm radius and 

were deposited on freestanding semipolar GaN substrates. The growth and fabrication 

process started with 100 nm of n-GaN followed by 100 nm of p-GaN grown with MOCVD 

to create the p-n diode. Above that a layer of p+-GaN was also deposited with MOCVD for 

the bottom of the TJ. The sample would then be taken out of the MOCVD system, solvent 

cleaned, and placed into the MBE machine. The p-GaN would be activated as the system 

ramped for 15 minutes to the growth temperature of 750 ⁰C. Once the temperature was 

reached, 20 nm of n+-GaN and 100 nm of n-GaN were deposited. The carrier concentration 
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of the n-GaN was 1x1019 cm-3. Lithography was utilized to shape the devices with Ti/Au 

being used as the metal contacts [20]. 

The ammonia flow rate in the MBE was changed from 100 to 500 sccm for different 

samples with the conclusion that as the flow rate decreased the turn-on voltage of the device 

also decreased. Another parameter variation was the usage of annealing with NH3 in the 

MBE once the growth temperature was reached after the ramp, but before deposition of the 

TJ’s n+-GaN. Young et al. noted that previous reports had such an anneal lowering the 

oxygen and carbon impurities on the GaN surface. However, they found that any NH3 

annealing at 750 ⁰C increased the turn-on voltage of the diodes. The authors reported devices 

created without any ammonia annealing and with a low ammonia flow rate to have a voltage 

of 3.05 V at 20 A/cm2 and a differential resistivity of 1.5x10-4 Ω cm2 including the metal 

contacts. The diodes were able to perform at 10 kA/cm2 presenting the possibility that the 

tunnel junctions could handle current densities seen by lasers [20]. 

Similarly created TJ diodes containing the procedural and structural changes to 80 nm 

with a carrier concentration of 8x1019 cm-3 for the p-GaN, 5 nm of 2x1020 cm-3 p+-GaN, and 

15 minutes of NH3 annealing were measured with atom probe tomography (APT). The 

intention was to observe the changes in the densities of magnesium and oxygen throughout 

the deposited layers. The amount of oxygen was calculated to be between 5x1013 to 1x1014 

cm-3 at the interface between the p-side and n-side of the TJ. The profiles of the oxygen and 

magnesium were closely overlapped at that interface which was reported by the authors to 

indicate the likelihood of bonding between the two atoms and a block for Mg impurities in 

the n+-GaN. They state that this block and the donor electrons from oxygen delta doping the 

n+ layer could increase the tunneling probability. Modelling of the band bending in the TJ 

performed by them for the same doping concentrations of 1x1020 and 2x1020 cm-3 of the n-
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side and p-side, respectively, with and without 1x1014 cm-2 delta doping showed the delta 

doped bands shrinking the space charge region and thus the tunneling distance. This 

confirmed the potential increase to tunneling probability. The probability was concluded to 

be improved further with reverse biasing when an applied bias of -0.5 V to the delta doped 

model presented the tunneling distance narrowing from 5.5 to 3.2 nm. These measurements 

along with the observation of better turn-on voltage without NH3 annealing could mean that 

oxygen impurities within the TJ are beneficial [20]. 

Moving to tunnel junctions grown on LEDs, the authors reported that EL data comparing 

such devices to LEDs without a TJ showed that the wavelength of the emitted light was 

unchanged between the two. However, an analysis of the I-V curves showed the TJ LED 

turn-on voltage to be approximately 1 V higher [20]. Both these traits were also noticed by 

Jeon et al. in their TJ LEDs [21]. 

Young et al. performed a comparison between a TJ LED, created with the hybrid MBE 

and MOCVD method, and a LED with ITO as the CSL as well. The bottom to top structure 

for the TJ LED was: freestanding (20-2-1) GaN substrate, n-GaN, a 12 nm InGaN single 

quantum well, 100 nm p-GaN, 10 nm p+-GaN, 20 nm n+-GaN, and 400 nm n-GaN doped at 

1x1019 cm-3. The metal contacts to both the top and bottom n-GaN layers were Ti/Al/Ni/Au. 

The device with ITO had the same design except the top n-GaN was replaced with ITO and 

its metal contact was Cr/Ni/Au. The wavelength and size of both devices were 455 nm and 

0.1 mm2, respectively [20]. 

The sheet resistance of both the top n-GaN layer and the ITO for the two LEDs was 50 

Ω/square. The external quantum efficiency (EQE) of the TJ LED was discovered to be 

higher up to the largest measured current density of 40 A/cm2. The peak value for the EQE 

was close to 40% [20]. Similar to the 4.9 V measured by Jeon et al., Young et al. found the 
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voltage of the TJ optoelectronic device to be 5.2 V at 20 mA [20] [21]. However, the TJ 

LED was reported to be more efficient than the ITO device with the latter having a voltage 

of 5.87 V at 20 mA. The authors claimed the voltages could be lowered further with 

improvement of the n-contacts [20]. 

