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Stimulus Generalization in Category Learning 
 

Matt Jones, W. Todd Maddox, and Bradley C. Love  
[mattj,maddox,love]@psy.utexas.edu 

University of Texas, Department of Psychology, 1 University Station A8000 
Austin, TX 78712 USA 

 
 

Abstract 

Stimulus generalization is often regarded as a fundamental 
component of category learning, yet it has not been directly 
studied in this context.  Here we develop a technique for 
measuring generalization based on sequential effects in 
subjects’ responses.  We find that patterns of generalization 
can adapt to global properties of the task, but only when the 
category structure is defined by perceptually primitive and 
separable dimensions.  Implications are discussed for 
attentional learning and the nature of both perceptual and 
category representations. 

Introduction 
Perhaps the most fundamental task facing the brain is to use 
past experience to determine useful behavior in novel 
situations.  For example, in deciding whether a particular 
snake is poisonous, one might draw on knowledge of other, 
similar snakes whose toxicity was known.  The details of 
this process can be critical:  Basing one’s response on other 
snakes of similar color and markings may be effective, but 
relying on irrelevant properties such as length could have 
disastrous consequences.  In other words, successful 
generalization depends critically on knowledge of which 
variables are relevant to the current prediction. 

One task in which stimulus generalization is believed to 
play an important role is category learning (Medin & 
Schaffer, 1978).  However, in contrast to the rich body of 
data in conditioning (see Shepard, 1987), stimulus 
generalization in category learning has yet to be directly 
investigated.  Often it is assumed that generalization 
operates the same in these two tasks, and generalization 
functions that have been empirically supported in 
conditioning studies are incorporated into the similarity 
functions of categorization models (Kruschke, 1992; Love, 
Medin, & Gureckis, 2004; Nosofsky, 1986).  However, the 
richer nature of representations involved in category 
learning (e.g., Maddox & Ashby, 1993; Rosch et al., 1976; 
Sloman, Love, & Ahn, 1998) suggests that generalization in 
this domain may be far more complex than is currently 
assumed. 

The primary aim of this paper is to develop and explore a 
method for directly assessing stimulus generalization in 
category learning.  The technique, described in more detail 
below, is based on a close connection between 
generalization and recency effects (Jones & Sieck, 2003).  
Here we present two experiments designed to validate this 
approach and to relate it to previous findings on attentional 
learning.  Our results show good support for the approach 
and illustrate how it can provide insight into perceptual 

representations and the distinction between integral and 
separable dimensions.  We conclude by discussing the 
broader applicability of this new methodology as well as its 
implications for the nature of perceptual and category 
representations, attentional learning, and the roles of short- 
and long-term memory in categorization. 

Recency effects and stimulus generalization  
Recency effects are a robust phenomenon in repeated 
judgment tasks.  For example, in studies of probability 
learning (repeated uncued forced-choice tasks), it has been 
regularly found that subjects are biased to select whichever 
response was reinforced on the previous trial (see Myers, 
1970, for a review).  Jones and Sieck (2003) found that this 
same effect occurs in cued categorization: Once the identity 
of the current stimulus is controlled for, subjects tend to 
choose the category that was correct on the previous trial.  
This marginal effect of learning from the previous trial can 
be interpreted as generalization from one stimulus to the 
next, because it reflects the belief that the current stimulus is 
likely to belong to the same category as the previous 
stimulus.  Consistent with this interpretation, Jones and 
Sieck found that the magnitude of the recency effect 
depends on the similarity between the present and previous 
stimuli, as shown in Figure 1.  Stimuli in these experiments 
were hypothetical medical patients varying in the presence 
or absence of three symptoms.  The recency effect was 
greatest when successive stimuli were identical and 
decreased with each cue mismatch, fully disappearing for 
cases of complete mismatch.  The approximately exponential 
decrease is similar to the functional form of generalization 
commonly found in conditioning (Shepard, 1987). 

Figure 1:  Recency effects as a function of number of 
mismatching cues between present and previous stimuli.  
(From Jones and Sieck, 2003, Expt. 2, control condition.) 
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This phenomenon offers a potentially powerful tool for 
measuring stimulus generalization during category learning.  
The basic idea is to measure generalization from the 
previous stimulus by measuring the influence of that 
stimulus’ category membership on the current response.  
For example, generalization from stimulus X to Y can be 
defined as the difference in category A responses between 
trials on which Y follows X and X was in category A and 
trials on which Y follows X and X was in category B.1  By 
determining how this generalization effect depends on the 
relationship between pairs of stimuli, we can gain important 
information about the nature of the representations 
underlying categorization. 

