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Abstract 

An important aspect of intelligent behavior is the ability to reason, 
make decisions, and act in spite of uncertainty. This paper presents 
a qualitative logic of decision that supports decision-making under 
uncertainty. To be specific, the paper presents a knowledge represen­
tation language based upon subjective Bayesian decision theory that 
aims to capture some aspects of common-sense reasoning associated 
with making decisions about actions. The language addresses the 
problem of describing justifications of rational choices in situations 
where the alternatives involve trading off potential losses and gains. 
The logic and an associated qualitative arithmetic are implemented 
in an efficient PROLOG program. Examples illustrate their use in 
several concrete decision-making situations. 

1This paper is a result of research supported in part by the National Science Foun­
dation Grant Number IRI-8813048, McDonnell Douglas Corporation, Douglas Aircraft 
Company, and the University of California Microelectronics Innovation and Computer 
Research Opportunities Program. 



Contents 

List of Figures 11 

List of Tables 11 

1 Introduction 1 
1.1 Motivation . . . . . . . . . . . . . . 1 
1.2 Deciding Whether to Do an Action 1 

2 An Arithmetic on Qualitative Probabilities and Utilities 5 
2.1 Qualitative Probabilities and Utilities . 5 
2.2 Qualitative Comparisons 6 
2.3 Arithmetic Operations . . . . . . . . 6 

3 Qualitative Decisions About Actions 8 
3.1 Justifiable vs. Necessary Rational Acts 8 
3.2 Decisions Given the Odds of Success 8 
3.3 Qualitative Rules for Action . . . . . 9 

4 Examples 12 
4.1 Deciding Which Wine to Bring 12 
4.2 Pascal's Wager . . . . . . . . . 13 

5 Related Work 15 

6 Conclusion 16 

Acknowledgements 1 7 

Appendices 18 

A Extended Arithmetic on Odds and Utilities 18 

B PROLOG Implementation 21 

References 27 

1 



List of Figures 

1 
2 
3 
4 
5 
6 

Decision Surface . . . . . . . . . . . . . . . . . 
Decision Curve for Fixed Odds . . . . . . . . . 
Hierarchy of Non-Negative Odds and Utilities 
Qualitative Rules for Action Based on Linear Inequalities . 
Decision Analysis for the Wine Example 
Decision Analysis for Pascal's Wager 

List of Tables 

1 Qualitative Addition . . . . . . . 
2 Qualitative Multiplication . . . . 
3 Qualitative Multiplicative Inverse 
4 Qualitative Division . 
5 O(P) = 0 
6 O(P) =CJ 

7 O(P) = 1 
8 O(P) = /3 
9 O(P) = oo . 
10 Qualitative Addition With Negatives 
11 Qualitative Additive Inverse With Negatives 
12 Qualitative Subtraction With Negatives ... 
13 Qualitative Multiplication With Negatives . 
14 Qualitative Multiplicative Inverse With Negatives 
15 Qualitative Division With Negatives ...... . 

11 

3 
4 
5 

11 
13 
14 

6 
7 
7 
7 
9 
9 

10 
10 
10 
19 
19 
19 
20 
20 
20 



1 Introduction 

1.1 Motivation 

A hallmark of intelligent behavior is the ability to reason, make decisions, and 
act in spite of uncertainty. Whether our goal is to construct computational 
models of intelligence or to construct intelligent artifacts, we must have some 
account of decision-making under uncertainty. 

Early AI researchers shunned probability - partly because numerical 
probabilities are not ordinarily available. In an important early article on 
knowledge representation, McCarthy and Hayes claimed that "a formalism 
that required numerical probabilities would be epistemologically inadequate" 
(McCarthy &Hayes, 1969). Recently, however, there has been increasing in­
terest in subjective Bayesian descriptions of reasoning under uncertainty in 
AI (see, e.g., Cheeseman, 1985; Pearl, 1988). One reason for this is that 
several important domains (such as medical diagnosis) have been identified 
where one can reasonably expect to have the relevant numbers. Another 
reason is that techniques for qualitative reasoning under uncertainty are be­
ginning to appear. 

This paper presents a qualitative logic of decision based upon subjective 
Bayesian decision theory that aims to capture some aspects of common­
sense reasoning associated with making decisions. The logic has the same 
relation to Bayesian decision theory as qualitative physics has to physics. In 
cases where abstract reasoning is sufficient and numbers for probabilities and 
utilitities are not known with certainty, the logic can be used for calculations. 