Polarized III-nitride tunnel junctions are a type of TJ that seek to take advantage of the 

electric fields created by piezoelectric and spontaneous polarization of charges at 

heterostructure interfaces grown along the c-axis. They can also benefit from reduced energy 

barriers to electrons from lower bandgap materials deposited within the TJ [17]-[19]. While 

a standard homojunction GaN TJ has an induced electric field from polarization of ionized 

doping atoms, the addition of a GaN alloy such as InGaN between the n+-GaN and p+-GaN 

layers of the TJ can increase the magnitude of the electric field felt by an electron. This 

additional electric field comes from the InGaN being strained from growth between the two 

GaN layers. The larger field magnitude would lead to improved band bending and thus 

increase the tunneling probability for an electron [17] [18]. InGaN also has a smaller 

bandgap than gallium nitride which would lower the energy barrier [17]-[19] and therefore 

decrease the tunneling resistance promoting further augmentation of electron tunneling [17] 

[19] especially if the polarized TJ has the same thickness as the standard TJ [17]. The 

heterostructure of the polarized TJ can help bypass the fact that homojunction TJs are 

constrained by limits on the number of doping atoms that can be incorporated [17] [19]. In 

addition, polarized tunnel junctions could potentially reduce the voltage drop necessary for 

the TJ structure thus lowering the turn-on voltage for a TJ optoelectronic device [17]-[19]. 

Procedures and characterizations of polarized InGaN tunnel junctions along with 

comparisons to standard TJs from various research groups will be presented. 
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Krishnamoorthy et al. reported that for a p+-GaN/InGaN/n+-GaN structure there are 

three zones for an electron to tunnel through to reach the n+-GaN’s conduction band from 

the p+-GaN’s valence band. These three regions are the two GaN/InGaN interfaces and the 

InGaN layer itself. The authors claim with high doping of the n- and p-GaN the InGaN 

presents the largest barrier and focus on finding the specific thickness needed for the InGaN 

layer to maximize the tunneling probability. This specific thickness, which Krishnamoorthy 

et al. term the “critical thickness,” occurs when the potential barrier, without any added bias, 

is the same as the InGaN bandgap. InGaN grown thicker and thinner than this critical 

thickness would both decrease the tunneling probability due to the increased layer thickness 

and misalignment of the n+-GaN conduction band with the p+-GaN valence band, 

respectively. The authors also note that as the InN mole fraction incorporated into the InGaN 

increases the critical thickness will decrease because of the bandgap getting closer to the 

pure InGaN bandgap and the higher polarization. Two benchmarks for the necessary 

thickness are: ~10 nm at ~15% InN mole fraction and ~1 nm at ~70% InN. While increasing 

the amount of indium in the layer should lead to a higher tunneling probability through the 

InGaN layer, they report that for critical thicknesses of layers grown with high amounts of 

indium the tunneling probabilities through the GaN/InGaN regions could have a higher 

effect on the overall tunneling probability [17]. 

The authors grew a 30x30 µm2 InGaN polarized TJ to test with bottom to top structure 

of freestanding N-polar GaN substrate, 100 nm n-GaN with a carrier concentration of 5x1018 

cm-3, 6.4 nm N-polar InGaN with 33.5% indium, and 100 nm p-GaN with a doping level of 

1x1019 cm-3. The growth temperature for the InGaN was 600 ⁰C and N-polarity was chosen 

instead of Ga-polarity because larger amounts of indium could be integrated into the layer 

during deposition. The epitaxy was performed by a plasma assisted molecular beam epitaxy 
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(PAMBE) system. 20/100 nm Ti/Au and 20/150 nm Ni/Au metal contacts were grown on 

the n-GaN and p-GaN, respectively, with lithography. A standard TJ with the same structure 

and deposition parameters was created for comparison [17]. 

Their analysis of the current density as a function of applied voltage showed the 

polarized TJ having a lower turn-on voltage and resistance for both the forward and reverse 

bias regimes. The current of the polarized TJ climbed much faster when in reverse bias, 

especially between 0 and -1 V, reaching 118 A/cm2 at -1 V. For the same voltage, the 

standard TJ had a current density of approximately 1 mA/cm2. However, after -1 V the 

resistance of the polarized device became larger and caused the current density to slow its 

increase. Despite the increased resistance, the current density at around -10 V was measured 

to be 9.2 kA/cm2. The authors stated the higher resistance could come from a combination of 

internal heating in the device and additional contact and series resistances. They also 

suggested some optimizations for the polarized TJ could be increasing the indium 

incorporated, perfecting the InGaN layer thickness, grading the GaN/InGaN interfaces, 

utilizing quaternary compounds, and creating asymmetric junctions [17]. 

In a study a few years later, Krishnamoorthy et al. not only restated and confirmed the 

three zones an electron passes through when tunneling as well as the reported steps to be 

taken to improve the tunneling probability in the InGaN layer, but also focused on 

calculating the probability for an electron to tunnel through the GaN/InGaN interfaces and 

the overall tunneling probability. The overall tunneling is found by multiplying the 

probabilities through the three zones. They note that while increasing the indium in the 

InGaN layer improves the tunneling through that region, it increases the conduction and 

valence band discontinuities which leads to a decrease in tunneling probability through the 

interfaces. The p+-GaN/InGaN and n+-GaN/InGaN interfaces are affected by the valence 
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and conduction band discontinuities, respectively. Since the probabilities change with the 

amount of doping in the n+-GaN and p+-GaN, the carrier concentrations were set to 5x1019 

and 1x1019 cm-3, respectively. Other assumptions were the band diagram would not vary and 

that no reverse bias would be necessary for tunneling. The authors found that the largest 

tunneling probability as a function of InN mole fraction was ~10-13 at ~30% InN. The critical 

thickness of the InGaN for this amount of indium would be around 4 nm. However, if the 

doping of the n- and p-GaN was increased, especially for the n-GaN since the conduction 

band discontinuity is larger, more indium could be incorporated and thus the probability 

could be raised [19]. 

