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Abstract. By Foissy’s work, the bidendriform structure of the Word Quasisymmetric Func-
tions Hopf algebra (WQSym) implies that it is isomorphic to its dual. However, the only
known explicit isomorphism due to Vargas does not respect the bidendriform structure. This
structure is entirely determined by so-called totally primitive elements (elements such that
the two half-coproducts vanish). In this paper, we construct two bases indexed by two new
combinatorial families called red (dual side) and blue (primal side) biplane forests in bijec-
tion with packed words. In those bases, primitive elements are indexed by biplane trees and
totally primitive elements by a certain subset of trees. We carefully combine red and blue
forests to get bicolored forests. A simple recoloring of the edges allows us to obtain the first
explicit bidendriform automorphism of WQSym.

Keywords. Bidendriform Hopf algebras, Word Quasisymmetric Functions, packed words,
permutation, primitive elements, duality, tree, forest, global descents

Mathematics Subject Classifications. 05A05, 05A19, 05E05, 05E18

Introduction

Combinatorial Hopf algebras are a common meeting point of different communities. The operad
theory gives a lot of examples, as in numerous cases free algebras over an operad admit a Hopf
algebra structure. For many operads, one can make the structure explicit using combinatorics,
one of the most basic example being the free dendriform algebra on one generator realized as
the Loday—Ronco Hopf algebra of binary trees [LR98].

On the other hand, the theory of symmetric functions often proceeds through non-com-
mutative lifting to better understand the identities. Hence, the community introduced a se-
ries of larger and larger Hopf algebras over a large variety of combinatorial structures. One
of the first step was the introduction of the dual pair of quasi-symmetric functions and non-
commutative symmetric functions [Ges84, GKL"95] to understand the inner product of charac-
ters through the descent algebra [MR95]. It leads to the discovery of the Malvenuto—Reutenauer
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algebra FQSym of permutations. Another example was the introduction by Poirier [Poi96] of
an algebra of Young tableaux. In [DHTO02], it was realized that it can lead to a very simple proof
of the Littlewood—Richardson rule.

An early meeting between the symmetric function and the operad communities was the dis-
covery [HNTOS] that the same procedure allows to construct both the algebra of tableaux and the
algebra of binary trees from the algebra of permutations. One just has to enforce some simple
relation (respectively plactic and Sylvester relation) in the variable of the polynomial realization.

Aside from the algebra of permutations, there is another non-commutative lifting of quasi-
symmetric functions. Indeed Hivert’s action on polynomials whose invariant are quasi-sym-
metric functions [DHTO02, Hiv99] can be lifted to words. Here, its non-commutative invariants
spans the Hopf algebra WQSym of packed words or, equivalently, surjections or even ordered
set partitions. This algebra has various applications in the theory of free Lie algebras is closely
related to the Solomon-Tits algebra and twisted descents, the development of which was mo-
tivated by the geometry of Coxeter groups, the study of Markov chains on hyperplane arrange-
ments (see [NPT13] and the reference therein).

To better understand these algebra, one has to investigate their structure. For the binary
tree algebra it was shown in [HNTOS] that it is free as an algebra and isomorphic to its dual.
Though those properties are quite obvious for the algebra FQSym of permutation, the situation
of WQSym is much more difficult. Its first study is due to Bergeron—Zabrocki [BZ09]. They
showed that it is free and co-free. However, it was only conjectured in [DHTO02] that its primitive
Lie algebra is free and that it is self dual. It is only by a deep theorem of Foissy [Foi07] that
one can show that the second one is too. In particular, until Vargas’s work [Var19], no concrete
isomorphism was known.

Independently, Novelli-Thibon worked on parking functions which is a super-set of packed
words. They endowed the Hopf algebra of parking functions PQSym with a bidendriform
bialgebra structure [NTO7]. Then they describe WQSym as a sub-bidendriform bialgebra
of PQSym [NTO06]. Recall that a dendriform algebra is an abstraction of a shuffie algebra where
the product is split in two half-products. If the coproduct is also split, and certain compatibilities
hold, one gets the notion of bidendriform bialgebra [Foi07].

Building on the work of Chapoton and Ronco [Ron00, Cha02], Foissy [Foi07] showed that
the structure of a bidendriform bialgebra is very rigid. In particular, he defined a specific sub-
space called the space of totally primitive elements, and showed that it characterizes the whole
structure. This does not only re-prove the freeness and co-freeness, as well as the freeness
of the primitive lie algebra, but also shows that the structure of a bidendriform bialgebra de-
pends only on its Hilbert series (the series of dimensions of its homogeneous components). In
particular, any such algebra is isomorphic to its dual. However, Foissy’s isomorphism is not
fully explicit and depends on a choice of a basis of the totally primitive elements. To this end,
one needs an explicit basis of the totally primitive elements. Foissy described such a construc-
tion for FQSym [Foill]. In this paper, we construct a far reaching generalization for packed
words and WQSym so that the basis discribed in [Foil 1] is simply a restriction to permutations
and FQSym is a sub-bidendriform bialgebra of WQSym. We provide two explicit bases of
totally primitive elements, for WQSym and its dual, using a bijection with certain families of
trees called biplane.
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We begin with a background section presenting Foissy’s two rigidity structure theorems
that prove, among other things, the self-duality of any bidendriform bialgebra (Theorem 1.2
and Corollary 1.3). We then define the notion of packed words as well as the two specific bases
(Q and R) of WQSym and its dual, which will be the starting point of our combinatorial anal-
ysis.

Section 2 is devoted to the combinatorial construction of biplane forests (Definitions 2.32
and 2.67) which are our first key ingredient. They record a recursive decomposition of packed
words according to their global descents (Lemma 1.16) and positions of the maximum letter
(Lemma 2.7) or the value of the last letter (Lemma 2.46). We show that the cardinalities of some
specific sets of biplane trees match the dimensions of primitive and totally primitive elements
(Theorems 2.40 and 2.76).

In Section 3 we construct two new bases (O and P Definitions 3.5 and 3.13) of WQSym
and its dual which each contain as a subset a basis for the primitive and totally primitve elements
(see Theorems 3.7 and 3.15). To do so we decompose the space of totally primitive elements as a
certain direct sum which matchs the combinatorial decomposition of packed words (Lemmas 3.4
and 3.12).

Finally in Section 4 we make explicit how bases O and P are sufficient to have an infinite
number of bidendriform automorphism of WQSym. Then we give an explicit isomorphism
based on an involution on packed words. The definition of the bijection require a new kind of
forest mixing red and blue, namely bicolored-packed forests.

1. Background

1.1. Cartier—-Milnor—Moore theorems for Bidendriform bialgebras

The goal of this section is to recall the elements of the definition of bidendriform bialgebras
which are useful for the comprehension of this paper. We refer to [Foi07] for the full list of
axioms.

A bialgebra is a vector space over a commutative field K, endowed with an unitary asso-
ciative product - and a counitary coassociative coproduct A satisfying a compatibility relation
called the Hopf relation A(a - b) = A(a) - A(b). In this paper all bialgebras are assumed to be
graded and connected (i.e. the homogeneous component of degree 0 is K). They are therefore
Hopf algebras, as the existence of the antipode is implied.

A dendriform algebra (see [Lod01, LR98, Ron00, Ron02]) A is a K -vector space, endowed
with two binary bilinear operations <, > satisfying the following axioms, for all a, b, ¢ € A:

(a<b)<c=a=<(b=<c+b>c), (1.1)
(a=b)<c=a»(b=<c), (1.2)
(a<b+a>b)=c=a>(b>c). (1.3)

Adding together Equations (1.1) to (1.3) show that the product a-b:=a < b+a > bis associative.
Adding a subspace of scalars, this defines a unitary algebra structure on K & A. In this paper,
all the dendriform algebras are graded and have null 0-degree component so that the associated
algebra is connected.
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Dualizing, one gets a notion of co-dendriform co-algebra (see [Foi07]) which is a K-vector
space with two binary co-operations (i.e., linear maps A — A® A) denoted by A ., A, satisfying
the dual axioms of Equations (1.1) to (1.3):

(AL ®Id) o A(a) = (Id®AL + Id®A,) 0 AL(a), (1.4)
(A, ®1d) o AL(a) = (Id®AZ) o A, (a), (1.5)
(AL @Id+A. ®1d) o A, (a) = (Id®A,) o A, (a). (1.6)

Adding together Equations (1.4) to (1.6) show that the reduced coproduct A (a):=A_(a)+A, (a)
is co-associative. On K @ A, setting A(a):=1® a4 a ® 1 4+ A(a) defines a co-associative and
co-unitary coproduct.