1.2 Deciding Whether to Do an Action 

In this section we review the decision-analytic approach to deciding whether 
to do an operation that may benefit us under certain conditions but may 
entail a risk of negative consequences if these conditions do not hold (Chung, 
1974; North, 1968; Raiffa, 1968). Let P be a predicate, the truth of which we 
are uncertain about. Assume that the a priori probability of P being true, 
Prob(P) is p.- The odds of P being true is by definition 

O(P) = Prob(P) = _P_. 
Prob(P) 1- p 

(1) 
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Let us assume that we can evaluate the outcomes whether or not we 
execute the operation, whether or not Pis true. In other words, assume that 
we have a utility function that assigns values to the outcome of executing op 
when P is true, the outcome of executing op when P is false, the outcome of 
not executing op when P is true, and the outcome of not executing op when 
Pis false. 

utility of op when P = U(op, P) 
utility of op when P = U(op, P) 

utility of op when P = U(op,P) 

utility of op when P = U (op, P) 

The expected utility of action op is the weighted average: 

EU( op)= U(op,P) x p+ U(op,P) x (l -p) 

The expected utility of op is given by 

EU( op)= U(op,P) x p+ U(op,P) x (l -p) 

It is reasonable to do op iff its expected utility is as large as that of op. 

may(op) H EU(op) ~ EU(op) 

(2) 

(3) 

(4) 

Another way to look at this is in terms of the odds of P and the change 
in utility when op is executed. Let us introduce the following notation for 
the differences between the utility of doing op and the utility of not doing op 
under the different conditions. 

81 = /1Up(op) = U(op,P)- U(op,P) 

82 = 11Up(op) = U(op, P) - U(op, P) 

A positive difference in utility corresponds to a gain, while a negative differ­
ence corresponds to a loss incurred by doing op. The inequality in ( 4) says 
that op is reasonable iff 

EU( op) - EU( op)~ 0 (5) 

This can be expressed in terms of losses and gains: 

!1Up(op) x p + 11Up(op) x (1 - p) ~ 0 (6) 

2 
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Figure 1: Decision Surface 

When pis 1, this means that op is reasonable if ii does not lead to a loss 
when P is true. Otherwise, we can divide by 1 - p to get the following. 

O(P) x D.Up(op) ~ -D.Up-(op) (7) 

The three dimensional graph in figure 1 shows the decision surface sep­
arating situations where one should do the operation from situations where 
one should not do the operation. We are only concerned with ;half of three 
dimensional space since O(P) ~ 0. The decision surface corresponds to sit­
uations where D.Up(op) = -O(P) x D.Up(op). It is reasonable to do op or 
not at any point on the surface. One should do op in the region marked "+". 
One should not do op in the region marked "-". 

Considering any fixed value of the odds of P amounts to taking the inter­
section of a plane with the decision surface. The result is a line separating 
the regions with slope equal to -O(P) (see figure 2). H the odds of P is 
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Figure 2: Decision Curve for Fixed Odds 

zero, the line coincides with the horizontal axis. Then, it is certain that P 
is false, so op should be done iff the utility of doing op when P is greater 
than the utility of not doing op when P. The vertical axis corresponds to 
the case when the probability of P is 1. When we are certain that P is true, 
op should be done iff the utility of doing op assuming P is greater than the 
utility of not doing op when P. 

Note that one should do op in the first quadrant since doing op yields 
relatively higher utilities regardless of whether P is true. One should not 
do op in the third quadrant since there are losses associated with doing op 
whether P is true or false. In quadrants two and four, the best decision 
depends on the odds and utilities. In quadrant four, P supports the decision 
to do op, since there is a gain associated with doing op when P is true and 
a loss associated with doing op when Pis false. In quadrant two, P weighs 
against doing op since there is a gain associated with doing op when P is 
false and a loss is associated with doing op if P is true. 

Regardless of the quadrant, the following decision rule holds. 

should(op) +-- L~ . .U-p(op) > -O(P) x .6.Up(op) (8) 
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Figure 3: Hierarchy of Non-Negative Odds and Utilities 

2 An Arithmetic on Qualitative Probabili­
ties and Utilities 

In this section we introduce a simple language for expressing qualitative 
probabilities, odds, costs, and utilities. We also introduce orderings and 
arithmetic operations that can be used in reasoning about qualitative odds 
and utilities. 

2.1 Qualitative Probabilities and Utilities 

There are special constant terms 0, 1, and oo. Zero and one have their 
usual interpretation. Infinity is treated in a manner consistent with the 
role of infinity in the extended reals (see the appendices for details). As 
shown in figure 3, there are special sorts of variables: a, /3, and 7r and 
N. a stands for a small number strictly greater than zero and less than 
one while /3 stands for any number strictly greater than one. 7r may be 
used to designate any finite number greater than zero and N designates 
any nonnegative number (including zero). So N is a completely ambiguous 
description that may disambiguate to any element of the set {O, a, 1, /3, oo} 
given additional information. We use capital nu as a mnemonic: nu for "non­
negative." The use of the capital reminds us that (unlike the other sorts) N 
includes oo. The type 7r includes 1 and the subtypes a and /3. Zero, one, and 
infinity are elements of type N and a, /3, and 7r are subtypes of type N. 
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Table 1: Qualitative Addition 

X+Y 0 er 1 f3 00 

00 00 00 00 00 00 

f3 f3 /3 f3 f3 00 

1 1 f3 /3 f3 00 

er er 7r /3 /3 00 

0 0 a 1 f3 00 

2.2 Qualitative Comparisons 

Several predicates on qualitative probabilities and utilities are useful. Equal­
ity is viewed as a co-designation constraint on two descriptions. So an equal­
ity between a variable of type 7r and a variable of type f3 is satisfied by binding 
the variable of type 7r to the variable of type (3. 

Qualitative orderings are captured by qualitative "less" predicates. Zero 
is strictly less than all quantities of type 7r. Quantities of type a are strictly 
less than one. One is strictly less than any quantity of type (3. Zero, one, 
and all quantities of type a, (3, and 7r are strictly less than oo. 