This time Krishnamoorthy et al. created a 50x50 µm2 device to test the polarized TJ 

when connected to a p-n diode. The TJ was buried underneath the diode which had its p-side 

facing down and the n-side exposed. The bottom to top layers were a freestanding N-polarity 

GaN substrate, 50 nm 1x1019 cm-3 doped n-GaN, 10 nm 5x1019 cm-3 n-GaN, 4 nm InGaN 

with 25% indium, 20 nm 1x1019 cm-3 p-GaN, 70 nm 3x1018 cm-3 p-GaN, and 50 nm 3x1018 

cm-3 n-GaN. The deposition of the device was performed with nitrogen PAMBE with 20/200 

nm Ti/Au metal contacts evaporated onto the top and bottom n-GaN layers afterwards [19]. 

Current density versus voltage measurements showed the turn-on voltage to be 

approximately 3 V. A current density of 100 A/cm2 at 3.05 V was reported with the voltage 

consumed by the TJ itself to be 12 mV at that point. The total resistivity of the TJ diode 

while operating in the forward bias regime was discovered to be 4.7x10-4 Ω cm2 and the 

resistivity of just the TJ was calculated to be around 1.2x10-4 Ω cm2. The authors described 

this tunneling resistivity to be very low for GaN and as proof of the industrial viability of 

polarized TJs since resistivity increases exponentially with respect to material bandgaps. 

While the expected value would be close to the 10-1 range, the observed resistivity would put 
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the polarized GaN TJ at around a level previously reported for tunnel junctions in the indium 

phosphide system. However, they do acknowledge that incorporating the TJs into the 

standard MOCVD procedure could be difficult despite their advantages. The InGaN layer 

could also present a problem by absorbing some of the light emitted by the optoelectronics. 

The absorption could be improved by lowering the incorporated indium or the thickness of 

the InGaN, but a compromise may need to be found because, as stated earlier, the critical 

thickness of the layer decreases with additional indium [19]. 

Zhang et al. also attempted to model the tunneling probability and noted that beyond 

lowering the bandgap, increasing the electric field would raise the tunneling current as well. 

They stated that this is achieved in polarized TJs because they have three factors 

contributing to increase the magnitude of the electric field: ionized doping atoms in the p+-

GaN and n+-GaN, outside applied voltages to the TJ, and the piezoelectric and spontaneous 

polarizations from the strained InGaN. Standard TJs would not have the latter aspect and 

thus have a smaller electric field. Testing and comparisons were performed on an LED 

without a tunnel junction, a standard TJ LED, and a polarized TJ LED, all of which were 

350x350 µm2 devices [18]. Unlike Krishnamoorthy et al., Zhang et al. implemented an 

MOCVD system for their epitaxy [17]-[19]. 

The bottom to top layers for the polarized TJ LED were: c-plane sapphire substrate, 30 

nm GaN buffer layer, 4 µm undoped GaN, 2 µm n-GaN doped to 5x1018 cm-3, five 3/12 nm 

InGaN/GaN quantum wells with the InGaN having an indium concentration of 15%, a 25 nm 

electron blocking layer (EBL) made of Al0.15Ga0.85N doped with magnesium, 200 nm 3x1017 

cm-3 p-GaN, 30 nm 3x1019 cm-3 p+-GaN, 3 nm InGaN again with 15% indium, and 30 nm 

1x1020 cm-3 n+-GaN. The TJ-less LED did not include the top two layers of n+-GaN and 

InGaN while the regular TJ LED only lacked the InGaN in between the p+ and n+-GaN. 
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Outside of the MOCVD machine, 200 nm of ITO followed by 30/150 nm of Ti/Au were 

deposited on all devices. The LEDs with TJs were etched to expose the lower n-GaN layer 

and the same amount of Ti/Au was evaporated on it as a metal contact [18]. 

Current versus applied voltage measurements were implemented for all three devices 

using both modeling on a computer and testing of the fabricated devices. The model showed 

a turn-on voltage of just under 4 V for all three devices while the experimental values were 

approximately 3.5, 4, and 4.5 V for the TJ-less, polarized TJ, and standard TJ LED, 

respectively. Both the model and the experimental analyses presented the resistance, while 

operating in forward bias, to be smallest in the in TJ-less LED and largest for the standard TJ 

LED [18]. 

The authors explained the higher turn-on voltage for the polarized TJ device compared to 

the regular TJ-less LED to be due to the challenge of depositing the InGaN on the p-GaN 

and the possibility of dislocations being created during growth to reduce the strain on the 

crystal. The lower strain would lead to a decrease in the polarization charge density and 

lower the magnitude of the electric field. Although the computer model of the polarized TJ 

device was created with the polarization charge being 40% of the total theoretical value, the 

experimental value could be even lower. The electric fields were also modeled for a 4.5 V 

input applied to the normal TJ and polarized TJ LEDs and found that the peak magnitudes 

were around 6x106 V/cm and 7.5x106 V/cm, respectively, confirming the authors’ proposal 

that the polarized TJ would have a larger electric field. The lower turn-on voltage required 

for the polarized TJ device was attributed to this increase in electric field magnitude [18]. 