A bidendriform bialgebra is a /{-vector space which is both a dendriform algebra and a co-
dendriform co-algebra satisfying a set of four relations relating respectively < and >
with A, A, (see [Foi07] for more details). In these equations, we use the Sweedler notation

where A(a) = @’ ® a” and A, (b) = b, @ b with a € {<, >}.

Ay(a>=b)=db.®@d" =t +b_ @a>b +ab @b +ad ®@d">b+a®b, (1.7)
Ay (a<b)=db_®@d < +b_®@a<b+d®d <D, (1.8)
Alla>=b)=dbt, @d" =b, +b,@a =V, +ab, @V, (1.9)
Alla<b)=dbt, ®@d" <, +b, @a <V, +db®d" +b®a. (1.10)

Adding those four relations shows that - and A as defined above defines a proper bi-algebra.

We recall here the relevant results of Foissy [Foi07] on the rigidity of bidendriform bialgebras
based on the works of Chapoton and Ronco [Ron00, Cha02].

Let A be a bidendriform bialgebra. We denote Prim(A):= Ker(A) the set of primitive
elements of A. We also denote by A(z) and P(z) the Hilbert series of A and Prim(A) defined
as A(z) = 3" dim(A,)z" and P(2) := > dim(Prim(A,,))2". The present work is based
on two analogues of the Cartier—Milnor—Moore theorems [Foi07] which we present now. The
first one is extracted from the proof of [Foil 1, Proposition 6]:

Proposition 1.1. Let A be a bidendriform bialgebra and let p; . .. p, € Prim(A). Then the map

p1®p2®...®pnl—>p1<(p2<(...<pn)...). (1.11)

is an isomorphism of co-algebras from T (Prim(A)) (the non trivial part of the tensor algebra
with deconcatenation as coproduct) to A. As a consequence, taking a basis (p;)ic; of Prim(A),
the family (P, < (Puwy < -+ < Puy,) - - ))w Where w = w;y ... w, is a non empty word on I
defines a basis of A. This implies the equality of Hilbert series A =P /(1 — P).

One can further analyze Prim(A) using the so-called totally primitive elements of A defined
as TPrim(A) = Ker(A<) N Ker(A. ). The associated Hilbert serie is defined as

+oo
= Z dim(TPrim(A4,))z".
n=1
Recall that a brace algebra is a K -vector space A together with an n-multilinear operation de-
noted as (...; ) for all n > 2 which satisfies certain relations (see [Ron00] for details).
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Theorem 1.2 ([Foil 1, Theorem 4 and 5]). Let A be a bidendriform bialgebra. Then Prim(A)
is freely generated as a brace algebra by TPrim(A) with brackets given by

D1y s D13 Pn) = i (_1)n—1—i
(p1 < (P2 < (oo =< pi) - +)) = oo < (- (Pisr = Piga) = -+ ) = o).

Sometimes also called planar trees, ordered trees are define as a root and an ordered list
(possibly empty) of ordered trees as children. A basis of Prim(A) is described by ordered trees
that are decorated with elements of TPrim(A) where p, is the root and py,...,p, ;1 are the
children (see [Ron00, Cha02, Foil1]). This is reflected on their Hilbert series as [Foi07, Corol-
lary 37]: T = A/(1 + A)? or equivalently P = T (1 + A).

Using Proposition 1.1 and Theorem 1.2 together with a dimension argument, one can show
the two following corollaries:

Corollary 1.3 ([Foil 1, Theorem 2]). Let A be a bidendriform bialgebra. Then A is freely gen-
erated as a dendriform algebra by TPrim(A).

Corollary 1.4 ([Foi02a, Foi02b]). A basis of A is described by ordered forests of ordered trees
that are decorated with a basis of TPrim(A).

On this basis, the product can be described using grafting (see Proposition 28 in [Foi02b])
and the coproduct as the deconcatenation of forests that are word of trees (see Theorem 35
equation 7.(c) in [Foi02a]).

1.2. Packed words

The algebra WQSym is a Hopf algebra whose bases are indexed by ordered set partitions or
equivalently surjections or even packed words. In this paper, we use the latter which we define
now.

In this paper we will deal with words over the alphabet of positive integers N-,. We start
with basic notations: first, max(w) is the maximum letter of the word w with the convention
that max(e) = 0. Then |w| is the length (or size) of the word w. The concatenation of the two
words u and v is denoted as u - v. The shift of a word w of a value i is denoted by w!?. Once
that said, u/v:= umax(@)]l g (resp. u\v:=u - pmaxW1 js the left-shifted (resp. right-shifted)
concatenation of the two words where all the letters of the left (resp. right) word are shifted by the
maximum of the right (resp. left) word: 1121/3112 = 44543112 and 1121\3112 = 11215334.
We also use the notation u|<; (resp. u|-;) for the subword containing all letters smaller (resp.
strictly greater) than a value .

'Note that “over”/ and “under”\ are reversed compared to what can be found in Loday and Ronco [LR02] where
it was first introduced: indeed, “over” and “under” need to be consistent with our cartesian representation of packed
words whereas Loday and Ronco use a matricial representation.
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Definition 1.5. A word over the alphabet N+ is packed if all the letters from 1 to its maximum m
appears at least once. By convention, the empty word € is packed. For n € N, we denote by PW ,
the set of all packed words of length (also called size) n and PW = | | _ PW,, the set of all
packed words.

neN

n 1123415 6 7 8 9 OEIS
PW, |1 |3| 13|75 541 | 4683 | 47293 | 545835 | 7087 261 || A000670

Table 1.1: Number of packed words of size smaller than 9.

Definition 1.6. The packed word u:= pack(w) associated with a word over the alphabet N is
obtained by the following process: if b; < by < --- < b, are the distinct letters occurring in w,
then u is the image of w by the homomorphism b; — 1.

A word u is packed if and only if pack(u) = u.

Example 1.7. The word 4152142 is not packed because the letter 3 does not appear while the
maximum letter is 5 > 3. Meanwhile pack(4152142) = 3142132 is a packed word. Here are all
packed words of size 1, 2 and 3 in lexicographic order:

1, 111221, 111112121122 123 132211 212 213 221 231 312 321

The fonction pack(w) is the analogue of the standardization std(w) that returns a permu-
tation.

Definition 1.8. The standardized word std(w) associated with a word over the alphabet N is
obtained by iteratively scanning w from left to right, and labelling the occurrences of its smallest
letter, then labelling the occurrences of the next one, and so on.

Example 1.9. For example, std(4152142) = std(3142132) = 5173264.

For the reader familiar with ordered set partitions, there is a classical bijection between
packed words and ordered set partitions. The one corresponding to a packed word wy - ws - - - w,,
is obtained by placing the index ¢ into the w;-th block.

Example 1.10. The word 121 is associated with {{1,3},{2}} and the word 113223 with
{{1,2},{4,5},{3,6}}.

To depict some definitions or lemmas, we will use box diagrams with Cartesian coordinates
for packed words. On these diagrams, positions are from left to right (as reading direction)
and values are from bottom to top. These diagrams will also be used to represent different
decompositions with different colors. Transparency will order the decompositions.
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Example 1.11. Here we have three examples: the representation of the packed word 214313.
Then the word 3415251 decomposed with red-factorization (see Lemma 2.7). Finally the general
case of the red-blue-factorization (see Definition 4.8) where it can be seen clearly that the blue-
factorization is done after the red-factorization thanks to transparency.

(]
3415251

214313

Global descent are defined in [ASO5] on permutations, and generalised on packed words
in [Varl19].

Definition 1.12 ([Var19, Definition 6.10]). A global descent of a packed word w is a position ¢
such that all the letters before or at position c are strictly greater than all letters after position c.

Example 1.13. The global descents of w = 54664312 are the positions 5 and 6. Indeed, all
letters of 54664 are greater than the letters of 312 and this is also true for 546643 and 12.