To be clear, we do not mean to claim that recency effects 
and stimulus generalization are the same thing.  Presumably 
stimulus generalization occurs from many or all previous 
stimuli, but this generalization is far stronger for the 
stimulus presented most recently.  This latter fact is what is 
meant by the recency effect.  The existence of the recency 
effect is in fact irrelevant to the theoretical issues addressed 
in this paper. However, it is critical to the practicality of the 
empirical investigation, as it causes information from the 
previous trial to account for a large proportion of the 
variance in subjects’ responses, thus allowing for 
statistically reliable estimates of generalization behavior. 

Measuring stimulus generalization  
in category learning 

The present study aims to extend the above findings to a 
more detailed investigation of stimulus generalization in 
category learning.  We present the results of two 
experiments designed to verify the viability of the approach 
by testing hypotheses about how generalization changes 
with learning.  In the concluding section we describe 
ongoing research using our technique to address a range of 
other issues. 

One important issue in studies of category learning is 
selective attention.  A number of models assume that the 
similarity metric underlying generalization can adapt, such 
that certain dimensions receive more weight than others 
(Kruschke, 1992; Love et al., 2004; Nosofsky, 1986).  The 
standard prediction (e.g., Nosofsky, 1986) is that attention 
will shift to those dimensions that are most predictive of the 
category outcome.  This implies that the generalization 
gradient for these dimensions will be sharper; that is, 
generalization will be weaker between stimuli that differ on 
a diagnostic dimension as compared to an irrelevant 
dimension.  This adaptive generalization effect makes sense 
from a normative standpoint, as illustrated by the 
introductory example.  However, empirically it is not 
entirely clear when adaptive generalization should be 
expected to occur, and approaches based on fits of the 
aforementioned models have failed to yield consistent 

                                                           
1 Note that this approach requires a probabilistic category structure, 
i.e. one in which every stimulus appears with some non-zero 
frequency in every category. 

conclusions (Maddox & Ashby, 1998).  The present 
experiments address this issue using the recency effect-
based technique for measuring generalization. 

Experiment 1 
Experiment 1 investigates stimulus generalization during 
category learning, and in particular how the pattern of 
generalization changes with learning.  Stimuli were visual 
images that varied along two continuous and separable 
dimensions.  Three category structures were used: two in 
which only one stimulus dimension was relevant, and a third 
in which both dimensions combined additively to predict the 
outcome (Fig. 2A-C).  The principle questions were whether 
similarity-based generalization occurs with these continuous 
stimuli, and if so whether generalization adapts to the 
category structure.   

Our primary hypothesis regarding adaptive generalization 
was that subjects in the unidimensional conditions would 
weight the diagnostic dimension more heavily, so that 
generalization between stimuli would be selectively 
sensitized to discrepancies on this dimension.  The 
prediction for the integration condition was less certain.  
One possibility was that there would be no effect on 
generalization because both dimensions must be attended to.  
This is the prediction made by most attentional learning 
models, which assume that input dimensions are processed 
separately each with its own attention weight.  However, a 
second possibility was that subjects would learn to 
selectively attend to the diagonal dimension; that is, 
generalization would adapt relative to the category structure 
just as in the unidimensional conditions.  Thus a comparison 
between the two types of category structures allows a test of 
how closely generalization is tied to perceptual 
representation. 

Method 
Participants.  Sixty-five members of the University of 

Texas, Austin, participated for payment or course credit. 
Stimuli.  Stimuli were 6-cm square Gabor patterns (sine-

wave gratings within a Gaussian envelope), varying in the 
frequency and orientation of the grating.  There were 100 
stimuli present in each condition, arranged in a 10×10 grid 
in stimulus space. 

