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ABSTRACT 
 

Principles of sensorimotor integration and olfactory processing  

By 

Philip H. Wong 

 

When confronted with an ever-changing and often perilous environment, how an 

organism behaves in response to uncertain and incomplete sensory information can be a matter 

of life and death. Besides the need to assess individual sensory signals accurately, sensory 

systems must also be able to integrate signals from multiple sensory modalities (e.g. visual, 

auditory, haptic), some of which may produce conflicting information. Through studying the 

insect brain of the Drosophila larva, we sought to unwrap the mathematical principles 

behind how animals process sensory signals to guide their behavior, with a focus on 

olfaction. In my dissertation, we employ computational models to investigate how the 

Drosophila larva transduces odors through its olfactory sensory neurons and combines these 

cues with other sensory modalities. We obtain three important clues towards understanding 

the neural implementation of sensory systems: 1. Drosophila larvae are capable of 

computing and combining the variance of sensory inputs to organize orientation behavior, 

suggesting that even relatively simple nervous systems can achieve probabilistic inference. 

2. Upon prolonged increasing excitation, olfactory sensory neurons can counterintuitively 

transition from a spiking state to a silent state called depolarization block, which preserves 

sparsity in the neural code. 3. The bifurcation of spiking and silent states in olfactory 

sensory neurons driven by depolarization block allows Drosophila larvae to encode and 

discriminate different odors.  
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Introduction 

 

The human brain is an unfathomably complex computing system. While we can easily 

recognize the scent of Chanel No. 5, identify the melody of our favorite song, and find our 

way to the bathroom at night in pitch darkness, many of the mechanisms behind how we 

process and make sense of the world around us have yet to be understood. In this 

dissertation, we attempt to characterize the principles of how neurons – the basic units of 

computation in the brain – process and encode information that we perceive in the world 

around us. 

To understand how sensory information is processed by the brain, we turn to the neural 

circuitry of the Drosophila melanogaster. Commonly known as the fruit fly, the Drosophila 

melanogaster is an extensively studied model organism in both its adult and larval form. In 

this dissertation, we focus on the olfactory system of the Drosophila larva. With a nervous 

system of approximately 10,000 neurons [1], [2] (as opposed to the 86 billion of the human 

brain [3]), the Drosophila larva is an ideal model organism for studying the functions of 

individual neurons and neural circuitry at a simple, mechanistic level.  

The first chapter (adapted from [4]) centers on multisensory integration, a process by 

which the nervous system consolidates information simultaneously from multiple senses. 

Here, we characterize the computational principles behind how the Drosophila larva 

combines information from sensory modalities like temperature and odor. The second 

chapter (adapted from [5]) describes our discovery of an unexpected feature called 

depolarization block in olfactory sensory neurons - the neurons involved in the sensation of 
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smell. While this phenomenon was previously viewed as an anomaly, we demonstrate why 

we believe that depolarization block may have profound implications on how smells are 

encoded by the olfactory system. With this discovery in mind, the third and final chapter 

examines how olfactory sensory neurons encode and allow the brain to discriminate 

different odors: for example, the fragrance of a flower versus the pungent stench of the 

durian fruit. While we are far from demystifying the neural representation of smell, we find 

evidence that depolarization block may be a feature that expands and facilitates the 

peripheral encoding of odors.   

Our methodology in each study involves a synergy of in-vivo experiments and in-silico 

computer simulations. Through a closed feedback loop between experimental and theoretical 

neuroscience, we iteratively build on data-driven computational models that not only reveal 

conceptual insights about how neural circuits perform computation, but also inspire new 

hypotheses to be verified through experimentation. Although it is often said that “all models 

are wrong”, we hope that this dissertation demonstrates the value and versatility of 

computational models in neuroscience.  
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Computational principles of adaptive multisensory 

combination 

Introduction 

When confronted with an ever-changing and often perilous environment, how an 

organism behaves in response to uncertain and incomplete sensory information can be a 

matter of life and death. Besides the need to assess individual sensory signals accurately, 

sensory systems must also be able to integrate signals from multiple sensory modalities (e.g. 

visual, auditory, haptic), some of which may produce conflicting information. This task of 

“multisensory cue combination” has therefore been the focus of many studies, particularly in 

psychophysics, to characterize its implementation in different organisms and to evaluate 

whether these solutions are optimal from a probabilistic point of view [6]. 

One mechanism adopted by organisms to integrate noisy (fluctuating) information 

arising from different sensory modalities is to prioritize signals based on their relative 

uncertainty (variance) by using a principle of Bayesian inference. This strategy has the 

advantages of allowing adaptation to sudden changes in the environment, permitting the 

filtering of irrelevant information (noise), and improving the signal-to-noise ratio of the 

combined signal. In humans, for example, the visual-haptic estimation of the height of an 

object is close to optimal and closely matches the Bayesian estimate [7]. Similar results have 

also been observed for other tasks in humans [8], as well as in primates [9]. To a lesser 

extent, recent evidence indicates that insect brains may also be capable of implementing 

similar strategies of cue combination, for example in the integration of directional 
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information in ants [10], [11]. In addition, the neural integration of multisensory cues has 

been studied in the adult Drosophila and it has been shown that flies are able to dynamically 

adjust their response to conflicts between visual, olfactory and airflow cues [12]. 

Although the neural implementation of cue combination is not well-understood, various 

theories speculate about how neural ensembles can implement probabilistic inference [13], 

[14]. While certain theories require neuronal populations to encode probabilities and 

information about signal variance [13], others suggest the possibility of encoding variability 

through synaptic plasticity in single neurons [14]. Further characterizing multisensory cue 

combination in a comparatively simple model organism like the Drosophila larva is 

advantageous, not only to reveal how strategies evolve through development, but also to 

delineate the minimal complexity required to mechanistically implement strategies of 

multisensory-cue combination [15]. 

While it has yet to be shown how the Drosophila larva implements cue combination in 

natural conditions, previous studies have examined how turns are triggered in the 

Drosophila larva in response to the combination of aversive light input and attractive virtual 

odor input [16], [17]. In the first study, a computational model that describes the basic 

transformation of sensory input into turning decisions was built to investigate the sequence 

of mathematical operations combining multi-modal inputs [16]. In subsequent work, a 

modified version of the same model was used to establish that signals triggering turns adapt 

to the variance of the individual multi-modal sensory inputs [17]. In the present work, we 

investigate whether this form of variance adaptation fits into traditional cue combination 

models as observed in other animals and dissect how the mechanism underlying the 

combination of multi-modal inputs contributes to the overall navigational strategy of the 
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larva. Specifically, we investigate how the Drosophila larva responds to gradients of two 

independent odors, as well as the combination of an odor and a temperature gradient. While 

chemotaxis and thermotaxis have been studied extensively in the larva [18]–[20], little is 

known about how unimodal navigational mechanisms contribute to navigation in unison. 

Experimentally, we investigate combinations of thermotactic and olfactory (real and 

virtual) stimuli in scenarios where cues are directionally similar (congruent) or in opposing 

(conflicting) directions. Furthermore, we test conditions where noise is added 

optogenetically to the peripheral olfactory system to study how the combination of 

multisensory cues adapts to changes in the variance of individual sensory inputs. To capture 

the precise reorientation mechanisms and navigational behavior of larvae in these scenarios, 

we built a data-driven agent-based model inspired by Wystrach et al. [21] that represents 

both turn rate and turning direction, and models how different sensory inputs are processed 

and transformed into behavioral outputs. Using this agent-based framework, we tested and 

simulated different experimental paradigms to narrow down the set of plausible mechanisms 

for multisensory cue combination in the Drosophila larva through a process of elimination. 

With this approach, we explore computationally how larvae use signal variance to weigh 

and combine unreliable sensory information from multiple modalities. Using our agent-

based model, we conduct a perturbative analysis to characterize the modulatory impact of 

cue combination on individual aspects of the control of locomotion underlying sensory 

navigation. 

Motivated by a need to go beyond cue-combination models that specifically estimate the 

properties of a single object (e.g., the width of a bar, [7]), we explore different notions of 

optimality related to sensory navigation in response to realistic configurations of multimodal 
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gradients. Through a generalized formalism of cue-combination strategies, we define a 

bimodal contrast coefficient that represents the degree to which signal variance is prioritized 

over the value (reward) of individual signals in the combination of multimodal sensory 

inputs. In addition to the observation that larvae are near-optimal in both formalisms, we 

find that their cue-combination strategy can adapt depending on the nature of the sensory 

information available to the animal. 

 

 

Materials and Methods 

Parameter-Free Model 

Drosophila larvae sample the environment to gather information about local odor and 

temperature gradients through head casts and runs to guide their behavior [22]. We assume 

that local information is relatively weak as it is corrupted by fluctuations due to intrinsic 

noise in the local gradient; thus, the larva needs to accumulate information over time. Two 

main experimental setups are considered here: one in which two odor gradients are present 

(one real and another virtual generated by optogenetic stimulation), corresponding to the 

‘intramodal’ condition, and another in which an odor and a temperature gradient are present, 

corresponding to the ‘intermodal’ condition. Mathematically these two conditions can be 

described with the same formalism, and therefore we do not distinguish them here. We 

generally use ‘cue 1’ and ‘cue 2’ to refer to either odor or temperature gradients, regardless 

of the sensory modality used. We will also model the effect of noise injection through 

optogenetics.  

Our model is based on the idea that the larva’s goal is estimating a hidden binary 

variable 𝑠𝑠, with values −1 and 1, denoting the ‘best location in the world’: if 𝑠𝑠 = 1, then the 
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goal location is on the right of the petri dish; if 𝑠𝑠 = −1, then the goal location is on the left. 

The larva estimates this hidden variable by iteratively sampling gradients through the space. 

We assume that up to time 𝑡𝑡 the accumulated evidence for cues 1 and 2 is characterized by 

sampled gradients ∆𝑐𝑐1 and ∆𝑐𝑐2, respectively. These sampled gradients correspond to the 

accumulated local sampled gradients, which are lumped together into a single mean-field 

value. Since sensory observations are noisy due to intrinsic and extrinsic variability, the 

sampled gradients are corrupted versions of the true gradients, ∆𝑐𝑐10and ∆𝑐𝑐20 with Gaussian 

noise. Because both gradients are generated congruently, then we can use the same hidden 

variable 𝑠𝑠 to express ∆𝑐𝑐10 = 𝑠𝑠∆𝐶𝐶1 and ∆𝑐𝑐20 = 𝑠𝑠∆𝐶𝐶2, where ∆𝐶𝐶𝑖𝑖 ≥ 0 are the absolute values of 

the true gradients ∆𝑐𝑐𝑖𝑖0, 𝑖𝑖 = 1, 2. Therefore 𝑠𝑠 represents the sign of the gradient, which points 

towards the goal location, while ∆𝐶𝐶𝑖𝑖 ≥ 0  controls the intensity of the gradients. The 

sampled gradients follow then the equations: 

 𝛥𝛥𝑐𝑐1 = 𝑠𝑠𝑠𝑠𝐶𝐶1 + 𝜎𝜎1𝑛𝑛1 

𝛥𝛥𝑐𝑐2 = 𝑠𝑠𝑠𝑠𝐶𝐶2 + 𝜎𝜎2𝑛𝑛2 , 
(1) 

where 𝑛𝑛𝑖𝑖(𝑖𝑖 = 1, 2) are independent normal random variables with zero-mean and unit 

variance, and 𝜎𝜎𝑖𝑖 is the inverse reliability of the i-th cue. Control of independence of the 

fluctuations of the two cues can be achieved in our experiments by using odor and virtual 

odor gradients.  

It is important to emphasize that the primary goal of the larva is to estimate the value 

of the hidden variable 𝑠𝑠 rather than estimating the true values of the gradients ∆𝐶𝐶𝑖𝑖 through 

the sampled gradients ∆𝑐𝑐1 and ∆𝑐𝑐2. The variable 𝑠𝑠 (the sign of the gradient) specifies the 

goal location, while the absolute value true gradients are uninformative about the goal 

location. As the larva estimates the value of the variable 𝑠𝑠, it moves to the estimated goal 

location. It is important to note that the larva does not have direct access to the true gradient 

∆𝐶𝐶𝑖𝑖 and to the hidden variable 𝑠𝑠. In contrast, in the model the larva has direct access to the 

inverse reliabilities of each cue through sampling of the noise, as is well documented in 

other similar scenarios [7]. This assumption is also supported by our experimental 

observations. 



 

8 

 

Errors in the estimated goal location can occur when the two sampled gradients have 

a different sign with respect to the true location (e.g., when ∆𝑐𝑐1 < 0, ∆𝑐𝑐2 < 0 and 𝑠𝑠 = 1). 

When one of the sampled gradients is positive but the other is negative, then the larva should 

weigh them according to the reliabilities of each cue. There is a unique way of combining 

the sampled gradients optimally, the so-called optimal strategy, which we will derive. Our 

framework is based on Bayesian inference of the hidden variable 𝑠𝑠, which corresponds to the 

optimal strategy in the sense that the goal location is attained with the highest probability. 

Given the sampled gradients ∆𝑐𝑐1 and ∆𝑐𝑐2, one can build the posterior probability of the 

hidden variable 𝑠𝑠 and the absolute true gradients as 𝑝𝑝(𝑠𝑠,𝛥𝛥𝐶𝐶1,𝛥𝛥𝐶𝐶2|𝛥𝛥𝑐𝑐1,𝛥𝛥𝑐𝑐2). Using Bayes 

rule,  

 𝑝𝑝(𝑠𝑠,𝛥𝛥𝐶𝐶1,𝛥𝛥𝐶𝐶2|𝛥𝛥𝑐𝑐1,𝛥𝛥𝑐𝑐2) ∝ 𝑝𝑝(𝛥𝛥𝑐𝑐1,𝛥𝛥𝑐𝑐2|𝑠𝑠,𝛥𝛥𝐶𝐶1,𝛥𝛥𝐶𝐶2)

= 𝑝𝑝(𝛥𝛥𝑐𝑐1|𝑠𝑠,𝛥𝛥𝐶𝐶1)𝑝𝑝(𝛥𝛥𝑐𝑐2|𝑠𝑠,𝛥𝛥𝐶𝐶2) 
(2) 

where the proportionality is in relation to 𝑠𝑠, 𝛥𝛥𝐶𝐶1and 𝛥𝛥𝐶𝐶2. Since the sampled gradients 

specify the order of magnitude of the true gradients, and because the true gradients are 

distributed over several orders of magnitude, we ignore the prior distribution on the true 

gradients above (effectively, we assume that the prior is flat). In addition, on the right side of 

the equation we assume that, conditioned on the true gradients and goal location, the 

fluctuations of the sampled gradients are independent. This is strictly true in our 

experimental condition in which one gradient is odor and the other is a virtual odor gradient, 

and they are close-to-independent in other conditions because of the random mixing of odors 

due to chaotic dynamics in fluids. 

Using eq. (1), 𝑝𝑝(𝛥𝛥𝑐𝑐𝑖𝑖|𝑠𝑠,𝛥𝛥𝐶𝐶𝑖𝑖) = 𝛮𝛮(𝛥𝛥𝑐𝑐𝑖𝑖|𝑠𝑠𝑠𝑠𝐶𝐶𝑖𝑖 ,𝜎𝜎𝑖𝑖2) for 𝑖𝑖 = 1,2, that is, the density is a 

Gaussian probability density with mean 𝑠𝑠𝑠𝑠𝐶𝐶𝑖𝑖and variance 𝜎𝜎𝑖𝑖2. Inserting this expression into 

eq. (2), we find  

 
𝑝𝑝(𝛥𝛥𝑐𝑐1,𝛥𝛥𝑐𝑐2|𝑠𝑠,𝛥𝛥𝐶𝐶1,𝛥𝛥𝐶𝐶2) ∝ 𝑒𝑒

�−(𝛥𝛥𝑐𝑐1−𝑠𝑠𝑠𝑠𝐶𝐶1)2
2𝜎𝜎12

−(𝛥𝛥𝑐𝑐2−𝑠𝑠𝑠𝑠𝐶𝐶2)2
2𝜎𝜎22

�
. (3) 

Optimal behavior involves determining the distribution of the hidden variable, but 

ignoring the absolute values of true concentration gradients, as the latter are not informative 
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about the goal location. Therefore, we are interested in the posterior over the hidden variable 

𝑠𝑠, where the absolute values of the gradients are marginalized, 

 𝑝𝑝(𝑠𝑠|𝛥𝛥𝑐𝑐1,𝛥𝛥𝑐𝑐2) ∝ ∫ 𝑑𝑑𝑑𝑑𝐶𝐶1
∞
0 ∫ 𝑑𝑑𝑑𝑑𝐶𝐶2

∞
0  𝑝𝑝(𝑠𝑠,𝛥𝛥𝐶𝐶1,𝛥𝛥𝐶𝐶2|𝛥𝛥𝑐𝑐1,𝛥𝛥𝑐𝑐2) . (4) 

Using eqs. (2-4) and the definition of cumulative Gaussian, Φ(𝑥𝑥) = ∫ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦 | 0,1)𝑥𝑥
−∞ , we find 

 

 𝑝𝑝(𝑠𝑠|𝛥𝛥𝑐𝑐1,𝛥𝛥𝑐𝑐2) ∝ Φ(𝑠𝑠𝑠𝑠𝑐𝑐1/𝜎𝜎1)Φ(𝑠𝑠𝑠𝑠𝑐𝑐2/𝜎𝜎2) . (5) 

To find a closed expression for 𝑝𝑝(𝑠𝑠|𝛥𝛥𝑐𝑐1,𝛥𝛥𝑐𝑐2) we approximate the cumulative Gaussians 

by sigmoid functions, which is known to be an excellent approximation for the best fit 

parameters (that is, Φ(𝑥𝑥) is approximated by Φ(𝑥𝑥) ∼ 1/(1 + 𝑒𝑒−𝛼𝛼𝛼𝛼), where 𝛼𝛼 is the best fit 

parameter). Therefore, within this approximation, we can write the probability over 𝑠𝑠 as 

 𝑝𝑝(𝑠𝑠|𝛥𝛥𝑐𝑐1,𝛥𝛥𝑐𝑐2) = 1
1+e(−𝛼𝛼(𝛥𝛥𝑐𝑐1/𝜎𝜎1+𝛥𝛥𝑐𝑐2/𝜎𝜎2)𝑠𝑠) = 1

1+𝑒𝑒−𝛼𝛼 𝑑𝑑 𝑠𝑠. (6) 

where we have defined the ‘decision variable d’   

 𝑑𝑑 = 𝛥𝛥𝑐𝑐1/𝜎𝜎1 + 𝛥𝛥𝑐𝑐2/𝜎𝜎2 . (7) 

Note that the decision variable weighs the size of the sampled gradients with the reliability of 

each gradient.  

Obtaining the decision variable is one of the central results of this section, as it 

dictates what the larva should do trial by trial based on the sampled gradients and their 

reliability. Specifically, when the decision variable is positive, 𝑑𝑑 > 0, the probability of 𝑠𝑠 =

1 is larger than one half, and therefore optimal behavior dictates moving towards the right. If 

the decision variable is negative, then optimal behavior dictates moving towards the left. In 

summary, the decision rule reads: 

 “choose 𝑠𝑠 = 1”     if   𝑑𝑑 > 0 

"choose 𝑠𝑠 = −1"  if    𝑑𝑑 > 0. 
(8) 

It is important to emphasize that for a larva to follow the optimal behavior it should 

follow the decision rule in eq. (8). This obviously does not mean that the neuronal circuitry 

needs to perform explicitly the computation described in eqs. (2-6): all these computations 

can be bypassed if the decision rule in eq. (8) is hardwired within the neuronal circuits. 
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The decision rule in eq. (8) is a deterministic rule given the sampled gradients  𝛥𝛥𝑐𝑐1 

and 𝛥𝛥𝑐𝑐2. However, we do not have access to the sampled gradients as measured by the 

larvae. This means that the value of the decision variable 𝑑𝑑 at any particular trial is unknown 

to us. This implies in turn that we can only know the behavior of the larvae averaged over 

observations given a predetermined experimental setup, which is characterized by the true 

gradients 𝛥𝛥𝑐𝑐10 = 𝑠𝑠𝑠𝑠𝐶𝐶1 and 𝛥𝛥𝑐𝑐20 = 𝑠𝑠𝑠𝑠𝐶𝐶2. We will take advantage of the fact that, while the 

true gradients are unknown to the larvae, they are known to the experimenter.  

We first note that 𝑑𝑑 is the sum of two Gaussian variables, and therefore it is a 

Gaussian variable. Its mean and variance are respectively: 

 
𝑑̅𝑑(𝛥𝛥𝐶𝐶1,𝛥𝛥𝐶𝐶2) =

𝛥𝛥𝐶𝐶1
𝜎𝜎1

+
𝛥𝛥𝐶𝐶2
𝜎𝜎2

 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑)(𝛥𝛥𝐶𝐶1,𝛥𝛥𝐶𝐶2) = 2 , 
(9) 

where we assume without loss of generality that the goal location is at 𝑠𝑠 = 1. From this 

expression we can compute the central experimental measurement, the preference index, 𝑃𝑃𝑃𝑃. 

This quantity is defined experimentally as the number of larvae that at time t are located on 

the correct half-side of the petri dish, 𝑠𝑠 = 1. We can make a prediction using eq. (9) by 

noticing that the 𝑃𝑃𝑃𝑃 is the fraction of times that the decision variable d is above zero,   

 

 𝑃𝑃𝑃𝑃(𝛥𝛥𝐶𝐶1,𝛥𝛥𝐶𝐶2) = Φ� 𝛥𝛥𝐶𝐶1
√2𝜎𝜎1

+ 𝛥𝛥𝐶𝐶2
√2𝜎𝜎2

�. (10) 

This equation provides a prediction of the preference index when the two gradients are 

present. Now we can use the same expression to find expressions for the preference indexes 

for the single-gradient conditions as 

 
𝑃𝑃𝑃𝑃(𝛥𝛥𝐶𝐶1) = 𝑃𝑃𝐼𝐼(𝛥𝛥𝐶𝐶1,𝛥𝛥𝐶𝐶2 = 0) = Φ�

𝛥𝛥𝐶𝐶1
√2𝜎𝜎1

�  

𝑃𝑃𝑃𝑃(𝛥𝛥𝐶𝐶2) = 𝑃𝑃𝐼𝐼(𝛥𝛥𝐶𝐶1 = 0,𝛥𝛥𝐶𝐶2) = Φ�
𝛥𝛥𝐶𝐶2
√2𝜎𝜎2

�. 
(11) 

Finally, we can use eqs. (10-11) to obtain the combination rule 
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 𝑃𝑃𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛥𝛥𝐶𝐶1,𝛥𝛥𝐶𝐶2) = Φ(Φ−1(𝑃𝑃𝐼𝐼(𝛥𝛥𝐶𝐶1)) + 𝛷𝛷−1(𝑃𝑃𝐼𝐼(𝛥𝛥𝐶𝐶2))) , (12) 

where 𝛷𝛷−1(𝑥𝑥) is the inverse cumulative normal. Thus, using the same sigmoidal 

approximation of the cumulative Gaussian employed above, we obtain the coarse-grained 

model given by eq. (2) in the main text. Another important feature of these predictions, 

which will be exploited later, is that optogenetic stimulation can affect the reliability of each 

cue in predefined ways. In particular, it should be possible to increase the noise level of cue 

1 without affecting the noise level in cue 2. If this happens, then the model predicts that the 

preference index when only cue 2 is present should remain unchanged in the presence of 

noise in cue 1. To understand this result, note that in this rule increasing the variance of one 

signal does not change the total variance of eq. (9), which implies that it is not possible to 

shut down a cue even if it is very noisy. This is however the optimal thing to do under the 

above assumption, as the signal is scaled down by the standard deviation of the noise, but 

gives a different result than the variance weighted combination rule of eq. (44) in the main 

text. In the main text, 𝑃𝑃𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛥𝛥𝐶𝐶1,𝛥𝛥𝐶𝐶2) is denoted as 𝑃𝑃𝐼𝐼1+2,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 . 