Zhang et al. went on to report the EL intensity, optical output power, hole concentration 

in the quantum wells, and EQE of all three devices. The LED without a tunnel junction 

presented the lowest value for all these measurements and the polarized TJ LED displayed 
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the largest. The quantity of holes in the first quantum well was around 3x1017, 5x1017, and 

5.6x1017 cm-3 for the TJ-less, standard TJ, and polarized TJ LED, respectively, 

demonstrating the improved hole injection of tunnel junctions. The peak EQE of the devices, 

in the same order, was observed to be approximately 16%, 18%, and 19%. The 

improvements of the TJ devices over the regular LED were credited to better current 

spreading. In addition to this trait, higher tunneling probability from the larger electric field 

was explained to be the reason for the superior optical and electrical characteristics in the 

polarized TJ LED compared to the standard tunnel junction device [18].
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III. Results and Discussion 

The work for this thesis explored sputtered deposition of silicon doped gallium nitride to 

create a tunnel junction as a p-contact for GaN LEDs. GaN TJs have the potential to replace 

ITO as a CSL due to less absorbance in the UV and visible light spectrum and could allow 

for a higher light extraction efficiency [20]. Additionally, the fabrication of the LEDs would 

be simplified because n-GaN would be the outside layer of both the p- and n-contact of the 

device [19]-[21]. Since the metal contact for the top and bottom of the LED would be the 

same, the deposition of the metal stacks required could occur at the same time. The growth 

of the top n-GaN layer for the tunnel junction with a sputtering system instead of either 

MOCVD or MBE machines would allow for an inexpensive [7] [10] and more convenient 

[8] [12] [13] method of creating the p-contacts and thereby pave the way for 

commercialization. Two types of sputter machines were investigated for GaN deposition: 

ECR and RF magnetron. Silicon doped polycrystalline n-GaN targets were utilized for both 

systems. After analysis of the films grown by both machines, RF magnetron sputtering was 

employed to deposit the n-GaN layer on a MOCVD grown LED wafer for the tunnel 

junction. TJ LEDs were then fabricated from this structure. The deposited n-GaN films of 

the two sputtering methods and the testing of the TJ LEDs are discussed in separate sections. 

A. Electron Cyclotron Resonance Sputtered Gallium Nitride 

The sputter growth of GaN films was performed by a JSW AFTY AFTEX-6200 ECR 

Plasma Deposition System with the target being silicon doped polycrystalline GaN, as 

previously mentioned. The parameters that remained constant for all depositions with their 

values were: pressure of 0.1 Pa (~0.75 mTorr), argon rate 20 sccm, RF power 300 W, and 

microwave power of 300 W. A mixture of argon and molecular nitrogen gas was utilized for 
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the sputtering, but the rate of the N2 was varied within the range 0 to 20 sccm for separate 

growths. The substrate temperature was also changed, but was either 20 or 250 ⁰C. Three 

substrates were loaded into the sputter chamber for each deposition. These substrates were: 

double side polished (DSP) sapphire, silicon, and MOCVD grown c-plane UID GaN on 

sapphire. Once the GaN film was sputtered onto the substrates, each was used for different 

measurements. The sample with the silicon substrate was tested for the GaN layer thickness, 

the DSP sapphire for the transmissivity of light through the deposited film, and the GaN 

grown on the GaN on sapphire substrate was measured for the layer’s resistance. Prior to 

being placed in the machine, every substrate was cleaned with acetone, isopropyl alcohol, 

rinsed with deionized (DI) water, and dried with N2 gas. The GaN on sapphire substrates 

were additionally cleaned with a piranha solution heated to 130 ⁰C for 20 minutes, washed 

with DI water, and dried with N2. 

The deposited GaN layer thickness was attempted to be kept around 100 nm, but the 

growth rate varied with changes to the amount of N2 in the sputtering gas mixture as well as 

substrate heating. Figure 1 shows the relationship between the GaN growth rate as a function 

of the amount of nitrogen gas used during the deposition for samples sputtered at the 

unheated temperature of 20 ⁰C. Aside from a few bumps, the trend was the growth rate 

decreasing as the nitrogen increased. Figure 2 presents a comparison of the growth rates of 

the unheated sputtered films and those grown at 250 ⁰C with respect to the rate of nitrogen. 

When no nitrogen was included in the gas and at 5 sccm nitrogen, the growth rate remained 

the same and slightly above that of the unheated layers, respectively. Otherwise, the growth 

rate for heated GaN layers was always lower than those deposited at 20 ⁰C. Again, the heated 

substrate samples displayed a lowering of the growth rate as the nitrogen increased. 
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Figure 1. The growth rate of ECR GaN films sputtered at 20 ⁰C vs. amount of nitrogen in the gas. 

 

 

 

 

 

 

 

 

 

Figure 2. Growth rate comparison between unheated (blue) and heated (orange) films. 

 

A Varian Cary 500 UV-Vis Spectrophotometer was utilized to determine the 

transmissivity of the sputtered GaN films. The layers grown on the DSP sapphire substrates 

were used for this test. A measurement without any materials was always implemented first 

to calibrate the amount of light being output by the source. While the transmittance analysis 



 

 50 

was performed for wavelengths ranging from 200 to 800 nm, because the end goal was to 

deposit the GaN on a blue LED structure the specific wavelength of interest was 440 nm. 

Figure 3 shows the relationship between the amount of nitrogen used during the sputtering 

and the percentage of light transmitted at 440 nm by the deposited GaN layer. Above 2.5 

sccm of N2 the transparency of the GaN was high with 77% to 80% of the emitted light 

passing through the samples. The largest percentages of just under 80% occurred when the 

N2 was between 4 and 10 sccm. As a reference, DSP sapphire without any deposited films 

on it transmits around 85% of 440 nm light. This means only around 5 to 8% of that 

wavelength is lost within the sputtered GaN. The lower transmissivity of the films deposited 

with 2 sccm N2 and below could be due to the lack of nitrogen to bond with in order to form 

a transparent layer. This is especially reflected in the 29.5% of transmitted light when only 

argon gas was employed during the process suggesting that some amount of nitrogen must 

be used during the deposition to create a proper GaN layer. 