Design.  Participants were randomly assigned to one of 
three conditions.  In the Frequency (F) and Orientation (O) 
conditions, category outcomes depended only on frequency 
or orientation, respectively.  In the Integration (I) condition, 
both frequency and orientation were predictive of category 
membership.  More precisely, the probability that a stimulus 
S would belong to category A on any particular presentation 
was given by P[S∈ A] = [1+e-σf(S)]-1, with f(S) defined by 
frequency (condition F), orientation (O), or the difference 
(frequency – orientation) 2/  (I).  In computing this 
probability, the two stimulus dimensions were 
parameterized so as to have equal ranges centered on 0 
(between ±4.5 in conditions F and O and 25.4±  in 
condition I).  The scaling parameter σ was set such that   
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P[S∈ A] ranged between .05 and .95.  The three category 
structures are illustrated in Figure 2A-C. 

Procedure.  On each trial, a stimulus was randomly 
selected and presented in the center of a 43-cm computer 
monitor.  The subject responded by pressing one of two 
keys on the keyboard.  The correct answer for that trial was 
sampled according to the formula given above and 
displayed below the stimulus for 1s.  Subjects were not 
informed of the category structure in advance.  The 
experiment consisted of 600 trials. 

Analysis 
The data from each subject were analyzed separately to 
obtain measures of long-term cue use as well as patterns of 
generalization.  Specifically, we fit each subject’s responses 
to a logistic regression model with predictors given by the 
feature values of the current and previous stimuli along with 
a term representing generalization: 

1,1,1,0)logodds( −−− Γ+++β≈ �� nnn
i

ini
i

inin CSvSwR . (1) 

Here Rn represents the response on trial n; Sn,i gives the 
value of stimulus n on dimension i; Γn,n-1 is the strength of 
generalization from Sn-1 to Sn; and Cn-1 is the correct 
category on trial n-1, coded as +1 for A and -1 for B (so that 
Cn-1 determines the direction of the generalization effect).  
The remaining variables are regression weights.  The critical 
variables in this model are wi, which gives the strength of 
association from cue i to category A, and Γn,n-1, which is 
discussed below.  The purpose of the model is to allow 
measurement of generalization effects between successive 
stimuli as a function of their similarity, while controlling for 
the identity of each stimulus.2  

                                                           
2 The functional form of the terms involving Sn and Sn-1 is intended 
to be agnostic about the nature of long-term stimulus-category 
associations.  The additive form used here matches that of the 
category structures, i.e., all 3 conditions can be written as 

.)logodds( ,�= i inin SWC  Controlling for the previous stimulus is 
necessary due to the possibility of perceptual contrast effects. 

Three forms were investigated for the generalization 
function: 

� −−α−
− =Γ inini SS

nn ke ,1,
1,    (2A) 

� −−α−
− =Γ

2
,1, )(

1,
inini SS

nn ke    (2B) 

� −− −α−=Γ inininn SSk ,1,1,   (2C) 

Each of these functions has a value given by k when Sn and 
Sn-1 are identical and decreases with increasing dissimilarity 
between these stimuli.  The first corresponds to an 
exponential function of inter-stimulus distance with distance 
given by a city-block metric.  The second corresponds to a 
Gaussian function of distance with distance given by a 
Euclidean metric.  Both of these generalization functions 
have been proposed previously (e.g., Nosofsky, 1986; 
Shepard, 1987).  The third version is a linear function that 
we consider for sake of generality and because it does not 
assume a priori that generalization decreases with distance 
(i.e., the α parameters were allowed to be negative in this 
model but not in the other two).  Because the Gaussian-
Euclidean model provided significantly better fits than the 
exponential–city-block and linear models, the results 
presented here are based on that model.  The other two lead 
to the same conclusions. 

A further property of the generalization functions in 
Equation 2 is that each stimulus dimension is weighted by 
the corresponding α parameter.  Larger values of α 
correspond to increased attention and steeper generalization 
gradients.  Thus comparing estimated values of α1 and α2 
gives a measure of selective generalization.  For this 
purpose a generalization bias parameter, β, is defined as 

21

1

α+α
α=β .    (3) 

This variable measures the relative influence of the two 
dimensions in determining strength of generalization, and is 
constrained to lie between 0 and 1 (when α1, α2 ≥ 0). 
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Figure 2:  Category structures for both experiments.  Panels A-C show Experiment 1 conditions F (frequency), O 
(orientation), and I (integration), respectively.  Each circle represents a stimulus, with shading indicating probability of 
membership in category A.  Panel D shows Experiment 2.  Dotted lines indicate category bounds for conditions 1 through 
4 (these bounds are probabilistic, as in Panels A-C).  Axes are rectangular coordinates derived from the Hue-Chroma 
polar coordinates of the Munsell system. 
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Table 1:  Primary measures for Experiment 1 
   
Condition wfrequency worientation k β Performance 
F .735 -.056 1.419 .712 69.0% 
O .024  .377 1.629 .444 61.1 
I .474 -.304 1.070 .652 64.7  
Notes:  Condition F is frequency-relevant; O is orientation-
relevant; I is integration (both relevant).  Values of k are 
medians because of skew; all other values are means. 