2.3 Arithmetic Operations 

Constraints on sums of quantities are captured by a qualitative addition 
relation summarized in table 1. Note that a+ a is ambiguous: it may be any 
finite quantity greater than zero. 

Constraints on products of quantities are captured by a qualitative mul­
tiplication relation summarized in table 2. Note that a x f3 is ambiguous: it 
may be any quantity greater than zero. Note that we do not follow the stan­
dard convention that arbitrarily defines infinity times zero as zero. Instead 
we make infinity times zero completely ambiguous (N). 

Qualitative multiplicative inverses are listed in table 3. Note that 1/0 is 
defined to be oo and 1 / oo is 0. The inverse function maps 1, 7r, and N into 
themselves. It maps a into f3 and vice versa. 

Qualitative division may be defined in terms of multiplication and multi­
plicative inverse. The resulting qualitative division operation is summarized 
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Table 2: Qualitative Multiplication 

XxY 0 u 1 f3 00 

00 N 00 00 00 00 

f3 0 7r f3 f3 00 

1 0 u 1 f3 00 

u 0 u u 7r 00 

0 0 0 0 0 N 

Table 3: Qualitative Multiplicative Inverse 

in table 4. Note that dividing quantities of type 7r by zero yields infinity. 
Zero divided by any positive quantity (including infinity) is (defined to be) 
zero. Dividing any nonnegative quantity but infinity by infinity also yields 
zero. Dividing u or f3 by itself yields an ambiguous quantity of type 7r. Zero 
divided by zero and infinity divided by itself are defined to be ambiguous 
(N). 

Table 4: Qualitative Division 

X/Y 0 u 1 f3 00 

00 00 00 00 00 N 

f3 00 f3 f3 7r 0 
1 00 f3 1 u 0 
u 00 7r u u 0 
0 N 0 0 0 0 
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3 Qualitative Decisions About Actions 

In this section, we describe a qualitative method for deliberation about ac­
tions based upon the qualitative calculus of probabilities and utilities de­
scribed earlier. The method is compatible with a subjective Bayesian view 
of deliberation. According to Jeffrey (1983), "the Bayesian principle is ... to 
choose an act of maximum estimated desirability." 

3.1 Justifiable vs. Necessary Rational Acts 

We use the decision theoretic notion of expected utility (Chung, 1974; North, 
1968; Raiffa, 1968) to estimate desirability. We use the distinction between 
indifference and preference to distinguish between justifiable and necessary 
actions. We shall say that "the action A is justified," "it is reasonable to do 
action A" or "the qualitative calculus sanctions action A" given constraints 
on the relevant odds and utilities C if and only if the union of C and the 
additional constraint 

Vx E Alternatives(A) {EU(A) ~ EU(x)} 

is satisfiable. 
We shall say that an action is "the only reasonable thing to do," "nec­

essary," or "required by the qualitative calculus" given constraints C on the 
relevant odds and utilities if and only if 

Vx E Alternatives(A) {EU(A) > EU(x)} 

is true in every interpretation of C. 

3.2 Decisions Given the Odds of Success 

It is interesting to look at the special cases of the WinLose tradeoff (Quadrant 
II of figure 2) that result when we fix the odds of success. If the odds of P 
is zero, there is no loss to gain ratio that requires the operation, but it is 
not ruled out if the potential loss is zero or if the potential gain given P is 
infinite. (See table 5.) 

If the odds of p is between zero and one, one should do op if there is a 
gain doing op when P is true and the utility does not change when P is false. 

8 



Table 5: O(P) = 0 
op? 0 ()" 1 /3 00 

00 - - - - ? 
/3 - - - - ? 
1 - - - - ? 
()" - - - - ? 
0 ? ? ? ? ? 

Table 6: O(P) = o-

op? 0 ()" 1 /3 00 

00 - - - - ? 
/3 - - - ? + 
1 - - - ? + 
()" - ? ? ? + 
0 ? + + + + 

One also should do op if the gain is infinite but the potential loss is finite. 
(See table 6.) 

If the odds of p is exactly one, one should do op if the potential gain doing 
op when P is true is strictly greater than the drop in utility from doing op 
when P is false. It is not clear what to do in the cases where the potential 
gain is the same as the potential loss. (See table 7.) 

If Pis more likely than not, table 8 applies. 
If P is certain then table 9 applies. 

3.3 Qualitative Rules for Action 

This section presents compact qualitative rules for deciding whether to per­
form a given act. Should( op) is intended to be true in situations correspond­
ing to points in the decision region marked + in figures 1 and 2. Should( op) 
is intended to be true in the decision region marked -. 
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Table 7: O(P) = 1 

op? 0 (J' 1 /3 00 

00 - - - - ? 
/3 - - - ? + 
1 - - ? + + 
(J' - ? + + + 
0 ? + + + + 

Table 8: O(P) = /3 
op? 0 (J' 1 /3 00 

00 - - - - ? 
/3 - ? ? ? + 
1 - ? + + + 
(J' - ? + + + 
0 ? + + + + 

Table 9: O(P) = oo 

op? 0 (J' 1 /3 00 

00 ? ? ? ? ? 
/3 ? + + + + 
1 ? + + + + 
(J' ? + + + + 
0 ? + + + + 
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Win Win: should( op) +- 81 > 0, 82 > 0. 