Figure 4 presents a comparison between the transmittance of the GaN layers grown with 

substrates at room temperature and those sputtered with substrates at 250 ⁰C. The heated 

samples displayed high transmissivity at 1 sccm of nitrogen and above with the greatest 

transparency occurring at 5 and 10 sccm similar to the unheated GaN films. However, other 

than when 1 sccm of N2 was utilized, the transmittance of the heated layers proved to be 

consistently lower than the unheated samples. This data along with the lower growth rate for 

the layers deposited at 250 ⁰C indicates that heating the substrates does not aid in the 

qualities of the sputtered GaN film and thus could be unnecessary. 
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Figure 3. The percentage of 440 nm light transmitted in unheated GaN films as a function of nitrogen 

used in the sputtering. 

 

 

 

 

 

 

 

 

 

Figure 4. Comparison of transmitted 440 nm light between GaN grown on substrates at 20 (blue) and 

250 ⁰C (orange). 
 

Despite the good optical properties of the GaN sputtered by the ECR, the layers 

remained resistive for all deposition parameters. Some samples were annealed at 600 ⁰C in a 

N2 atmosphere for 3 minutes, but the films remained non-conductive. Silicon rings placed on 

top of the GaN target with the intent of being co-sputtered to increase the n-type doping of 
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the films yielded the same result. Secondary-ion mass spectrometry (SIMS) was performed 

on a piece of the target to determine which elements were present within it along with their 

amounts. The results showed that the target was very impure. The elements of carbon, 

oxygen, hydrogen, magnesium, calcium, copper, iron, titanium, gold, and indium were all 

found to be within the target. The densities of the first six elements previously listed were 

found to be 1x1018, 4x1022, 2.5x1019, 5x1020, 1.7x1018, and 4x1019 cm-3, respectively. 

Silicon was also present within the target normally at 6x1019 cm-3 (lower than magnesium), 

but had also formed clusters in parts of the target reaching densities up to 1x1023 cm-3. 

Figure 5 shows an image taken of the silicon clusters in the GaN target using a microscope. 

Conductive GaN films would not be possible to create with the contaminating elements 

present within this target. However, with a better target there is still potential for the ECR 

sputter system to produce viable GaN tunnel junctions. 

 

 

 

 

 

 

 

 

 

Figure 5. Picture of the ECR sputtering GaN target showing clusters of silicon within the target. Image 

taken by Tatsuya Yoshida. 
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B. Radio Frequency Sputtered Gallium Nitride 

An AJA ATC 2000-F machine was employed to investigate RF magnetron sputter 

deposition of GaN concurrent to the research performed with the ECR system. A different 

silicon doped polycrystalline n-GaN target was used for this machine. Similar to the ECR 

sputtering, three substrates were placed within the chamber for each deposition. Two of 

them, the silicon and DSP sapphire, were the same, but the MOCVD grown GaN on 

sapphire had an additional thin layer of AlGaN deposited on top. The thickness of each 

material for the latter substrate was approximately 430 µm of sapphire, 3 µm of GaN, and 15 

nm of AlGaN. The same measurements were performed on each of the substrates as on their 

ECR corollaries, the thickness of the GaN film with the silicon, transmissivity with the DSP 

sapphire, and resistivity with the GaN on sapphire. All substrates underwent the acetone and 

isopropyl alcohol clean with the GaN on sapphire being further cleaned by a piranha solution 

detailed in the ECR sputtering section.  

Once loaded into the machine, the deposition procedure was to heat the chamber to the 

desired temperature and then to let the substrates soak for 15 minutes. Next, the target was 

cleaned via sputtering at 100 W for 5 minutes with the desired mixture of argon and nitrogen 

gas to be utilized in the subsequent growth step while keeping the shutter to the chamber 

closed. Lastly, the shutter was opened and the GaN deposition ensued. The parameters 

consistent throughout all the depositions were the following: RF frequency of 13.56 MHz, 

substrate height of 25 mm, target gun tilt of 9 mm, 3 mTorr pressure, 25 sccm of Ar, 200 W 

RF power, and a growth time of 30 minutes. The amount of nitrogen and substrate 

temperature were kept constant once the procedure started, but varied between 3 to 38 sccm 

and 600 to 800 ⁰C, respectively. 
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The thickness of the sputtered GaN layer changed depending on the deposition 

conditions, but was in the range of approximately 140 to 180 nm. Figure 6 displays the 

growth rate as a function of the amount of N2 in the sputtering gas mixture for GaN films 

grown at 800 ⁰C. The growth rate rose quickly with the N2, peaking at 12 sccm with 6.1 

nm/min. then slightly lowered into the 5 to 6 nm/min. range at 25 sccm and above. 

 

 

 

 

 

 

 

 

Figure 6. Growth rate of RF magnetron GaN sputtered at 800 ⁰C vs. amount of nitrogen in the gas. 

 

The deposited GaN films’ transmissivity of light with a wavelength of 440 nm was 

observed to increase as the nitrogen in the sputtering gas was increased. Figure 7 shows this 

relationship for layers grown at 800 ⁰C. At 38 sccm N2, the percentage of light transmitted 

through the sample was 84.43% which is extremely close to the ~85% of 440 nm light 

detected to pass through DSP sapphire without any GaN deposition. This represents a loss of 

less than one percent within the GaN layer from the sapphire substrate to the open air and 

demonstrates the sputtered GaN to be highly transparent for blue light. A comparison of 

transmissivity between deposited films with substrates heated to 600 ⁰C and 800 ⁰C is 

presented in Figure 8. Again, an increase in transmittance of the 440 nm wavelength can be 
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noted for both temperatures as the rate of N2 is raised. However, for the same amount of 

nitrogen in the gas mixture, the higher temperature samples show they are of a superior 

quality because they allow a larger percentage of light to pass through the GaN layer.  