Definition 1.14. A packed word w is irreducible if it is non empty and it has no global descent.

n|l1|2[3] 4 5 6 7 8 9 OEIS
pn | 112848 | 368 | 3376 | 35824 | 430512 | 5773936 || A095989

Table 1.2: Number of irreducible packed words of size smaller than 9.

Example 1.15. The word w’ = 21331 is irreducible.

Lemma 1.16. Each word w admits a unique factorization as w = wy /ws/ . . . /wy, such that w;
is irreducible for all 1.

Example 1.17. The global descent decomposition of 54664312 is 21331/1/12. The word
n-n—1-...-1has1/1/.../1 as global descent decomposition.

Definition 1.18. « LU v denotes the shuffle product of the two words. It is recursively defined by
wlle:=ellu:=uand

ua W vb:=(uwwvb)-a+ (uaWv)-b (1.12)

where u and v are words and a and b are letters. Analogously to the shifted concatenation, one
can define the right shifted-shuffle u [0 v := u (L v™**()] where all the letters of the right word
v are shifted by the maximum of the left word w.
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wyfwe/ ... Jwg =

2:332/@/22: :
[ J

54664312

Figure 1.1: Box diagrams: global descent decomposition.

Example 1.19. 12 10 11 = 12 w1 33 = 1233 + 1323 4 1332 4 3123 + 3132 + 3312.

mleel=l + ¢+ °l+ * I+ °l+ *
11 ° ° ° . ° °

1233 1323 1332 3123 3132 3312

°
12

Definition 1.20 ([Lod01, Example 5.4.(a)]). The recursive definition of the shuffle product Equa-
tion (1.12) contains two summands. The two half shuffle products on words < and > are defined
respectively by:

ua < vb:=(u Ll vb) - a and ua > vb:= (ua LW v) - b. (1.13)
Example 1.21. 12 < 33 = 1332 4 3132 + 3312 and 12 = 33 = 1233 + 1323 + 3123.

Definition 1.22. ulLiv denote the dualisation of the deconcatenation using the function pack(w)
of Definition 1.6.

ULy = Z u - (1.14)

u=pack(u’)
v=pack(v’)

where u, v and v’ - v’ are packed words. We also use the non-overlapping shuffle product on
values by adding the constraint that letters of the two parts are distinct:

ullv == Z u v (1.15)
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Example 1.23. 12011 = 1211+1222 412334 1322+2311, 12011 = 12334 1322+42311.

ELI_IE=....+....+ ’..+..‘°+‘...

1211

[
[N]
[\]
[\

1233 1322 2311

o |l el=| o + e
12 11 o

Remark 1.24. Using the classical bijection between ordered set partitions and packed words
(see Example 1.10), the product LU is equivalent to the shifted shuffle on ordered set partitions
defined in [BZ09].

Definition 1.25. Analogously to the two half shuffle product of Definition 1.20, we split the two
products LU and LU in two parts.

UKL V= Z u - and US> vi= Z u v (1.16)
u=pack(u’) u=pack(u’)
v=pack(v’) v=pack(v’)
max(u’)>max(v’) max(u)<max(v’)
u=v= Z u - and U vi= Z u - (1.17)
u=pack(u’) u=pack(u’)
v=pack(v’) v=pack(v’)
VZ7]7u{L7év; ‘v’z,j,u’ﬁév;
max(u’)>max(v’) max(u)<max(v’)

Example 1.26.

12 <« 11 = 1211 4 1322 4 2311 and 12 > 11 = 1222 4 1233.
12 <11 = 1322 4 2311 and 12 = 11 = 1233.

To sum up in a few words, in © < v the last letter is comming from v and the rest is shuffled,
in v < v the maximum value is comming from « and the rest is shuffled.

1.3. The Hopf algebra of word-quasisymmetric functions WQSym

We are now in position to define the Hopf algebra of word-quasisymmetric functions WQSym.
It was first defined as a Hopf algebra in [J698] and independently in [Hiv99]. Novelli-Thibon
proved later that WQSym and its dual are bidendriform bialgebras [NTO06, The
orems 2.5 and 2.6]. Their products and coproducts in the monomial basis (M, ),cpw involve
overlapping-shuffle. However, to deal with the bidendriform structure, it will be easier for us
to chose, among the various bases known in the literature [J698, Hiv99, BZ09, NT06, Varl9]
a basis where the shuffles are non-overlapping. Therefore, for WQSym*, we take the ba-
sis denoted (Qy)wepw of [BZ09, Equation 23] using the classical bijection between ordered
set partitions and packed words (see Example 1.10). For the primal WQSym, we define the
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dual basis denoted (R,),cpw. In this section we transfer the bidendriform structure on the
bases (Qu)wepw and (Ry,)uecpw-

Following Novelli-Thibon, we start from the basis (M, ),cpw and compute expressions of
half product Equation (1.22) and half coproduct Equations (1.23) and (1.24) in the
basis (Qy)wepw. Then we dualise these operations Equations (1.25) to (1.27) to define the
basis (R,,)wcpw. The Hopf algebra product and reduced coproduct are respectively recovered
as the sum of the half products and half coproducts.

The monomial word-quasisymmetric function of a totally ordered alphabet .4 associated to
the packed word u is the linear combination of words defined by

M, := Z w.

weA*,
pack(w)=u

It turns out that the concatenation of two such elements is a sum of (M, ),cpw so that
WQSym :=Vect(M, | v € PW) is an algebra. This can be refined to a bidendriform bialge-
bra structure. The operations <, >, A« and Ay on

(WQSym), :=Vect(M, |u € PW,,n > 1)

are defined in the following way: for all u = uy - - - u, € PW, > andv € PW,,,>1,

M, <M,= > M,, and M,>M,;= ) M, (1.18)
weuLv wWEUSV
max(u)—1
Ac(My)= > My, ®Mpack(uls.): (1.19)
un:1 '
A>> (Mu) = Z Mukl & Mpack(u|>i)- (120)
=1

Example 1.27.

M2 < My = Mii312 + Mija93 + Maosio + Mosaiz + Mssai0,
M2 > My = Mi1212 + Mij213 + Mij203 + Mio3s + M3 + Mii324 + Maozis + Mgosia,

A« (Ma12536434) = Mai123434 @ Mpack(se) + Ma212534314 @ Mpack(e)
= M2123434 ® Mlya + Mp1253434 ® My,

As (Ma12536431) = My ® Mpack(22536434) + M1z ® Mpack(s36434) + M21233 © Mpack(s644)
= M ® Mi1425323 + Moo @ Mig14012 + Ma1233 @ Migziy.
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Theorem 1.28. [NT06, Theorem 2.5] (WQSym) ., <, >, A, As) is a bidendriform bial-
gebra.

As we said, we want a basis without overlapping-shuffle for the product. Following [BZ09],
we first define a partial order on packed words then we define the new basis.

Definition 1.29. [BZ09] We say that the packed word « is smaller than v for the relation <, if u
and v have the same standardization and if u; = u; implies v; = v; for all 2 and j.

u <, v < std(u) =std(v) and (uv; = u; = v; = v;).

111
/N
112 122 121 212 221 211
NS | | | |
123 132 213 231 312 321

Figure 1.2: The Hasse diagram of (PW3, <,).

We give two immediate lemmas on this order that are useful.

Lemma 1.30. For u <, v, let m, (resp. m,) be the set of positions of occurrences of the
maximum value letters in u (resp. v). Then m,, is included in m,, and all positions in m,, that
are not in m,, are smaller to the minimum of m.,.

Proof. It is immediate with the definition of <,. [

Lemma 1.31. For u <. v, let i and i such that u|<; and v|<y are of the same size then
ul<i <u V< and u|s; < v|sire

Proof. 1t is immediate with the definition of <,. ]

Now we can recall ([BZ09, Equation 23]) the definition of the basis (Qy,)wepw

Q, = Z M. (1.21)

ULV

Example 1.32.

Q123 = Myog + Moo + Myj2 + My Quz132 = Mlyz132 + Mi32191
Qui2234 = My12934 + Mig12203 + Mg11123 + Moi1112 Q2131 = M1 + Mo,
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It is proved in [BZ09, Theorem 17] that the product in basis (Qy,)wcpw is
Qu@v = Z Qw‘
weEulv

Thanks to Lemma 1.30, we have the two expressions for the two half products.