 

Agent-based Model 

We model Drosophila larvae with an adapted version of an agent-based model 

developed by Wystrach et al. [21]. This model provided a general framework for describing 

taxis behavior in unimodal stimulus gradients, based on evidence that larvae display 

continuous lateral oscillations (“head-casts”) of the anterior body during peristalsis. Their 

work showed that this simple mechanism coupled with the direct sensory modulation of 

oscillation amplitude could reproduce many taxis signatures observed in larvae. To test 

different mechanistic hypotheses for cue integration, we build upon this framework to 

investigate how information can be combined across real odor, virtual odor, and temperature 

gradients to modulate taxis. 
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Lateral Oscillation Model  

In our adaptation of the above agent-based model we consider the anterior and posterior 

body of the larva as two connected segments. The anterior body is modelled as a single 

segment from the midpoint to the head (Figure 1A). To mimic active sampling, this segment 

rotates about the midpoint and alternates between left and right rotations between timesteps 

(Figure 1B), with casting amplitude modulated by the sensory experience. The posterior 

body on the other hand, is “passive” and assumed to follow the axis of the anterior segment. 

Larvae are assumed to be uniform in length and move along the anterior heading direction at 

a constant speed. At any timestep 𝑛𝑛 of 1s, this mechanism can be summarized with the 

following state-update equations: 

 𝜃𝜃𝑛𝑛 =  𝜃𝜃𝑛𝑛−1 + 𝛿𝛿𝜃𝜃(𝑑𝑑)(−1)𝑛𝑛 

𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑛𝑛−1 + 𝑣𝑣 cos(𝜃𝜃𝑛𝑛) 

𝑦𝑦𝑛𝑛 = 𝑦𝑦𝑛𝑛−1 + 𝑣𝑣 sin(𝜃𝜃𝑛𝑛), 

(13) 

where 𝜃𝜃𝑛𝑛 is the heading direction of the anterior body relative to the midpoint at 

timestep 𝑛𝑛, 𝑣𝑣 is the distance travelled in a single time-step, and {𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛} is the updated 

midpoint of the larva. The quantity 𝛿𝛿𝜃𝜃(𝑑𝑑) is the casting amplitude, which is modulated by a 

decision variable 𝑑𝑑 that is a function of the sensory experience (see below). The constant 𝑣𝑣 

was estimated based on the average speed observed in larva in the experimental data. In ref. 

[21], the amplitudes of the lateral oscillations is modelled as a hard-limit ramp function: 

 
𝛿𝛿𝜃𝜃(𝑑𝑑) = 𝐻𝐻(𝜃𝜃𝐵𝐵 + 𝑑𝑑), where 𝐻𝐻(𝑥𝑥) = �

𝑥𝑥 0 ≤ 𝑥𝑥 ≤ 𝜋𝜋
𝜋𝜋 𝑥𝑥 > 𝜋𝜋
0 𝑥𝑥 < 0

, 

 

(14) 
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where 𝜃𝜃𝐵𝐵 is the baseline amplitude of the lateral oscillations in the absence of stimuli 

(i.e. when 𝑑𝑑 = 0). During larval chemotaxis, turning increases during upgradient motion 

whereas it is reduced during downgradient motion. Accordingly, the decision variable 𝑑𝑑 

should be negative when moving up a stimulus gradient and positive when moving down a 

stimulus gradient.  

One important feature of our adaptation of the agent-based model that is distinct 

from Wystrach’s model [21] is that sensory measurements are sampled at every time-step by 

a sensor located at the extremity of the larva’s head, which rotates about the midpoint. This 

allows us to distinguish between head casting during “runs” when the larva is undergoing 

forward peristalsis and head casting during “stops”, when the midpoint of the larva is 

stationary. In contrast, the larva in ref. [21] is modelled as a point agent that rotates on the 

spot for simplicity.  Note that in our model, the position of the larva head is given by: 

 𝑥𝑥𝑛𝑛ℎ = 𝑥𝑥𝑛𝑛 + 𝑙𝑙
2

cos(𝜃𝜃𝑛𝑛)  

𝑦𝑦𝑛𝑛ℎ = 𝑦𝑦𝑛𝑛 + 𝑙𝑙
2
𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃𝑛𝑛) , 

(15) 

where l is the average length of larva at the 3rd instar developmental stage. 
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Figure 1: Parameter optimization and performance quantification of the agent-based 
model for larval navigation. (A) Illustration of the framework of the lateral oscillation 
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model used for the agent based model. The larva is modelled as two segments: the anterior 
(midpoint to the head) and the posterior (tail). (B) The larva alternates between left and right 
head-casts between every timestep. The black arrow illustrates the direction of motion at the 
previous timestep while the red arrow is the heading vector at the indicated timestep. (C) 
Ratio of runs and stops observed in real larvae versus in simulations in the absence of 
stimuli. (n = 100 larvae) (D) Simulation results for the fraction of larvae at the walls of the 
arena for hypothetical boundary conditions tested when designing the agent-based model. 
Larvae are defined as being at the boundary if they are within one larva-length from the 
edge of the arena. Lines represent the mean and shaded error bars represent one standard 
deviation (n = 10 groups of 100 larvae). (E) Stages at which noise is added in the agent-
based model. 

 

Stopping  

For the lateral oscillation model developed in ref. [21], it was noted that stopping was 

not essential for chemotaxis except for improving orientation by enabling larger turns in 

their paths. Thus, this mechanism was ignored as a simplifying assumption and larvae were 

simulated to run continuously at a fixed speed. However, in order to accurately represent 

larvae navigation about odor sources in our experimental paradigms, it was necessary to 

incorporate the mechanism of stopping. We make the following modelling assumptions 

regarding larvae runs and stops: 

1. During runs, larvae move along the anterior heading direction at a constant speed (as 

before).  

2. During stops, larvae remain stationary at the midpoint but are still able to cast the 

anterior body in either direction.  

3. The casting amplitude is larger during stops than during runs.  

To capture the behaviors associated with running and stopping in our agent-based model, we 

assume that larvae not only update their heading direction at each time-step, but also make a 
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decision to run or to stop. Therefore, there are two decisions that must be made at every 

time-step: 

1. When to Stop: Should the larva be in a running or stopping state? 

2. Where to Turn: Given the state of the larva, what adjustment should be made to the 

current heading? 

 

When to stop 

We modeled running and stopping in larvae as a binary Markov process, with transition 

probabilities dependent on the same decision variable 𝑑𝑑 (Figure 7E). The transition 

probabilities between states were given by the following logistic functions: 

 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑) =
1

1 + 𝑒𝑒−𝑑𝑑+𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟
  

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑) =
1

1 + 𝑒𝑒−𝑑𝑑+𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
. 

 

(16) 

The parameters 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are constants that determine the statistics of running and 

stopping in the absence of sensory stimuli (i.e. 𝑑𝑑 = 0). Using the classification algorithm of 

the closed loop tracker from ref. [23], we quantified the statistics of running and stopping in 

unstimulated larvae (Figure 1C). We then used maximum likelihood estimation to fit 

parameters 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in our model (Figure 2A-D). We verified that the negative 

binomial distribution of running and stopping durations resulting from the simple Markov 

model showed a reasonable agreement with actual data. 
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Where to turn to 

Using experimental data generated with a closed loop tracker [23], we observe 

differences in both casting amplitude and casting speed in the two states. Given that the 

dynamics of head casting differ in running and stopping, separate schemes are required to 

describe the casting amplitude of these two states: 

 
𝛿𝛿𝜃𝜃(𝑑𝑑) =  �

𝛿𝛿𝜃𝜃,𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝛿𝛿𝜃𝜃,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

 

𝛿𝛿𝜃𝜃,𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑) = 𝜃𝜃𝑀𝑀,𝑟𝑟𝑟𝑟𝑟𝑟
1+𝑒𝑒−𝛾𝛾𝛾𝛾

  

𝛿𝛿𝜃𝜃,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑) = 𝜃𝜃𝑀𝑀,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

1+𝑒𝑒−𝛾𝛾𝛾𝛾
. 

(17) 

Here, we use a smooth approximation of the hard limit ramp function in Wystrach et al. 

[21]. The parameter 𝜃𝜃𝑀𝑀 can be viewed as a physical constraint on the maximum casting 

amplitude or head casting speed in running and stopping states. These constants were 

estimated to fit the physical constraints of the head casting speeds of real larvae. 𝛾𝛾 is a 

tuning parameter that governs the slope of the ramp and allows for differences in how the 

decision variable 𝑑𝑑 modulates casting amplitude compared to stopping. The resulting head-

casting speeds generated by our model were in agreement with real unstimulated larvae from 

the closed loop tracker. 
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Figure 2: Parameter optimization and performance quantification of the agent-based 
model for larval navigation. (A-D) The histograms compare the behavioral statistics of real 
larvae to simulated larvae (n = 100 larvae): (A) run durations, (B) turn durations, (C) casting 
speed during runs, (D) casting speed during turns. (E) Performance of the agent-based model 
with the removal of its constituent mechanisms (“where to turn to”, “when to stop”) to direct 
larvae up gradients. When either mechanism is removed, a smaller fraction of larvae reach 
the source. (Odor + odor congruent, n = 19 groups of 20 larvae). (F) Justification of model 
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complexity. The plot indicates the change in prediction error as quantified by the AIC/BIC 
as variables are removed or added to the agent-based model. (Odor + odor congruent, n = 19 
groups of 20 larvae) 

 

Sensory Stimulus 

In the present section, we outline the models used to describe the stimulus presented to 

the larvae. In each experimental paradigm, we presented combinations of dynamic real odor 

gradients, with static virtual odor gradients and static temperature gradients. At each 

timestep, we assume that the larva receives a sensory input 𝐶𝐶𝑛𝑛(𝑥𝑥𝑛𝑛ℎ,𝑦𝑦𝑛𝑛ℎ) that is dependent on 

its head position {𝑥𝑥𝑛𝑛ℎ,𝑦𝑦𝑛𝑛ℎ} in the assay at timestep 𝑛𝑛.  

 

Odor 

Two different odors were used in experiments, 1-hexanol and ethyl butyrate. In each 

experiment, a small odor droplet was placed in an enclosed assay and gradually diffused 

over the course of three minutes. Since we observed changes in the behavioral response to 

the odor stimulus over the course of each experiment, we could not assume that the odor 

gradient was static. Hence, we modeled the evolution of an odor gradient as a diffusion 

process from a point source as outlined in ref. [23]. At timestep 𝑛𝑛, the solution to diffusion 

partial differential equation is: 

 
𝐶𝐶𝑛𝑛(𝑥𝑥𝑛𝑛ℎ, 𝑦𝑦𝑛𝑛ℎ) =  ∫ 𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

(4𝜋𝜋𝜋𝜋𝜋𝜋)3/2 𝑒𝑒
− 𝑟𝑟2

4𝐷𝐷𝐷𝐷
𝑛𝑛
0 𝑑𝑑𝑑𝑑, (18) 

where 𝑟𝑟 denotes the Euclidean distance from the larva head to the odor source 𝑟𝑟 =

��𝑥𝑥𝑠𝑠 − 𝑥𝑥𝑛𝑛ℎ�
2

+ �𝑦𝑦𝑠𝑠 − 𝑥𝑥𝑛𝑛ℎ�
2

  and 𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the flux of the odor droplet. 𝐷𝐷 is the diffusion 
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coefficient of the odor droplet in air, which differs slightly between 1-hexanol and ethyl 

butyrate. These values were estimated using the method in ref. [24]. 

 

Temperature 

The behavioral experiments feature a linear temperature gradient that varied from 

𝑇𝑇min =  16𝑜𝑜C to a maximum of 𝑇𝑇max =  30𝑜𝑜C (aversive to larvae). For example, a 

temperature gradient increasing in the positive x-direction would be given by: 

 𝐶𝐶𝑛𝑛(𝑥𝑥𝑛𝑛ℎ, 𝑦𝑦𝑛𝑛ℎ) = 𝑇𝑇min + (𝑇𝑇max − 𝑇𝑇min)( 𝑥𝑥
2𝑅𝑅

), (19) 

where 𝑅𝑅 is the radius of the arena. Under the rearing conditions of the experiments, 

larvae are drawn to the cooler end of this temperature range. 

 

Virtual Odor 

In the experiments with real larvae, we passed emitted light from a LED through an 

exponential filter to create a Gaussian source for optogenetic virtual odor experiments. This 

is modelled as: 

 
𝐶𝐶𝑛𝑛(𝑥𝑥𝑛𝑛ℎ, 𝑦𝑦𝑛𝑛ℎ) = 𝐽𝐽𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡𝑒𝑒

− 𝑟𝑟2

2𝛼𝛼2, (20) 

where r is again the distance to the source = ��𝑥𝑥𝑠𝑠 − 𝑥𝑥𝑛𝑛ℎ�
2

+ �𝑦𝑦𝑠𝑠 − 𝑥𝑥𝑛𝑛ℎ�
2

 ,  𝐽𝐽𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 

specifies the intensity of the light stimulus, and 𝛼𝛼 is the standard deviation of the Gaussian 

function. This mathematical fit is supported by measurements of the physical gradient using 

a photodiode. 
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Sensory Threshold 

For experimental conditions involving real odors, we noticed that there was a slight 

delay in the behavioral response of real larvae at the onset of the experiment. Given that the 

odor source is introduced in the assay at the same time as larvae, we speculate that the lag in 

directed behavior is due to the time required for the odor to build up to detectable levels in 

the arena. To account for this effect, we introduced a sensory threshold parameter 𝛽𝛽 such 

that: 

 𝐶𝐶𝑛𝑛(𝑥𝑥𝑛𝑛ℎ, 𝑦𝑦𝑛𝑛ℎ) = 0 𝑖𝑖𝑖𝑖 𝐶𝐶𝑛𝑛(𝑥𝑥𝑛𝑛ℎ, 𝑦𝑦𝑛𝑛ℎ) < 𝛽𝛽. (21) 

For consistency, we included this threshold as a parameter to be optimized by the 

framework for all three sensory modalities. However, the effect is significant only for real 

odors. 

  

Stimulus to Percept 

For each sensory modality presented to the larvae, we assume that the resulting percept 

(internal intensity representation of the odor) is proportional to relative changes in stimulus 

strength [25]. Thus, we assume that the perceptual response to the real odor, virtual odor, 

and temperature gradients will be of the form 𝑓𝑓(Δ𝐶𝐶/𝐶𝐶̅), where 𝐶𝐶̅ is the background signal 

level (see eq. (22) below). The validity of this relationship has been established in adult flies 

[26], [27] and it appears to hold for larval olfactory sensory neurons (OSN) that respond to a 

normalized form of the stimulus derivative [23], [28]. Although this feature has not been 

explicitly shown for thermosensation, there is evidence that the behavioral response to an 

absolute change in temperature increases the larger the deviation from preferred background 
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temperatures [18]. It was shown further that this process is mediated by cross-inhibition 

between warming cells and cooling cells [29], activated by positive and negative 

temperature gradients respectively, and a model was developed to show that the relative 

contributions of each corresponding signal towards behavior increased as larvae moved 

away from preferred temperatures. In our experimental paradigm, this would imply that a 

temperature change of Δ𝐶𝐶 = 1𝑜𝑜C at 𝑇𝑇max =  30𝑜𝑜C would trigger a stronger behavioral effect 

than an identical change of Δ𝐶𝐶 = 1𝑜𝑜C at the preferred temperature 𝑇𝑇min =  16𝑜𝑜C. We 

incorporate this perceptually in our agent-based model by rescaling the temperature signal as 

𝐶𝐶 ←  𝑇𝑇max − 𝐶𝐶.  In our simulations, we compute the relative change in stimulus between two 

consecutive timesteps 𝑛𝑛, 𝑛𝑛 − 1 as the following: 

 𝑠𝑠𝑛𝑛  = 𝐶𝐶𝑛𝑛−𝐶𝐶𝑛𝑛−1
𝐶𝐶̅

 . (22) 

We compute the background signal level as the midpoint between two timesteps, 𝐶𝐶̅ = 

𝐶𝐶𝑛𝑛+𝐶𝐶𝑛𝑛−1
2

. To be able to compare signals from different sensory modalities and stimulus 

ranges, we define a gain 𝐺𝐺 associated with each sensory modality that represents the 

perceptual sensitivity of larvae. The perceptual (internal) representation of an odor cue, for 

example, is modelled as: 

 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛 = 𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐶𝐶𝑛𝑛−𝐶𝐶𝑛𝑛−1

𝐶𝐶̅
 . (23) 

This quantity can be both positive and negative depending on the direction of the 

sensory gradient. As we do not explicitly model firing rates, we assume that this perceptual 

representation is encoded by different elements of the peripheral olfactory circuit of the 

larva. The exact mechanism is unknown; it is not accounted for in the agent-based model. 
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Cue Combination 

Finally, we model the link between the sensory experience of the larva and its 

orientation behavior. The mode transitions and casting amplitudes of larva in our agent-

based model are described as functions of a decision variable 𝑑𝑑𝑛𝑛, which is dependent on 

some combination of the sensory modalities perceived by the larva. In subsequent sections, 

all variables are computed at timestep 𝑛𝑛 and we drop the subscript to avoid cluttered 

notation (e.g. we refer to the decision variable as 𝑑𝑑 ≡ 𝑑𝑑𝑛𝑛). We describe the combination of 

the two different sensory modalities 𝑠𝑠1, 𝑠𝑠2 using the linear model: 

 𝑑𝑑 = 𝑤𝑤1𝑠𝑠1 + 𝑤𝑤2𝑠𝑠2, (24) 

where 𝑤𝑤1,𝑤𝑤2 are weights associated with each cue. We hypothesize that larvae may 

have a bias for one sensory modality over another. Furthermore, we hypothesize that larvae 

are able to measure the reliability of individual signals when integrating multiple sources of 

information. We assume that the “reliability” of a sensory signal represented by a time series 

is inversely proportional to its variance 𝜎𝜎2 (see below). Thus, we test three different 

plausible weighting strategies: 

 

1. Fixed Weights (FW): 

 𝑤𝑤1  =  𝑎𝑎 , 𝑤𝑤2  =  1 − 𝑎𝑎 (25) 
2. Shut Weights (SW):  

 
𝑤𝑤1  = �1 𝑖𝑖𝑖𝑖 𝜎𝜎12  <  𝜎𝜎22

0 𝑖𝑖𝑖𝑖 𝜎𝜎12 ≥  𝜎𝜎22
, 𝑤𝑤2  = �0 𝑖𝑖𝑖𝑖 𝜎𝜎12  <  𝜎𝜎22

1 𝑖𝑖𝑖𝑖 𝜎𝜎12 ≥  𝜎𝜎22
  (26) 

 
3. Variance Minimization (VM):  

 
𝑤𝑤1  =

𝜎𝜎22

𝜎𝜎12 + 𝜎𝜎22
, 𝑤𝑤2  =

𝜎𝜎12

𝜎𝜎12 + 𝜎𝜎22
  (27) 
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The first weighting strategy proposes that larvae combine cues with fixed 

preferences that are independent of the signal variance. The latter two strategies imply that 

larvae are also able to adapt their response according to the estimated variance of the 

sensory inputs, which has been demonstrated in previous studies [17]. The SW strategy 

assumes that larvae place absolute priority on the cue that is observed to be more reliable. 

The VM strategy is based on the optimal linear combination rule for minimizing the 

variance of the combined signal, given certain assumptions [7]. In the SW and VM models, 

we assume the larva accumulates sensory evidence over some time window as it navigates 

the environment and uses this to estimate the variability of each sensory modality. For 

simplicity, we assume that the variance is estimated through sampling as 

 
𝜎𝜎2 =

1
𝜏𝜏

 � (𝑠𝑠[𝑖𝑖] − 𝜇𝜇 )2
𝑛𝑛

𝑖𝑖=𝑛𝑛−𝜏𝜏

, (28) 

where µ is the sample mean, and 𝜏𝜏 is the time sampling window, which was estimated as 

𝜏𝜏 = 11𝑠𝑠 for Or42a OSN activation and was shown to be similar in duration for other 

sensory modalities [17]. In the case of a real odor whose concentration is below the 

detection threshold, the odor would not be perceived as being present and hence the variance 

𝜎𝜎 would be assumed to be infinite. This equation assumes that larvae integrate both the 

temporal variance of the sensory signal itself and self-motion induced spatial fluctuations 

due to continuous head casting. While it has been suggested that larvae may be able to filter 

sensory inputs in sync with the frequency of its own peristaltic motion [17], it is unknown 

how this filtering adapts to motion as the rhythm of head casting is variable and not strictly 

coupled to peristalsis [21]. Given that it is a weighting of the variances of both channels as 
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ratios that is used to compute cue weights, we assume that the distortions in the estimated 

variation due to head casting are negligible compared to the true temporal variance of the 

sensory signal. 

 

Variance Minimization  

For model 3, the decision rule maximizes the reliability of the combined sensory 

modalities, with the assumption that both gradients originate from a single source [7]. Let 𝑠𝑠1 

and 𝑠𝑠2 denote the observed cues for attraction from two different gradients, which can be 

congruent (if the two signs coincide, or incongruent, if the two signs are different). We 

assume that larvae associate the hedonic value of both gradients in an overall level of 

attraction, which we denote as 𝑧𝑧. To decide whether to continue in a given direction of 

motion (heading) or to reorient, larvae infer the latent variable 𝑧𝑧 from the observed cues 𝑠𝑠1 

and 𝑠𝑠2. The optimal estimate of the source of attraction 𝑧𝑧 can be obtained by applying Bayes 

rule: 

 𝑝𝑝(𝑧𝑧 | 𝑠𝑠1, 𝑠𝑠2)𝑝𝑝(𝑠𝑠1, 𝑠𝑠2) = 𝑝𝑝(𝑠𝑠1, 𝑠𝑠2| 𝑧𝑧) 𝑝𝑝(𝑧𝑧). (29) 

Given that 𝑠𝑠1 and 𝑠𝑠2 are independent cues as their fluctuations are driven by different 

physical processes affecting distinct sensory modalities (we neglect joint odor fluctuations 

due to turbulence, as our assay is far from that regime), we have: 

 𝑝𝑝(𝑧𝑧 | 𝑠𝑠1, 𝑠𝑠2)𝑝𝑝(𝑠𝑠1)𝑝𝑝(𝑠𝑠2) = 𝑝𝑝(𝑠𝑠1| 𝑧𝑧)𝑝𝑝(𝑠𝑠2| 𝑧𝑧) 𝑝𝑝(𝑧𝑧). (30) 

Since 𝑝𝑝(𝑠𝑠1) and 𝑝𝑝(𝑠𝑠2) do not depend on z, the variable of interest, we can treat them as 

proportionality constants: 

 𝑝𝑝(𝑧𝑧 | 𝑠𝑠1, 𝑠𝑠2) ∝  𝑝𝑝(𝑠𝑠1| 𝑧𝑧)𝑝𝑝(𝑠𝑠2| 𝑧𝑧)𝑝𝑝(𝑧𝑧). (31) 
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In addition, we assume that the prior 𝑝𝑝(𝑧𝑧) is flat at every time step, as experiments are 

performed in an environment that is new to the larvae and there is no evidence that larvae 

can form spatial memory from previous time steps. We assume that the cues 𝑠𝑠1 and 𝑠𝑠2 are 

normal random variables with variances 𝜎𝜎12 and 𝜎𝜎22. To obtain the optimal estimate of the 

source of attraction, we calculate the value of 𝑧𝑧 that maximizes the posterior probability 

(maximum a posteriori estimate): 

 argmax
𝑧𝑧

𝑝𝑝(𝑧𝑧 | 𝑠𝑠1, 𝑠𝑠2) =  𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑙𝑙𝑙𝑙 [𝑝𝑝(𝑠𝑠1| 𝑧𝑧)𝑝𝑝(𝑠𝑠2| 𝑧𝑧) ] =

 𝑑𝑑
𝑑𝑑𝑧𝑧

 𝑙𝑙𝑙𝑙 �𝑒𝑒
−(𝑠𝑠1−𝑧𝑧)2

2𝜎𝜎1
2 𝑒𝑒

−(𝑠𝑠2−𝑧𝑧)2

2𝜎𝜎2
2  � = 2(𝑠𝑠1−𝑧𝑧)

2𝜎𝜎12
+ 2(𝑠𝑠2−𝑧𝑧)

2𝜎𝜎22
= 0. 