 

 

 

 

 

 

 

 

Figure 7. Percentage of 440 nm light transmitted by RF magnetron GaN deposited at 800 ⁰C as a 

function of the amount of nitrogen. 
 

 

 

 

 

 

 

 

 

 

Figure 8. Comparison between 440 nm light transmitted by RF magnetron GaN sputtered on substrates 

heated to 600 ⁰C (orange) and 800 ⁰C (blue). 
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Two related findings for achieving higher transparency in the RF magnetron sputtered 

films were the need to use more than 3 sccm of nitrogen in the deposition and the necessity 

of sputtering the target for at least two full procedures before placing the substrates in the 

chamber for actual growth in a third run. The first observation was realized when two 

depositions performed with the parameters of 3 sccm of N2 in the gas mixture and a 

substrate temperature of 600 ⁰C produced films that were visually silver black. It could be 

possible the greater amount of N2 helps create better quality GaN due to binding with the 

atoms in the growing layer and filling nitrogen vacancies. The requirement of seasoning the 

chamber prior to deposition on substrates could be because of the RF magnetron being 

shared with many other researchers who are sputtering other materials with the system. This 

could result in the target as well as the deposition chamber needing to be cleansed of 

impurities before growth in order to create high transmissivity GaN films. 

Hall-effect measurements were performed on some of the sputtered n-GaN layers with 

the GaN on sapphire substrates to determine their carrier concentration and resistivity. 

Photolithography and a reactive ion etch (RIE) machine were utilized to form a Greek cross 

mesa of the deposited GaN followed by a metal contact stack of Ti/Ni/Au with thicknesses 

of 20/50/200 nm evaporated onto it with an electron-beam (E-beam) system. The samples 

were then tested using the Van der Pauw method. The outcome of this analysis can be seen 

in Figure 9. High carrier densities along with low resistivities are achieved in the sputtered 

n-GaN layers reaching the 1020 cm-3 and 10-3 Ω*cm ranges, respectively. However, the 

mobilities are lower than expected for the corresponding carrier concentrations. A 

comparison between GaN 1 and GaN 3 clearly shows that sputtering onto higher substrate 

temperatures for the same amount of nitrogen in the gas mixture improves not only the 

transparency of the films, but the carrier density, mobility, and resistivity as well. 
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Name Temperature 

(⁰C) 

N2 

(sccm) 

Carrier 

Concentration 

(cm-3) 

Mobility 

(cm2/V*s) 

Resistivity 

(Ω*cm) 

Transmissivity 

of 440 nm 

light (%) 

GaN 1 600 9 1.443x1018 8.92 0.48048 41.66 

GaN 2 800 6 1.174x1020 22.89 0.00232 70.17 

GaN 3 800 9 8.491x1019 22.16 0.00365 59.9 
Figure 9. Results of the transmittance and Hall measurements of three RF magnetron GaN films grown 

with various substrate temperatures and nitrogen rates. 
 

At this point, the RF magnetron sputter system was modified and the maximum substrate 

heating was reduced to 650 ⁰C. Co-sputtering of a silicon target along with the GaN target 

was pursued to increase the carrier concentration in the deposited GaN. Since the intention 

was only to dope the sputtered film, the silicon target was operated at a lower power than the 

GaN. The RF power to the GaN target was kept at 200 W, but the silicon ranged from 25 to 

75 W. The N2 was raised to 38 sccm because of the higher transmittance observed for GaN 

layers grown with that amount while the substrate temperature was kept to 600 ⁰C for 

continuity. Hall-effect measurements were again taken of these films to determine their 

carrier concentrations, mobilities, and resistivities with respect to the different input powers 

used for the silicon target. Figure 10 presents the results of the tests. Varying the power to 

the silicon did not have much of an effect on the properties of the GaN layer. The carrier 

density, mobility and resistivity remained around 1.1x1018 cm-3, 195 cm2/V*s, and .03 Ω*cm 

for all silicon powers. The mobility of the deposited films was observed to increase with the 

addition of the silicon target. Sputtered growth of the n-GaN for a tunnel junction on a blue 

LED structure was chosen to be performed by co-sputtering with 35 W of power to the 

silicon target because that film demonstrated the highest carrier concentration and the second 

lowest resistivity. Transmittance measurements on the DSP sapphire substrate with a 

sputtered GaN layer corresponding to that sample also showed the amount of 440 nm light to 

pass through the film to be 76.8%, a loss of less than 10% within the GaN. 
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Name Silicon target 

power  

(W) 

Carrier 

concentration  

(cm-3) 

Mobility 

(cm2/V*s) 

Resistivity 

(Ω*cm) 

GaN 4 25 1.12x1018 201.19 0.02762 

GaN 5 35 1.137x1018 189.98 0.02877 

GaN 6 50 1.029x1018 194.78 0.03124 

GaN 7 75 1.004x1018 196.72 0.03153 
Figure 10. Hall analysis results for RF magnetron GaN co-sputtered by a GaN target at 200 W and a 

silicon target with RF power ranging from 25-75 W. 
 

C. Sputtered Gallium Nitride Tunnel Junction Light Emitting Diode 

A c-plane blue LED wafer with a sapphire substrate was utilized to create the sputtered 

tunnel junction LEDs. The epitaxial layers of the LED were deposited by a UCSB MOCVD. 