WinLose: gain = 81 , loss= - 82 , odds= O(P) +- 81 2 0 2 82 . 

LoseWin: gain= 82 , loss= - 8i, odds= O(P) +- 82 2 0 2 81 . 

Yi : should( op) +- gain = oo, loss =J oo, odds > 0. 

Y2 : should( op) +- gain > 0, loss =J oo, odds = oo. 

Y3 : should( op) +- gain > 0, loss = 0, odds > 0. 

Y4 : should( op) +- gain 2 loss, odds > 1. 

Y5 : should( op) +- gain > loss, odds 2 1. 

N1 : should( op) +- gain =Joo, loss= oo, odds =Joo. 

N 2 : should( op) +- gain =J oo, loss > 0, odds= 0. 

N3 : should( op) +- gain= 0, loss > 0, odds =Joo. 

N 4 : should( op) +- loss 2 gain, odds > 1. 

N 5 : should(op) +- loss> gain, odds 2 1. 

LoseLose: should( op) +- 0 > 81 , 0 > 82 . 

Figure 4: Qualitative Rules for Action Based on Linear Inequalities 
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Special cases in which it is expected that one will do op are given in figure 
4. This rule set is incomplete but nevertheless the rules specify a valuable 
set of conditions under which an operation is reasonable or expected. The 
Win Win rule covers situations where doing op is advantageous whether or 
not P is true. In these situations, the odds of P are irrelevant and one should 
obviously do the operation. The LoseLose rule covers situations where doing 
op leads to losses whether or not P is true. Again, in these cases the odds of 
P are irrelevant and one should not do op. 

The WinLose and LoseWin rules exploit symmetries to get a more con­
cise collection of decision rules covering quadrants four and two, respectively. 
Rule Yl says when to do an action that leads to overwhelming gains. Rule 
NI says to avoid actions that lead to overwhelming losses. Rules Y2 and N2 
apply to situations where one is certain to gain (or lose). Rules Y3 and N3 
deal with situations where there is no prospect of loss (gain). Y4 and Y5 
say one should do op if the potential gain outweighs the potential loss and 
the odds of the gain are better than even. One should not do op when it has 
a less than even chance of success and the downside outweighs the potential 
gain (N4, N5). 

4 Examples 

In this section, we illustrate the qualitative logic of decision by applying it to 
several examples involving tradeoffs between potential gains and losses. The 
first one is based on Jeffrey's "the right wine" example (1983, pp. 3-4). This 
second one illustrates the use of infinite utilities using a well known religious 
argument: Pascal's wager. 

4.1 Deciding Which Wine to Bring 

"The dinner guest who is to provide the wine has forgotten whether 
chicken or beef is to be served. He has no telephone, has a bottle 
of white and a bottle of red, and can only bring one of them (in 
an oversized pocket) since he is going by bicycle." 

Assume that the relevant odds and utilities are as shown in figure 5. The 
absent-minded guest believes the chances of chicken and beef are even. Red 
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G beef 

0 chicken 

-B beef 

G chicken 

Figure 5: Decision Analysis for the Wine Example 

wine with beef and white wine with chicken are rated as equally good out­
comes ( oo =f G > 0). He is indifferent to the possibility of drinking red wine 
with chicken but would prefer to avoid bringing white wine if beef is to be 
served (-oo =f -B < 0). 

The constraints in this case are: 81 = G--B = G+B, 82 = 0-G = -G, 
and Odds = 1. Regardless of the exact values of G and B, the guest should 
bring the red wine since this is the better choice. In terms of expected utility, 
G > G - B. Note that this is a special case of the WinLose situation and 
rule 15 in figure 4 applies. 

4.2 Pascal's Wager 

In his Pensees (Pascal, 1966) Pascal argued that rational individuals should 
choose to live their lives as if God exists, even though it may not be possible 
to determine whether God actually exists. 

Let us then examine this point and say1 "God is1 or He is not. 11 ... 

What will you wager? ... Let us weigh the gain and loss of wager­
ing that God is ... there is here an infinity of an infinitely happy 
life to gain, a chance of gain against a finite number of chances 

13 



J-B God Exists 

-B There is no God 

G-A God Exists 

G There is no God 

Figure 6: Decision Analysis for Pascal's Wager 

of loss1 and what you stake is finite ... every player stakes a cer­
tainty to gain an uncertainty! and yet he stakes a finite certainty 
to gain a finite uncertainty! without transgressing against reason 
... the uncertainty of the gain is proportioned to the certainty of 
the stake according to the proportion of the chances of gain and 
loss . ... And so our proposition is of infinite force, when there is 
the finite to stake in a game where there are equal risks of gain 
and loss, and the infinite to gain. This is demonstrable; and if 
men are capable of truths, this is one. 