(32) 

Rearranging, we have: 

 

𝑧𝑧 =
� 1
𝜎𝜎12
�  𝑠𝑠1 + � 1

𝜎𝜎22
�  𝑠𝑠2

� 1
𝜎𝜎12
� +  � 1

𝜎𝜎22
�

=  
𝜎𝜎22

𝜎𝜎12 + 𝜎𝜎22
 𝑠𝑠1 +

𝜎𝜎12

𝜎𝜎12 + 𝜎𝜎22
𝑠𝑠2  (33) 

 

Reward Maximization  

An alternative strategy without assuming a common origin of the two sources is to 

maximize the expected reward by following each of the two gradients, where reward is 

defined as the probability that the larva is moving up-gradient. We use the same assumption 

that the cues 𝑠𝑠1 and 𝑠𝑠2 are Gaussian random variables with variances 𝜎𝜎12 and 𝜎𝜎22. Given any 

trajectory, the probability that the larva is travelling up-gradient for each of two modalities is 

𝛷𝛷 �𝑠𝑠1
𝜎𝜎1
� and 𝛷𝛷 �𝑠𝑠2

𝜎𝜎2
�, where 
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𝛷𝛷(𝑥𝑥) = 1

√2𝜋𝜋 ∫ 𝑒𝑒−
𝑥𝑥2

2
𝑥𝑥
−∞  𝑑𝑑𝑑𝑑 , (34) 

is the standard normal cumulative density function. Assuming that there is an equal 

preference for reaching either source, the reward of continuing at the current heading is the 

sum of the probabilities of travelling up-gradient in each of the two sources  

 𝑧𝑧 = 𝛷𝛷 �𝑠𝑠1
𝜎𝜎1
� +  𝛷𝛷 �𝑠𝑠2

𝜎𝜎2
� . (35) 

Conversely, the reward of stopping and reorienting is 

 𝑧𝑧′ = (1 −  𝛷𝛷 �𝑠𝑠1
𝜎𝜎1
�) +  (1 − 𝛷𝛷 �𝑠𝑠2

𝜎𝜎2
�) . (36) 

The optimal decision that maximizes reward is therefore to continue at the current 

heading if 𝑧𝑧 > 𝑧𝑧′, and to reorient otherwise. We implement this at the motor level in the 

agent-based model by defining the decision variable as the reward 𝑑𝑑 =  𝛷𝛷 �𝑠𝑠1
𝜎𝜎1
� +  𝛷𝛷 �𝑠𝑠2

𝜎𝜎2
� , so 

that the agent will have a low probability of stopping if 𝑑𝑑 is large, and will have a high 

probability of stopping in the opposite case. 

Comparing 𝒑𝒑 = 𝟏𝟏 (Reward-Maximization) and 𝒑𝒑 = 𝟐𝟐 (Variance-Minimization) rules 

To compare these two strategies, we make several approximations. For maximizing 

reward, we make the following approximation given 𝜎𝜎1 ≫ 𝑠𝑠1 and 𝜎𝜎2 ≫ 𝑠𝑠2, 

 𝑑𝑑 = 𝛷𝛷 �𝑠𝑠1
𝜎𝜎1
� +  𝛷𝛷 �𝑠𝑠2

𝜎𝜎2
�  ≈  𝑠𝑠1

𝜎𝜎1
+ 𝑠𝑠2

𝜎𝜎2
 . (37) 

The 𝑝𝑝 = 1 rule corresponds to Reward Maximization. For maximizing reliability, we 

obtain a different decision variable, namely 

 
𝑑𝑑 =  

𝜎𝜎22

𝜎𝜎12 + 𝜎𝜎22
 𝑠𝑠1 +

𝜎𝜎12

𝜎𝜎12 + 𝜎𝜎22
𝑠𝑠2  (38) 
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∝ 𝜎𝜎12+𝜎𝜎22

𝜎𝜎12𝜎𝜎22
� 𝜎𝜎22

𝜎𝜎12+𝜎𝜎22
 𝑠𝑠1 + 𝜎𝜎12

𝜎𝜎12+𝜎𝜎22
𝑠𝑠2� =   𝑠𝑠1

𝜎𝜎12
+ 𝑠𝑠2

𝜎𝜎22
.    

The combination rule with 𝑝𝑝 = 2 corresponds to Variance Minimization. In general, we 

can embed both rules into a single rule with free parameter 𝑝𝑝 as 

 𝑑𝑑 = 𝜎𝜎1
𝑝𝑝+𝜎𝜎2

𝑝𝑝

𝜎𝜎1
𝑝𝑝𝜎𝜎2

𝑝𝑝 ( 𝜎𝜎2
𝑝𝑝

𝜎𝜎1
𝑝𝑝+𝜎𝜎2

𝑝𝑝  𝑠𝑠1 + 𝜎𝜎1
𝑝𝑝

𝜎𝜎1
𝑝𝑝+𝜎𝜎2

𝑝𝑝 𝑠𝑠2) =   𝑠𝑠1
𝜎𝜎1
𝑝𝑝 + 𝑠𝑠2

𝜎𝜎2
𝑝𝑝. (39) 

In our simulations, we will optimize the free parameter 𝑝𝑝, as well as compare the 𝑝𝑝 = 1 

and 𝑝𝑝 = 2 rules. We propose to call 𝑝𝑝 the bimodal-contrast parameter. 

Noise 

As we propose that larvae are sensitive to the variance of sensory inputs, an important 

aspect of this model is to account for noise in the sensory signal. We model noise as 

Gaussians 𝜂𝜂 with zero-mean. For generalizability, we consider noise added at several stages 

of the flowchart (Figure 1E): 

1. Additive external sensory noise: 𝐶𝐶𝑛𝑛 + 𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒  

2. Additive internal sensory noise: 𝑠𝑠𝑛𝑛 +  𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 

3. Decision noise: 𝑑𝑑 +  𝜂𝜂𝑑𝑑 

The first is additive external noise 𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒 that does not scale with the sensory input. This 

may be more prominent in experimental paradigms with virtual odor gradients for example, 

where the noise might result from fluctuations in the action of the LED light on the light-

gated ion channel (Chrimson [30]). The fixed amplitude light flashes used to perturb the 

larvae in experimental paradigms with noise can be also modelled with this approach.  

The second is additive internal sensory noise 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 due to the assumption that larvae 

perceive relative changes in stimulus in the agent-based model. Noise that scales with the 

sensory input would be more plausible for experimental paradigms with real odors, as the 
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fluctuations in odorant molecules tend to fluctuate according to a Poisson distribution, 

resulting in noise that is dependent on odor concentration. 

The third is decision noise, which models the inherent stochasticity of larvae behavior 

in its mode transitions and variability in casting amplitudes. In our model, we have found 

similar predictions when incorporating all levels of noise (1 + 2 + 3) and the reduced scheme 

(2 + 3). While the quality of the predictions may change, we find that the hierarchy of the 

performance of the weighting strategies does not change with the variations in the 

framework. This is illustrated in the comparison of AIC and BIC in Figure 2F.  

 

Optimization Framework 

Below is a list of constants used to model larva motion in the simulations: 

Parameter Value 

Run velocity 𝑣𝑣 1.3 mm/s 

Larva length  𝑙𝑙 3.86 mm 

Run transition constant 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟 1.46 

Stop transition constant 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0.16 

Maximum casting amplitude during 

runs 

𝜃𝜃𝑀𝑀,𝑟𝑟𝑟𝑟𝑟𝑟 0.75 rad/s 

Maximum casting amplitude during 

stops 

𝜃𝜃𝑀𝑀,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2.93 rad/s 

Variance sampling time window 𝜏𝜏 11 s 
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Decision noise 𝜂𝜂𝑑𝑑 0.32 

Table 1: Constant parameters in the agent-based model 

These parameters model the movement patterns of foraging 3rd instar larvae in the 

absence of any stimulus recorded at high spatio-temporal resolution with the closed-loop 

tracker from ref. [23], and are assumed to be constant across all experimental conditions. 

The run velocity 𝑣𝑣 and larva length 𝑙𝑙 were chosen to match the mean observed in wildtype 

w1118 larva (n = 100 larvae). The parameters 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟,  𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝜃𝜃𝑀𝑀,𝑟𝑟𝑟𝑟𝑟𝑟,𝜃𝜃𝑀𝑀,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and 𝜂𝜂𝑑𝑑 were fit 

using maximum likelihood estimation as illustrated in Figure 2A-D. The variance sampling 

time window 𝜏𝜏 was estimated based on the timescale of variance adaptation in [17].  

For each experimental paradigm, there are four free parameters associated with each of 

the two sensory modalities (unimodal conditions): 

• 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖: Internal additive noise 

• 𝐺𝐺: Perceptual gain 

• 𝛾𝛾: Sensitivity to Turning 

• 𝛽𝛽: Sensory threshold 

Each experimental paradigm has a unimodal condition with each sensory modality 

presented independently and then a bimodal condition with both sensory modalities 

presented at the same time. Our approach is to use the data from the unimodal conditions to 

fit the free parameters of our model, and then use the data from bimodal conditions to 

evaluate the goodness of fit of the different weighting strategies. Therefore, there are a total 

of eight free parameters for each experimental paradigm – one set of four parameters for 

each unimodal condition. We consider the signal and noise of each sensory modality 

regardless of the test condition (unimodal, bimodal), but we assume that the signal-to-noise 



 

31 

 

ratio is what allows the larva to determine whether a stimulus is present or whether the larva 

is only perceiving white noise. 

To evaluate the goodness of fit of our models, we compared the preference index and the 

spatial distributions between the experimental data and the simulation.  

• Preference Index: The preference index (PI) is the fraction of larvae on the preferred 

side of the arena. The error in the preference index is given by computing the mean 

squared error between the simulated PI and the experimental PI at different intervals 

over the course of the experiment. 

• Spatial Distribution: We use the Kullback-Leibler (KL) divergence to compare the 

error between the simulated and experimental spatial distributions over the entire 

course of the experiment. The X and Y dimensions are considered separately when 

computing the KL divergence. 

Because the preference index only measures the fraction of larvae that are on the 

preferred side of the arena, we find that the spatial distributions give a more accurate 

representation of the quality of fit. All parameter fitting was performed using the Global 

Optimization Toolbox in MATLAB.  

Simulating Wall (Boundary) Conditions 

Since the arena is small, one last component of our model is accounting for larvae 

behavior at the edges for the arena. We noted that a significant fraction of larvae remained 

close to the arena boundary (its wall), particularly in conditions with a linear temperature 

gradient. We considered several possibilities if a larva’s path is obstructed by the arena wall 

(Figure 1D): 

1. The larva remains stationary in a stopping state as long as its position at the next 

timestep is outside the bounds of the arena. 
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2. The larva moves tangent to the edge of the arena at a velocity 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = cos(𝜓𝜓) 𝑣𝑣, where 

v is the larva’s original speed, and ψ is the angle between the larva’s heading direction 

and the direction tangent to the arena. 

3. The larva “bounces” off the edge of the arena at the angle of incidence (ballistic 

collision model). 

Through numerical simulations, we found that the first approach is the closest 

representation of the behavior observed in our experimental data based on the stopping 

statistics of larvae at the boundary. 

Fraction-at-Source and Reward Metrics 

The “Fraction at Source” is defined as the number of larvae within bounded regions 

near the peak of the gradients divided by the total number of larvae: 

 Fraction at Source =  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐+𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

. (40) 

For odor configurations, this bounded region is defined as an area within radius 𝑟𝑟 of the 

source. For temperature configurations, the bounded region associated with the comfortable 

(targeted) temperature is any location 𝑥𝑥 < 𝑟𝑟, where 𝑥𝑥 = 0 corresponds to the leftmost, 

coolest side of the arena. The radius 𝑟𝑟 was chosen such that the areas of the bounded regions 

were identical for both odor and temperature configurations (𝑟𝑟 = 1.8𝑐𝑐𝑐𝑐). The “reward” for 

each sensory modality is defined as the mean perceived sensory experience of all larvae 

relative to the peak sensory experience in the arena. In the bimodal condition, the reward is 

calculated as the average reward across both sensory modalities. For 𝑁𝑁𝑗𝑗 number of sensory 

modalities, the reward is given by:  
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Reward =

1
𝑁𝑁𝑗𝑗
�

𝐶𝐶mean,𝑗𝑗  −  𝐶𝐶min,𝑗𝑗

𝐶𝐶max,𝑗𝑗 −  𝐶𝐶min,𝑗𝑗
,

𝑁𝑁𝑗𝑗

𝑗𝑗=1

 (41) 

where 𝐶𝐶mean,𝑗𝑗 is the mean sensory experience of all larva for sensory modality 𝑗𝑗, while 

𝐶𝐶min,j and 𝐶𝐶max,j denote the least and most preferred sensory experience in the arena 

respectively for sensory modality 𝑗𝑗.  

Model Selection with AIC/BIC 

The prediction error for the AIC/BIC [31], [32] was computed for the Variance 

Minimization rule across all bimodal experimental paradigms: 

 𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑘𝑘 − 2 ln�𝐿𝐿��  

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘 ln(𝑁𝑁) − 2 ln�𝐿𝐿�� . 
(42) 

Where 𝑘𝑘 is the number of model parameters, 𝑁𝑁 is the number of simulated larvae for 

each experimental paradigm, and 𝐿𝐿� is the likelihood function given the actual observed 

spatial distributions of larvae. In each model variant, one component of the model was 

added/removed, and the model parameters were re-optimized. The resulting prediction error 

was then compared to that of the final model. All variations of the model resulted in a higher 

prediction error, as shown in Figure 2F.     
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Results 

An experimental assay to quantify multisensory combination in the larva 

A behavioral assay was developed to study larval navigation in spatial gradients of 

temperature, a real odor, and a virtual odor induced optogenetically by expressing Chrimson 

in genetically-targeted olfactory sensory neurons (OSNs). Red light elicited virtual-odor 

stimulations in the Or67b-expressing OSN which is not activated by ethyl butyrate [33], 

[34]., the real odor used in this study. As a result, the real and virtual odor activated a 

distinct and independent set of OSNs. In each experiment, larvae at the third developmental 

instar were uniformly distributed in groups of 10 individuals near the center of a circular 

behavioral arena coated with agarose (Figure 3A). The motion of the group of larvae was 

video-monitored during exposure to single or combined sensory gradients. The trajectories 

of larvae in the arena were then extracted using a custom image processing and tracking 

software. Larvae were analyzed individually as, given the low density of animals, group 

effects were found to be negligible in the context of these gradients (see ‘Materials and 

methods’). 

In conditions where single gradients were presented, which we will refer to as 

unimodal conditions, larvae navigate unimodal odor, virtual-odor, and temperature gradients 

by locating the “source”: the region associated with the highest concentration of the 

attractive odor or the most comfortable temperature in the arena. When placed near the 

center of the arena, larvae innately navigated to the location of highest odor concentration, 

highest virtual-odor intensity, or the location with the most preferred temperature, which 

was slightly higher than 16oC in our experimental conditions (Figure 3B). In the range of 
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temperatures used in the present work, larvae demonstrated robust thermotaxis down 

temperature gradients toward the coolest region of the arena. 
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Figure 3: Assay to identify how larvae navigate unimodal (single) and bimodal 
(combined) gradients. (A) Schematic of the behavioral assay, which features gradients of 
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real odor, optogenetically-induced virtual odor, and temperature. (B) Representative 
trajectories of third-instar wild-type (w1118) larvae responding to the combination of an odor 
and a temperature gradient over a period of 3 minutes. (C) Behavioral response of wild-type 
larvae to the individual odor and temperature gradients and both odor and temperature 
combined (Odor: Ethyl butyrate, 10-3 M; Temperature range: 16-30oC). Larvae were tested in 
groups of 10 individuals (Odor: n = 27 groups of 10 larvae; Temperature: n = 35; Combined: 
n = 27). In all subsequent figures, the shaded regions around the preference index curves 
represent the error bars of the SEM. The asterisks indicate that the preference index of the 
combined condition was significantly higher than the preference indices of either unimodal 
condition (after the first minute of the experiment), as assessed using a t-test (p < 0.025 upon 
Bonferroni correction). Also illustrated are the overlayed spatial distributions of larvae for 
each condition at 60, 120, and 180 s (top), and the spatial distributions for each individual 
condition at 180 s (right). 

 

In situations where two gradients are presented at the same time, which we will refer 

to as bimodal conditions, we initially arranged the gradients in congruent configurations 

such that both sources were on the same side of the arena with colinear gradients. At the 

start of the experiment, larvae were placed near the center of the arena and over time 

distributed in a way similar to the unimodal conditions. Notably, larvae in bimodal 

conditions demonstrated improved performance in navigating towards the congruent sources 

compared to the unimodal conditions. For example, the attraction towards the source 

increased upon combination of an odor and a temperature gradient (Figure 3C). This result is 

quantified by the preference index, which is the fraction of larvae on the targeted side of the 

arena (i.e. odor source or preferred temperature) as a function of time:  

 

 
𝑃𝑃𝑃𝑃(𝑡𝑡) =  

𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡)
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) + 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡)

 (43) 
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Sluggish larvae displaying an average speed lower than 0.1 mm/s are excluded from the 

preference index calculation to avoid counting inactive outliers sitting near the starting 

location. For convenience of notation, we omit the time variable 𝑡𝑡 and simply refer to the 

preference index as the 𝑃𝑃𝑃𝑃 in the rest of the text. We observed a similar improvement in 

preference index across all other experimental paradigms with congruent gradients of two 

distinct odors, a real odor and a virtual odor, as well as a virtual odor and temperature 

(Figure 4, Figure 5). 
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Figure 4: Preference indices corresponding to the performances of wild-type larvae for 
congruent gradients: odor + odor and odor + temperature. When two congruent 

60 120 180
Time (s)

0.5

1

Pr
ef

er
en

ce
 In

de
x

Temperature
Odor
Combined

60 120 180
Time (s)

0.5

1

Pr
ef

er
en

ce
 In

de
x

Odor1
Odor2
Combined

60s 120s 180s Temperature

Odor

Combined

60s 120s 180s Odor1

Odor2

Combined

180s

180s

* *

**

A

B



 

40 

 

unimodal gradients are combined, the final preference index is significantly higher than the 
preference indices of either unimodal condition as indicated by the asterisks (t-test with 
Bonferroni correction, p < 0.025). The shaded regions around the preference index curves 
indicate the error bars of the SEM. (A) Odor + odor (odor 1: 1-hexanol, 10-2 M, n = 20 
groups of 10 larvae; odor 2: ethyl butyrate, 10-3 M, n = 26; combined: n = 19). (B) 
Temperature + odor (odor: ethyl butyrate, 10-3 M, n = 27; temperature: 16-30oC, n = 35; 
combined: n = 27). 
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Figure 5: Preference indices corresponding to the performances of wild-type larvae for 
congruent gradients: virtual odor + odor and virtual odor + temperature. When two 
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congruent unimodal gradients are combined, the final preference index is significantly 
higher than the preference indices of either unimodal condition as indicated by the asterisks 
(t-test with Bonferroni correction, p < 0.025). (A) Virtual odor + odor (virtual odor: 
Or67b>Chrimson, light 625nm, n = 30; real odor: ethyl butyrate, 2.5 x 10-4 M, n = 30; 
combined: n = 30). (B) Temperature + virtual odor (virtual odor: Or42a>Chrimson, n = 49; 
temperature: 20-40oC, n = 49; combined: n = 49). 

 

A coarse-grained model suggests that larvae account for cue uncertainty 

when combining multimodal cues  

To characterize how heightened attraction emerges from the combination of olfactory 

and thermosensory cues in congruent gradients, we started by developing a parameter-free 

theoretical model using the principle of Bayesian inference to estimate the probability 

distribution of the positions of individual larvae in the arena (see section Parameter-Free 

Model in Materials and Methods). The model predicts that the weighting of the information 

from different gradients is dependent on the uncertainty associated with each gradient. As 

described in the Materials and Methods, this coarse-grained model estimates the PI of the 

response to the combined-gradient condition based on the PI of the corresponding unimodal 

conditions 𝑃𝑃𝐼𝐼1 and 𝑃𝑃𝐼𝐼2: 

 𝑃𝑃𝐼𝐼1+2,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑃𝑃𝐼𝐼1 × 𝑃𝑃𝐼𝐼2
𝑃𝑃𝐼𝐼1 × 𝑃𝑃𝐼𝐼2+(1 −𝑃𝑃𝐼𝐼1) × (1−𝑃𝑃𝐼𝐼2)

 . (44) 

 

As shown in Figure 6B, we found that the parameter-free model reproduces the 

behavioral improvement observed in the experimental preference index for the congruent 

temperature and odor gradient presented in Figure 3C. In addition, we applied the 

parameter-free model to predict the behavior of larvae tested in congruent gradients 
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featuring two real odors (Figure 6A), a real and a virtual odor, a real odor and temperature, 

or a virtual odor and temperature (Figure 6B-D). In all four experimental conditions, the 

results of the model were in excellent qualitative agreement with the behavior elicited by 

congruent bimodal gradients, suggesting that real larvae use probabilistic inference to 

combine sensory information.  

 

Building an agent-based model to characterize how the combination of 

sensory cues directs navigation 

To analyze the plausibility of different mechanisms of sensory combination and dissect 

the control of individual reorientation maneuvers, we developed an agent-based model that 

offers a more realistic description of larval navigation in response to both unimodal and 

bimodal conditions (Figure 7A). The starting point of our agent-based model is an existing 

mechanical model of chemotaxis in the Drosophila larva [21], which provides a general 

framework for describing orientation (“taxis”) behavior elicited by unimodal stimuli. Based 

on evidence that larvae display continuous lateral oscillations of the anterior body segment 

during peristalsis, the agent-based model established that a direct sensory modulation of the 

oscillation amplitude of head-casts could reproduce many signatures of chemotaxis observed 

in larvae. 
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Figure 6: Comparison of the combined preference indices of wild-type larvae with 
predictions from a parameter-free model for the four configurations outlined in Figure 
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4 and Figure 5. In all configurations (A-D), there is no significant difference between the 
final preference indices of the experimental data and the parameter-free model (t-test, p > 
0.05). 

 

As detailed in the Agent-based Model section of the Materials and Methods, we adapted 

the model of Wystrach et al. [21] based on the quantification of our behavioral data to 

account for a multimodal setting by capturing more closely how different sensory gradients 

are perceived by the larva, and then by modelling how graded information from two 

different sensory modalities are combined to drive reorientation maneuvers. In our expanded 

agent-based model, Drosophila larvae alternate between straight runs and directed turns. 

The alternation between these two behaviors is modulated by the detection of temporal 

increases or decreases in sensory input. Active sensing is achieved primarily through lateral 

movements of the head, which assesses the local environment to reorient toward the 

direction of the gradient. To achieve a realistic representation of the sensorimotor control of 

larval navigation, we incorporated behavioral mechanisms to describe both how larvae 

determine when to initiate a turn and where to turn to. 

In the model developed here (Figure 1), the larva is represented as a single segment from 

its midpoint to its head — the body segment from the tail to the midpoint is assumed to 

passively follow the head segment, which is reasonable in first approximation. The agent-

based larva may be in one of the following two states: running, where the larva moves at a 

fixed speed in the direction of its head segment while making small adjustments to its 

heading, and stopping, where the body segment is stationary but the body segment is free to 

rotate around the midpoint. The behavioral state of the agent-based larva is updated in 

discrete time steps. At each time step, the head segment alternates between rotations on the 
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left and the right side of the body axis to mimic the active sampling of sensory conditions 

surrounding the head. At any given timestep 𝑛𝑛, the larva perceives the sensory input 𝐶𝐶𝑛𝑛 

given by the intensity of the stimulus detected at the tip of the head segment where the 

olfactory organs are located. 