Q=Q= Y Q, and Q=Q:= > Q. (1.22)

WEU=Y wWEUXV

For the coproduct, we start with the definition of the coproduct in basis M.

A@) =Y AM)

V=U
max(v)
= Z Z My, @ My,
ViU =0
max(u)
=> | > Me ) My (by Lemma 1.31)
i=0 vZaulg V' Zul>
max(u)

= > Qu.®Qu..
=0

Then, with Lemma 1.30 we have the two expressions for the two half coproducts.

max(u)—1

Aj<@’u) = Z @“Kz ® Qpack(u\>i)7 (1.23)
un—_l !

Ai«@u) = Z @ulgl ® Qpack(u|>i)- (1.24)
=1

Example 1.33.

Q1312 = Qi2 = Q51234 + Qus1324 + Q51423 + Q252314 + Q252413 + Q353412,
Q1312 = Qi2 = Q31245 + Qua1235 + Qua1325 + Qosg2315,
A<(Qa12536431) = Q2123431 @ Qpack(s6) + Q21253131 @ Qpacks),
= Q2123434 ® Q12 + Q212534314 ® Q1
Ay (Q212536434) = Q1 @ Qpack(22536434) + Q212 @ Qpack(s36434) T Q21233 @ Qpack(s644)
= Q1 ® Qr1425323 + Q212 ® Q314212 + Q21233 @ Q2311
Finally we define <, >, A_ and A, on (WQSym*), :=Vect(R, | u € PW,,n > 1)
by dualizing half products and half coproducts of the basis (Q,,),cpw in the following way: for
alu=wu;---u, € PW,>yandv € PW,,>,

R, <R,= > R, and R,=R,= > R, (1.25)

weu<vlmax(w)] weusylmax(u)]
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n—1
A—< (Ru) - Rpack(urnui) & Rpack(ui+1~--un)a (126)
i=k
{u1 ..... ui}ﬁ{uH,l ..... un}zz
up=max(u)
k—1
A>— (Ru) = Z Rpack(ul---ui) ® Rpack(uiJrl---un)- (1.27)

=1
{ursuitn{uigr . un}=2
up=max(u)

Note that in Equations (1.26) and (1.27), k is defined by u;, = max(u). In the case there are
several possible k, the condition {uy,...,u;} N {wjt1,...,u,} = & ensure that i varies after
(resp. before) all possible k.

Example 1.34.

Roi1 < Ryz = Rorzar + Rozpar + Rozarn + Raoran + Raourn + Rauon,
Rao1 > Rz = Rori3s + Rorz1a + Rasina + Raoqua,

AL (Rai25334) = Ro1o3 ® Ripg + Rojouss @ Ry,

Ay (Roi2s334) = Ra1z ® Rapio.

Theorem 1.35. (WQSym),, =<, =, A<, Ay) and (WQSym*), <, >, AL, A,) are two
dual bidendriform bialgebras.

From now on Prim(WQSym) and TPrim(WQSym) are respectively abbreviated to
Prim and TPrim. Moreover, we denote homogeneous components using indices and dual-
ization using a  in exponent as in Prim) . We give the first values of the dimensions,

a, = dim(WQSym,,), p,, == dim(Prim,,) and ¢,, ;== dim(TPrim,,):

n|1]2]3 4] 5 6 7 8 9 OEIS

an | 113 |13 |75 |541 | 4683 | 47293 | 545835 | 7087 261 || AO00670
pn| 12| 8 |48 | 368 | 3376 | 35824 | 430512 | 5773936 || A095989
t, |1 1] 4 |28]|240 | 2384 | 26832 | 337168 | 4680272

Table 1.3: Dimensions of homogeneous components for WQSym, Prim and TPrim.

Though the numbers (t,), are easy to obtain thanks to the relation of
Theorem 1.2: 7 = A/(1 + .A)?, no combinatorial interpretation existed. The first results of
this paper are two different subsets of packed words that are counted by these dimensions (red-
irreducible and blue-irreducible).
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2. Decorated forests

In this paper we will generalize twice the construction of [Foill], one for WQSym and one
for its dual. This section is devoted to the combinatorial ingredient, that is a notion of biplane
forests suitable for indexing the various bases of primitive elements. Each time, we start by
decomposing packed words through global descents and removal of specific letters. We then
perform those decompositions recursively, encoding the result in a forest. We hence obtain so
called biplane forests, which are in bijection with packed words. Later, the recursive structure of
forests will be understood as a chaining of brace and dendriform operations generating some ele-
ments of WQSym or its dual. This will allow us to construct two bases of respectively TPrim
and its dual by characterizing a subfamily of biplane trees.

From now on, we associate the color blue to the primal (WQSym) and the color red to the
dual (WQSym*). We start by explaining the construction on WQSym* (red) then we dualize
the construction to the primal WQSym (blue).

2.1. Dual (Red)

For the red side WQSym*, the decomposition of packed words is made through global descents
and removal of maximum values. One step of this decomposition is called the red-factorization.

2.1.1 Decomposition of packed words through maximums

In this section, we define two combinatorial operations on packed words (¢; and ») and the
red-factorization that uses them. The unary operation ¢; inserts new maximums in a word in
positions /. A word that cannot be factorized ubv in a non trivial way is called red-irreducible.
Red-irreducible words will index our basis of TPrim™.

Definition 2.1. Fix n € Nand w € PW,,. We write m’:= max(w) + 1. For any p > 0 and any
subset / C [1,...,n + p| of cardinality p, we define ¢;(w):=u; ... u,+, as the packed word
of length n + p obtained by inserting p occurrences of the letter m’ in w so that they end up in
positions ¢ € I. In other words u; = m’ if i € I and w is obtained from ¢;(w) by removing all
occurrences of m’. Notice that ¢;(w) is only defined if n + p > i,.

Example 2.2. ¢2,477(1232) = 1424324 and ¢17273(6) = 111.

Note 2.3. For the rest of this paper, I = [i1, .. ., i,] will always denote a non-empty (p > 0) list of
increasing non-zero integers. For any integer k, I’ = I +k denote the list I’ = [i,+k, ..., i,+k].
Let PW/ denote the set of packed words of size n whose maximums are in positions i € I.
This way ¢;(w) € PW! __ for any w € PW,,.

n-+p
Lemma 24. Letn € Nandp > 0, forany I = [iy,...,3,) C[1,...,n+p| of sizep, ¢risa
bijection from PW,, to PW1

n+p*
Moreover, for any W € PW, where { > 0 there exists a unique pair (I,w) where

I C[1...0] and w is packed, such that W = ¢(w).
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k—]

The box diagram that pictures this lemmais W =| w

Proof. Let W € PW, with ¢/ > 0 and m the value of the maximum letter of .
Let I = [iy,...,iy] € [1,...,] be the list of the positions of m in W and let w be the word
obtain by removing all occurrences of m in W, then W = ¢;(w). If ¢;(u) = ¢,(v) then posi-
tions of maximum values are the same so / = .J and words obtain by removing these maximum
values are also the same so u = v. [

Definition 2.5. Let u,v € PW with v # e. By Lemma 2.4, there is a unique pair (/,v") such
that v = ¢;(v'). Let I’ = I + |ul, we define ubv:= ¢ (u/v’). In other words, we remove the
maximum letter of the right word, perform a left shifted concatenation and reinsert the removed
letters as new maximums.

Example 2.6. 21239322312 = 2123»¢; 4(2212) = ¢14444+4(43452212) = 4345622612.

upv = * * Ip| *° =1 e

v 2123 322312

4345622612

Figure 2.1: Box digrams: the operation ».

Lemma 2.7. Let w be an irreducible packed word. There exists a unique factorization of the
form w = uwv which maximizes the size of u. In this factorization, let v' and I be such
that v = ¢;(v'), then

e citherv' =eand I =[1, ..., p| for some p,

* or the global descent decomposition v/ = wvi/... /v, of v’ satisfies the inequalities
1<iy <ol and 1 < (| + |[V]) + 1 —ip < v with I = [iq, ..., 0p).

We call it the red-factorization of a word.