Results 
The generalization model given by Equations 1 and 2B was 
fit to each subject’s data, with frequency and orientation 
represented on a common scale as described above.  Mean 
values for primary measures are displayed in Table 1. 

Recency effects and similarity-based generalization.  The 
baseline strength of the recency effect, given by the 
parameter k, was positive for every individual subject.  Thus 
the recency effect is quite robust in this task.  To test 
whether the recency effect declined with stimulus 
dissimilarity, values of αfrequency and αorientation were examined 
from the linear model (Eq. 2C; the Gaussian model is 
inappropriate for this question because it assumes a 
negatively sloped generalization function a priori).  
Estimates were positive for 61 of 65 subjects for αfrequency 
and 55 subjects for αorientation.  Wilcoxon signed-ranks tests 
(used because both distributions were heavy-tailed) showed 
both effects to be highly significant, ps < 10-6. Therefore 
generalization depends positively on stimulus similarity. 

Selective generalization.  Mean values of the 
generalization bias parameter β indicate that generalization 
in both unidimensional conditions shifted to depend more 
heavily on the task-relevant dimension (see Table 1).3  The 
difference among conditions was confirmed by analysis of 
variance, F(2,62) = 3.72, p < .05.  A planned comparison 
contrasting conditions F and O was also significant, t(62) = 
2.59, p < .02.  Therefore generalization patterns were 
reliably affected by the category structure. 

Figure 3 illustrates this selective generalization effect.  
Shown are the average generalization functions for the 
diagnostic and irrelevant dimensions, based on combined 
data from both unidimensional conditions.  Curves are 
based on median values of k, αdiagnostic, and αirrelevant, with 
αdiagnostic equal to αfrequency for condition F and αorientation for 
O; αirrelevant is defined similarly.  The graph shows how 
generalization drops more rapidly with deviations along the 
diagnostic as compared to the irrelevant dimension. 

Selective generalization and long-term cue use.  This 
analysis addressed whether selective generalization is 
                                                           
3 The overall bias towards frequency is just a scaling effect 
presumably due to greater salience of this dimension given the 
amount of variation present in this experiment.  This salience 
difference also explains the ordering of performance in the three 
conditions. 
 

learned directly or is based on the strength of cue-category 
associations.  A decisional attention measure, analogous to 
the generalization bias β, was computed for each subject as 

||||
||

norientatiofrequency

frequency

ww
w

+
=γ .  (4) 

This parameter measures the relative strengths of long-term 
cue-category associations and is constrained to lie between 
0 and 1.  Next the ANOVA comparing β across conditions 
was re-run with γ included as a covariate.  The effect of 
condition remained significant, F(2,59) = 4.69, p < .05.  The 
effect of γ was also significant, partial r = .468, F(1,59) = 
10.26, p < .01.  The interaction was nonsignificant, F(1,59) 
= .26.  Therefore adaptive generalization is mediated by 
both the true category structure and actual learning of cue-
category associations. 

Diagonal selective generalization.  In condition I, the 
“diagonal” dimension d –  = (frequency – orientation) 2/  is 
maximally diagnostic of category membership and the 
orthogonal dimension, d +  = (frequency + orientation) 2/ , 
is irrelevant.  Therefore the recency-generalization model 
was refit to the condition I data using d –  and d +  in place of 
frequency and orientation.  Analyses based on this model 
are formally equivalent to analyses presented above for the 
unidimensional conditions, with the entire design rotated by 
45 degrees in stimulus space. 

Under the (d – ,d + ) coordinate system there are no scaling 
concerns, because the two dimensions necessarily have the 
same perceptual scale (even if frequency and orientation do 
not).  Therefore values of β can be directly compared to .5.  
The mean value of β obtained under this model was .473 
(which is in the direction opposite of that predicted by 
adaptive generalization) and was not significantly different 
from .5, t(22) = .418.  Thus subjects appear unable to adapt 
their generalization patterns to the diagonal category bound. 