The top p-GaN layer of the wafer was used as the p-side of the TJ while the n-side was 

deposited with the RF magnetron system. The general bottom to top structure of the TJ 

device would be sapphire substrate, MOCVD grown silicon doped n-GaN, InGaN/GaN 

quantum wells, magnesium doped p-GaN, sputtered deposited n-GaN, and Ti/Au metal 

contacts on both types of n-GaN. The cross-section of the LED can be seen in Figure 11. 

 

 

 

 

 

 

Figure 11. Cross-section of sputtered tunnel junction blue LED structure. 
 

Prior to the n-GaN sputtering, the wafer was cleaned with acetone followed by isopropyl 

alcohol and rinsed with DI water. Next, it underwent the piranha solution cleaning described 
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in the ECR section to remove any organics. The LED was then placed in the sputter machine 

for n-GaN deposition using the standard parameters noted in the RF magnetron section along 

with co-sputtering a silicon target at 35 W input power and an N2 rate of 38 sccm. The 

substrate temperature was set to 650 ⁰C which was the maximum possible for the system. 

After the deposition, the thickness of the n-GaN was measured to be ~170 nm and 

fabrication of the TJ LED devices was started. The size of the LEDs was 0.1 mm2.  

The procedure for creating the TJ LEDs was simpler and quicker than that of ITO LEDs, 

requiring only two contact photolithography steps while the process for the latter calls for 

three. First, the mesas of the sputtered n-GaN were established. Before the etch, but after the 

photolithography the sample was put through a UV ozone descum for 10 minutes. A 

chlorine etch was utilized via a RIE machine to reach the MOCVD n-GaN. An examination 

of the LED wafer with a microscope showed that the MOCVD n-GaN around some of the 

mesas was darker than around others. A dektak measurement of the surface of the mesas and 

the surrounding GaN displayed that the darker n-GaN regions were rougher than the lighter 

areas. The sputtered n-GaN mesas all remained smooth. A slower dry etch or a wet etch may 

be a solution for the MOCVD GaN to remain uniform throughout the wafer. Figure 12 

presents two pictures taken by the microscope comparing the light and dark MOCVD GaN. 

Figure 12. Images showing the sputtered n-GaN mesas of the TJ LEDs and the surrounding MOCVD n-

GaN. Both pictures are different parts of the same sample etched with chlorine. The picture to the left is 

the rougher and darker n-GaN with the right being the lighter and smoother GaN regions. 
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After the etch, the photoresist was stripped and the sample was cleaned with the same 

acetone and isopropyl alcohol method as earlier. The LEDs were then exposed to the second 

photolithography mask to create the metal contacts on the sputtered n-GaN mesas and the 

MOCVD n-GaN. Another UV ozone descum was performed for 10 minutes followed by 

dipping the wafer in a 1:1 hydrochloric acid:DI water solution for 30 seconds. The LEDs 

were rinsed with DI water and dried with N2. An E-beam evaporation system was used to 

deposit the Ti/Au stack with a thickness of 30/400 nm. The extra metal was lifted off by 

placing the wafer in an AZ NMP bath heated to 80 ⁰C. It was observed that the metal was not 

able to stick and form a contact on the areas with rough MOCVD n-GaN. However, many 

LEDs were formed in the region with smoother n-GaN. 

Current was passed through the TJ LEDs and they emitted the expected blue light. Figure 

13 presents a photo taken of one of the LEDs while radiating. The light surrounds the 

horseshoe metal p-contact which means the current is not being completely spread 

throughout the device. Sputtered n-GaN with a higher carrier concentration into the 1019 or 

1020 cm-3 range could possibly achieve better current spreading and thus have uniform 

emission from the entire LED. The current-voltage relationship of ten of the tested devices is 

shown in Figure 14. The turn-on voltage is around 6.5 V with the least resistive devices 

reaching ~5 mA at 10 V. These are the first reported GaN LEDs with a tunnel junction 

created with a sputtering system, to the author’s knowledge, and with additional research 

their efficacy can be improved for commercial viability. 
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Figure 13. Photograph of a RF magnetron sputtered TJ LED emitting blue light. Picture taken by 

Burhan Saifaddin. 

 

Figure 14. Current-voltage curves of ten sputtered TJ LEDs. The best turn-on voltage is around 6.5 V. 
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IV. Conclusion and Future Work 

The advent of GaN epitaxy has brought about the era of blue optoelectronics and opened 

a pathway for white lighting with solid state devices. Novel substrates and growth 

techniques are continually being explored to enhance the crystal quality of GaN layers. ELO 

and pendeoepitaxy are two such methods that have proven to reduce threading dislocations 

[1]. Other types of deposition systems are also research areas of interest for GaN. Sputtering, 

in particular, offers lowered cost, ease of use, and low temperature growth as advantages 

against the current MOCVD machines widely used in industry [7]-[14].  

Methods of improving the optical and electrical properties of current GaN devices are 

being investigated as well. Specifically, finding an efficient contact to p-GaN has been 

notoriously difficult. The standard has been to use TCOs, especially ITO, as a current 

spreading layer between the metal contact and p-GaN [18] [20]. However, ITO can be 

absorptive of visible and UV wavelengths. GaN tunnel junctions have been proposed to be 

used as p-contacts in place of TCOs [20]. TJs would provide hole injection into GaN 

quantum wells for more efficient radiative recombination while the n-GaN CSL portion of 

the TJ would be less resistive than a direct metal contact onto the p-GaN [17]-[21] and 

transmit more of the light emitted by the active region compared to ITO [20]. Until now, all 

GaN tunnel junctions have been created with either MOCVD or MBE systems. The 

combination of GaN tunnel junctions created with sputter deposition could provide a low 

cost, easy to implement technique for more efficient GaN devices. 