Example 2.8. Here is a first detailed example of a red-factorization of an irreducible packed
word:
Consider the irreducible packed word w = 543462161.

* The first step is to remove all the occurrences of the maximal value but keep in memory
the positions in the initial word. We get w’ = 5434_21_1 which is a packed word, but is
not irreducible.
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* The second step is to decompose the new word w’ in irreducible factors
w' =1/212/_1/1_1. We still keep in memory the positions of the removed value. (when
we have the choice, we cut to the left of the removed value.)

* We can distinguish two groups of factors, those strictly before the first maximum with-
drawn and the others v’ = 1/212 / _1/1_1.

* Finally, by numbering the positions of the maximum removed value in the right factor
(positions 1 and 4), we get the following decomposition of w (see Definition 2.1 for ¢ and
Definition 2.5 for »):

w = 543462161 = (1/212)» ¢y 4(1/11) = (3212)» ¢y 4(211) = 3212»-32131.
Example 2.9. Here are some other red-factorizations:
21331 = 1p ¢ 3(11) = 1»1221 1231 = ep¢3(121) = ep-1231
1233 = 12p¢1 2(€) = 12p11 111 = ep ¢y 23(€) = em 111
56434126 = 1»¢1 7(212/12)= 1> 7(43412) = 1»5434125
Proof. Let w be irreducible and let (I, w’) be the unique pair such that w = ¢;(w’) accord-
ing to Lemma 2.4. By Lemma 1.16, we write w' = w)/w}/ ... /wy, the unique decomposi-
tion into irreducibles. Let ¢ be such that wy is the last factor which is entirely before the first
removed maximum, it is the only choice to maximize the size of u. Then with » = k — ¢ we can
rewrite w’ as (uy/ ... /ug)/(v1/ ... /v,). Now we get I’ by subtracting |u;/ ... /u,| to all parts
of I (I'=1-|uy/.../us)and we obtain
w=uy/... umdp(ve/.../v)

with 7] < |vy| orr = 0.
In the case of v # e, the inequality (|v'| + |I|) + 1 — 4, < |v,| is always true otherwise w
would not be irreducible. O]

Definition 2.10. A packed word w is said to be red-irreducible if w is irreducible and the
equality w = upv implies that u = e(and w = v).

Here are all red-irreducible packed words of size 1, 2, 3 and 4 in lexicographic order:
1, 11, 111121132212,
1111 1121 1132 1211 1212 1221 1231 1232 1243 1312 1321 1322 1323 1332
1342 1423 1432 2112 2121 2122 2132 2143 2212 2312 2413 3123 3132 3213.
Here are some useful lemmas on the operation ».

Lemma 2.11. For any u,v,w € PW with w # ¢, we have u»(v»w) = (u/v)»w.

==, —
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Proof. Let u,v,w € PW with w # € and let w’ and [, such that w = ¢, (w').

us(vew) = ub-(¢r,, 4o (v/w'))
= Ory ol +ul (u/ (v/W))
= Or o]+ (u/v) /")
= (u/v)»¢r, (W)
= (u/v)p»w. ]

Lemma 2.12. For any u,v,w € PW with v # €, we have u»(v/w) = (ubv)/w.

[ —— 1,

Proof. Let u,v,w € PW with v # ¢ and let v and [, such that v = ¢y, (v').

ur-(v/w) = ur-dr, (v /w)

= b1+l (w/ (V' /w))

= ¢1,+1ul ((u/V") /w)

= ¢1,+u(u/V') /W

= (upv)/w. O

Remark 2.13. Adding the associativity of shifted concatenation u/(v/w) = (u/v)/w, the two
operations » and / verify relations of the skew-duplicial operad [BDO20].

Corollary 2.14. For any u,v € PW, we have that uwv is irreducible if and only if v is irre-
ducible.

Proof. By contradiction, if v = wv;/vy then by Lemma 2.12 upv = (ubv;)/ve. Now
if ubv = w;/w,, as the position of the first maximum of ub-v is greater than |u| we have
that w; = w) - w{ such that pack(w]) = u. We also have that pack(w/)/wy = v. O

Proposition 2.15. For any word w, w = uwv is the red-factorization of w if and only if v is
red-irreducible.

Proof. Let w € PW and let ubv be the red-factorization of w. Let v; and v, such
that v = v;pwy, then (u/v;)»vy = w by Lemma 2.11, but in the red-factorization the size
of w is maximized so |(u/v;)| < |u| and then we have that v; = € so v is red-irreducible.

Let w € PW and let u and v such that w = ubv and v is red-irreducible. By contradiction,
suppose that there exists u’, v’ such that w = u/»v’ with |u| < |u/| and v’ # €. Then necessarily u
is a prefix of ’. Let u” such that v’ = w - u”, then pack(u”)»v" = v. But v is red-irreducible.
So the size of u is maximal if v is red-irreducible. ]
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For the reader who is familiar with ordered set partitions, all the definitions in Section 2.1
can be easily written with these. However in Section 2.2 it is easier to do all the definitions
on packed words and in Section 4 we must have the same object on both sides to explicit the
isomorphism. So we decided to stick to packed words.

2.1.2 Red-forests from decomposed packed words using ¢

We now apply recursively the red-factorization of the previous section to construct a bijection
between packed words and a certain kind of trees that we now define.

Definition 2.16. An unlabeled biplane tree is an ordered tree whose children are organized in
a pair of two (possibly empty) ordered forests, which we call the left and right forests, a forest
being an ordered list of trees.

In the picture, we naturally draw the children of the left (resp. right) forest on the left (resp.
right) of their father.

Example 2.17. The biplane trees %O , O& and %@ are different. Indeed in the first

case, the left forest contains two trees and the right forest is empty, in the second case both forests
contain exactly one tree while in the third case the left forest is empty and the right contains two
trees. Here is an example of a bigger biplane tree where the root has two trees in both left and

right forests m :

Definition 2.18. A skeleton biplane tree is a biplane tree where no node has a right forest.

These skeleton biplane trees can also be seen as planar trees. In [Foil 1] we have planar trees
recursively labeled by planar trees. Skeleton biplane trees are similar to these planar trees, we
prefer to see them as biplane tree with no right forest in order to keep some constistency.

Definition 2.19. The size of a biplane tree is the number of node in the tree.

Remark 2.20. Biplane forests § (i.e. ordered list of biplane trees ¥) are counted by the sequence
A001764 in OEIS [SI120] whose explicit formula is a(n) = (*")/(2n + 1). Biplane forests
are in bijection with ternary trees. We give a bijection that is inspired from the well known
bijection [FS09, 1.5.3] between plane forests and binary trees. The bijection is the following:
in a biplane forest a node has a first left child and a first right child and a right brother. A
consequence is that unlabeled biplane trees are counted by the sequence A006013 in OEIS [S120]
whose explicit formula is a(n) = (*"*')/(n + 1). Indeed, biplane trees are in bijection with

pair of ternary trees. Here is an example of the ternary tree in bijection with the biplane forest
constituted of one tree, the big biplane tree in Example 2.17 that we show again

AT ST O
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n|0[1]2]3 |4 5 6 7 8 OEIS
Sn| 1|1 ]3]12|55]273 | 1428 | 7752 | 43263 || A001764
o101 2] 7 [30]143 | 728 | 3876 | 21318 || A006013

Table 2.1: Number of biplane forests and biplane trees.

Remark 2.21. As we can see on OEIS [SI20], sequence A006013 which counts unlabeled bi-
plane trees is the dimensions of the free L-algebra on one generator (see [Lerl11]). It would be
interesting to investigate the link between L-algebras and bidendriform bialgebras using biplane
trees.

In our construction we will deal with labeled biplane trees with colored edges. For a la-
beled biplane tree, we denote by Nodeg (x, fr, f.) the tree whose edges are colored in red, root
is labeled by = and whose left (resp. right) forest is given by f, (resp. f.). We also denote
by [t1,...tx] a forest of k trees. The edge color (for now, only red) will play a role later in the

paper.
Example 2.22. Noder((1), [|,[]) = (1), and Noder((1,3), [, [Nodex ((1), [J,[})]) = .