In each experimental paradigm, we simulated the behavior elicited by combinations of 

real-odor gradients with static virtual-odor gradients or static temperature gradients (Figure 

7B). While the profiles of the virtual-odor gradients created with a LED and temperature 

gradients created with a Peltier element were stationary, the real-odor gradients were created 

by placing an odor droplet on the side of the source. To simulate the dynamics of the odor 

gradient during the course of an experiment, we used a biophysical model for the odor 

diffusion introduced in previous work [23] (see Sensory Stimulus section of the Materials 

and Methods).  

For each sensory modality presented to the larva, we hypothesized that the resulting 

percept —the internal representation of the odor— is proportional to relative changes in 

stimulus strength [25]. More specifically, the model assumes that the perceptual response to 

the real-odor, virtual-odor, and temperature gradients will be of the form 𝑓𝑓(Δ𝐶𝐶/𝐶𝐶̅), where 𝐶𝐶̅ 

is the background signal level and Δ𝐶𝐶 is the signal difference (Figure 7C). This sensory 

property is equivalent to Weber law, which has been established in the peripheral olfactory 

system of the adult fly [26], [27], [35]. We assume that the larval olfactory system detects 

relative changes in odor concentration, which is supported by the response properties of 

larval OSNs [23], [28] and the apparent concentration-invariance of reorientation maneuvers 

[28]. For temperature, we make the assumption in our agent-based model that the larva 

perceives relative changes zeroed at the maximum temperature of the behavioral assay (i.e. 
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𝐶𝐶 ←  𝑇𝑇max − 𝐶𝐶). This results in a perceptual response that increases as larvae move away in 

a temperature gradient from preferred temperatures. Although the sensitivity of the 

thermosensory system to relative changes has not been explicitly demonstrated, there is 

evidence that the magnitude of the behavioral response scales with the difference in 

temperature relative to the deviation from preferred background temperatures [18], [29]. In 

our simulations, we computed the relative change in stimulus between two consecutive 

timesteps 𝑛𝑛 − 1  and 𝑛𝑛 as the following variable: 

 𝑠𝑠𝑛𝑛  = Δ𝐶𝐶
𝐶𝐶̅

= 𝐶𝐶𝑛𝑛−𝐶𝐶𝑛𝑛−1
𝐶𝐶̅

 . (45) 

   

The background signal level 𝐶𝐶̅ is computed as the midpoint between two timesteps, 𝐶𝐶̅ = 

𝐶𝐶𝑛𝑛+𝐶𝐶𝑛𝑛−1
2

.  At every time step of the stimulations, the information collected by the two 

different sensory modalities 𝑠𝑠1 and 𝑠𝑠2 is combined in a decision variable 𝑑𝑑 by using the 

linear model: 

 𝑑𝑑 = 𝑤𝑤1 𝑠𝑠1 + 𝑤𝑤2 𝑠𝑠2, 

 
(46) 

where 𝑤𝑤1 and 𝑤𝑤2 are weights associated with each cue. Using the model, we examine 

the three most common weighting strategies, each representing a qualitatively different 

approach to cue combination: 

4. Fixed Weights (FW): 

 𝑤𝑤1  =  𝑎𝑎 , 𝑤𝑤2  =  1 − 𝑎𝑎 (47) 

5. Shut Weights (SW):  
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𝑤𝑤1  = �1 𝑖𝑖𝑖𝑖 𝜎𝜎12  <  𝜎𝜎22

0 𝑖𝑖𝑖𝑖 𝜎𝜎12 ≥  𝜎𝜎22
, 𝑤𝑤2  = �0 𝑖𝑖𝑖𝑖 𝜎𝜎12  <  𝜎𝜎22

1 𝑖𝑖𝑖𝑖 𝜎𝜎12 ≥  𝜎𝜎22
  (48) 

 

6. Variance Minimization (VM):  

 
𝑤𝑤1  =

𝜎𝜎22

𝜎𝜎12 + 𝜎𝜎22
, 𝑤𝑤2  =

𝜎𝜎12

𝜎𝜎12 + 𝜎𝜎22
  (49) 
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Figure 7: Outline of agent-based model for Drosophila larval navigation and set of 
plausible cue-combination models. (A) The different stages of the agent-based model are 
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represented in a flowchart from sensory input to behavioral output. The illustration depicts the 
sensory experience during a left head cast in an odor and a temperature gradient. (B) Gradients 
presented in each experimental paradigm can be congruent (co-linear) or conflicting (90-
degree angle). (C) Sensory inputs are processed individually with the assumption that the 
resulting perceptual cue is proportional to relative changes in stimulus strength. (D) The 
perceptual cues from each sensory modality are combined as a weighted linear combination, 
with weights dependent on the cue combination rule. (E) The decision variable determines the 
amplitude of head casts 𝜹𝜹𝜽𝜽 (“where to turn to”) and the probability of mode transitions 𝒑𝒑𝒓𝒓𝒓𝒓𝒓𝒓, 
𝒑𝒑𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (“when to stop”) of the agent larva. 

 

The Fixed-Weights (FW) strategy [36] proposes that larvae combine cues with fixed 

preferences that are independent of the signal variances 𝜎𝜎12 and 𝜎𝜎22. The latter two strategies 

imply that larvae are also able to adapt their response according to the estimated variance of 

the sensory inputs accumulated over a time window (for numerical implementation, see 

Materials and Methods), as established in a previous study [17]. Being sensitive to the 

reliability of sensory inputs is a hallmark of probabilistic inference, a powerful form of 

computation when dealing with inputs subject to sensory uncertainty. The Shut-Weights 

(SW) also known as Winner-Take-All strategy [37], [38] assumes that larvae place absolute 

priority on the cue that is observed to be more reliable and suppresses the weakest one. The 

Variance-Minimization (VM) strategy is a linear combination rule that minimizes the 

variance of the combined signal [7]. By considering the validity of these three cue-

combination strategies for different sensory modalities, we can examine whether variance 

adaptation is present, and then test the degree to which variance modulates cue combination 

of multimodal signals. 

Finally, the transition rates between the two states, running 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 and stopping 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 

(“when to stop”) and the amplitude of head casts 𝛿𝛿𝜃𝜃 (“where to turn to”) are described as 
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functions of the decision variable 𝑑𝑑 using a generalized linear model (Figure 7E). The 

transition probabilities between states and the amplitude of orientation maneuvers are 

modulated adaptively based on whether the perceived stimulus is attractive (𝑑𝑑 > 0) or 

aversive (𝑑𝑑 < 0). The direction of head casts alternates at every time step as proposed in 

Wystrach et al. (2016).  
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Figure 8: Framework for parameter optimization and testing of the agent-based model 
for larval navigation. (A) Sample simulations for the unimodal odor condition (Odor: Ethyl 
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butyrate, 10-3 M) after the free parameters associated with each condition were fit (n = 27). 
The preference index of simulated larvae was similar to the actual preference indices of wild-
type larvae for the entire simulated odor condition (t-test, p > 0.05). The color bar above the 
plot indicates the significance of differences between the preference indices of the data and a 
given fit model. (B) The histograms at 60s, 120s and 180s illustrate the spatial distributions 
of simulated agent larvae and real larvae (gray) for the unimodal odor condition. (C) Sample 
simulations for the unimodal temperature condition (Temperature: 16-30oC) after the free 
parameters associated with each condition were fit (n = 35). The preference index of simulated 
larvae was similar to the actual preference indices of wild-type larvae for over 80% of the 
duration of the simulated temperature condition (t-test, p > 0.05). The color bar above the plot 
indicates the significance of differences between the preference indices of the data and a given 
model. (D) The histograms of the spatial distributions of simulated agent larvae (colored) and 
real larvae (gray) for the unimodal temperature condition. (E) Predicted behavioral response 
of larvae to the combined odor and temperature conditions for each cue-combination rule 
compared to the actual preference index (n = 27). The preference indices of the simulated 
Variance-Minimization (VM) and Fixed-Weights (FW) strategies were indistinguishable with 
the data for over 90% of the entire time course (t-test, p > 0.05), while the Shut-Weights (SW) 
strategy remained significantly different from the data after the first minute of the simulation 
(t-test, p > 0.05). The color bars above the plot indicate the significant difference between the 
preference indices of the data and each model. (F) Histograms of the spatial distributions of 
simulated agent larvae (colored) and real larvae (gray) for the combined odor and temperature 
condition. 

Application of the agent-based model to explore how sensorimotor 

integration is implemented in the Drosophila larva 

The motor parameters of the agent-based model were first optimized to match the 

behavior of freely foraging larvae. Motor parameters were fit to model the movement 

patterns of wild-type (w1118) larvae in the absence of any stimulus recorded at high spatio-

temporal resolution with the closed-loop tracker from [23] and are assumed to be constants 

across all experimental conditions. The constants derived from the parameter optimization to 

model larval motion in the simulations are listed in Table 1 in the Materials and Methods. 
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The free parameters of the model associated with the multisensory stimuli from each 

condition (noise, sensitivity) were fit by minimizing the Kullback-Leibler (KL) divergence 

measured between the spatial distributions and preference indices of simulated and actual 

larvae. This was achieved by comparing the simulations to actual experimental probability 

distributions of larvae at different time intervals. We fit the free parameters using the 

datasets from unimodal conditions (Figure 8A-D). As part of this procedure, the variance 

associated with each signal was computed using the time course of the stimulus experienced 

by the agent larva (see Materials and Methods). We then tested each variant of the agent-

based model using the three most-common cue-combination rules (Figure 7D) in the 

combined condition (Figure 8E-F). Based on a process of elimination, we observed that 

certain cue-combination rules matched the data in some gradient configurations but not 

others. For example, Figure 8E shows a condition where the experimental PI can be 

accounted for by the VM rule, but not the FW and SW rules. Additional details about how 

the models were constrained to capture the behavior of real larvae are provided in Materials 

and Methods together with Figure 1 and Figure 2. 

We experimentally tested different combinations and configurations of multimodal 

gradients, including congruent gradients that point in the same direction and conflicting 

gradients that point in different directions. The KL divergence was used to quantify the 

degree of similarity between the spatiotemporal distribution of simulated larvae with that of 

real larvae. By testing paradigms with a variety of gradient geometries, we concluded that 

the Fixed-Weights model fails to predict behavior in conflicting gradients, such as a conflict 

between a virtual-odor and a real-odor gradient, (Figure 9A). The Shut-Weights (SW) model 

underperforms the Variance-Minimization (VM) model in congruent gradients as illustrated 
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with the congruent temperature and real-odor gradient shown in Figure 9B. By comparing 

the performances on all six experimental paradigms, the VM model gave the most consistent 

predictions of the three candidate solutions (Figure 9C, bottom panel), even though it did not 

produce the best fit for all conditions. 
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Figure 9: Comparison of the model performances for three cue-combination rules 
across different experimental paradigms.Final distributions of larvae for each simulated 
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cue-combination rule in a conflicting virtual-odor and real-odor gradient (Virtual Odor: 
Or67b>Chrimson, Light 625nm; Real Odor: Ethyl butyrate, 7.5 x 10-5M) in comparison to 
actual Or67b-functional larvae (n = 20). The FW strategy led to the poorest fit and was 
significantly different from both the SW and VM strategies (t-test, p < 0.05). (B) Final 
distributions of larvae for each cue combination rule in a congruent temperature and odor 
gradient (Temperature: 20-40oC; Odor: Ethyl butyrate, 10-3M) in comparison to actual 
Or42a single functional larvae (n = 30). The SW strategy gave the least accurate predictions 
and was significantly different from both the FW and VM strategies (t-test, p < 0.05). (C) 
Comparison of the goodness of fit, as measured by the KL divergence, for cue-combination 
rules across all experimental paradigms (1-6). The predictions of the VM strategy produced 
the closest goodness of fit on average to the data (overall), and the VM strategy was 
significantly different to the FW and SW strategies (t-test, p < 0.05). Asterisks indicate 
significant differences between each model to the best fitting model for each experimental 
paradigm. 

 

Since the VM model combines information with cues that are weighted according to 

their relative level of reliability (eq. (7)), this scenario suggests that larvae are capable of 

measuring and processing the variance of their sensory inputs. To test this hypothesis, we 

experimentally modulated the variability associated with the olfactory cue by 

optogenetically corrupting sensory encoding in the olfactory sensory neuron (OSN) 

expressing the Or42a odorant receptor, which is tuned to the fruity odor ethyl butyrate [34], 

[39]. As described in the Materials and methods, the additive noise consisted in brief 

random flashes of light inducing the transient depolarization of the Or42a OSN expressing 

Chrimson, while the OSN was responding to the real-odor gradient. As expected, we 

observed that the chemotaxis of real larvae was weakened when olfactory noise was added 

to the odor gradient. More surprisingly, we found that thermotaxis improved as quantified 

by the PI when olfactory noise was added to the detection of a temperature gradient in the 

absence of any odor gradient (Figure 11A). This seemingly counterintuitive improvement in 

thermotactic performance illustrates that the weight of each cue is defined by its relative 
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level of reliability: as the noise level increases in the olfactory channel, the reliability of the 

encoding of genuine dynamic changes due to the odor gradient decreases. In eq. (7), we 

observe that an increase in 𝜎𝜎1 produces an increase in 𝑤𝑤2 irrespective of the presence of any 

directional signal 𝑠𝑠1. Therefore, the injection of pure noise into the olfactory system 

decreases the weight of this modality and enhances the salience of the thermosensory 

information. 
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Figure 10: Comparison of final distributions of simulated larvae for each cue-
combination rule across different experimental paradigms. (A) Odor + odor congruent 
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(odor 1: 1-hexanol, 10-2 M; odor 2: ethyl butyrate, 10-3 M; n = 19). (B) Temperature + odor 
congruent (odor: ethyl butyrate, 10-3 M; temperature: 16-30oC; n = 27). (C) Virtual odor + 
odor congruent (virtual odor: Or67b>Chrimson, light 625nm; real odor: ethyl butyrate, 2.5 x 
10-4 M; n = 30). (D) virtual odor + odor conflict (virtual odor: Or67b>Chrimson, light 
625nm; real odor: ethyl butyrate, 7.5 x 10-5 M; n = 20) (E) Temperature + odor conflict 
(temperature: 20-36oC; odor: ethyl butyrate, 2.5 x 10-4 M; n = 20). (F) Temperature + virtual 
odor congruent (virtual odor: Or42a>Chrimson; temperature: 20-40oC; n = 49). 
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Figure 11: Drosophila larvae adapt their orientation responses to the variance of 
sensory inputs. (A) Or42a-functional larva navigated odor and temperature gradients while 
pure noise was injected into the olfactory system via the Or42a neuron in the form of 
optogenetic light flashes. The top graph compares the preference indices for larvae 
navigating a temperature gradient with and without olfactory noise (Temperature: 20-40oC; 
Olfactory noise injected through the Or42a OSN with light flashes at 625nm, 11.15W/m2). 
The bottom plot compares the preference indices for larvae in an odor gradient versus the 
same odor gradient with olfactory noise (Odor: Ethyl butyrate, 10-3M; Olfactory Noise: 
Or42a, Light 625nm, 11.15W/m2). The preference indices for conditions with and without 
noise are significantly different from one another at the end of the experiment as indicated 
by the asterisks (t-test, p < 0.05). (B) Actual and simulated response for larvae in a 
temperature gradient based on the preference index. The FW, SW, and VM strategies are all 
in agreement with the data for the entire duration of the simulation (t-test, p > 0.05). (C) 
Actual and simulated response for larvae in a temperature gradient with olfactory noise 
based on the preference index. The VM strategy is indistinguishable from the data for the 
entire duration of the simulation (t-test, p > 0.05), but the FW and SW strategies are 
significantly different in the latter half of the simulation (t-test, p < 0.05). The statistical 
significances of differences between the data and each model are indicated by the color bars 
above the plots. 

 

To simulate the effects of the olfactory noise on the thermotaxis of agent-based larvae, 

random disturbances in the activity of the Or42a OSN were modeled by the addition of an 

internal Gaussian noise term to the olfactory signal (see Materials and Methods). In this 

framework, numerical simulations established that only the VM model was able to 

qualitatively capture an improvement in thermotactic performances upon injection of pure 

noise to the olfactory channel (Figure 11B-C). This result strongly supports our hypothesis 

that the Drosophila larva uses an uncertainty-weighted mechanism to integrate multimodal 

stimuli. 
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Figure 12: The effect of olfactory noise on navigation in a temperature gradient, an 
odor gradient, and a conflicting temperature and odor gradient. Each figure shows a 
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comparison of the distributions of real larvae in gradient configurations with and without 
olfactory noise applied optogenetically (optogenetic olfactory noise: Or42a>Chrimson). The 
mean trajectory of all larvae is shown in the arena over each time interval (60s, 120s, 180s). 
(A) Temperature: 20-36oC, n = 20. (B) Odor: ethyl butyrate, 2.5 x 10-4 M; n = 20. (C) 
Temperature + odor conflict (Temperature: 20-36oC; odor: ethyl butyrate, 2.5 x 10-4 M; n = 
20) 

Two alternative strategies to navigate multimodal gradients optimally 

Next, we asked whether the larval nervous system might have evolved to optimize other 

objectives besides the reliability of each sensory signal to navigate multimodal gradients, 

and how other strategies might compare to the VM rule (Figure 13). More specifically, we 

examined whether the exact cue-combination strategy used by larvae is dependent on the 

nature of the sensory modalities that are combined. Figure 13B illustrates how the VM rule 

combines a noisy olfactory cue (blue, broader distribution) with mean 𝑠𝑠2 and a less noisy 

temperature cue (red, narrower distribution) with mean 𝑠𝑠1 into the decision variable 𝑑𝑑. As a 

result of eq. (7), the temperature cue has a higher weight than the olfactory cue since 𝜎𝜎1 <

𝜎𝜎2. 

An alternative objective that a larva could plausibly maximize during navigation is 

reward. More concretely, we define reward as the probability that motion is directed toward 

a direction favorable to the encounter of food (motion oriented up an odor gradient) or away 

from the punishment of potentially noxious heat (motion down a temperature gradient). This 

strategy, which we call Reward Maximization (RM), is illustrated in Figure 13A with the 

same two cues configuration presented in Figure 13B. For each of the two cues, the 

probability that the gradient is positive is equal to the cumulative probability that the cue is 

greater than zero. Given that the experiments are set up by design for each gradient to be 
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similar in attraction, we make the modeling assumption that there is an equal preference for 

reaching either favorable sensory condition — whether it is food at the peak of an odor 

gradient or a temperature range suitable to development. Thus, the reward associated with 

the maintenance of an ongoing heading is the sum of the probabilities of following a 

favorable gradient for each of the two modalities. As shown in the Materials and Methods, 

the sum of these cumulative probabilities can be approximated as the following decision 

variable: 

 𝑑𝑑 = 𝜎𝜎1+𝜎𝜎2
𝜎𝜎1𝜎𝜎2

× ( 𝜎𝜎2
𝜎𝜎1+𝜎𝜎2

 𝑠𝑠1 + 𝜎𝜎1
𝜎𝜎1+𝜎𝜎2

𝑠𝑠2). (50) 

 

To facilitate a comparison with the reward maximization strategy, the VM rule can be 

rewritten as: 

 𝑑𝑑 = 𝜎𝜎12+𝜎𝜎22

𝜎𝜎12𝜎𝜎22
× � 𝜎𝜎22

𝜎𝜎12+𝜎𝜎22
 𝑠𝑠1 + 𝜎𝜎12

𝜎𝜎12+𝜎𝜎22
𝑠𝑠2�.  (51) 

 
More generally, we note that the VM and RM rules can be written in the form: 

 𝑑𝑑 = 𝜎𝜎1
𝑝𝑝+𝜎𝜎2

𝑝𝑝

𝜎𝜎1
𝑝𝑝𝜎𝜎2

𝑝𝑝 × ( 𝜎𝜎2
𝑝𝑝

𝜎𝜎1
𝑝𝑝+𝜎𝜎2

𝑝𝑝  𝑠𝑠1 + 𝜎𝜎1
𝑝𝑝

𝜎𝜎1
𝑝𝑝+𝜎𝜎2

𝑝𝑝  𝑠𝑠2), (52) 

where the value of 𝑝𝑝 determines the exact decision rule used. We will hence also refer to 

the RM strategy as the 𝑝𝑝 = 1 rule and the VM strategy as the 𝑝𝑝 = 2. Furthermore, the FW 

strategy can be obtained by setting 𝑝𝑝 = 0, while the SW strategy is obtained in the limit as 𝑝𝑝 

approaches infinity. The decision variable of eq. (52) is generic: it captures a variety of cue-

combination strategies defined by the value of a parameter 𝑝𝑝 called a bimodal-contrast 

parameter. 
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The decision rule applied by a larva is modality-dependent 

For a congruent gradient with real odors, the simulated behavior of agent larvae directed 

by the RM rule reproduced the behavior of real larvae more accurately than agent larvae 

implementing the VM rule (Figure 13D). This is consistent with the initial results where we 

showed that the multiplicative combination rule captured the combined PI and that its 

decision rule corresponds to the case 𝑝𝑝 = 1. On the other hand, the VM rule was more 

accurate than the RM rule to reproduce larval behavior for a conflicting gradient of odor and 

temperature (Figure 13E). To generalize this analysis, we set out to compare the goodness of 

fit of both of the RM and VM rules across all experimental paradigms considered in Figure 

9. In addition, we systematically computed the performances associated with specific cases 

of the decision rule captured by eq. (10), with 𝑝𝑝 = 1 representing the RM rule, 𝑝𝑝 = 2 

representing the VM rule, and the FW and SW rules defining the lower and upper bounds as 

the value of 𝑝𝑝 approaches zero and infinity, respectively. By following this approach, we 

aimed to determine whether the same rule produced the best fit with the behavior of real 

larvae for all experimental conditions. 

By evaluating the goodness of fit of the simulations to the data for decision rules 

with different values of 𝑝𝑝 (Figure 13C), we made the striking observation that the decision 

rule applied by real larvae may be dependent on the sensory modalities being combined. 

While experimental paradigms combining odor and temperature gradients were on average 

best predicted by decision rules with a value of the bimodal-contrast parameter 𝑝𝑝 close to 2, 

experimental paradigms combining two odor gradients had a goodness of fit curve that 

suggested the use of a decision rules with a bimodal-contrast parameter close to 1. 
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Figure 13: Exploring two different notions of optimality for navigation in sensory 
gradients. (A) Visualization of the reward maximization (RM) rule (p = 1) combining two 
noisy signals. (B) Example of the variance minimization (VM) rule (p = 2) combining a 
noisy odor signal (blue) and a less noisy temperature signal (red). (C) The goodness of fit 
across experimental paradigms to decision rules with different non-integer values of p. (D) 
Final distributions of larvae in a congruent odor and odor gradient (Odor 1: 1-hexanol, 10-
2M; Odor 2: Ethyl butyrate, 10-3M) for the simulated RM and VM rules in comparison to 
actual wild-type  larvae (n = 19). (E) Final distributions of larvae in a conflicting 
temperature and odor gradient (Temperature: 20-36oC; Odor: Ethyl butyrate, 2.5 x 10-4M) 
for the simulated RM and VM rules in comparison to actual Or42a-functional larvae (n = 
20). 