Following (Chimenti, 1990)2 Let p be the probability that God exists in 
Pascal's sense. In other words, in this example, the proposition P is that 
God exists, God cares about each individual's behavior, and God will re­
ward (punish) behavior he (dis)approves of in an eternal afterlife. Figure 6 
illustrates a simplified version of Chimenti's analysis of the decision. The 
question is whether to live a life pleasing to God (this is the choice labelled 
"be nice" in the figure) or to live a life pleasing to oneself (and "be naughty") 

2 We simplify Chimenti's analysis a bit by ignoring complications (such as the possibility 
of "quixotic payoffs") that do not affect the conclusion of the decision analysis. 
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instead. 
If we're nice we shoulder the burden (-B ~ 0) of a disciplined life but 

if God exists we obtain the "joys of heaven" ( J ;:::: 0). If we're naughty we 
obtain the "gratifications of life" ( G 2 0) but if God exists, we suffer the 
"anguish of Hell" (-A~ 0). 

The expected utility of a virtuous life is p x (J - B) + (1 - p) x -B = 
p x J - B. The expected utility of sin is p x ( G - A)+ ( 1-p) x G = G - p x A. 

Looking at this is in terms of odds, losses and gains, the net gain gotten 
by refraining from sin if God exists is 81 = J - B - ( G -A) = J +A- B - G. 
The loss when God does not exist is 82 = -B - G. 

In terms of our qualitative calculus, this is a special case of rule Yi in 
figure 4. Pascal assumes that J = oo = A but that B =f. oo =f. G. The 
relevant inequality is then /3 ~ odds x oo. This is true (for some value of 
the product) for all possible (non-negative) odds including odds = 0. We 
interpret this to mean that no matter what the odds of God's existence, it is 
reasonable to act as if He existed. 

Fortunately, the ambiguity of 0 x oo makes it possible to be a hedonistic 
atheist without being irrational. However, mere agnostics are condemned 
to being good or being irrational. Any value of odds consistent with the 
constraint 0 < odds implies the strict inequality /3 < odds x oo. So if one is 
the least bit uncertain about God's (non) existence, one should live as if He 
does exist. 

5 Related Work 

Our arithmetic for combining constraints has close relatives in work on quali­
tative reasoning about the physical world (Weld &de Kleer, 1990). The main 
difference is that we employ different constraints and landmarks since we deal 
in odds and utilities instead of purely physical quantities like pressures and 
levels of liquids. The economic view of rational deliberation about action 
taken here was advocated in an invited talk by Jon Doyle (Doyle, 1990). It 
is also inspired by advanced work on decision theory in AI involving med­
ical applications (see, for example, Langlotz, Fagan, Tu &Shortliffe, 1987; 
Langlotz &Shortliffe, 1989; Langlotz, Shortliffe &Fagan, 1986a; Langlotz, 
Shortliffe &Fagan, 1986b ). 

The most closely related domain-independent work is Wellman's research 
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on qualitative probabilistic networks for planning (Wellman, 1988). Wellman 
presents a method for determining admissible plans based on graphical ma­
nipulations of influence diagrams. Wellman's method is similar to our work 
in that both aim to identify conclusions that do not depend on the exact val­
ues of quantities. It is important to note, however, that Wellman's scheme 
was intended to form only part of a comprehensive planning program. The 
kinds of qualitative influences exploited by Wellman are not sufficient to re­
solve true tradeoffs. Our work breaks thru the "equivalence up to trade-offs" 
by taking advantage of additional constraints on odds and utilities. 

6 Conclusion 

Real world tasks often involve goals of varying importance and they often 
require trading off costs and benefits. For example, in studying examples of 
diagnostic planning with our industrial collaborators, we find that technicians 
often must decide whether to verify that a suspected fault is actually present. 
Sometimes it is more cost-effective simply to replace the potentially faulty 
component, as when confirmation is expensive but repair is inexpensive. The 
logic presented here enables us to automate this sort of diagnostic decision­
making even when we don't have exact figures for the relevant odds, costs, 
and benefits. 

If the relevant numbers are available, we take advantage of them. But 
even then, the abstractions afforded by the qualitative calculus can be useful 
in stripping away inessential details of particular examples. Like Wellman, 
we also aim to identify minimal assumptions necessary for results so as to 
provide more coherent and compelling explanations than those generated 
under complete information. In fact, our main motivation for developing a 
qualitative logic of decision is to extend explanation-based learning to do­
mains involving uncertainty and goals of various priorities (see O'Rorke &El 
Fattah, 1991). 
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A Extended Arithmetic on Odds and Utili­
ties 

Here we describe an extension of the qualitative arithmetic on odds and 
utilities that allows negative utilities. This arithmetic adapts the usual con­
ventions associated with the extended real numbers (Royden, 1968; Rudin, 
1976). 

The real number system ~ is extended by adding positive and negative 
infinities. The result, ~ U {-oo, +oo }, is not a field but the following con­
ventions are usually adopted. 

~U {-oo,+oo} 

oo + oo = 00,-00 - oo = -oo; 

oo x (±oo) = ±oo, -oo x (±oo) = =t=oo; 

Vx E ~ ... 

-oo < x < oo; 
x x 

x + oo = oo, x - oo = -oo, - = -- = O; 
00 -oo 

x > 0 :::} x x oo = oo, x x ( -oo) = -oo; 

x < 0 :::} x x 00 = -oo, x x ( -00) = 00. 