We now apply recursively the global descent decomposition and the red-factorization of
Lemmas 1.16 and 2.7. We obtain an algorithm which takes a packed word and returns a biplane
forest where nodes are decorated by red-irreducible packed words:

Definition 2.23. We now define two functions Frg and Tree. These functions transform re-
spectively a packed word and an irreducible packed word into respectively a skeleton biplane
forest and a skeleton biplane tree labeled by red-irreducible words. These functions are defined
in a mutual recursive way as follows:

* Frael(€) = [] (empty forest),

* for any packed word w, let wy /ws/ . . . /wy, be the global descent decomposition of w, then
Frake(w) = [Treke (1), Treke(w2), - - - ; TReke (k)]

wy
0 TRske(w1) Trske(w2) TRske (Wk)

UL e

* for any irreducible packed word w, let w = upv be the red-factorization of w. We define
Trske(w) = Nodeg (v, Frke(w), [])-

' //fiD
" — L7 with v = QZS](U/).

FRske(u)
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Example 2.24. Let w = 876795343912, the global descent decomposition of Lemma 1.16
gives w = w;/wy with wy = 6545731217 and w, = 12. Now, we have the red-factorization
of wy and ws using Lemma 2.7 as

wy = 32120 ¢y 4(3121) = (1/212)»431214 and  wy = 1e-y(c) = 11

el

O

876795343912

It gives the following forest:

Froke(876795343912) = [Tee(6545731217), Tree(12)]

o

FRske(3212) FRske(l)

:@/@'

Definition 2.25. A labeled biplane forest (resp. tree) is a red-skeleton forest (resp. tree) if it
is labeled by red-irreducible words and no node has a right child.

We want to prove that the functions Fgg. and Ty are bijections. To do that we first define
two functions that are the inverses.

Definition 2.26. We now define two functions F;, . and Ty, that transform respectively a red-
skeleton forest and tree into packed words. These functions are defined in a mutual recursive
way as follows:

* Frae(l) =«

* for any red-skeleton forest f = [t1,...,tx], we define
FRske<f) = TRske(tl)/ s /TRske<tk)'

t1 t2 3 "
! 2 *
O% %7 % — T with w; = TRske<ti)'
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* for any red-skeleton tree ¢ = Nodeg (v, fy, []), we define
TRSke(t) = FRSke(ff)’”'

%}) !
u
[1 f_(/ %

Je

with v = ¢;(v') and u = Fy (fo).

Lemma 2.27. The functions Frg.. and F;ske (resp. Tgreke and Tgske ) are two converse bijections
between packed words and red-skeleton forests (resp. irreducible packed words and red-skeleton

*

trees). That is to say F3',. = Fry. and Tih . = Trge

Proof. We start to prove that domain and codomain are as announced (see Items (a) and (b)
bellow), then we prove that the functions Fig. and Fy;,, (resp. Tree and T, are inverse to
each other (see Items (c) and (d) bellow).

(a)

(b)

By Definition 2.23, a forest (resp. tree) obtain by Fre (resp. Trske) is a red-skeleton forest
(resp. tree). Indeed, thanks to Proposition 2.15 nodes are labeled by red-irreducible words
because a red-factorization is done and nodes have no right children.

We prove by a mutual induction that F;,  returns a packed word and that T}, returnes an
irreducible packed word. Indeed, we do an induction on the size of the forest or the tree.
Here is our induction hypothesis for n € N:

Vt, red-skeleton tree of size < n, T, (¢) is an irreducible packed word,

V£, red-skeleton forest of size < n, Fpy,.(f) is a packed word. @D

The base case (n = 0) is given by the first item of Definition 2.26 (i.e. Fn.([]) = € the
empty packed word).

Now, let us fix n > 1 and suppose that the hypothesis (2.1) holds. Let f = [t1,..., ] be a
red-skeleton forest of size n + 1.

e If K = 1, then f is reduced to a single tree . We need to prove that T, (¢) is an
irreducible packed word (which also gives that Fp,,, (f) is a packed word as in this
case Fryo(f) = Tpue(t). Let t = Nodegr(v, fi,[]) be a red-skeleton tree of
size n + 1 (notice that the word v can be of any size). The size of f, is n, so by induc-
tion Fjy,.(f¢) is a packed word, as v is red-irreducible it is by definition irreducible so
by Corollary 2.14 Ty, (1) = Frye (fo)»v is irreducible.

e If £ > 2, ie., the forest contains at least two trees, since all trees are of size
at least one, ty,...,%; are at must of size n, so we have by induction
that T, (t1), - - - Trae (tx) are irreducible packed words. Fy,, . (f) is the shifted con-
catenation of Ty (t1), . .. Thye(tr) and thus it is a packed word.
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(c) We now prove by a mutual induction on the size of the forest or the tree that, for n € N:

Vt, red-skeleton tree of size < 7, Trepe(Trae(t)) = t,

V£, red-skeleton forest of size < 7, Froe(Frae(f)) = 22)

The base case (n = 0) is given by the first item of Definitions 2.23 and 2.26
as FRSkE(FRske(H)) - FRSke<€) = H

Now let us fix n > 1 and suppose that the hypothesis (2.2) holds. Let f = [t;,... ;] be a
red-skeleton forest of size n + 1.

o If £ = 1, then the forest f is reduced to a single tree ¢, then it is sufficient to

prove Trare( Ty (t)) =t (as in this case Fpy . (f) = Trye (t). Lett=Nodeg (v, fo, [])
a red-skeleton tree of size n + 1. As the label v is a red-irreducible packed word, with

the induction hypothesis on Fy;, (f;) and with Proposition 2.15, Fy,.(f/)»v is the
red-factorization so:

Trske(Trake (1) = Trske(Fraie (Fe)»0)
= Noder (v, Frske(Frae(f2), [)
= Nodeg (v, fo,[]) =t

* If £ > 2, since all trees are of size at least one, they are at most of size n, so we have
by induction that:

FRSke<F£ske<f)) = FRSke(TP:ske(t1>/ s /Tgske<tk))
as T;Ske (t;) are irreducible packed words
= [TRSke(Tl:ske(t1>)’ s 7TRSke(Tl:ske(tk>)]
= [tl,...7tk] - f

(d) Finally we prove by a mutual induction on the size of the word w that, for n € N:

Vv € PW, irreducible packed word of size < n, Tp.(Treke(v)) = v, (2.3)
Vw € PW, packed word of size < n, Fiy . (Freke(w)) = w. '

The base case (n = 0) is given by the first item of Definitions 2.23 and 2.26
as Fl{ske(FRSke(e)) = FRske(H) =€

Now let us fix n > 1 and suppose that the hypothesis (2.3) holds. Letw € PW,,; a packed
word of size n + 1. Let w = wy /wsy/ . .. /wy be the global descent decomposition of w.

o If k = 1, the packed word w is irreducible then Frg.(w) = [Treke(w)] so we need to
prove that Tj . (Treke (w)) = w. Let w = ub-v be the red-factorization of w, then we
can use the induction hypothesis on u, indeed as v is not empty the size of u is smaller
than n:
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Tl:ske(TRSke<w)) = Tl:ske(NOdeR(U7 FRSke(u)’ H))

= FI:ske(FRSke(u))>v
= ubv =w.

o If £ > 2, then we use the induction hypothesis on each factors, so we have:

FI;kske(FRske(w)) = FI:ske([TRske(wl)a -+ s TReke (wr)])

_ Tr;ke(TRske(wl))/ . /Tl;ke(TRske(wk))
:wl/.../wk:w- -

Now that we have the red-skeleton, we will add right forests to every nodes to obtain biplane
trees. For every node, if v is the red-irreducible word in label, with ¢;(v") = v, then I is the new
label and F (v') is the new right forest.

Here is the formal definition of F (w) and T (w) which are very similar to Definition 2.23,
only the third item is different. The labels are now lists of integers.

Definition 2.28. The forest F'r (w) (resp. tree Tr(w)) associated to a packed word (resp. irre-
ducible packed word) w are defined in a mutual recursive way as follows:

* Fr(e) =[] (empty forest),

* for any packed word w, let wy /ws/ . . . /wy, be the global descent decomposition of w, then
Fr(w) = [Tr(w1), Tr(ws), ..., Tr(wy)].

wq Tr(wk)
0 Tr(wi) Tr(w2)

e AN

* for any irreducible packed word w, we define T (w):= Nodeg ([, Fr(u), Fr(v")) where
w = up¢r(v') is the red-factorization of w.