ECR sputtering was one method investigated for n-GaN deposition. Nitrogen was found 

to be a necessary component of the sputtering gas to produce transparent films. The layers 

with the best transmissivity of 440 nm light, absorbing only around 5% of the wavelength, 

were deposited within the range of 4 to 10 sccm of N2 in addition to 20 sccm of argon. 
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Substrate heating did not improve the transmissive quality of the GaN film and could be 

unnecessary for ECR sputtering. While the optical properties of the layers were high, they 

remained resistive. SIMS of the n-GaN target proved it to be very impure with high amounts 

of carbon, hydrogen, oxygen, magnesium, and calcium along with other elements present 

throughout the target. The desired silicon doping was not uniform in the target either with 

some areas having high density, around 1023 cm-3, clusters of the element. These 

contaminants would not allow a conductive n-GaN layer necessary for a tunnel junction to 

be grown, but with a different and purer GaN target ECR sputtering could still warrant 

additional research. 

A RF magnetron system was another sputtering technique explored for GaN TJs. Again, 

higher rates of N2 led to increased transmissivity within the n-GaN layers. At 38 sccm of 

nitrogen, which was 60% of the total sputtering gas, and a substrate temperature of 800 ⁰C 

less than one percent of the 440 nm blue light was lost in the deposited film. Substrate 

heating in this system did affect both the transmissive and conductive properties of the GaN 

with the higher temperature of 800 ⁰C producing layers that absorbed less of the blue 

wavelength and had higher carrier concentrations compared to 600 ⁰C. Hall-effect 

measurements showed that carrier densities and resistivities as high and low as the 1020 cm-3 

and 10-3 Ω*cm ranges, respectively, were possible with the RF magnetron. It was also noted 

that better quality GaN layers were deposited after at least two deposition cycles were run 

with the machine. This could have been due to the system being shared with users who were 

sputtering targets comprised of other materials. 

As the research was being conducted, the RF magnetron machine was modified and the 

maximum substrate temperature was lowered to 650 ⁰C. Co-sputtering of silicon along with 

the GaN target was initiated to compensate for the lower heat. A substrate temperature of 
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600 ⁰C was employed for consistency with previous sputtered layers. Hall-effect tests were 

performed on these new GaN films to observe their properties and find the best input power 

for the silicon target. The carrier concentration, mobility, and resistivity remained around 

1x1018 cm-3, 195 cm2/V*s, and 0.03 Ω*cm, respectively, no matter the power. While the 

density did remain lower than GaN deposited with solely the GaN target at a higher substrate 

temperature, the mobility was improved. Co-sputtering the silicon target at 35 W was chosen 

to create a TJ because that power displayed the highest carrier concentration. Transmissivity 

measurements showed that a GaN layer sputtered with this parameter absorbed around 9% of 

the emitted 440 nm light. 

A c-plane blue LED structure deposited with a UCSB MOCVD machine on a sapphire 

substrate was utilized to test the tunnel junction. The n-GaN layer was co-sputtered with the 

RF powers to the n-GaN and silicon targets set to 200 and 35 W, respectively. Additional 

conditions that were fixed were the nitrogen rate of 38 sccm and the use of the maximum 

possible substrate temperature of 650 ⁰C. Once the deposition was finished, 0.1 mm2 TJ 

LEDs were created with the wafer.  

Fabrication of these LEDs was simplified compared to the process for ITO LEDs by 

requiring only two photolithography steps because n-GaN was both the p- and n-contacts 

and could use the same metal stack. During the fabrication, when the LED mesas were 

created by employing a chlorine etch with a RIE system the MOCVD n-GaN around the 

mesas was observed to have a rough surface in some areas of the sample. The metal contacts 

would not stick to the GaN in such regions, but many devices were still fabricated in the 

smoother areas of the wafer. These LEDs were tested and emitted blue light. Current-voltage 

graphs of the LEDs displayed the turn-on voltage to be around 6.5 V. These are the first 

reported GaN LEDs with tunnel junctions created by sputtered deposition. 
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Three main paths can be further explored to improve the quality of the RF magnetron 

sputtered GaN layer as well as the TJ LEDs. The first would be to utilize a system with a 

higher maximum substrate temperature. The greater substrate heat during deposition has 

been shown to enhance both the transmissivity and carrier concentration of the film. The 

higher carrier density would raise the electron tunneling probability and thus lead to better 

conduction within the TJ [17] [19] [20]. Co-sputtering at the higher temperature could also 

be studied. The second avenue would be to investigate the etch step to form the LED mesas 

during fabrication. A slower dry etch, such as SiCl4, or a wet etch could result in smoother n-

GaN. Lastly, dipping TJ LEDs in hydrofluoric acid prior to the n-GaN deposition for the 

tunnel junction has been demonstrated to lower the turn-on voltage for LEDs with the n-side 

of the TJ grown with MBE [22]. This treatment could extend the same result to sputtered TJ 

LEDs if applied to the LED wafer before sputtering the n-GaN layer on top. Should the 

efficiency of sputtered GaN TJ LEDs become the same as devices utilizing ITO, GaN LEDs 

could be produced at the commercial level with a lower cost system compared to TJs 

deposited with MOCVD or MBE and a simpler fabrication procedure than LEDs with ITO. 
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