The arbitrary convention that 0 x oo = 0 is usually adopted as well. 
For our purposes, however, it is better to make this product ambiguous. 
Ambiguities are allowed if we view arithmetic operations as defining relations 
rather than well-defined functions. While oo - oo is usually left undefined, 
we make the difference ambiguous, allowing it to take on any value from 
-oo to +oo. While division by zero is usually left undefined, we adopt the 
convention that 0/0 is ambiguous but dividing anything except 0 by 0 yields 
±oo. 
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Table 10: Qualitative Addition With Negatives 

X+Y -00 -/3 -1 -CT 0 CT 1 /3 00 

00 ±N 00 00 00 00 00 00 00 00 

/3 -00 {0,±7r} 71" 71" /3 /3 /3 /3 00 

1 -00 -71" 0 CT 1 /3 /3 /3 00 

CT -00 -71" -CT {O, ±er} CT 71" /3 /3 00 

0 -00 -/3 -1 -CT 0 CT 1 /3 00 

-CT -00 -/3 -/3 -71" -CT {O, ±er} CT 71" 00 

-1 -00 -/3 -/3 -/3 -1 -CT 0 71" 00 

-/3 -00 -/3 -/3 -/3 -/3 -71" -71" {O, ±7r} 00 

-00 -00 -00 -00 -00 -00 -00 -00 -00 ±N 

Table 11: Qualitative Additive Inverse With Negatives 

-/3 -1 -CT 0 CT 1 (3 

/3 1 CT 0 -CT -1 -/3 

Table 12: Qualitative Subtraction With Negatives 

X+Y -00 -/3 -1 -CT 0 CT 1 /3 00 

00 00 00 00 00 00 00 00 00 ±N 
/3 00 /3 /3 /3 /3 71" 71" {O, ±7r} -00 

1 00 /3 /3 /3 1 CT 0 -71" -00 

CT 00 /3 /3 71" CT {O, ±er} -CT -71" -00 

0 00 /3 1 CT 0 -CT -1 -/3 -00 

-CT 00 71" CT {O, ±er} -CT -71" -/3 -/3 -00 

-1 00 71" 0 -CT -1 -/3 -/3 -/3 -00 

-/3 00 {O, ±7r} -71" -71" -/3 -/3 -/3 -/3 -00 

-00 ±N -00 -00 -00 -00 -00 -00 -00 -00 
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Table 13: Qualitative Multiplication With Negatives 

XxY -00 -(3 -1 -u 0 u 1 (3 00 

00 -00 -00 -00 -00 ±N 00 00 00 00 

(3 -00 -(3 -(3 -71" 0 71" (3 (3 00 

1 -00 -(3 -1 -u 0 u 1 (3 00 

u -00 -71" -u -u 0 u u 71" 00 

0 ±N 0 0 0 0 0 0 0 ±N 
-u 00 71" u u 0 -u -u -71" -00 

-1 00 (3 1 u 0 -u -1 -(3 -00 

-(3 00 (3 (3 71" 0 -71" -(3 -(3 -00 

-00 00 00 00 00 ±N -00 -00 -00 -00 

Table 14: Qualitative Multiplicative Inverse With Negatives 

-u 
-(3 

Table 15: Qualitative Division With Negatives 

X/Y -00 -(3 -1 -u 0 u 1 (3 00 

00 ±N -00 -00 -00 ±oo 00 00 00 ±N 
(3 0 -71" -(3 -(3 ±oo (3 (3 71" 0 
1 0 -u -1 -(3 ±oo (3 1 u 0 
u 0 -u -u -71" ±oo 71" u u 0 
0 0 0 0 0 ±N 0 0 0 0 

-u 0 u u 71" ±oo -71" -u -u 0 
-1 0 u 1 (3 ±oo -(3 -1 -(1 0 
-(3 0 71" (3 (3 ±oo -(3 -(3 -71" 0 
-00 ±N 00 00 00 ±oo -00 -00 -00 ±N 
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B PROLOG Implementation 

% Decisions, decisions ... 
% Version 4. Works with Qualitative Arithmetic version 4. 
% Primary improvement over version one is incorporation of numbers in 
% addition to 0,sigma,1,beta, and infinity. 
% This version can do the example 0=3,D=1750,Md=150. 
% Handles Pascal's wager: 
% D=infinity, Md=beta yields all possible values for odds except zero. 
% (Note generate and test needed to handle all possible values 
% of ambiguous quantities like pi*beta.) 

% Decisions about whether to do op. 
% 0 is the prior Odds of some Predicate P being true. 
% Md is the negative of the expected utility of doing op when not P minus the 
% expected utility of not doing op when not P. 
% D is the expected utility of doing op when P minus 
% the expected utility of not doing op when P. 
may_do_op(O,D,Md):- qmult(O,D,Prod),qless_or_equal(Md,Prod). 
may_not_do_op(O,D,Md):- qmult(O,D,Prod),qless_or_equal(Prod,Md). 
ambivalent(D,D,Md):- may_do_op(O,D,Md),may_not_do_op(O,D,Md). 
should_do_op(O,D,Md):- non_negative(O),non_negative(D),non_negative(Md), 

forall(qmult(O,D,Prod),qless(Md,Prod)). 
should_not_do_op(O,D,Md):- qmult(O,D,Prod),qless(Prod, Md). 
% should_not_do_op (0 ,D ,Md): - may _not_do_op (0 ,D ,Md) ,not ambivalent (0 ,D ,Md). 
poss_situation(O,D,Md):-non_negative(O), non_negative(Md), non_negative(D). 
simple_shoulds(L):-setof([O,D,Md], 