To understand why Drosophila larvae may use different cue combination strategies 

depending on the environmental context, we turned to numerical simulations. We quantified 

how well agent larvae navigated toward favorable gradients using each strategy. To compare 

how the 𝑝𝑝 = 1 rule (equivalent to RM) performed with respect to the 𝑝𝑝 = 2 rule (equivalent 

to VM), we defined two additional metrics quantifying larval behavior to explore and reveal 

the nuances between the two strategies (Figure 14A-B). The first is “Reward”, which would 

presumably be maximized under the 𝑝𝑝 = 1 rule; the second is “Fraction at Source”, which 

is a generalization of the PI beyond congruent gradients. The “Fraction at Source” metric, 

like the PI, quantifies the proportion of larvae that are within specified regions defining 

favorable conditions (peak of the odor gradient or region with a comfortable temperature, 

see Materials and Methods). The “Fraction at Source” metric is binary: either an animal is 

inside or outside a favorable region. The “Reward” metric defines in a graded way how well 

larvae remain near or at a favorable location on average. For conflicting gradients, the 

Reward metric can take relatively large values when a larva is located in a region 

representing a trade-off between the odor and the temperature gradients, whereas the 

Fraction at Source metric leads to 0 values unless the larva has focused on one of the two 
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gradients. Thus, these two metrics tell us how effective each cue combination strategy is at 

achieving a trade-off between two gradients. 
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Figure 14: Comparison of the overall performances and characteristics of the RM rule 
(𝒑𝒑 = 𝟏𝟏) and the VM rule (𝒑𝒑 = 𝟐𝟐) directing the behavior of simulated agent-based 



 

71 

 

larvae. Metric quantifying the “Fraction at Source” metric to quantify how well larvae 
remain near the source for conflicting temperature + odor gradients. Red dotted lines 
indicate the boundaries of the two sources. The color gradient indicates the performance of 
larvae at each location in the arena. (B) Metric quantifying the “Reward” for the same data 
as panel A. In both panel A and B, a higher score implies a better performance. (C) 
Comparison of the Fraction at Source and Reward for a pair of congruent odor + odor 
gradients. The control condition refers to the performance of simulated agent-based larvae in 
the absence of any sensory (C-E) information (i.e., decision variable 𝒅𝒅 = 𝟎𝟎). Simulations of 
the RM and VM rules lead to a significant difference in both the final Fraction at Source and 
Reward (t-test, p < 0.05). (D) Comparison of the Fraction at Source and Reward metrics for 
a pair of conflicting odor + odor gradients. Both rules result in a significant difference in the 
final Fraction at Source (t-test, p < 0.05) but not the reward (t-test, p > 0.05). (E) 
Comparison of the Fraction at Source and Reward across all experimental paradigms. The 
RM rules and VM rules were significantly different for all conditions by both metrics (t-test, 
p < 0.05/6 upon Bonferroni correction) except for conditions with conflicting gradients. The 
asterisks indicate significant differences between the RM rule (p = 1) and the VM rule (p = 
2) for each condition. 

 

When we applied the two metrics to quantify the behavior of simulated agent larvae 

directed by the 𝑝𝑝 = 1 (RM) and 𝑝𝑝 = 2 (VM) rules, we observed that the differences 

between the two rules were more significant in congruent gradients than in conflicting 

gradients (Figure 14C-D). The reward gained by using 𝑝𝑝 = 1 instead of 𝑝𝑝 = 2 was more 

significant for congruent gradients compared to conflicting gradients (Figure 14E). We also 

numerically validated this effect through simulations of a fictive scenario where the conflict 

angle was sequentially modulated from 0 to 90 degrees (Figure 15). This hints that the 

advantages of 𝑝𝑝 = 1 over 𝑝𝑝 = 2 are situational. When comparing these metrics across 

experimental paradigms, we observed that in general, the 𝑝𝑝 = 1 rule performs equally well 

or better than 𝑝𝑝 = 2 when it comes to maximizing the net reward that arises from the 

combination of two modalities. Effectively, the RM rule achieves a tradeoff between the 

hedonic value associated with each sensory gradient. 
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Figure 15: Agent-based model as a testing environment for simulating hypothetical 
gradient configurations with different conflicting angles. (A) Virtual odor + odor conflict 
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(n = 19). The mean reward at the end of the simulation is compared between the reward 
maximization (𝒑𝒑 = 𝟏𝟏) and variance minimization (𝒑𝒑 = 𝟐𝟐) rules. The asterisk indicates a 
significant difference by a t-test (p < 0.05) (B) Temperature + odor conflict (n = 19). (C) 
Simulations of larvae navigation on the surface of a sphere for different stimulus landscapes 
(randomly sampled larvae trajectories indicated in black): a single odor source (left), two 
odor sources (middle), and a single odor source with a linear temperature gradient along the 
y-axis (right). Color gradient indicates attractiveness of each region (bright = high reward, 
dark = low reward). 
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Discussion 

In the present work, we developed an experimental paradigm to quantify the behavior of 

larvae experiencing congruent or conflicting spatial gradients of odor and temperature. 

Using this paradigm, we demonstrated that larvae are capable of adjusting the sensitivity of 

individual sensory channels to changes in the variance of signals transmitted by each 

modality. In a similar vein as the model delineated in [17] for larvae stimulated by 

nondirectional white noise with different statistical properties, we establish that the 

mechanism for variance adaptation can also be described as a weighted sum of sensory cues 

with weights modulated by signal variance.  

While previous work in the larva analyzed multisensory combination mechanisms by 

observing one specific behavior — the “when to turn” mechanism that controls the timing of 

sensory-driven transitions from running (crawling) to turning [16], [17], we extended this 

analysis to directional cues and showed that variance adaptation generalizes to the 

navigation algorithm as a whole including the mechanism of “where to turn to” that creates 

a turning bias towards favorable sensory gradients. Through numerical simulations, we used 

a data-driven agent-based model to establish that both of these orientation mechanisms are 

necessary to account for the navigation of real larvae in multimodal stimuli as removing 

either component leads to a reduction in performance (Figure 2E). Similar to the adult fly 

[40], the ability to bias turning toward the gradient (“where to turn to”) was found to be 

critical for larvae to navigate toward and accumulate near the odor source. 

We tested different plausible strategies for combining sensory inputs, starting with a 

comparison between the Variance-Minimization (VM), the Fixed-Weights (FW) and the 
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Shut-Weights (SW) rules. The FW and SW rules can be viewed as opposite extremes in the 

framework of Bayesian cue integration [7]: while the FW rule always integrates both 

sensory stimuli, the SW rule systematically discards the less reliable sensory stimulus. This 

explains why the SW rule is sometimes called Winner-Take-All rule. Similar comparative 

approaches have been used in the past to compare and evaluate how well different cue 

combination models fit behavior, for example in human behavior in a two-alternative-

forced-choice task [41]. In our results across experimental paradigms, the VM rule 

accounted best for the behavioral data, while we found that the FW and SW rules were 

insufficient on their own to adequately reproduce the navigational behavior of larvae for all 

tested conditions. Next, we introduced the Reward-Maximization (RM) rule, which differs 

from the VM rule in that it does not assume that the two gradients originate from the same 

object and location, and seeks to maximize the expected reward of the two gradients (see 

Figure 13A-B and Materials and Methods). Given the assumptions of the model, both the 

VM and RW rules are optimal with respect to the objectives they seek to maximize: in the 

case of the RM rule, it is the reward —strength of the odor stimulus and comfort level of the 

temperature— that is optimized whereas in the case of the VM rule, it is the reliability of the 

combined signal. 

 Since the cue-combination strategies compared in the present study could simply 

represent four mechanisms out of a limitless set of possible models, we developed a 

framework to map all four models into a canonical model described in eq. (10) defined by 

the value of a bimodal-contrast parameter 𝑝𝑝. With this generalized set of models, we 

showed that our results remained the same in that the RM (𝑝𝑝 = 1) and VM (𝑝𝑝 = 2) were 

most representative of the way cue combination is implemented by real larvae. Furthermore, 
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we found that some experimental paradigms were better accounted for by the RM rule while 

others appeared to be more compatible with the VM rule, depending on the pairs of sensory 

modalities combined by the animal. In particular, the behavior of larvae in a real-odor 

gradient combined with a congruent temperature gradient was better explained by a 

principle of variance minimization (VM rule). We believe that this gradation in the decision 

rule across sensory modalities might reflect the existence of different noise-suppression 

mechanisms on the underlying behaviors. 

Intuitively, larvae may have developed mechanisms of sensory cue combination 

resembling the RM and the VM rules to exploit different aspects of the sensory conditions 

that favor their survival in complex natural environments. This hypothesis was tested 

numerically by evaluating the performance of simulated agent larvae directed by either of 

the RM (𝑝𝑝 = 1) and VM (𝑝𝑝 = 2) rules in each experimental paradigm (Figure 14C-E), as 

well as in hypothetical scenarios not tested with real larvae (Figure 15) that include more 

realistic three dimensional environments. Not surprisingly, we found that larvae experienced 

a larger “reward” on average with the RM (𝑝𝑝 = 1) rule compared to the VM (𝑝𝑝 = 2) rule. 

However, the comparison between the RM and VM rules led to more ambiguous results 

when performances were evaluated based on the fraction of larvae reaching the “source”, as 

differences in performances between the two rules vanished in conflicting gradients 

compared to congruent gradients. This result is consistent with the fact that increasing the 

spatial proximity between cues leads to a smaller improvement in signal reliability during 

cue combination [42]. 

In the extreme scenario where gradients are pointing at a 90-degree angle, both the 

RM and VM rules perform similarly as the combination of sensory information becomes 
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less advantageous (Figure 14D and Figure 15A-B). In addition, the two rules differ in that 

the RM (𝑝𝑝 = 1) rule is closer to the FW (𝑝𝑝 = 0) rule, which always integrates information 

from both sensory inputs. By contrast, the VM rule leads to a choice of one source over the 

other resembling the SW (𝑝𝑝 = ∞) rule. When presented with two sources of sensory 

information, virtual larvae using the RM rule were more prone to remain in between two 

attractive sources while larvae using the VM rule tended to choose one source over the 

other. Our agent-based model provides a computational platform to investigate larval 

integration strategies in more realistic settings, such as navigation on the surface of a sphere 

(i.e. a rotting piece of fruit). For example, we find that our results extend to a conflict 

between two attractive odor sources on a spherical surface (Figure 15C). 

To explain why larvae appear to utilize the more-integrative RM (𝑝𝑝 = 1) rule in odor-

odor gradients but use the choice-like VM (𝑝𝑝 = 2) rule in odor-temperature gradients, we 

speculate that this nuance may be an example of bet hedging, when organisms suffer 

decreased fitness in comfortable conditions in exchange for increased fitness in stressful 

conditions [43]. A larva that cannot feed in a region of moderate temperature is less likely to 

survive than a larva that chooses to either follow an odor gradient predictive of the presence 

of food even at the cost potential of noxious heat or to navigate toward a cooler region 

where food might be found eventually. In the case of odor-odor gradients, larvae might have 

an advantage to combine multiple chemical cues in a more integrative way given that food 

sources typically release dozens or hundreds of distinct odorant molecules that are detected 

by the peripheral olfactory system. By contrast, in situations that present possible danger 

like aversively high temperatures or starvation in the absence of food, it may be more 
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prudent for larvae to select the more reliable sensory modality earlier as predicted by the 

VM rule.  

Here, we report experimental and modeling-based evidence that Drosophila larvae are 

capable of computing and combining the reliability of sensory inputs to organize orientation 

behavior in natural conditions. This result suggests that the nervous system of organisms as 

simple as the Drosophila larva can achieve probabilistic inference —a form of computation 

highly advantageous in uncertain environments. Moreover, the ability of the larva to adapt 

its navigation strategy to the nature of the perceived multisensory signals offers an 

opportunity to study differences in the neural implementation of two general rules achieving 

cue combination based on probabilistic inference, reward maximation and variance 

minimization. With the availability of the larval brain connectome [1], the Drosophila larva 

sets a path to pinpoint where and how different sensory cues are combined and to investigate 

how these rules evolve across different development stages, such as for the cue integration 

of odor and wind in the adult fly [12], [44]. 
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Depolarization block in olfactory sensory neurons 

expands the dimensionality of odor encoding 

Introduction 

Animals identify odors based on the combinatorial activation of olfactory sensory 

neurons, each with distinct chemical receptive fields. Historically, it is commonly believed 

that the dose response of any olfactory sensory neuron follows a sigmoidal function that 

grows monotonically until it reaches a plateau. However, this would imply that the subset of 

olfactory sensory neurons activated by an odor would scale up with the odor concentration, 

undercutting the efficiency of combinatorial coding at high odor concentrations. Here, we 

show that olfactory sensory neurons can in fact undergo a silent state upon strong and 

prolonged excitation called depolarization block, as part of their normal physiological 

function at ethologically-relevant odor concentrations. This silencing typically occurs at 

odor concentrations three orders of magnitude above the detection threshold of the olfactory 

sensory neuron. Using a data-driven model of the olfactory transduction cascade paired with 

a conductance-based spike generation model, we present a plausible biophysical mechanism 

that explains the emergence of depolarization block as a dynamical bifurcation. Quantitative 

predictions related to the history dependence and timescale of depolarization block are 

validated experimentally, allowing us to predict and simulate the activity of olfactory 

sensory neurons during larval navigation in odor gradients. We find that the same odor can 

induce depolarization block in distinct types of olfactory sensory neurons according to a 

concentration sequence matching their relative sensitivities to the odor, which fractionates 
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the odor concentration space into domains corresponding to different subsets of active 

olfactory sensory neurons. As a consequence of the silencing of olfactory sensory neurons 

that undergo strong olfactory transduction currents, high-odor concentrations do not 

necessarily recruit increasingly large numbers of olfactory sensory neurons. We argue that 

depolarization block might facilitate perceptual recognition and discrimination over a large 

odor concentration range by maintaining sparsity in neural representations. While the role of 

depolarization block has been largely overlooked in chemosensory systems, our results 

suggest that this phenomenon creates a new dimension that expands the coding capacity of 

the peripheral encoding of odors. Altogether, our results indicate that depolarization block 

fulfills an important physiological function as a feature in sensory neurons rather than as a 

bug in its involvement in disease states such as epilepsy [45], [46] and migraines [47]. 

 

Materials and Methods 

Automated FFT spike sorting:  

Manual spike sorting was complemented by an automated method to identify the onset 

of depolarization block in electrophysiology recordings. As illustrated in Figure 16, the 

method relied on a power spectral analysis implemented with a fast Fourier transform (FFT) 

algorithm. Trains of tonic spikes originating from the olfactory sensory neuron could be 

associated with the frequency with the highest power spectral density. In the automated FFT 

spike sorting, we applied a sliding time window of 1 second on each recording over which 

the power spectrum was computed. For each time sample, the firing rate was labelled as the 
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peak non-zero frequency of the signal. To identify the time intervals lacking tonic spiking, a 

minimum cut-off value in the peak power spectral density was applied to classify whether 

sustained neural activity was present. For each recording, this cut-off value was defined as 

the 95th percentile of power spectral values, such that peak spectral densities above this 

threshold were classified as spiking activity and peak spectral densities below this threshold 

are filtered out as background noise. To validate the accuracy of the automated FFT spike 

sorting algorithm to identify the termination of tonic spiking at the onset of depolarization 

block, we used a set of recordings that had been manually annotated as ground truth (Figure 

16B).  

 

 

Figure 16: Fully automated spike sorting algorithm. (A) Firing rate estimated by using 
the automated FFT spike sorting method for a single (n=1) recording (for implementation 
details, see Methods section). (B) Comparison of the semi-automated spike sorting with the 
automated FFT spike sorting method for all (n=10) recordings. The experimental data used 
in this figure come from Figure 24C. The shaded error bar indicates the minimum and 
maximum firing rate observed across all recordings. 
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Olfactory Sensory Neuron (OSN) Model: 

The olfactory sensory neuron (OSN) model was inspired by the work of refs. [48], [49]. 

Like in the cascade model of ref. [48], the initial conversion of the odor detection into firing 

activity is viewed as a cascade of an odorant transduction process and a biophysical spike 

generator. However, while the biophysical spike generator is modelled as a Connor-Stevens 

point neuron in ref. [48], we instead adopt an alternative model [49] to include the 

characteristics of depolarization block in regimes of high intensity stimulation. Custom 

written MATLAB code is available at https://doi.org/10.25349/D92K69. 

 

https://doi.org/10.25349/D92K69
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Figure 17: Detailed dynamics of the Or42b OSN model. (A) Distribution of recorded 
(light gray) and simulated (dark gray) spontaneous firing rates in the absence of odor. (B) 
The Or42b OSN model consists of the odor transduction model (left) and the spike 
generator model (right). For more details about each model, see main Figure 23 and the 
Methods section of the main text. (C) Transformation from odor stimulus to transduction 
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current through the odor transduction cascade for a linear ramp interrupted by a short 
stimulation gap. (D) Simulated Or42b OSN response to the stimulus shown in panel (C). (E) 
Transformation from odor stimulus to transduction current through the odor transduction 
cascade for a long linear ramp at odor concentrations eliciting depolarization block (see 
main Figure 23H). (F) Simulated Or42b OSN response to stimulus shown in panel (E). In 
panels (C) and (E), are the odor concentration (in μM), the corresponding concentration 
profile at the odorant receptor (in ppm), and the transduction current. The rest of the 
variables are defined at the top of each subpanel as well as in the Methods section. Note the 
conversion of units in the first step of the odor transduction cascade from μM to ppm (see 
also Table S3). In panels (D) and (F), V stands for the membrane potential, ℎ the fast 
inactivation variable and ℎs the slow inactivation of the sodium current (see Methods 
section).   
 

Odor Transduction Model  

We adapted the biophysical cascade model [48] of odor transduction from the adult fly 

to the larva. Besides the re-optimization of several parameters for the specific odorant-

receptor pair in our assay (ethyl butyrate, OR42b), no modifications to the equations were 

required to reproduce the firing responses in the larval Or42b OSN. The model proposes the 

division of the olfactory transduction process into several mechanisms: (1) the peri-receptor 

process, (2) odorant receptor binding, and (3) co-receptor channel gating. Collectively, this 

signal cascade converts an odor concentration into a transduction current mediated by the 

opening of the co-receptor Orco [50]. 

 

The peri-receptor process, which models the diffusion and absorption of odorant 

molecules by the odorant receptor is described as follows as an odorant concentration profile 

at the odorant receptor 𝑣𝑣: 

 𝑣𝑣 =  �ℎ(𝑡𝑡 − 𝑠𝑠) 𝑢𝑢(𝑠𝑠) 𝑑𝑑𝑑𝑑 + 𝛾𝛾�ℎ(𝑡𝑡 − 𝑠𝑠) 𝑑𝑑𝑑𝑑(𝑠𝑠), (53) 
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where 𝑢𝑢 is the temporal waveform of the odor concentration experienced by the larva 

(Figure 17C and Figure 17E), ℎ(𝑡𝑡) is a low-pass linear filter, and 𝛾𝛾 is a weighting factor that 

determines the dependency of the filtered waveform 𝑣𝑣 on the odor concentration 𝑢𝑢 and the 

odor gradient 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑. The output odorant concentration profile 𝑣𝑣 then interacts with the 

“private” odorant receptors (OR42b). This mechanism underlying this interaction is named 

as the bound-receptor generator, which models the fraction of odorant receptors 𝑥𝑥1 that are 

bound at any given time: 

 𝑑𝑑𝑥𝑥1
𝑑𝑑𝑑𝑑

= 𝑏𝑏𝑟𝑟 𝑣𝑣 (1 − 𝑥𝑥1) − 𝑑𝑑𝑟𝑟 𝑥𝑥1, (54) 

 

with the assumption that each private receptor only exists in one of two states: bound, or 

unbound. The equilibrium fraction of bound odorant receptors is driven by the odorant 

concentration profile 𝑣𝑣, with the parameters 𝑏𝑏𝑟𝑟 defining the binding rate, and 𝑑𝑑𝑟𝑟 

representing the dissociation rate. The fraction of bound odorant receptors 𝑥𝑥1 then modulates 

the opening of the co-receptor channel and calcium channel, modelled by gating variables 𝑥𝑥2 

and  𝑥𝑥3, respectively: 

 𝑑𝑑𝑥𝑥2
𝑑𝑑𝑡𝑡

= 𝛼𝛼2 𝑥𝑥1 (1 − 𝑥𝑥2) − 𝛽𝛽2 𝑥𝑥2 − 𝜅𝜅 𝑥𝑥2
2/3 𝑥𝑥3

2/3 

𝑑𝑑𝑥𝑥3
𝑑𝑑𝑑𝑑

= 𝛼𝛼3 𝑥𝑥2 − 𝛽𝛽3 𝑥𝑥3. 

 

(55) 

In eqs. (3), the gating variable 𝑥𝑥2 represents the opening of the ion channel gated by the 

co-receptor Orco [50]. The opening of the co-receptor is promoted by the odorant binding 

variable 𝑥𝑥1, which interacts with the gating variable 𝑥𝑥3 through a feedback loop involving a 
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calcium channel [48]. The inhibitory term 𝜅𝜅 𝑥𝑥2
2/3 𝑥𝑥3

2/3 models the calcium feedback with 𝜅𝜅 

as a constant. Finally, the parameters 𝛼𝛼2, 𝛽𝛽2 define the rate of increase and decrease of Orco 

gating 𝑥𝑥2, while 𝛼𝛼3, 𝛽𝛽3 represent the rate of increase and decrease of calcium gated by 𝑥𝑥3. 

Altogether, the transduction current 𝐼𝐼 resulting from this odorant transduction processed is 

given as a Hill function of the co-receptor gating variable 𝑥𝑥2: 

 

 𝐼𝐼 =
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥2
𝑥𝑥2 + 𝑐𝑐𝑝𝑝

 , (56) 

 

where 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 defines the maximum transduction current that can result through the co-

receptor channel. The parameters 𝑐𝑐 and 𝑝𝑝 define the half-activation coefficient and Hill 

coefficient of the co-receptor channel respectively. The different steps of the transduction 

cascade are illustrated in Figure 17C for an odor ramp featuring a linear increase in odor 

concentration interrupted by a gap. 

 

Spike Generator Model  

In the biophysical cascade model [48], the Connor-Stevens model was used to simulate 

the transformation of transduction current into biological spikes. Here, we adopt the 

framework of the Qian 3D model [49], which was proposed to describe depolarization block 

in midbrain dopamine neurons. Like the original Hodgkin-Huxley model [51], the 

formulation of Qian et al. [49] is a single compartment neuron model with three currents: 

fast sodium 𝐼𝐼𝑁𝑁𝑁𝑁, delayed rectifier potassium 𝐼𝐼𝐾𝐾, and a leak current 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙: 

 



 

87 

 

 𝐼𝐼𝑁𝑁𝑁𝑁 = 𝑔𝑔𝑁𝑁𝑁𝑁 𝑚𝑚3 ℎ ℎ𝑠𝑠 (𝑉𝑉 − 𝐸𝐸𝑁𝑁𝑁𝑁) 

𝐼𝐼𝐾𝐾 = 𝑔𝑔𝐾𝐾  𝑛𝑛3 (𝑉𝑉 − 𝐸𝐸𝐾𝐾) 

𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑉𝑉 − 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙). 