I A
U
— 0",

r1 Td -

Fi(u) Fr(v))

Example 2.29. Consider again w = 876795343912. We start from the red-skeleton forest from
Example 2.24.
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FRske(876795343912): @ Q>/Q>
Fr(876795343912) = .(‘\ o QD/G>

r(1)

F(876795343912) = .O\ @/@

Definition 2.30. Let ¢ be a labeled biplane tree. We write ¢ = Nodeg(/, f¢, f.) where
I=lin,....ip,p >0, (1 <iy < -+ <), fr = [l,..., 0 ]andfr = [7‘1,..., 4], which

is depicted as follows:
t= A
El N l :

g S P ¥

The weight of ¢ is recursively defined by w(t) = p+>_7_,w(4;)+ Z;‘I:O w(r;). In particular,
if ¢ is a single node then w(t) = p. By extension, the weight of a forest is the sum of the weight
of its trees.

Lemma 2.31. The weight of a forest (resp. a tree) obtained by the functions Fr (resp. TR) is
equal to the size of the word, i.e. For allw € PW then w(Fr(w)) = |w| and for all w € PW
with w irreducible then w(Tg(w)) = |w].

Proof. We prove by induction with the following hypothesis, for n € N:

Yw € PW,,, w(Fr(w)) = |w|,

Vw € PW,, with w irreducible, w(Tg(w)) = |w|. 24)

The base case is given by the first item of Definition 2.28 as Fr(¢) = [] and w([]) = |¢| = 0.
Let us fix n > 1 and suppose that the hypothesis (2.4) holds. Let w € PW,,,; and
w = wy/wy/ ... wy be the global descent decomposition of w.

» If k = 1, we have F(w) = [Tr(w)]. Let w = ub-¢r(v) with I = [iy,...,7,],p > 0 be
the red-factorization of w, then

w(Tr(w)) = w(Nodeg (I, Fr(u), Fr(v))) = p + w(Fr(u)) + w(Fr(v)).
Asp > 0, the sizes of u and v are at most n, by induction w(Tg (w)) = p + |u| + |v| = |w|.
e If £ > 2, by induction on each factors, we have that

wW(Fr(w)) = w(Tr(wy)) + -+ + w(Tr(wy)) = |wi| + -+ + |wg| = |w]. O
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Definition 2.32. Using the same notations as in previous Definition 2.30, we say that ¢ is a
red-packed tree if it satisfies:

d>1
d _ 0 = J .
: ’ 1< i1 < w(r)
= kforall k < : ’
Zk Zr;‘re reg— pa’cked trees > LS prwlf)+1-0 Swlra),
1sesdy p . ly,...,lyand 1y, ..., 74 are red-packed trees.

An ordered list of red-packed trees is a red-packed forest.

Remark 2.33. Red-skeleton trees can be interpreted as flattened representations of red-packed
trees. Symmetrically, red-packed trees can be interpreted as unfolded representations of red-
skeleton trees. We use the operation ¢; to change between red-packed and red-skeleton trees.

Note 2.34. From now on, we use these notations:

* Frn the set of red-packed forests of weight n, (Frn = {Fr(w) }wepw,,)s
* Tr, the set of red-packed trees of weight n, (T, := {Tr (w) }wepw, With w irreducible),

* NMr, the set of red-packed trees of weight n such that the left forest of the root is empty,
Nrn ={Tr(w) }wepw, With w red-irreducible). In particular, the red-skeleton of a tree
of D1y, consist of a single node labeled by a red-irreducible word.

Remark 2.35. The set Mz, can be described as a disjointed union of sets depending
onl = [iy,...,i,]. Let %, denote the set of red-packed forests of weight n that can be right
children of a node labeled by [ (see Definition 2.32 for conditions), we have the following de-
scription:

Win = || {Noder (L[], £) | fr € §hnp}- (2.5)
I

Analogously, we use §rskes < rske and Ngsie for red-skeleton forests, trees and trees with
only one node.
We can remark that for n = 1 we have Mz = Ty = Frr and Vn > 1, Nz, € T S Sin-

As with Definition 2.26, we want to prove that the functions F and T are bijections. To
do that we first define the two inverse functions.

Definition 2.36. We define here the functions F}; (resp. Tj;) that transform a red-packed forest f
(resp. tree t) into a packed word. We reverse all instructions of Definition 2.28 as follows:

cFr()=-e
* for any non empty red-packed forest f = [t1,t5 ..., 1], then
Fp(f) = Tr(t)/ Tr(t2)/ .../ Tr ().

t ta /—L“_
NS %\% — S withwy = T ().
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* for any non empty red-packed tree ¢ = Nodeg (I, fr, f.), then
Ty (t) = Fr (fo»or(Fg (fr)).

A —
60" Y — L with o' = Fy (f,) and u = Frg (fo)-

f 4 f T

There might be a problem with this definition since ¢;(Fy(f.)) is only defined if
i, < |Fg(f)| + p (see Definition 2.1). We prove in the following Lemma 2.37 that the in-
equality holds if t € Ty.

Lemma 2.37. For any red-packed forest f, F; (f) is a well defined word of size w(f). For any
red-packed tree t, Ty, (t) is a well defined word of size w(t).

Proof. We prove by induction with the following hypothesis, for n € N:

Vf € Fren, FR(f) is well defined and | F; (f)] = w(f),

Vt € Then, Ty (t)is well defined and | T (t)| = w(?). (2.6)

The base case is given by the first item of Definition 2.36 as F; ([]) = ¢ and w([]) = |¢| = 0.
Let us fix n > 1 and suppose that the hypothesis (2.6) holds. Let f = [ty, ..., tk] € Frnt1-

 If k=1, it is sufficient to prove the second item of (2.6). Let t =Nodeg (I, fr, f) € Trnt1-
According to Definition 2.32 with notations of Definition 2.30 there are two cases:

—d=0and =[1,...,p]. We have thati, = pand | F; (f,)| = |e ]—Osozp\()—l—p
and ¢7(e) = 11...11 of size p. Now by 1nduct10n on f,, we have thatF (fe)isa

well defined word of size w(fy). Finally TR( ) =Fgr (fg)bqb]( ) =Fy (fg)\¢[( ) is
a well defined word of size | Fj; (fo)| +p = w(t).

—d > 1. Asp > 0 we can apply the hypothesis (2.6) on f, and f,. According to
Definition 2.32 we have that

So Ty (¢) is well defined. Moreover

| TR (1) = |Fr (fo)»ér B (f,)]
= |Fu(f)| +p+|Fr(f)]
= w(fo) +p+w(fy) =w(t).

o If £ > 2, the weight of trees are at least 1 so we can apply (2.6) on trees of f. [
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Theorem 2.38. The functions F'r and Fr: (resp. T and Tpf ) are two converse bijections between
packed words of size n and red-packed forests (resp. irreducible packed words and red-packed
trees) of weight n. That is to say Fi;' = Fy; and T3' = T},

Proof. The proof is very similar to the one of Lemma 2.27. Indeed, we start to prove that
domain and codomain are as announced (see Items (a) and (b) bellow), then we prove that the
functions F'r and F}: (resp. Ty and T}: ) are inverse to each other (see Items (c) and (d) bellow).

We now give the differences with the proof of Lemma 2.27 and we advise the reader to read
the two proofs in parallel. While for Item (a) in Lemma 2.27 it was simple, we need to do an
induction here to prove that conditions on labels are respected. For Items (b), (c) and (d), the
same inductions are done with one additional argument, so only the different argument of the
induction is explicited here.

(a) We prove by a mutual induction that Fy returns a red-packed forest and that Tz returns a
red-packed tree. Indeed, we do an induction on the size of the word w. Here is our induction
hypothesis for n € N:

Vv € PW  irreducible packed word of size < n, Tg(v) is a red-packed tree,
Vw, packed word of size < n, Fr(w) is a red-packed forest.

(2.7)

The base case (n = 0) is given by the first item of Definition 2.28.