(poss_situation(O,D,Md), 
should_do_op(O,D,Md)),L). 

simple_should_nots(L):-setof([O,D,Md],(poss_situation(O,D,Md), 
should_not_do_op(O,D,Md)),L). 

simple_may_or_may_nots(L):-setof([O,D,Md] ,(poss_situation(O,D,Md), 
ambivalent(O,D,Md)),L). 

buggy(O,M,D):-should_do_op(O,M,D),should_not_do_op(O,M,D). 

member(X,L):-on(X,L). % for LPA MacProlog 
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% LPA PROLOG implementation of a qualitative arithmetic on odds and utilities 
% by Paul O'Rorke t Margaret Elliott. 
% Zero and One (and minus One) are the only concrete landmarks 
% in the quantity spaces. 
% One is significant because it marks even odds. 
% -infinity<-beta<-1<-sigma<O<sigma<1<beta<infinity. 
% Concrete numbers may be used in addition to Ot1. 
% Incorporates negatives. 
% Compatible with most of the std conventions on the extended real numbers 
% (see Rudin "Principles of Mathematical Analysis" 
Y. and Royden "Real Analysis"). 
Y. Tested against tables 1/31/91. 
Y. The strategy here is to avoid throwing away information 
% contained in given numbers. 
% Unless indicated otherwise, the following statements are certainly true. 
% In the current approach, ambiguities are represented 
% as alternative interpretations. 
% it might be better to introduce ambiguous constants in a hierarchy. 
% nu for arbitrary non-negative numbers. 
% pqnum for undetermined elements of {sigma,1,beta}. 
% pqnum is used in place of pi here to avoid colliding 
% with the built-in pi relation. 
% non_negative(nu). 
non_negative(O). 
% positive(pqnum). 
pqnum(sigma). 
pqnum(1). 
pqnum(beta). 
pqnum(X):-number(X),O<X. 
nqnum(-X):-pqnum(X). 
positive(X):-pqnum(X). 
positive(infinity). 
non_negative(X):-positive(X). 
negative(-X):-positive(X). 
negative(-1). % negative(-X) fails on negative(-1) without this. Why? 

qnum(O). 
qnum(Z):-positive(Z). 
qnum(Z):-negative(Z). 

22 



% Qualitative Equivalence and Equality. 
qequiv(X,sigma):-number(X),O<X,X<1. 
qequiv(X,-sigma):-number(X),Y is -1*X,qequiv(Y,sigma). 
qequiv(X,beta):-number(X),1<X. 
qequiv(X,-beta):-number(X),Y is -1*X,qequiv(Y,beta). 
qequal(X,X). 

% Qualitative Ordering. 
% Here we only order the bottom elements 
% of the hierarchical quantity space. 
% Next three lines same as 
% qsuccessor(-X,-Y):-positive(X),positive(Y),qsuccessor(Y,X). 
qsuccessor(-infinity,-beta). 
qsuccessor(-beta,-1). 
qsuccessor(-1,-sigma). 
qsuccessor(-sigma,0). 
qsuccessor(O,sigma). 
qsuccessor(sigma,1). 
qsuccessor(1,beta). 
qsuccessor(beta,infinity). 
qsuccessor(X,Y):-number(X),qequiv(X,Z),qsuccessor(Z,Y). 
qless(X,Y):- number(X),number(Y),X<Y. 
qless(X,Y):- qsuccessor(X,Y). 
qless(X,Y):- qsuccessor(X,Z), qless(Z,Y). 
qless_or_equal(X,Y):- number(X),number(Y),X=<Y. 
qless_or_equal(X,Y):- qequal(X,Y). 
qless_or_equal(X,Y):- qequiv(X,Z), qequal(Z,Y). 
qless_or_equal(X,Y):- qequiv(Y,Z), qequal(X,Z). 
qless_or_equal(X,Y):- qless(X,Y). 

% Qualitative Addition. 
qadd(X,Y,Z):- number(X), number(Y), Z is X+Y. 
qadd(X,Y,Z):- number(X), not number(Y), qequiv(X,XX), qadd(XX,Y,Z). 
qadd(X,Y,Z):- not number(X), number(Y), qequiv(Y,YY), qadd(X,YY,Z). 
% qadd(-X,-Y,-Z):-positive(X), positive(Y),qadd(X,Y,Z). % Doesn't work. Why? 
qadd(Mx,My,Mz):-negative(Mx),qminus(X,Mx), 