 

(57) 

In the above equations, 𝐸𝐸𝑁𝑁𝑁𝑁, 𝐸𝐸𝐾𝐾 and 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 are the respective Nernst potentials of each 

channel. 𝑔𝑔𝑁𝑁𝑁𝑁, 𝑔𝑔𝐾𝐾 and 𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 are parameters modelling the maximal conductance per unit area 

of each channel. Symbols 𝑛𝑛, 𝑚𝑚, ℎ and ℎ𝑠𝑠 are dimensionless state variables mediating the 

gating of the three currents, modelled as time dependent functions of the membrane 

potential 𝑉𝑉. For simplicity, the gating variable for sodium activation (𝑚𝑚) is set to its steady 

state value as it is significantly faster than the other gating variables, while the gating 

variable for potassium activation (𝑛𝑛) is dynamically yoked to the timescale of the gating 

variable ℎ [49]. Thus, the Qian 3D model contains three state variables: 𝑉𝑉, ℎ, and ℎ𝑠𝑠. The 

feature of the Qian 3D model that distinguishes this work from other models is the 

distinction between fast inactivation (ℎ) and slow inactivation (ℎ𝑠𝑠) in the sodium current as 

a mechanism for explaining the dynamics of depolarization block. The Qian 3D model 

consists of the following system of ordinary differential equations: 

 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐼𝐼 − 𝐼𝐼𝑁𝑁𝑁𝑁 − 𝐼𝐼𝐾𝐾 − 𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 

𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

= −(ℎ − ℎ∞)/𝜏𝜏ℎ 

𝑑𝑑ℎ𝑠𝑠
𝑑𝑑𝑑𝑑

= −(ℎ𝑠𝑠 − ℎ𝑠𝑠,∞)/(𝜌𝜌𝜌𝜌ℎ𝑠𝑠), 

 

(58) 

where ℎ∞ and ℎ𝑠𝑠,∞ are voltage-dependent steady state values of the fast and slow 

inactivation variables associated with the sodium channels. Variables 𝜏𝜏ℎ and 𝜏𝜏ℎ𝑠𝑠 are voltage-
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dependent time constants that modulate the rate of inactivation (the parameters and exact 

definitions of each gating variable can be found in Table S4 of ref. [5]). Together, these 

variables determine the rate at which the spike amplitude and frequency changes during 

depolarization block. In particular, the scaling parameter 𝜌𝜌 of the time constant 𝜏𝜏ℎ𝑠𝑠 

modulates the duration for which spiking continues upon the onset of depolarization block. 

The dynamics of the variables of the spike-generator model is illustrated in Figure 17D and 

Figure 17F for two representative odor stimuli. 

 

Variability and noise in the spiking activity of the Or42b OSN:  

As illustrated by the bifurcation diagram of the OSN model in Figure 23B, the OSN is 

silent when unstimulated. However, we observe experimentally that basal activity is present 

on the order of 1-5 Hz even when no olfactory signal is present (Figure 17A), which is 

consistent with previous observations [23], [52]–[56]. To replicate the basal firing rate of the 

OSN in absence of odor stimulation, we assume that noise affects the olfactory transduction 

cascade model of the OSN. We model this by injecting Gaussian noise 𝜀𝜀 ~ 𝑁𝑁(0,𝜎𝜎) at the 

level of the transduction current to simulate basal activity of the OSN in the absence of 

olfactory input, such that 𝐼𝐼 →  𝐼𝐼 +  𝜀𝜀. The value of the basal noise 𝜎𝜎 is modelled by fitting 

the distribution of firing rates that are observed in the OSN in the absence of odor, by 

finding 𝜎𝜎 that minimizes the Kullback-Leibler divergence between recorded and simulated 

firing rate distributions (as shown in Figure 17A). 

In addition, we noted the existence of variability in the sensitivity to odor across 

experimental trials. This was particularly apparent in conditions displaying depolarization 
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block, as we observed the OSNs of each animal were firing or silent over different time 

intervals (Figure 24B-C and Figure 25B). As the variability in OSN responses could not be 

reproduced with basal noise alone and may be due to variability in olfactory sensitivity 

across animals, we also assume that each OSN trial we simulate differs slightly in its model 

parameters. We model this effect by adding uncertainty to the maximum transduction 

current 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 of the OSN in each simulated trial, such that 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 →  𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(1 + 𝛿𝛿𝐼𝐼) , 

where 𝛿𝛿𝐼𝐼 ~ 𝑁𝑁(0,0.1) is a normally distributed random variable. We empirically found that 

this variability accounted for the sequential onset of depolarization block observed across 

different experimental trials, such as for 10 µM step stimulus of ethyl butyrate (Figure 23D).  

 

Optimization of model parameters 

The parameters of the OSN model were fit on a subset of data from electrophysiology 

recordings. For each condition, the error was defined as the normalized root mean squared 

error (NRMSE) between the recorded firing rate and predicted firing rate of the model 

(Table S2). The objective function was the mean error of all conditions in the training set. 

All parameters were optimized using global optimization toolbox of MATLAB. In the 

parameter optimization procedure, we matched the number of simulated trials with the 

existing number of experimental trials. The full list of optimized parameters of the odor 

transduction model can be found in Table S3 and the optimized parameters of the spike 

generator model can be found in Table S4. The results are shown in Figure 23 and Figure 

24, Figure 25 and Figure 17. 
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Physical model for odor diffusion 

To quantify the sensory experience of larvae in the rectangular arena at different source 

concentrations of ethyl butyrate (Figure 19E-F), we modelled the diffusion of odor from the 

reinforcement ring on the lid to the surrounding air (Figure 18). As in previous work [23], 

the odor gradient was found to be dynamic with an initial period of diffusion from the 

source center followed by a gradual depletion of the source. To predict the odor gradient 

perceived by larvae within the behavioral arena for different source concentrations, we used 

a generalized version of the physical 3D diffusion model developed in [23]. The simulations 

of the odor diffusion model were conducted with the partial differential equation toolbox of 

MATLAB, using an arena geometry generated and imported from an open-source CAD 

software OpenSCAD [57]. 
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Figure 18: Arena geometry and comparison of simulated odor gradient with 
measurements. (A) Arena geometry with indicated features used in the simulation, except 
the IR beam which indicates how the odor intensity was inferred from FT-IR absorption 
measurements [58]. (B) Numerical simulation of odor diffusion from a reinforcement ring 
on the top surface of the arena (orange disk in panel A). (C) Comparison of FT-IR-derived 
odor concentration profiles (dashed lines) of a high-strength (1:15) source of ethyl butyrate 
[39] and simulated odor profiles after optimization of the 3D diffusion model (plain lines). 
(D) Comparison of the predicted (plain lines) and measured (dashed line) profiles of odor 
concentration along the centered cross-section of the arena for various source dilutions. 

 

Diffusion equation and model geometry:  

The diffusion processes of the odor within the air and within the droplet are modelled as 

a diffusion process: 
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 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝑖𝑖  ∇2𝑧𝑧, 

 
(7) 

where 𝐷𝐷𝑖𝑖 denotes the diffusion constant for either air, 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎 or the droplet, 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. A flux 

continuity condition is applied at the droplet-air boundary on the surface of the droplet. The 

base of the droplet in contact with the top surface of the arena is modelled as a no-flux 

boundary. For the interaction of the odor with the plastic surfaces and the agarose surfaces 

of the arena, we followed the approach described in ref. [23] and modelled adsorption of 

odor on these surfaces as Robin boundary conditions: 

 

 Plastic boundary: −𝑛𝑛� ∙ 𝐽𝐽 = 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑧𝑧0,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑧𝑧) 

Agarose boundary: −𝑛𝑛� ∙ 𝐽𝐽 = 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑧𝑧0,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑧𝑧�, 

 

(8) 

where 𝑛𝑛� is the unit vector in the direction normal to the boundary under consideration. 

Parameters 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 are the reaction rates. 𝑧𝑧0,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑧𝑧0,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 are the saturation 

concentrations of the odorant on the boundary. This boundary condition assumes that 

desorption at the boundary occurs if the concentration of the odorant in air is less than the 

saturation concentration, with the boundary acting as an odor source. On the other hand, a 

higher concentration of the odorant in air would lead to adsorption at the boundary, with the 

boundary functioning as an odor sink. We noted however that the source concentrations of 

ethyl butyrate used in some experiments of this study were orders of magnitude smaller than 

those used in ref. [39]. As a result, the assumption that the plastic and agarose surfaces of 

the arena act as source terms may not be valid at low source concentrations. In our 

implementation of the physical 3D diffusion model, we therefore added a conditional 
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statement to the boundary conditions to account for regions of the arena where saturation at 

the boundary does not occur:  

 

 Plastic boundary: If 𝑧𝑧 < 𝑧𝑧0,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,  −𝑛𝑛� ∙ 𝐽𝐽 = 0 

Agarose boundary: If 𝑧𝑧 < 𝑧𝑧0,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,  −𝑛𝑛� ∙ 𝐽𝐽 = 0 

 

(9) 

The geometry of the experimental arena is shown in Figure 18A. The rectangular arena 

has a width of 8.5 cm and a length of 12.7 cm. The height of the arena from the lid to the 

base of the agarose surface is 0.7 cm. The geometry of the droplet on the lid can be viewed 

as an inverted half sphere hanging from the top surface of the arena. For simulation 

purposes, we approximated the droplet as a cone, with a radius of 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.3 cm with a 

height of ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.1 cm. The droplet therefore has a volume of 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜋𝜋
3
𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≈ 10 

µL. We assume that the initial odorant concentration in the air is zero, while the initial 

odorant concentration in the droplet is equivalent to the applied source concentration. Thus, 

the flux of odor at the droplet-air boundary is proportional to the applied source 

concentration. In each simulation, the odorant diffuses from the droplet into the air over a 

duration of 30 seconds before each animal is introduced into the arena. 

The parameters of the model were fit to match measurements made by Fourier 

transform-infrared spectroscopy (FT-IR) [58]. To capture the evolution of the shape and 

magnitude of the odor profile, these measurements were made at different cross sections of 

the arena at different time intervals. To guide the parameter optimization, we used data for 

ethyl butyrate in an identical arena recorded from a previous study [39] at source 

concentrations of 1:30 and 1:15. Parameter optimization was performed using the global 
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optimization toolbox of MATLAB by minimizing the normalized root mean squared error 

(RMSE) between the simulated odor concentration to FT-IR spectroscopy measurements. 

After parameter optimization, we then validated the model with new FT-IR measurements 

recorded at source dilutions of 1:7.5x103, 1:750, 1:75, and 1:30 along the center cross 

section of the arena (Figure 18D). The 3D diffusion model was found to scale well across 

orders of magnitude in the source concentration. Parameters of the computation model for 

3D odor diffusion can be found in Table S5. 

 

Results 

Olfactory sensory neurons undergo depolarization block when stimulated 

by ethologically-relevant odor concentrations 

Fruits that are attractive to Drosophila melanogaster emit complex blends of odorant 

molecules that include esters detected by the Or42b-expressing olfactory sensory neurons 

(OSN) [59]. When exposed to a piece of ripe banana, wild-type larvae quickly locate the 

source of the odor through directed navigation (Figure 19A-C), as shown in previous work 

with pure odors [58], [60]–[62]. A drastically different behavior was observed in larvae with 

olfactory inputs limited to a single OSN by selectively rescuing the expression of the 

odorant co-receptor ORCO in the Or42b OSN of anosmic Orco null (Orco-/-) mutant larvae 

[63] (see Methods). Instead of locating and readily entering the piece of banana, Or42b 

single-functional (Or42b SF) larvae circled at an intermediate distance to the source 

between the full attraction of wild type and the non-attraction of anosmic larvae (Figure 
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19B-C). Using an assay where the odor diffusion can be quantified in gaseous phase [58] 

and modeled numerically [23], we established that wild-type larvae are attracted to ethyl 

butyrate —a fruity ester released by ripe banana [59], [64] — over a relatively wide range of 

concentrations (Figure 19D-F). By contrast, Or42b SF larvae were repelled by the odor 

source at high strengths (1:150 and 1:100 source dilutions) that are strongly attractive to 

wild-type larvae (Figure 19E-F). To confirm this unexpected result, we developed a new 

genetic strategy to inhibit synaptic transmission in all OSNs except the Or42b OSN through 

selective expression of the tetanus toxin light chain (TNT) [65] (see Figure S1F of ref. [5]). 

As for the regular Or42b SF larvae, we observed that larvae with all but their Or42b OSNs 

functionally impaired are repelled by a source of ethyl butyrate at high strength. 
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Figure 19: Drosophila larvae with a single OSN are attracted to a food source but 
unable to reach it. (A) Schematic of banana olfaction assay (top). Schematic of larval 
olfactory systems with full and genetically-manipulated functionality (bottom). (B) 
Trajectories produced by wild type (top), Or42b SF (middle), and anosmic Orco null (Orco 
−/−) mutant (bottom). The yellow disk indicates position of the fruit cup. (C) Quantification 
of distance to cup of wild type (green, n = 20), Or42b SF (magenta, n = 20), and Orco −/− 
mutant (gray, n = 20). Statistical differences between genotypes were tested using Kruskal-
Wallis H test, followed by Conover-Iman test (*P < 0.05). (D) Schematic of assay featuring 
a single odor source (top). Illustrative trajectories of Or42b SF in response to an ethyl 
butyrate source of medium (1:750) and strong (1:100) strengths. (E) Trajectories produced 
by wild-type (top) and Or42b SF (middle) larvae at the indicated source dilutions of ethyl 
butyrate. Probability density functions of distance to source (bottom) for wild type (green) 
and Or42b SF (magenta). (F) Pairwise comparisons between wild-type and Or42b SF 
behaviors using Wilcoxon rank sum test (*P < 0.05 upon Bonferroni correction).  
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To define the basis of the concentration-specific attraction mediated by the Or42b OSN, 

we used suction electrode recordings (Figure 20A) to monitor the activity of the Or42b OSN 

in response to (i) prolonged odor step stimuli at fixed concentrations (Figure 20C-D) and (ii) 

replays of the time courses of odor concentration experienced by freely-moving larvae in 

gradients of the ethyl butyrate (Figure 20E-F). For an attractive source dilution (1:7.5x103), 

the Or42b OSN showed robust firing activity throughout the concentration range of the 

replay (0.4-1 µM, Figure 20E). Consistent with the response properties of the larval Or42a 

OSN stimulated by dynamic odor profiles [23], the Or42b OSN tracked and amplified 

changes in odor concentration. The OSN dynamics dramatically differed for a stronger odor 

source (1:150) that elicited behavioral aversion: when stimulated by high-odor 

concentrations that initially induced strong excitation (>10 µM, Figure 20F), the Or42b 

OSN switched from sustained firing activity to a silent state reminiscent of depolarization 

block. 

For prolonged odor stimulation at fixed concentrations, the firing activity associated 

with the initial phasic response of the Or42b OSN produced a canonical sigmoidal dose-

response (Figure 20B, dark blue trace), as reported in previous work [33]. While the firing 

activity was maintained throughout the 20-second stimulation at odor concentrations lower 

than 10 µM (Figure 20C), the tonic response of the Or42b OSN switched to a block state at 

concentrations higher than 10 µM (Figure 20B, cyan trace and red arrow; Figure 20D). Even 

for stimuli of high-odor concentrations, several seconds were necessary for the OSN 

dynamics to evolve toward depolarization block. But, once developed, the block state 

persisted throughout the rest of the 20-second odor stimulation. 
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Figure 20: Olfactory sensory neurons undergo depolarization block during chemotaxis. 
(A) Schematic of olfactometer and electrophysiology setup. (B) Phasic (top) and tonic 
(bottom) dose-response profiles of Or42b OSN to ethyl butyrate. Data represent mean firing 
rates ± SEM (500 pM—n=10, 1 nM—n=10, 5 nM—n=10, 10 nM—n=10, 50 nM—n=18, 
100 nM—n=18, 1 µM—n=10, 5 µM—n=8, 10 µM—n=9, 100 µM—n=10, 1 mM—n=10). 
(C) Representative recording of Or42b OSN stimulated by 1 μM of ethyl butyrate. Raster 
plot shows the OSN-specific spikes (top). Yellow line below indicates 20-second odor 
stimulation; thin blue and cyan lines indicate ‘phasic response’ and ‘tonic response’, 
respectively. (D) Same as panel C for Or42b OSN at 100 μM. (E) Replay of concentration 
time course corresponding to a trajectory segment (magenta) obtained for a medium-strength 
source (1:7.5x103, n=12). (F) Same as (E) for strong-strength source (1:150, n=8). Red 
arrow in (D) and (F) indicates onset of depolarization block. 
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Depolarization block does not arise from inhibition of the olfactory 

transduction cascade 

In the adult Drosophila, a feedback loop involving the inhibitory effect of intracellular 

calcium on the activity of the odorant receptor adaptively regulates the olfactory 

transduction cascade (24, 25). In the larva, modeling suggests that a similar negative 

feedback contributes to the regulation of the odor-driven activity of the Or42a OSN [23], 

but such feedback is not expected to influence the OSN activity induced optogenetically 

[63]. To test whether the depolarization block of the Or42b OSN stems from a similar 

negative feedback regulation of the olfactory transduction cascade, we characterized the 

olfactory behavior of Or42b SF larvae expressing the light-gated cation channel ChrimsonR 

[30] (Or42b>Chrimson, Figure 21A-B). For a source of ethyl butyrate at medium strength 

(1:750), Or42b>Chrimson larvae displayed vigorous attraction (Figure 21C-D, left). When 

combining an odor source of the same strength with a concentric red-light gradient, 

Or42b>Chrimson larvae displayed repulsion (Figure 21C-D, right). We used suction 

electrode recordings to characterize the response of the Or42b>Chrimson OSN stimulated 

by brief light flashes superimposed onto a step stimulus of ethyl butyrate. For a medium 

concentration of ethyl butyrate (100 nM and 1 µM), the light flashes elicited reproducible 

spike trains (Figure 21E). For a high-odor concentration (100 µM) inducing depolarization 

block, the light flashes did not produce action potentials (Figure 21E). Together, these 

results indicate that depolarization block of the Or42b OSN can be caused by currents 

originating either from the odorant receptor or from Chrimson, which rules out an inhibitory 

mechanism that selectively targets the olfactory transduction cascade. 



 

100 

 

 

 

Figure 21: Depolarization block is a property of olfactory sensory neurons. (A) The 
light-gated cation channel ChrimsonR (red, ChR) is used to test whether the negative 
feedback involved in regulating the olfactory transduction cascade (orange) is necessary for 
depolarization block (24, 25). (B) Expression of ChrimsonR in the Or42b OSN. (C, D) No 
difference in attraction level was observed between Or42b SF (n=20) and Or42b>ChR SF 
(n=23) without light stimulation. For animals exposed to a virtual light gradient 
superimposed onto an ethyl butyrate (1:750) gradient, Or42b>ChR SF (n=23) is repelled by 
the gradient peak compared to Or42b SF (n=21) (Wilcoxon-ranksum test, *p<0.05 upon 
Bonferroni correction). VR denotes a virtual light gradient with a peak light intensity of 41 
µW/mm2. (E) PSTH of Or42b>ChR OSN elicited by prolonged stimulus of ethyl butyrate at 
a concentration of 100 nM (left, n=12), 1 μM (center, n=10) and 100 μM (right, n=10) with 
red light flashes of 0.5 second. When the Or42b OSN has undergone depolarization block 
(right), red light flashes fail to elicit action potentials. (F) Ectopic expression of OR42b in 
the Or1a-expressing OSN. (G, H) Or1a SF is significantly less attracted to low-strength 
(1:750—left, n=16) than high-strength (1:25—right, n=17) sources. Following the ectopic 
expression of OR42b in Or1a SF, larvae become repelled at high source strength (1:25, 
n=15) compared to medium strength (1:750, n=16). Wilcoxon ranksum test (*p<0.05 upon 
Bonferroni correction). (I) Top: mean±SEM tonic firing rates recorded from Or1a SF (1 
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μM—n=10, 102 μM—n=11, 104 μM—n=10) and for Or1a>Or42b SF (1 μM—n=10, 102 
μM—n=10, 104 μM—n=10). Bottom: representative voltage traces. Red arrow indicates 
onset of depolarization block. Raster plot reports the OSN-specific spikes and yellow bar 
indicates timing of odor stimulation. The bottom row of panels C and G show the 
probability density functions of distance to source.  

 

Depolarization block is commonly observed in larval olfactory sensory 

neurons 

Next, we asked whether depolarization block can be induced in olfactory neurons other 

than the Or42b OSN. To this end, the OR42b receptor was ectopically expressed in the Or1a 

OSN (Figure 21F), a neuron which normally has a low sensitivity to ethyl butyrate [33]. 

Larvae directed by the endogenous single functional Or1a OSN displayed attraction to a 

very strong (1:25) but not a medium (1:750) source of ethyl butyrate (Figure 21G, blue and 

Figure S2A of ref. [5]). Upon ectopic expression of OR42b in the Or1a OSN (Or1a>Or42b 

SF), the attraction observed for the very strong (1:25) source of ethyl butyrate was converted 

into repulsion (Figure 21G-H, magenta). In suction electrode recordings, the wild-type Or1a 

OSN responded with a low but significant firing rate to both low and high concentrations of 

ethyl butyrate (102 and 104 µM, Figure 21I). Upon ectopic expression of OR42b in the Or1a 

OSN, the Or1a>Or42b OSN was strongly activated by low concentrations of ethyl butyrate 

but underwent depolarization block in the tonic phase when presented with high-odor 

concentrations (104 µM, Figure 21I, red arrow). Therefore, the high conductance of OR42b 

gated by one of its high-affinity ligands [34], [66] was sufficient to induce depolarization 

block in an OSN that had an endogenously low affinity to the same odor. This result 

suggested that any OSN excited by strong transduction currents can switch to a block state.  
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To establish the relevance of depolarization block for different ligand-odorant-receptor 

pairs, we selected 4-hexen-3-one — a fruity-smelling ketone with a high-affinity for the 

OR42a odorant receptor [33] (Figure 22A). While strong attraction was observed in Or42a 

SF larvae at a source of medium strength (1:9x104), strong aversion was triggered by a 

stronger source (1:9x102) (Figure 22B-C). Larvae followed concentration isoclines — they 

circled — around a strong source of 4-hexen-3-one, driven by the attraction to the odor at 

low concentrations and its aversion at high concentrations (Figure 22B). 