Discussion 
Recency effects in this experiment were robust and declined 
with dissimilarity between successive stimuli, consistent 
with previous findings on stimulus generalization.  In 
addition, comparison of generalization patterns across 
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irrelevant dimensions in Experiment 1 (conditions F and 
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conditions showed clear effects of category structure.  
Specifically, generalization in each unidimensional 
condition was selectively dependent on the task-relevant 
dimension.  This adaptation effect appears to be due to both 
the objective category structure and subjects’ learning of 
that structure.   

In contrast to the unidimensional conditions, the 
integration condition showed no evidence of adaptive 
generalization.  When generalization was measured with 
respect to the diagnostic and irrelevant diagonal dimensions, 
no difference in the weighting of these two dimensions was 
found.  Therefore it appears that stimulus generalization can 
adapt to the structure of a categorization task, but that this 
adaptation is constrained by the nature of the perceptual 
representations involved. 

Experiment 2 
The fact that stimulus generalization can become sensitized 
to primitive perceptual dimensions but not arbitrary 
combinations of these dimensions suggests a close 
connection between adaptive generalization and selective 
attention.  Therefore Experiment 2 investigated 
generalization with stimuli defined by integral dimensions, 
in which selective attention is known to be difficult (Garner, 
1974).  Specifically, stimuli in Experiment 2 were color 
patches varying in hue and saturation.  The prediction was 
that, in contrast to the findings of Experiment 1, subjects 
would be unable to adapt their generalization behavior so as 
to selectively attend to either of these dimensions. 

Methods 
Participants.  Sixty members of the University of Texas, 

Austin, participated for payment or course credit. 
Stimuli.  Stimuli were 5-cm circular color patches.  The 

same 76 stimuli were used in all conditions.  These colors 
formed a regular grid in Munsell color space under the 
rectangular coordinate system derived from the polar 
coordinates of Hue and Chroma (saturation), as depicted in 
Figure 2D.  Hue ranged from 4.3RP to 1.4R and Chroma 
from 12.9 to 20.5; Value (luminance) was constant at 7. 

Design.  Participants were randomly assigned to one of 
four conditions.  The category structure for each condition 
was defined analogously to the structures in Experiment 1, 
with outcome probabilities for the individual stimuli again 
ranging from 5 to 95%.  Orientations of the four category 
structures were all separated by 45 degrees, with each bound 
offset by 22.5 degrees from the stimulus grid (see Fig. 2D). 

Procedure.  The procedure mirrored that of Experiment 1 
and consisted of 500 trials. 

Results 
Data were again analyzed by fitting the generalization 
model (Eqs. 1 & 2B) to each subject’s data. Because there 
are no canonical perceptual axes for color space, the model 
for each subject was fit using the diagnostic and irrelevant 
dimensions for that subject’s category structure. 

The recency-effect parameter k was positive for 55 of the 
60 subjects, indicating a robust recency effect.  Mean values 
of α obtained from the linear version of the model were 
significantly negative for both the diagnostic and irrelevant 
dimensions (Wilcoxon signed-ranks test, ps < 10-9).   

Because the model was fit using the category-specific 
axes, the adaptive generalization hypothesis predicts a mean 
value of β greater than .5.  Contrary to this prediction, the 
mean β was .430, with the difference from .5 non-
significant, t(59) = 1.64, p > .1.  A more direct test of 
adaptive generalization was obtained by comparing pairs of 
conditions with orthogonal category structures (1 vs. 3 and 2 
vs. 4).  The models for these conditions were based on the 
same axes with their labels reversed; thus a direct contrast 
of β between groups was obtained by subtracting one 
group’s values from 1 (e.g., β for condition 1 was compared 
to 1-β for condition 3).  This contrast is the same as that 
performed in Experiment 1 between conditions F and O, 
which provided the primary evidence for adaptive 
generalization in that experiment.  In the present 
experiment, both contrasts were in the direction opposite of 
that predicted, and neither was significantly different from 
zero:  t(28) = 1.57, p > .1 for conditions 1 vs. 3; t(28) = .77, 
p > .4 for conditions 2 vs. 4.  Therefore generalization 
appears to have been unaffected by category structure. 