negative(My),qminus(Y,My), 
qadd(X,Y,Z),qminus(Z,Mz). 
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% qadd(-X,0,-X):-positive(X). % Doesn't work. Why? 
qadd(Mx,O,Mx):-negative(Mx). 
% Addition is commutative, so we need only write laws for the case 
% when the first argument is qualitatively 
% less than or equal to the second argument. 
qadd(X,Y,Z):- qless(Y,X), qadd(Y,X,Z). % Svitch X and Y to get the other cases. 
qadd(-infinity,infinity,Z):- qnum(Z). % ambiguous. undefined in Royden. 
qadd(-infinity,X,-infinity):-qnum(X), not X=infinity. 
% -sigma if -1-sigma<-beta<-1; 
% -1 if -beta=-1-sigma<-1; 
% -beta if -beta<-1-sigma<-1. 
qadd(-beta,sigma,-X):-pqnum(X). 
% -sigma if -2<-beta<-1; -1 if -2=-beta<-1; -beta if -beta<-2<-1. 
qadd(-beta,1,-X):-pqnum(X). 
% -beta1+beta2<-1 if beta2<beta1-1; =-1 if beta2=beta1-1. 
qadd(-beta,beta,-X) :-pqnum(X). 
qadd(-beta,beta,O). 
qadd(-beta,beta,X):-pqnum(X). 
qadd(-1,sigma,-sigma). 
qadd(-1,1,0). % redundant. 
qadd(-1,beta,X):-pqnum(X). % sigma if 1<beta<2; 1 if beta=2; beta if 2<beta 
qadd(-sigma,sigma,-sigma). 
qadd(-sigma,sigma,O). 
qadd(-sigma,sigma,sigma). 
qadd(-sigma,1,sigma). 
qadd(-sigma,beta,X):-pqnum(X). 
qadd(O,Y,Y):-qnum(Y). 
% qadd(sigma,sigma,pqnum). % ambiguous. folloving interpretations possible. 
qadd(sigma,sigma,X):- pqnum(X). 
qadd(sigma,1,beta). 
qadd(sigma,beta,beta). 
q add ( 1, 1 , bet a) . 
qadd(1,beta,beta). 
qadd(beta,beta,beta). 
qadd(X,infinity,infinity):-qnum(X). 

% Qualitative Additive Inverse. 
qminus(infinity,-infinity). 
qminus(beta,-beta). 
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qminus(1,-1). 
qminus(sigma,-sigma). 
qminus(O,O). 
qminus(-sigma,sigma). 
qminus(-1, 1). 
qminus(-beta, beta). 
qminus(-infinity,infinity). 

% Qualitative Subtraction. 
qsub(X,Y,Z):-qminus(Y,MY), qadd(X,MY,Z). 

% Qualitative Multiplication. 
qmult(X,Y,Z):- number(X),number(Y), Z is X*Y. 
qmult(X,Y,Z):- number(X), not number(Y), 

qequiv(X,XX), qmult(XX,Y,Z). 
qmult(X,Y,Z):- not number(X), number(Y), 

qequiv(Y,YY), qmult(X,YY,Z). 
% qmult(-X,-Y,Z):- positive(X), positive(Y),qmult(X,Y,Z). % Doesn't work. Why? 
qmult(Mx,My,Z):- negative(Mx),qminus(Mx,X), 

negative(My),qminus(My,Y),qmult(X,Y,Z). 
% qmult(-X,Y,-Z):- positive(X),positive(Y),qmult(X,Y,Z). % Doesn't work. Why? 
qmult(Mx,Y,Mz):- qminus(Mx,X),positive(X),positive(Y), 

qmult(X,Y,Z),qminus(Z,Mz). 
% Multiplication is commutative, so we need only write laws 
% for the case when the first arg is 
% qualitatively less than or equal to the second. 
qmult(X,Y,Z):- qless(Y,X), qmult(Y,X,Z). % Switch args to get other cases. 
qmult(-infinity,O,Z):- qnum(Z). % zero times infinity indeterminate. 
qmult(O,Y,0):- positive(Y), qless(Y,infinity). 
qmult(X,0,0):- negative(X). 
qmult(O,infinity,Z):- qnum(Z). % zero times infinity indeterminate. 
qmult(sigma,sigma,sigma). 
qmult(sigma,1,sigma). 
% qmult(sigma,beta,pqnum). the following are 3 interpretations. 
qmult(sigma,beta,X):-pqnum(X). 
qmult(1,Y,Y):-qless_or_equal(1,Y). 
qmult(beta,beta,beta). 
qmult(X,infinity,infinity):-positive(X). 
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% Qualitative Multiplicative Inverse. 
% Made the inverse of 0 fail in the past. 
% Now treating it as plus or minus infinity. 
% PROLOG may collapse -0 and 0 
% but this is what we want at present (we have no epsilons). 
qinverse(O,infinity). 
qinverse(O,-infinity). 
qinverse(X,Y):- number(X), not X=O, not number(Y), Y is 1/X. 
qinverse(X,Y):- number(Y), not Y=O, not number(X), Xis 1/Y. 
qinverse(sigma,beta). 
qinverse(1,1). % Redundant but keep for generation of solutions. 
qinverse(beta,sigma). 
qinverse(infinity,O). 
qinverse(-infinity,O). 
% qinverse(-X,-Y):- pqnum(X), qinverse(X,Y). % Doesn't work for Y=1. 
qinverse(Mx,My):-negative(Mx),qminus(Mx,X),negative(My), 

qminus(My,Y),qinverse(X,Y). 

% Qualitative Division. 
qdiv(X,Y,Z):- qinverse(Y,Yinv), qmult(X,Yinv,Z). 
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