Electrophysiological recordings of the Or42a OSN revealed that depolarization block is 

elicited at high concentrations of 4-hexen-3-one (Figure 22D, red arrow). Next, we 

generalized the relevance of depolarization block to a third odorant receptor, OR13a, which 

recognizes the fruity ester pentyl acetate [34] (Figure 22E). While Or13a SF larvae are 

attracted by a source of pentyl acetate at medium strength (1:7x102), the same larvae are 

repelled by a stronger (1:23) source (Figure 22F-G). Behavioral aversion correlated with the 

onset of depolarization block when the Or13a OSN was stimulated by a high concentration 

of pentyl acetate (Figure 22H, red arrow). For all conditions that elicited repulsion at high-

odor concentrations leading to circling behavior in single functional OSN larvae, we verified 

that wild-type larvae displayed strong attraction whereas anosmic larvae showed no signs of 

attraction (see Figure S2 of ref. [5]). 
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Figure 22: Depolarization block induced with high-affinity ligands in different OSNs. 
(A) Or42a SF larvae tested with sources of 4-hexen-3-one. (B) Trajectories recorded for 
Or42a SF larvae for sources (blue disks) of different strengths. (C) Attraction of Or42a SF 
larvae to 4-hexen-3-one at a medium-strength source (1:9x104, n=21), but repulsion at a 
higher-strength source (1:9x102, n=19). (D) Top: mean±SEM tonic firing rates recorded of 
Or42a OSN (10 nM—n=10, 1 μM—n=10, 100 μM—n=10). Bottom: representative voltage 
traces. Red arrow indicates onset of depolarization block. Raster plot reports the OSN-
specific spikes and blue bar indicates timing of odor stimulation (E) Or13a SF larvae tested 
with sources of pentyl acetate. (F) Trajectories recorded for Or13a SF larvae for sources 
(red disks) of different strengths. (G) Attraction of Or13a SF to pentyl acetate source of 
medium strength (1: 7x102, n=17), but repulsion for high-strength source (1:23, n=16). (H) 
Same as panel D for mean±SEM tonic firing rates for Or13a OSN (1 μM—n=10, 100 μM—
n= 10, 10 mM—n=10). In panels C and G, statistical comparisons were conducted with 
Kruskal-Wallis H-test followed by Conover-Iman test (*p<0.05 upon Bonferroni 
correction). The bottom row of panels B and F show the probability density functions of 
distance to source. 
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A computational model elucidates the mechanistic origin of depolarization 

block in olfactory sensory neurons 

In dopamine neurons of the midbrain of rats, depolarization block is mediated by the 

cumulative effects of slow inactivation of the voltage-gated sodium channels [49]. Given 

that the depolarization block affecting an OSN does not appear to be caused by negative 

regulation of the olfactory transduction cascade (Figure 21A-E), we speculated that the 

block of OSNs resulted from the inhibition of sodium channels associated with the spike-

generation machinery. In Drosophila, voltage-gated sodium channels are thought to be the 

products of complex patterns of alternative splicing of a single gene called paralytic [67], 

[68]. As described in Figure 23A-B, we developed a computational model for the larval 

Or42b OSN that combines a realistic olfactory transduction module [48] with a 

conductance-based neuron model modified to account for the slow inactivation of sodium 

channels [49]. The free parameters of the model were optimized to fit the responses of the 

Or42b OSN stimulated by dynamic odor ramps created with a microfluidics system (Figure 

23C and Figure 24A) together with a subset of dose responses elicited by concentrations 

ranging from subthreshold to high activity yielding depolarization block (Figure 23D and 

Figure 24B).  
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Figure 23: Development and validation of a computational model reproducing 
depolarization block in Or42b OSN stimulated by ethyl butyrate. (A) Framework of the 
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integrated Or42b OSN model accounting for the conversion of an odor stimulus into the 
generation of action potentials through the cascade of an odorant transduction model 
followed by a spike generator model. (B) Bifurcation diagram of the Or42b OSN model. 
The spiking regime terminates at the saddle node of periodics (SNP) bifurcation. (C-D) 
Experimental data (black) used for model fitting (blue) (exponential ramp—n=10, sigmoid 
ramp—n=8, linear ramp—n=10, 1 μM—n=10 and 10 μM—n=9). (E) Dose responses of 
mean tonic firing rates of real (white circles) and simulated Or42b OSN. Blue stars indicate 
conditions used for model fitting. Red diamonds represent predictions of the model. Sample 
sizes: 500 pM—n=10, 1 nM—n=10, 5 nM —n=10, 10 nM—n=10, 50 nM—n=18, 100 
nM—n=18, 500 nM—n=10, 1 μM—n=10, 5 μM—n=8, 10 μM—n=9, 100 μM—n=10 and 1 
mM—n=10. (F) Experimental (top) and simulated (bottom) dynamic toward depolarization 
block for different odor concentrations (5 μM, 10 μM, 100 μM and 1 mM). (G) Quantitative 
relationship between the latency to depolarization and the concentration of the odor 
simulations for experimental data (white circles) and model predictions (red diamonds). 
Inset: boxplots of latency to depolarization block for different odor stimulations (Kruskal 
Wallis test followed by Conover-Iman test, *p<0.05). (H) Hysteretic nature of Or42b-OSN 
firing rate dynamics in the response to a slow linear odor ramp of ethyl butyrate (n=9 
recordings). φup denotes the concentration where depolarization block arose during the up-
gradient phase of the ramp. The cyan arrow highlights the effect of the odor stimulation, 
which brings the OSN dynamics back to a firing regime (limit cycle). 

 

The integrated Or42b OSN model recapitulated the dynamical properties of the firing 

activity of the real OSN (Figure 23, Figure 24 and Figure 25). When stimulated with high 

concentrations of ethyl butyrate (10 µM), the model of the Or42b OSN underwent 

depolarization block (Figure 23D). The model led to predictions of the firing activity of 

Or42b OSN in excellent quantitative agreement with the experiments for odor steps below 

and above the threshold for depolarization block (predictions shown as red diamonds, Figure 

23E). In particular, the model accurately predicted sustained firing rate at ~5 µM and the 

occurrence of depolarization block at 100 µM. In the real Or42b OSN, we observed that the 

latency to the onset of depolarization block decreased as a function of the concentration of 

the odor stimulation (Figure 23F-G). Remarkably, the OSN model accounted for the 
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quantitative relationship observed between the latency to depolarization block and the 

stimulus concentration (Figure 23G). When stimulated by a replay of the concentration time 

course that elicited behavioral aversion in Figure 20F, the OSN model entered and exited a 

depolarization block state with dynamics like the real OSN (Figure 25B). 

In the framework of dynamical systems theory [69], a stable limit cycle corresponds to 

the neuron firing periodic action potentials, and a stable fixed point corresponds to the 

absence of action potentials (i.e., depolarization block). To inspect the dynamical properties 

of the OSN model, we computed the bifurcation diagram shown in Figure 23B where the 

concentration of the odor determines the transduction current (Figure 23A). The bifurcation 

diagram establishes the existence of a bistable domain of odor concentrations below the so-

called saddle node of periodics (SNP) threshold where depolarization starts. In the bistable 

domain, the OSN can adopt either a periodic behavior where it fires sustained trains of 

action potentials or a state of depolarization block. The exact state of the system depends on 

its history (hysteresis): if the Or42b OSN is stimulated by increasing odor concentrations, it 

will maintain a regime of persistent firing activity until the SNP threshold is passed; by 

contrast, the Or42b OSN can remain in a state of depolarization block while decreasing odor 

concentrations bring the transduction current from values higher than the SNP threshold to 

lower values located within the bistability domain (Figure 23B). 

 

To experimentally test the existence of the predicted hysteresis in the response of the 

Or42b OSN, we stimulated the real neuron with a slow linear odor ramp ranging from 0 to 

100 µM, which encompassed concentrations well below the detection threshold and well 

above the SNP threshold. Based on Figure 23E, we expected that the SNP threshold would 
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correspond to a concentration higher than 10 µM. We found that, indeed, the firing activity 

of the real Or42b OSN increased monotonically up to a threshold value (φup ~50 µM) where 

it switched to a state of depolarization block. During the down-gradient phase of the odor 

ramp, the firing activity of the OSN was not restored until the end of the concentration ramp. 

More specifically, the OSN remained silent for concentrations ranging between φup and 0 

µM where strong firing activity was observed during the up-gradient phase of the ramp — a 

hallmark of hysteretic dynamics.  
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Figure 24: Additional conditions used to train and validate the Or42b OSN model in 
response to ethyl butyrate. (A) Training set: Replay of trajectory segment corresponding to 
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the attractive behavior shown in Figure 20E (partial time course). Experimental data (black) 
and simulated responses (blue). (B) Training set: Prolonged odor step stimuli of low (100 nM) 
and very high (1000 µM) concentrations used to fit the parameters of the Or42b OSN model. 
(C) Validation dataset of the model: Predictions of the model (blue) and experimental data 
(black) for the firing rate activity of the Or42b OSN data in response to a 20-s prolonged odor 
stimulation for increasingly high odor concentrations. This training dataset includes Figure 
23C-D. The validation dataset includes conditions shown in Figure 23E-H and Figure 25.  

 

The history-dependence of the OSN response to the slow linear odor ramp was 

reproduced by the model with remarkable accuracy (Figure 23H, blue). During the up-

gradient phase of the ramp, the OSN model maintained a strong firing activity until the 

transduction current crossed the SNP threshold and switched from a stable periodic orbit 

(spiking activity) to a fixed point (depolarization block) (Figure 23B). Starting with a 

transduction current above the SNP threshold, the down-gradient phase of the ramp induced 

a shift of the system’s state along the branch of the fixed points, which maintained the state 

of stable depolarization block —or quasi-stable depolarization block below the subcritical 

Hopf— while the transduction current decreased to the silent range (Figure 23B). When the 

concentration increased again at the end of the ramp, the transduction current returned to a 

value above the saddle node (SN) threshold, which restored the firing activity of the neuron. 

Following the same logic, hysteresis was observed when the real and simulated Or42b 

OSNs were stimulated by a series of three concentrations steps below and above the SNP 

threshold that locked the system in a state of depolarization block (Figure 25C). 
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Figure 25: Additional conditions used to validate the Or42b OSN model in response to 
ethyl butyrate. (A) Predictions of the Or42b OSN model on trajectories from behavioral 
replays with concentration below depolarization block threshold (n=12 trials). (B) Same as 
panel A with concentration replay above depolarization block threshold (n=8 trials). (C) 
Stimulation protocol designed to reveal the hysteretic nature of the OSN dynamics. 
Combination of step conditions bringing the system into a depolarization block state at a 
super-threshold concentration C2 (fixed point in Figure 23B) followed by a decrease to a 
sub-threshold concentration C1 maintaining the OSN in block state. The same concentration 
C1 led to sustained firing activity at the start of the stimulation when the system started in 
the limit-cycle (firing) regime. Upon depolarization block induced by concentration C2, 
firing activity of the OSN can be restored when the odor concentration is brought back to 0 
µM for several seconds, which forces the OSN back to its limit cycle regime. The top inserts 
illustrate the state of the system in the bifurcation diagram of Figure 23B. Recordings for the 
two step combinations were paired (conditions C1-C2-C1 and C1-C2-C0-C1 were recorded one 
after the other, n=4 trials). Throughout the figure, experimental data are shown in black and 
simulations are shown in blue.   
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Partitioning of the odor concentration by the activity domains of olfactory sensory 

neurons  

The implication of the depolarization block is that high-sensitivity OSNs that are 

strongly activated at low concentrations of an odor can drop out from the subset of active 

OSNs at high concentrations of the same odor. To test this hypothesis, we screened 

published response profiles of larval OSNs [33], [34] to identify pairs of neurons with 

different sensitivities to the odors studied in Figure 19, Figure 21 and Figure 22 and 

compared their respective contribution to chemotaxis across concentration ranges. As 

illustrated in Figure 19, ethyl butyrate is a high-affinity ligand of the odorant receptor 

OR42b [34]. By contrast, OR1a has a low affinity for this odor. For strong sources of ethyl 

butyrate (1:150 and higher) eliciting repulsion in Or42b SF larvae (magenta) compared to 

wild type (green), Or1a SF larvae (blue) displayed increasingly strong attraction (Figure 

26A and Figure S5A of ref. [5]). Consistent with this behavior, the firing activity of the 

Or1a OSN was higher than baseline at concentrations where Or42b OSN underwent 

depolarization block (Figure 26B and Figure S6A of ref. [5]). This observation suggested 

that the ectopic expression of the OR42b odorant receptor in all 21 OSNs should elicit 

repulsion at high concentrations of ethyl butyrate while wild-type larvae remained attracted 

(Figure 26A, 1:75). We confirmed this prediction experimentally (Figure S7 of ref. [5]). 

The same relay principle applied to the Or13a and Or42a OSNs in response to pentyl 

acetate. While Or13a SF larvae (orange) were attracted by sources of pentyl acetate at 

medium strengths (1:7x103 and 1:7x102), attraction was elicited in Or42a SF larvae (blue) 

for strong sources (1:70 and higher) that induced repulsion in Or13a SF larvae (Figure 26C 
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and Figure S5B of ref. [5]). In agreement with the behavior, the firing activity of the Or13a 

OSN underwent depolarization block at high-odor concentrations while Or42a OSN showed 

sustained firing activity (104 µM) (Figure 26D and Figure S6B of ref. [5]). The detection of 

4-hexen-3-one involves a sensory sequence of three OSNs to recapitulate the wide range of 

attraction of wild-type larvae (Figure 26E and Figure S5C-D of ref. [5]). In response to this 

odor, Or42a SF larvae (cyan) were attracted by sources at low strength (1:9x104) but 

repelled at medium and high strengths (1:9x102 and higher) for which Or42b SF larvae 

(magenta) became attracted (Figure 26E and Figure S5C of ref. [5]). When Or42b SF larvae 

showed signs of repulsion (1:4), Or1a OSN larvae (blue) showed a stark increase in 

attraction to the source. The dose responses of the firing activity of Or42a, Or42b and Or1a 

OSNs mirrored this behavioral sequence with Or42a and Or42b OSNs undergoing 

depolarization block at medium and high concentrations, respectively (Figure 26F and 

Figure S6C of ref. [5]). 
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Figure 26: Depolarization block maintains sparse odor encoding by tiling the activity 
domains of OSNs responsive to the same odor. (A) Behavioral response of wild type 
(green), Or42b SF (magenta) and Or1a SF (blue) to a series of ethyl butyrate sources of 
increasingly higher strength. (Ai) Probability density function of distance to source for the 
trajectories shown in panel Aii. (Aiii) While Or42b SF is strongly attracted by source of 
medium strength (1:750), attraction dramatically decreases for high-strength source (1:75). 
By contrast, the attraction level of Or1a SF increases monotonically from low to high-
strength sources (mean±SEM). (B) In electrophysiology recordings, Or42b OSN enters 
depolarization block for odor concentrations where Or1a OSN shows robust and persistence 
firing activity. (C) Behavioral responses of wild type (green), Or13a SF (orange) and Or42a 
SF (cyan) to pentyl acetate sources of increasingly higher strengths. Or13a SF displays 
attraction at medium-strength sources (1:7x103—1:7x102) but it is repelled at high-strength 
source (1:70) that produces attraction in Or42a SF. (D) Or13a OSN enters depolarization 
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block for odor concentrations where Or42a OSN shows robust and persistent firing activity. 
(E) Behavioral responses of wild type (green), Or42a SF (cyan), Or42b SF (magenta) and 
Or1a SF (blue) to 4-hexen-3-one sources of increasingly higher strengths. Or42a SF is 
attracted to sources at low strength (1:9x104) but repelled at medium strength (1:9x102) 
where Or42b SF shows attraction. While Or42b SF displays signs of repulsion to a source of 
very high strength (1:4), Or1a SF demonstrates an increase in attraction. (F) The Or42a and 
Or42b OSNs enter depolarization block at a range that qualitatively match the behavior 
shown in panel E. The Or1a OSN shows robust and persistent firing activity at the highest 
tested concentration (10 mM). Throughout the figure, firing rates are presented as 
means±SEM. See Data S1 for sample sizes and p-values. 
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Discussion 

Consistent with the observations that odors activate a subset of OSNs [34], [70]–[74], 

the results of Figure 26 indicate that the sequential recruitment of OSNs with different 

affinities to the same odor expands the dynamic range of the larval olfactory system. But 

contrary to the conventional view, we find that the activity of high-affinity OSNs is not 

necessarily maintained in the representation of an odor across a wide range of concentrations 

(Figure 27). Our observations are likely to generalize beyond the larva since there is 

growing evidence in the literature that OSNs of adult flies [27], [75], mice [76], [77] and rats 

[78] undergo depolarization block at high-odor concentrations. Moreover, depolarization 

block has been observed in response to the gating of ionotropic glutamate receptor (IR) by 

odorant molecules [27]. The pruning of high-affinity OSNs at high-odor concentrations has 

two implications: first, the same odor might activate distinct subsets of OSNs at low and 

high concentrations, thereby facilitating central processing and discrimination (Figure 27, 

bottom). These differences might explain shifts in the internal percept of an odor across 

concentrations, leading to the report of drastic changes in the perceived quality of the same 

odor at low and high concentrations in humans [79], [80]. Second, there might be a 

metabolic advantage in keeping the peripheral representations of odors sparse [81]. 

In the present work, larvae with an olfactory system restricted to a single type of 

functional OSNs were all attracted to the odor source at low concentrations. However, the 

valence of the odor appeared to switch from attractive to aversive behavior at high-odor 

concentrations (Figure 19, Figure 21, Figure 22 and Figure 26). In previous work, we have 

demonstrated that an abrupt decrease in the firing rate of the Or42a OSN below its basal 
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activity level is sufficient to trigger stopping behavior and aversive reorientation responses 

[23]. Here, we showed that all tested OSNs undergo depolarization block at high-odor 

concentrations (Figure 20, Figure 21, Figure 22 and Figure 26). Therefore, we speculate that 

the change in valence from attraction to repulsion can be explained by a loss of spiking 

activity in innately attractive OSNs. Remarkably, the aversion caused by the silencing of 

high-affinity OSNs can be compensated by the activity persisting in other OSNs with lower 

affinities, as illustrated by the behavior of wild type larvae (Figure 26). 

While depolarization block has been associated with abnormal neuronal function and 

disease conditions [82]–[84], it has been speculated that depolarization block might also 

contribute to information processing [85], [86]. In the mammalian visual system, 

depolarization block conditions the differential tuning of intrinsically photosensitive retinal 

ganglion cells to represent light intensity with high efficiency [87]. We propose that 

depolarization block enables the representation of chemosensory stimuli at the sensory 

periphery over several orders of magnitude of concentration. For instance, it might explain 

why taste neurons with high sensitivity to sodium shut down at high salt concentration 

where low-sensitivity sodium taste neurons become active and natural attraction to sodium 

switches to repulsion [88]. Through the recruitment and loss of active sensory neurons, 

depolarization block creates a previously unknown dimension along which the quality and 

intensity of a stimulus can be sparsely represented across magnitudes of concentrations 

(Figure 27). As such, depolarization block might be an inherent component of sensory 

population coding across phyla. 
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Figure 27: Comparison of the standard combinatorial coding model with and without 
the effects of depolarization block. (Top) While approaching an odor source (strawberry), 
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an animal experiences different concentrations of the odor, depending on its distance to the 
source. (Center) Representation of different odor concentrations by the peripheral olfactory 
system assuming a sigmoidal dose response curve. As the animal approaches the source, an 
increasing number of olfactory sensory neurons (colored circles) get recruited. (Bottom) 
Our results indicate that depolarization block limits the activity domain of each olfactory 
sensory neuron to a band of concentration, allowing the olfactory code to remain sparser 
even at high-odor concentrations. 
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Odor Discrimination in Olfactory Sensory Neurons 

Introduction 

In the last chapter, we showed that depolarization block is a feature of several olfactory 

sensory neurons (OSNs) in the larval olfactory system and developed a computational model 

to predict the firing activity of the Or42b OSN to the fruity odor ethyl butyrate. This 

changed our existing understanding of how olfactory systems encodes both odor identity and 

intensity (Figure 27). This led to the question: how does a combinatorial coding model with 

depolarization block facilitate the peripheral encoding of different odors? What are the 

advantages of such a design? Our natural next step was to investigate the role of 

depolarization block in the peripheral encoding of different odors through odor 

discrimination.  

To answer this question, we designed an odor discrimination learning assay to 

understand when and how the larval olfactory system distinguishes one odor from another. 

By pairing animals experiencing one odor with a fructose reward, followed by the 

experience of a different odor without the fructose reward, we were able to observe 

situations where animals would have a learned preference when both odors were presented 

at the same time. In other words, we could use this associative learning [89] to identify 

which pairs of odors were discriminable by the larval olfactory system.  

While the Drosophila larva has a computationally much simpler olfactory system than 

larger animal models like mice, studying discrimination via combinatorial coding in the 

larva is nevertheless quite a complex task as the wild-type larva possesses 21 total pairs of 
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OSNs. In other words, the peripheral encoding of odors in the larva is a 21-dimensional 

problem. Focusing our attention on addressing the foundational principles of combinatorial 

coding, we used genetic manipulation to reduce the number of functional OSNs in our 

experimental larvae from 21 OSNs to just 2 OSNs: the Or42a and Or42b OSNs (we will 

refer to these animals as Or42a/b double functional larvae). This allowed us to study the 

neural representations of odors in a computationally tractable two-dimensional space.  

Next, to understand how these different odors were encoded at the sensory periphery by 

larval OSNs during the odor discrimination learning assay, our quantification required a 

computational model to determine the mapping from sensory input to firing activity. Thus, 

we adapted our 3D odor diffusion model to different odors, and developed a generalized 

version of the OSN model [5] to predict the firing activity of multiple OSNs to combinations 

of different odors. This allowed us to build a data analysis pipeline where we could infer the 

neural representation of odors experienced by animals based on their positions in the 

behavioral assay.  

The neural basis of olfactory discrimination and sensory discrimination in general has 

yet to be fully understood. In olfaction, it is established that different odors activate different 

subsets of odorant receptors, which have certain affinities for binding depending on the type 

of odorant molecule [48], [90]. For example, the smells of pineapple and strawberry could 

be encoded by activating different groups of OSNs in the olfactory system. However, it is 

unknown how downstream neurons use these encodings to compute and classify the identity 

of these odors. Besides comparing which subsets of OSNs are firing or not, a neural circuit 

could also hypothetically compare the magnitude of the firing activity or even the temporal 

activity patterns of the OSNs [91]. While the neural implementation of classification is 
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unknown, there is evidence suggesting that neural encodings of sensation are more separable 

than behaviorally possible [92]. This would suggest that discrimination in biological neural 

circuits is less accurate than theoretically possible. 

In classical machine learning, discriminant analysis is a standard technique to separate 

different classes of objects. In such methods, training consists of determining a hyperplane 

that “best” separates two or more groups of observations, for example the smell of pineapple 

versus strawberry. During testing, this hyperplane is then used to classify whether different 

observations of odors belong to strawberry or pineapple. While there exist many variants of 

theoretical methods for building such a classifier, such as linear discriminant analysis, 

quadratic discriminant analysis, and support vector machines [93], it is unknown how 

biological neural circuits categorize different classes of observations.  

In this chapter, we use the biophysical OSN model to investigate the neural 

implementation of discrimination, which provides a step in linking theoretical methods of 

classification from artificial neural networks with biological neural circuits.  

Materials and Methods 

Behavioral data collection  

All behavioral experiments were conducted with Or42a/b double functional (DF) PiVR 

[94]. In the odor discrimination learning assay, the experimental protocol consisted of a 

training phase followed by a test phase. In the training phase (Figure 28A), groups of 20 

larvae are presented with a single odor while crawling on sweet (36% fructose) agarose, 

with odor sources placed on the left and right side of the arena. The same larvae are then 
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moved to another dish without fructose where another odor is present. After 3 repeats, the 

larvae are then placed in a dish with both odors (Figure 28B). Experiments are always run in 

pairs to account for differences in innate attraction to individual odors. The learning index is 

calculated by counting the number of animals on each side of the dish divided by the total 

number of animals before subtracting the result of one condition by the other. In each stage 

of the experiment, the motion of larvae in the arena is recorded using a video camera over 

the course of 3 minutes. 

 
Figure 28: Methodology of the odor discrimination learning assay. (A) Training phase of 
the odor discrimination learning assay. During each round of training, Or42a, Or42b double 
functional larvae are placed in an arena in groups of 20 for 3 minutes. This arena has a 
single type of odor (i.e. pineapple) paired with a fructose reward. The larvae are then 
immediately transferred to an arena with a different type of odor with no reward (i.e. 
strawberry) for another 3 minutes. This process is repeated 3 times. (B) Test phase of the 
odor discrimination learning assay. After training, the same group of 20 larvae are placed 
into an arena with both the rewarded odor (i.e. pineapple) and the non-rewarded odor (i.e. 
strawberry) for 3 minutes. 
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Trajectory Reconstruction 

For each experiment, we identified the positions of individual larvae during both the 

training and test phases. This was achieved using an adapted version of the motion-based 

multiple object tracking algorithm in MATLAB to automate the extraction of larvae 

trajectories from video datasets (Figure 29). The learning index calculated using the 

automated tracking algorithm was found to be in excellent agreement with a manually 

counted learning index. In the original off-the-shelf implementation, the tracking algorithm 

was found to perform well when the larvae were well separated and away from the odor 

sources, but performed poorly when larvae aggregated under the odor sources. To avoid 

losing track of larvae at the odor sources, a counter was added to keep track of missing 

larvae entering and leaving the vicinity of the odor sources.  