A final analysis compared generalization to long-term cue 
use, as defined by the decisional attention parameter γ (Eq. 
4).  The correlation between γ and β across subjects was 
.074, which is nonsignificant, p > .5. 

Discussion 
Subjects in Experiment 2 exhibited recency effects and 
similarity-dependent generalization comparable to what was 
found in Experiment 1.  Average performance was also 
matched (64.9% in Experiment 1, 64.3% in Experiment 2).  
However, this time there was no evidence for adaptive 
generalization.  Analysis of weights in the similarity metric 
showed no effect of either objective category structure or 
actual cue use, both of which were seen to have significant 
effects in Experiment 1.  Our use of four category structures 
all varying by 45 degrees eliminates the possibility that 
selective generalization is possible along some unspecified 
perceptual axes.  Whatever these axes might be, they would 
have to have to be within 22.5 degrees of one of the 
structures used here, in which case that condition should 
have exhibited some degree of selective generalization.  
Therefore it appears that for the integral dimensions of hue 
and saturation people are unable to selectively attend to any 
one dimension for the purposes of adaptive generalization. 

General Discussion 
Stimulus generalization has long been acknowledged as an 
important component of category learning, but has not 
previously been studied directly.  The present experiments 
demonstrate how variability in sequential effects can be 
used to obtain a straightforward measure of generalization 
from one stimulus to the next.  Subjects’ tendency to extend 
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the previous category to the current case was seen to 
decrease as a function of the dissimilarity between 
successive stimuli, in a manner similar to established 
findings in studies of conditioning (Shepard, 1987).  
Furthermore, generalization was seen to adapt to the 
category structure, such that task-relevant features were 
weighted more heavily.  However, when the category 
discrimination was based on combining information from 
multiple dimensions or filtering one integral dimension 
from another, selective generalization did not occur.   

The pattern of generalization behavior found here is 
largely in agreement with many models of category 
learning, including the GCM (Nosofsky, 1986), ALCOVE 
(Kruschke, 1992), and SUSTAIN (Love et al., 2004).  This 
correspondence helps to validate our approach and also 
provides empirical support for these models.  However, the 
present results bear only on generalization from the most 
recent stimulus.  Considering categorization tasks in light of 
the distinction between short- and long-term memory raises 
the possibility that information from trials further back is 
used in a qualitatively different way.  Therefore questions 
about the nature of long-term category representations (e.g., 
exemplars, prototypes, decision bounds, clusters) might be 
more fruitfully answered if the contributions of short-term 
memory (i.e., stimulus generalization from recent trials) 
were also taken into account.  We are currently working to 
expand the present methodology to address this issue. 

Another important question raised by our results concerns 
the learning process underlying adaptive generalization.  
Process models of attentional learning such as ALCOVE 
and SUSTAIN assume that attention weights are learned via 
error correction, and thus depend directly on the category 
structure.  The results of Experiment 1 partially support this 
hypothesis, but they also indicate that attentional learning is 
related to learning of cue-category associations.  
Unfortunately the relation found here is only correlational 
and could be due to some third variable such as individual 
variation in relative feature salience.  Therefore a more 
direct test is needed to determine the relative contributions 
of direct learning versus perceived feature relevance to 
adaptation of generalization.  Research currently in progress 
that manipulates sequential dependencies between cues and 
categories will hopefully shed light on this question. 

A final conclusion from this study regards the close 
relationship between adaptive generalization and perceptual 
representation.   It might have been reasonable to expect that 
subjects in the integration condition of Experiment 1 would 
recognize when changes in frequency and orientation were 
mutually reinforcing versus offsetting and generalize more 
in the latter case.  The fact that generalization did not adapt 
in this way implies that generalization is closely tied to and 
constrained by the nature of perceptual representations.   

Adaptive generalization thus provides a useful indicator 
of what types of stimulus variation constitute primitive 
perceptual dimensions.  Under this interpretation, 
Experiment 2 suggests viewing integral dimensions as 
single dimensions from a perceptual standpoint, even 

though physically they have multiple degrees of freedom.  It 
also seems possible that some spaces, for example those 
defined by multiple dimensions of spatial location, admit 
selective generalization in any direction.  We are currently 
evaluating this possibility.  Through this sort of systematic 
investigation we hope to develop a better theory of the 
varieties of perceptual spaces, and address one of the more 
fundamental questions in cognitive science of what 
constitutes a perceptual dimension. 
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