 

 

Physical model for odor diffusion 

The sensory experience of larvae in the behavioral assay was quantified using the same 

methodology outlined in the previous chapter using a 3D odor diffusion model. In contrast 

Figure 29: Motion-based multiple larvae tracking in the odor discrimination learning 
assay.  
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with the behavioral assay developed to study depolarization block [5], we used a circular 

arena instead of a rectangular arena, again modelled with the open-source CAD software 

OpenSCAD [57]. The arena was similar in size as before with a diameter of 85mm and a 

height of 7mm, as illustrated in Figure 30A. Experimentally, the main difference was the use 

of cylindrical odor cups to contain the odor droplet rather than the reinforcement rings used 

in the previous study. Due to the small aperture of the odor cups, the odor cup, the flux of 

odor at the droplet-air boundary was smaller than previously observed, resulting in a more 

gradual change in the odor profile over time. To simulate this difference, we modelled the 

geometry of the cylindrical odor cup with a radius of 3mm and a height of 4mm. The odor 

droplet has a volume of 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 10 µL and is located inside the odor cup in a cylindrical 

enclosure with a radius of 2mm and a height of 0.8mm. The walls of the odor cup are 

assumed as no-flux boundaries, and the odor droplet diffuses out the top of the odor cup 

through a single aperture with a radius of 0.5mm.  In each experiment, the odor cup is 

positioned 37.5mm away from the center of the arena. We assume that the initial odorant 

concentration in the air is zero, while the initial odorant concentration in the droplet is 

equivalent to the applied source concentration. 

The parameters of the model were fit to match Fourier transform-infrared spectroscopy 

(FT-IR) measurements [22] captured along two different cross sections of the arena at 

different time intervals. In the “close” configuration, the FT-IR beam is positioned along an 

axis with an angular separation of 18o from the odor cup. In the “remote” configuration, the 

FT-IR beam is positioned further away with an angular separation of 90o from the odor cup 

(Figure 30A). For each odor used in the odor discrimination learning assay, FT-IR 

measurements were collected at the close and remote configurations using two different 



 

126 

 

source dilutions. This resulted in different temporal odor profiles as shown in Figure 30B-D 

for ethyl acetate, ethyl butyrate, and methyl acetate. To fit the diffusion parameters for each 

odor, we performed parameter optimization using the global optimization toolbox of 

MATLAB. The objective was to minimize the normalized root mean squared error (RMSE) 

between the experimental and simulated odor concentrations observed along the close and 

remote configurations. After parameter optimization, we found that our odor simulations 

(solid lines) were in excellent agreement with the experimental odor profiles (dashed lines) 

shown in Figure 30B-D. In each simulation, we assume there is a delay of 30 seconds during 

which the odor diffuses from the odor cup into the air before each animal is introduced into 

the arena. We also assume, in the simulation of multiple odor sources, that there are no 

interactions between the odorant molecules affecting the individual odor profiles (Figure 

30F). 
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Figure 30: Adaptation of odor diffusion model for the odor discrimination learning 
assay. (A) Arena geometry with indicated features in the simulation. The odor profile was 
inferred from FT-IR absorption measurements [58] along two different cross-sections of the 
arena: close and remote. (B-D) Comparison of FT-IR derived odor concentration profiles 
(dashed lines) and simulated odor profiles after optimization of the 3D diffusion model 
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(plain lines) for several different odors: (B) ethyl acetate, (C) ethyl butyrate, and (D) methyl 
acetate. (E) Visualization of simulated odor profile for a single odor source of ethyl butyrate 
on the left side of the arena. (F) Visualization of simulated profile for an odor mixture of 
ethyl butyrate (left source) and ethyl acetate (right source). 

 

Olfactory Sensory Neuron (OSN) Model 

In the OSN model of the previous chapter, the odorant transduction module describes the 

interactions of a single odor ethyl butyrate with the Or42b expressing OSN. In this 

behavioral assay however, there is an additional layer of complexity as pairs of odor 

mixtures are interacting with the Or42b OSN, as well as with the Or42a OSN (Figure 31A). 

This process can be described using a competitive binding model, where different types of 

odorant molecules compete to attach to a limited number of receptors [95], [96]. This model 

assumes that only one odorant molecule can attach to receptor binding site at a time, and that 

different odorant-receptor interactions have different responses in their binding/unbinding 

kinetics. Since we tested the responses of two OSNS (Or42a, Or42b) to three different odors 

(ethyl acetate, ethyl butyrate, and methyl acetate), there were a total of six combinations of 

odorant-receptor interactions to consider.  

By introducing competitive binding into the odor transduction model to account for odor 

mixtures, we have the following modified set of equations: 

  
𝑑𝑑𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1
𝑑𝑑𝑑𝑑

= 𝑏𝑏𝑟𝑟,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1 (1− 𝑥𝑥1) − 𝑑𝑑𝑟𝑟,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1 

𝑑𝑑𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2
𝑑𝑑𝑑𝑑

= 𝑏𝑏𝑟𝑟,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2 (1− 𝑥𝑥1) − 𝑑𝑑𝑟𝑟,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2 

𝑥𝑥1 =  𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1 +  𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2. 

(59) 
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As in eq. (54), the variable 𝑥𝑥1 models the fraction of odorant receptors that are bound at any 

given time. Since we presented odor mixtures of two different odors, odorant receptors can 

either be bound to the first odor or the second order, or not at all. Therefore, by defining 

𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1 and 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2 as the fraction of odorant receptors bound to the two respective odors, we 

have the total fraction of bound odorant receptors: 𝑥𝑥1 =  𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1 +  𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2. 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1 and 

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2 represent the odorant concentration profiles for each odor experienced by the larvae. 

Similarly, 𝑏𝑏𝑟𝑟,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1 and 𝑏𝑏𝑟𝑟,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2 define their respective binding rate constants, while 𝑑𝑑𝑟𝑟,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1 

and 𝑑𝑑𝑟𝑟,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2 their respective dissociation rate constants.  

For the modelling of the co-receptor channel 𝑥𝑥2, and the calcium channel 𝑥𝑥3, we adopt 

the following equations: 

  
𝑑𝑑𝑥𝑥2
𝑑𝑑𝑑𝑑

= 𝛼𝛼2 𝑥𝑥1 (1 − 𝑥𝑥2) − 𝛽𝛽2 𝑥𝑥2 − 𝜅𝜅 𝑥𝑥2
2/3 𝑥𝑥3

2/3 

𝑑𝑑𝑥𝑥3
𝑑𝑑𝑑𝑑

= 𝛼𝛼3 𝑥𝑥2 − 𝛽𝛽3 𝑥𝑥3, 

 

(60) 

where 𝑥𝑥1 is the total fraction of odorant receptors bound by both odors. The parameters of 

eq. (60) are defined in the previous chapter [5]. All other equations in the odorant 

transduction model are identical as before. Note that besides the odorant-receptor specific 

binding/dissociation rates added to the odor transduction model, all other parameters remain 

the same as found in the previous chapter [5]. 

For the spike generator model, we assumed that the firing dynamics were similar across 

OSNs besides the different responses in odorant transduction. Therefore, we adopted the 
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same spike generator model and parameters for both the Or42a and Or42b OSNs (Figure 

31B). 
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Figure 31: Expansion of the computational model reproducing depolarization block to 
different OSNs and odors. (A) Framework of the integrated OSN model [5] with an 
adapted odorant transduction model to account for differences between the Or42a and 
Or42b and their responses to different odors. (B) The spike generator model is assumed to 
be identical to that of the integrated OSN model [5] for both the Or42a and Or42b OSNs. 
(C) Dose responses of the mean tonic firing rates of real (dashed lines) and simulated (plain 
lines) Or42a, Or42b OSNs for: ethyl acetate (top), ethyl butyrate (middle), and methyl 
acetate (bottom). (D) Simulated OSN activity (gray, simulation; black, experiment) and odor 
experience for a sample trajectory of a single larva in an odor mixture of ethyl butyrate (left 
source) and ethyl acetate (right source). The red line indicates the basal firing activity of the 
OSNs. (E) Same as (D), for a sample trajectory of a single larva in an odor mixture of 
methyl acetate (left source) and ethyl butyrate (right source). 
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The Or42a and Or42b OSN models were optimized using electrophysiology recordings 

for different stimulus patterns for each type of odor. This consisted of step stimuli at 

different concentrations, along with a linear ramp, exponential ramp, and sigmoid ramp. 

Parameter optimization involved fitting the binding/dissociation rates for each odorant-

receptor pair using the global optimization toolbox in MATLAB with a genetic algorithm. 

The objective was to minimize the normalized root mean squared error between the 

experimentally recorded firing rate and the predicted firing rate of the OSN model. In the 

parameter optimization procedure, we matched the number of simulated trials with the 

existing number of experimental trials. 

Results 

After parameter optimization, we were able to predict the responses of the Or42a and 

Or42b OSNs to single odors of ethyl acetate, ethyl butyrate, and methyl acetate. We found 

that modifying the binding/dissociation rates associated with the odor transduction model 

alone, was sufficient to account for the response profiles of both OSNs to different stimulus 

patterns. In addition, the dose response curves obtained from simulating the steady state 

response to step stimuli were in agreement with actual experimental electrophysiology 

recordings for both OSNs (Figure 31C). 

To validate the OSN model, we extracted trajectory segments from the odor 

discrimination learning assay and simulated the expected odor concentrations experienced 

by the larvae over time. We then obtained electrophysiology recordings of these behavioral 

replays (Figure 31D-E). The question was whether the OSN model could predict the 
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responses to different combinations of odor mixtures and whether competitive binding was a 

valid assumption. Upon comparing the simulation of these trajectory segments using the 

OSN model with the experimental data, we observed that we were able to predict the firing 

activity of both OSNs to odor mixtures in the depolarization block regime (Figure 31D), as 

well as in the spiking regime (Figure 31E). With the accurate predictions of the biophysical 

OSN model, we now had a means for investigating when and how larvae were able to 

discriminate odors in the odor discrimination learning assay. 

We began by simulating the firing activities experienced by larvae during training for 

different odor conditions. This data analysis pipeline involved first extracting the trajectory 

segments of larvae from videos obtained from the PiVR odor discrimination set-up. Next, 

we used these trajectories to simulate the odor concentration profiles experienced by larvae 

over the last 30 seconds of training. Finally, we used the OSN model to simulate the firing 

activity of the Or42a and Or42b OSNs based on these odor concentration profiles and 

extracted the mean firing activity over the last 3 seconds of the simulation. We performed 

this analysis for different dilutions of odor source concentrations: ethyl acetate (1:10K or 

1:10 × 𝟏𝟏𝟏𝟏𝟑𝟑, 1:1K, 1:50), ethyl butyrate (1:10K, 1:400, 1:175) and methyl acetate (1:25, 

1:10). The result is illustrated in (Figure 32A,C), where each point represents the firing 

activity experienced for a given Or42a/b double functional larva. In Figure 32A, we plot the 

firing activities of larvae during the last phase of training for each odor paired with a 

fructose reward. In Figure 32C, we show the firing activities of the Or42a and Or42b OSNs 

during the last phase of training for the same odor without the fructose reward. We observe 

that regardless of whether fructose is rewarded or not, that the OSN firing activities 

experienced during training are similar as shown by where the clusters corresponding to 
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each odor are situated in the neural map (Figure 32B, D). We also observe that each odor 

exists in different well separated manifolds in this two-dimensional Or42a-vs-Or42b neural 

map, gradually moving towards the upper right at increasing odor concentrations. Note that 

depolarization block caused by excessive stimuli results in the OSN firing activity to crash 

abruptly to zero, as observed in the odor condition ethyl acetate 1:50 (EtA50). 

 

Figure 32: Representations of different odors in the 2D Or42a, Or42b neural space. 
Simulated steady state OSN activities of experimental larvae trajectories during training 
under different odor dilutions (red - ethyl acetate 1:10K or 1:10 × 𝟏𝟏𝟏𝟏𝟑𝟑, 1:1K, 1:50; yellow - 
ethyl butyrate 1:10K, 1:400, 1:175; methyl acetate 1:25, 1:10) (B) Neural map of the same 
conditions in (A) when fit with a Gaussian model. (C) Same as (A) but with no fructose 
reward. (D) Same as (B) but with no fructose reward. 
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Out of all these different odor conditions, we selected several pairs and asked whether 

larvae would be able to discriminate the two, using the experimental protocol described in 

Figure 28. At the most basic level, we first compared ethyl acetate 1:10K with ethyl butyrate 

1:10K. In order for larvae to discriminate these two odors, they would need to recognize that 

ethyl acetate 1:10K (red) leads to firing of the Or42b OSN while ethyl butyrate 1:10K 

(yellow) does not (Figure 33A). For both odors, the Or42a OSN is below firing threshold 

and remains silent. Thus, the question is whether the binary response of a single OSN allows 

larvae to discriminate. 
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Figure 33: Simulated representation of neural activity experienced during the training 
phase for different odors paired with fructose reward. (A) Ethyl acetate 1:10K (red) vs. 
ethyl butyrate 1:10K (yellow). (B) Ethyl acetate 1:1K (red) vs. methyl acetate 1:10 (blue). 
(C) Ethyl acetate 1:50 (red) vs. ethyl butyrate 1:175 (yellow). (D) Ethyl butyrate 1:400 
(yellow) vs. methyl acetate 1:25 (blue). 

 

In the remaining odor conditions from Figure 33B-D, we ask under what circumstances 

larvae would be able to discriminate odors that activate both the Or42a and Or42b OSNs. In 

Figure 33B, the odor ethyl acetate 1:1K (red) activates the Or42b OSN, while methyl acetate 

1:10 (blue) activates both the Or42a and Or42b OSNs. Since the Or42a OSN has similar 
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firing activity for both odors, larvae would need to rely on the response of Or42b to perform 

odor discrimination. 

In Figure 33C, we test a similar scenario between ethyl acetate 1:50 (red) and ethyl 

butyrate 1:175 (yellow). In this case, the odor ethyl acetate 1:50 activates the Or42a OSN, 

while ethyl butyrate 1:175 activates both the Or42a and Or42b OSNs. This is similar to the 

previous condition in Figure 33B where one odor is activating one OSN while the other odor 

is activating two OSNs. However, one caveat is that while the Or42b OSN is silent under 

the stimulus of ethyl acetate 1:50, the OSN is also undergoing depolarization block. 

Compared to the previous condition, the question is whether the addition of depolarization 

block enhances or has any effect on discrimination.  

In the last remaining condition illustrated in Figure 33D, we test the limits of 

discrimination by introducing a condition where each odor activates both the Or42a and 

Or42b OSNs. To discriminate ethyl butyrate 1:400 (yellow) and methyl acetate 1:25 (blue), 

a simple binary threshold on either OSN is not enough since one cannot find a threshold on 

either the Or42a or Or42b OSN that separates the two clusters perfectly. Instead, separating 

these clusters would involve a model at least as complex as a linear discriminant [93], which 

would require computing linear combinations of OSN activities.  
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Figure 34: Simulated representation of neural activity experienced during the test 
phase for different pairs of odors. (A) Ethyl acetate 1:10K (red) vs. ethyl butyrate 1:10K 
(yellow). (B) Ethyl acetate 1:1K (red) vs. methyl acetate 1:10 (blue). (C) Ethyl acetate 1:50 
(red) vs. ethyl butyrate 1:175 (yellow). (D) Ethyl butyrate 1:400 (yellow) vs. methyl acetate 
1:25 (blue). 

 

After the training phases, we investigated whether larvae developed a bias during the test 

phase when both odors were presented at once. Using the 2D neural representation 

introduced in Figure 32, we found that depending on which odor larvae were paired with the 

0 10 20
Or42a OSN  Activity (Hz)

0

20

40

O
r4

2b
O

S
N

 A
ct

ivi
ty

 (H
z)

EtA1K vs MA10

EtA1K Paired
MA10 Paired

0 10 20
Or42a OSN  Activity (Hz)

0

20

40

O
r4

2b
O

S
N

 A
ct

ivi
ty

 (H
z)

EtA10K vs EtB10K

EtA10K Paired
EtB10K Paired

0 10 20
Or42a OSN  Activity (Hz)

0

20

40

O
r4

2b
O

S
N

 A
ct

ivi
ty

 (H
z)

EtA50 vs EtB175

EtA50 Paired
EtB175 Paired

0 10 20
Or42a OSN  Activity (Hz)

0

20

40

O
r4

2b
O

S
N

 A
ct

ivi
ty

 (H
z)

EtB400 vs MA25

EtB400 Paired
MA25 Paired

BA

C D



 

139 

 

fructose reward, that they would have an increased tendency to seek out the fructose paired 

odor source during the test phase. This effect is illustrated in Figure 34, which shows the 

distribution of firing activities experienced by larvae in the test phase. We can observe from  

the striking difference in the distributions for the conditions in Figures 34A and C, that on 

average more larvae are aggregating in regions where they had experienced the fructose 

reward during training.  However, for the conditions in Figures 34B and D, this learning 

effect is less pronounced as the distributions between the paired conditions look more 

similar visually.  

 
Figure 35: Experimental learning index for each tested odor pairing. (A) Illustration of 
the learning index. (B) Learning indices for each odor condition determined using automated 
trajectory reconstruction. The error bars denote the standard error of the mean.  

 

To quantify exactly how well the larvae are discriminating the odors after training, we 

defined a learning index (LI) [97]: 

  (61) 

BA
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𝐿𝐿𝐿𝐿 =  
𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑁𝑁𝑟𝑟𝑖𝑖𝑔𝑔ℎ𝑡𝑡

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
  

 

Where 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the number of larvae on the side of the arena with the fructose-paired odor, 

𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 is the number of larvae on the other half of the arena, and 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the total number 

of experimentally tested animals. The learning index is calculated at the end of the test 

phase. The learning index is bounded between −1 and 1: larvae that learn perfectly will 

have a performance of 𝐿𝐿𝐿𝐿 = 1, while larvae that always select the odor without the fructose 

reward would have a performance of 𝐿𝐿𝐿𝐿 = −1 (this would be equivalent to aversive 

learning). 

For the first three conditions from Figure 33A-C, we observed that larvae were able to 

discriminate between the two odors (Figure 35B). In particular, the condition comparing 

ethyl acetate 1:50 with ethyl butyrate 1:175 (Figure 33C) displayed the highest 𝐿𝐿𝐿𝐿, which 

coincidentally is the only condition with depolarization block. The last condition had a low  

𝐿𝐿𝐿𝐿 and did not have a statistically significant difference when compared to the control with 

no fructose reward (Figure 35D). 

 

Discussion 

To understand why the conditions from Figure 33A-C are discriminable while Figure 

33D is not, we built classifiers to investigate how simple it is in theory to discriminate each 

condition. In Figure 36, we used the support vector machine algorithm to find a firing rate 

threshold for either the Or42a or Or42b OSN that best separates the clusters corresponding 

to each odor. In the case of the support vector machine, the best separation is defined as 
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maximizing the margin between the points from each cluster that are closest to the decision 

boundary.  

For ethyl acetate 1:10K vs. ethyl butyrate 1:10K (Figure 36A), the training clusters are 

well separated by a threshold on the Or42b OSN activity. For ethyl acetate 1:1K vs. methyl 

acetate 1:10 (Figure 36B), a threshold on the Or42a OSN activity also separates the training 

clusters, though the margin between the two classes is smaller. Given that the inter-class 

distance (the Euclidean distance between the neural representations of different odors) is the 

main difference between these two conditions, it is likely that the inter-class margin in 

neural representations plays a role in how well larvae discriminate. This may explain why 

the learning index for the latter condition is slightly lower in Figure 35B.  
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Figure 36: Theoretical implementation of discrimination over 1 dimension. The solid 
and dotted lines represent the decision boundaries for the two respective groups of larvae 
paired with each odor.  (A) Ethyl acetate 1:10K (red) vs. ethyl butyrate 1:10K (yellow). (B) 
Ethyl acetate 1:1K (red) vs. methyl acetate 1:10 (blue). (C) Ethyl acetate 1:50 (red) vs. ethyl 
butyrate 1:175 (yellow). (D) Ethyl butyrate 1:400 (yellow) vs. methyl acetate 1:25 (blue). 
 

For the condition with the highest learning index, ethyl acetate 1:50 vs. ethyl butyrate 

1:175 (Figure 36C), we can see that the training clusters are easily separable by thresholds 

over both the Or42a and Or42b OSN activities. This condition also has the feature of 

depolarization block induced by the odor ethyl acetate 1:50 in the Or42b OSN, bringing the 

Or42b OSN below the basal firing rate. Thus, depolarization block may assist in 
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discrimination by increasing the inter-class distances between neural representations of 

odors. 

 On the other hand, for the condition with the lowest learning index in Figure 36D, we 

observe that the training clusters are non-separable by thresholds over the Or42a and Or42b 

OSN activities. Although the inter-class distance between Figure 36B and Figure 36D are 

similar, ethyl butyrate 1:400 vs. methyl acetate 1:25 has a significantly lower learning index. 

This provides a hint as to how larvae implement decision boundaries, because while this 

odor condition is non-separable using the thresholds applied in Figure 36, the training 

clusters are actually separable if we consider the slightly more sophisticated linear 

discrimination (Figure 35). However, this method of discrimination would require the larvae 

to be able to compute linear combinations of OSN activities. So far, our data suggests that 

larvae are unable to accomplish this. With the various odor concentrations tested in Figure 

32, our next step is to perform additional experiments to confirm the type of classifier that 

larvae implement in their olfactory neural circuitry.  



 

144 

 

 
Figure 37: Theoretical implementation of linear discrimination using a support vector 
machine. The solid and dotted lines represent the decision boundaries for the two respective 
groups of larvae paired with each odor.  (A) Ethyl acetate 1:10K (red) vs. ethyl butyrate 
1:10K (yellow). (B) Ethyl acetate 1:1K (red) vs. methyl acetate 1:10 (blue). (C) Ethyl 
acetate 1:50 (red) vs. ethyl butyrate 1:175 (yellow). (D) Ethyl butyrate 1:400 (yellow) vs. 
methyl acetate 1:25 (blue). 

 

While the neural correlates of olfactory discrimination have not yet been discovered, our 

biophysical simulations of OSNs at the sensory periphery provides a step forward in 

understanding the neural representations of odor identity and intensity [98]. Furthermore, 

our odor discrimination learning assay with Or42a/b double functional larvae provides a 

simple testbed for investigating the type of computations that biological neural circuits use 
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to classify sensory information, which is difficult to study in higher-order model organisms 

due to their overwhelming complexity. Here, our simulations suggest that neural 

representations of odors are encoded more precisely at the sensory periphery rather than 

behaviorally (Figure 35D), which is consistent with recent findings demonstrating that 

neural precision surpasses behavioral precision in mice and in humans [92]. Our approach, 

similar to ref. [90], shows that theoretical classifiers like support vector machines or linear 

discriminant analysis can be used to decode odor identities from neural representations of 

odors.  

Given that depolarization block brings the firing activities of OSNs below their basal 

firing rates, it appears that this feature enhances discrimination by adding an extra 

dimension to the neural code of olfaction. Depolarization block also promotes sparsity, 

which has been shown to be beneficial in olfaction to overcome the bottleneck in the limited 

number of olfactory receptor types [99]. This sets the stage for us to show quantitatively 

whether depolarization block enhances the overall theoretical coding capacity of the 

olfactory sensory system.   
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Conclusion 

 
In summary, we utilized computational models to study several fundamental 

computations involving sensory coding and processing in the olfactory system of the 

Drosophila larva. In the first chapter, we developed an agent-based model to explore how 

the Drosophila larva combines multisensory cues and found that neural circuits in an insect 

brain are capable of computing signal variance and performing probabilistic inference [4]. In 

the second chapter, we developed a biophysical model of OSNs to study the dynamics of 

depolarization block in olfaction [5]. In the final chapter, we used our biophysical OSN 

model to explore how depolarization block contributes to odor encoding and discrimination, 

allowing us to also discover clues revealing how biological neural circuits perform 

classification.  

In future work, it would be exciting to expand our biophysical neuron models beyond the 

sensory periphery of the OSNs and study the dynamics of the olfactory sensory system at a 

network level. This would allow us to, for example, pinpoint the computations of 

downstream neurons performing odor discrimination. In addition, the underlying dynamics 

of these neuron models may uncover temporal aspects of odor encoding not considered 

previously [100]. With the recent arrival of the Drosophila larva connectome and the rapid 

progress of imaging techniques to reconstruct and record high resolution representations of 

the brain [1], it is an opportune time to study the computational mechanisms of olfaction in 

the Drosophila larva. 
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