Now let us fix n > 1 and suppose that the hypothesis (2.7) holds. Let w € PW be a packed
word of size n + 1 and let wy/ - - - /wy, be the global descent decomposition of w.

o If £ = 1 (w is irreducible), then F(w) is reduced to a single tree T (w). We need
to prove that T (w) is a red-packed tree (which also gives that Fr (w) is a red-packed
forest). Let w = upv be the red-factorization of w. With ¢;(v') = v, fy = Fr(u)
and f, = Fr(v’) we have that T (w) = Nodeg(I, fo, f). The inequalities on [ and v’
in Lemma 2.7 are the same as the inequalities on / and f, in Definition 2.32. Therefore
by Lemma 2.31 and (2.7) on f,, we have that T (w) belongs to T 5.

» If £ > 2, the hypothesis (2.7) can be applied to each factors.

(b) Compared to the proof of Lemma 2.27 we use the same general arguments to prove that Fj;
and Fy;,, return a packed word. First of all the base case and the case were the size of the
forestis £ > 2 are dealt with by a similar argumentation. It remains to prove that T R* returns
an irreducible packed word. We thus suppose that the induction hypothesis (2.8) holds for a
givenn € N:

Vt, red-packed tree of size < n, Ty (t) is an irreducible packed word, 2.8)
V' f, red-packed forest of size < n, Fy(f)is a packed word. '
Let t = Nodeg(I, fo, f-) be a red-packed tree of size n + 1. By induction we have
that Fi; (f;) and F; (f,) are packed words. Moreover either f. = eand I = [1,...,p]
orl < p+w(f)+1—i, <w(rg with I = [iy,...,4,) and f, = [r1,...,74). In both
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cases, ¢;(Fy (f)) is an red-irreducible packed word. Indeed, we recognize the two cases
of Definition 2.10 with the same inequalities. Finally Ty (t) = Fy (fo)»é:(Fy (f)) is an
irreducible packed word according to Corollary 2.14.

(c) We now want to prove that for any forest f (resp. any tree t), Fr(Fy (f)) = f (resp.
Tr(Ty (t)) = t). As in Item (b), the arguments are the same as is the proof of Lemma 2.27
for Fr and Free. In the case of Ty the new arguments are the same as in Item (b) (i.e.
¢r(Fy (f,)) is a red-irreducible packed word).

(d) Finally, we want to prove that for any packed word w (resp. irreducible packed word v),
F (Fr(w)) = w (resp. Ty (Tr(v)) = v). Once again, the only difference with Lemma 2.27
is the former second case. It remains to prove that point and we thus suppose that the induc-
tion hypothesis (2.9) holds for n € N:

Vv € PW, irreducible packed word of size <n, Ty (Tr(v)) =

VYw € PW, packed word of size < n, Fy(Fr(w)) 2.9)

v,
w.

Let v be an irreducible packed word of size n+1. Letv = v'p»¢(v") be the red-factorization
of v. We have by Definition 2.28 that T (v) = Nodeg (I, Fr(v'), Fr(v")). As |I| > 0, the
sizes of v’ and v” are smaller than n so we can apply (2.9). We have:

Ty (T(v)) = Ty (Noder (1, Fr(t/), Fr (1))

= Fi (Fr(v))» ¢ (F (Fr(v")))
=v'>pr(v") = v. -

Example 2.39. There is a unique forest in § 1, namely (1), here are the 3 forests of § 2 with

the associated packed word:F(12) = @D/GD , Fr(21) =) (O, Fr(11) = (12). We show

below the 13 forests of § 3 with the corresponding packed word:

FR(123)@/@/@ r(132) .>. D), Fr(213) @6/@ r(231) @/@@
r(312) = O @/@ Fr(321) = (O (O (0, Fr(122) = , Fr(212) = ,

Fr(221) = 2 O, Fr(112) = , Fr(121) = , Fr(211) = O (12,
Fr(111) = (120> .

More examples can be found in the annexes section with Tables 4.2 to 4.7.

We conclude by the main theorem of this subsection. Itis a generalization of the construction
of [Foil 1] for FQSym and permutations to WQSym and packed words. Indeed, if we restrict
the construction on permutations and we consider right children of a node as label of this node,
we have the same construction as in [Foil1l] with a shift of 1 for labels. In Table 2.2 we have
some examples of trees in [Foil 1] and the equivalent red-packed tree.

All the constructions with red-packed forests have been done in order to have this theorem.
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)
cwithT = (V1) D) | | e with T = (or, 1) with 77 = (1, 1)

awithT = (V,2)
o with T = (., 2) with 77 = (1, 1)

oowith T = (1,1)
1" with T = (1,1)

awithT = (1.2
T Wit (1,2) Iy with T = (1,1)

Table 2.2: Equivalence between trees of [Foil 1] and red-packed trees.

Theorem 2.40. For all n € N we have the three following equalities :
dim(WQSym)) = #§r, and dim(Prim;)= #%r, and dim(TPrim})= #Ng,.

Proof. Theorem 2.38 proves the first equality. It also gives a relation between #§ and #% 5.
Indeed a red-packed forest of weight n is an ordered sequence of red-packed trees of weight (ny,)
such that ), (nj,) = n. This relation is the same between dim(WQSym}) and dim(Prim)
according to Proposition 1.1 (i.e. A =P/(1 — P)).

Red-skeleton trees are equivalent to ordered trees decorated by red-irreducible words as said
in Remark 2.33. Recall that a basis of primitive elements is given by Theorem 1.2 as ordered
trees decorated by totally primitive elements. Elements of 91 are by definition in bijections
with red-irreducible words, labels of red-skeleton trees. O]

2.2. Primal (Blue)

Now we do the same work for the primal side: WQSym. This subsection follows the same
structure of statements as the previous one. Recall that in Section 2.1 we constructed a bijection
between packed words and red-forests by recursively decomposing packed words using global
descent and removal of maximums. In this section we follow the same path: incerting the last
letter using ;o (lowercase ¢ designates the integer value) instead of new maximums using ¢;
(uppercase I designates the list of their positions). We define a blue-factorization of packed
words. When used recursively, blue-factorization and global descent decomposition construct
a bijection between PW and so-called blue-packed forest. Since the general structure of proofs
are the same as in the previous section, we will mostly focus on the differences between combi-
natorials arguments.
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2.2.1 Decomposition of packed words through last letter

In this section, we define two combinatorial operations on packed words (¢;« and A) and the
blue-factorization that use them. The unary operation ;o insert the new value 7 at the end of a
given word. A word that cannot be factorized uAv in a non trivial way is called blue-irreducible.
Blue-irreducible words will index a new basis of TPrim.

Definition 2.41. Fix n € Nand w € PW,,. For any 1 < ¢ < max(w) + 1 (with the convention
max(e) = 0), we denote by 1,0 (w) = uy - - - uy, - i the packed word defined by uy, = wy, if wy < i
and uy, = wy, + 1 otherwise. We also define 1);e (w) = w - i for any 1 < 7 < max(w).

Example 2.42. t)o-(1232) = 13432, 150 (1232) = 12322, 140 (1232) = 12324 and ¢/ (¢) = 1.

Lemma 2.43. For any W € PW, where { > 0 there exists a unique triplet (i,a, w) where
i€(l...0+1], a € {o,e}and w is a packed word, such that W = ;o (w).

Depending on «, the box diagram can be represented as

ZO Z. JZ
W = g orW =| w g . In the general case, we will note W =| w

N —

pack — w

Proof. Let W € PW, with ¢ > 0 and 7 the value of the last letter of 1.

* If ¢ appears multiple times in W, then let w = W ... W,_;, we only remove the last letter
iof W. We have W = ;e (w).

* Otherwise, i appears only as the last letter, then let w = pack(W; ... W,_;), we remove
the last letter ¢ of W and pack the word. We have W = ;- (w).

If Yo (u) = ;5 (v) then the last letter is the same so ¢ = j, the multiplicity of this letter is the
same so « = (3 and the prefix are the same u = v. [

Definition 2.44. Let u,v € PW with v # ¢. By Lemma 2.43, there is a unique triplet (7, a, v')
such that v = ;o (v). Let ¢/ = i + max(u), we define uAv =1y« (v'/u). In other words, we
remove the last letter of the right word, perform a reversed left shifted concatenation and adding
back the last letter also shifted.

Example 2.45. 21234312312 = 2123 A1) (2)+ (31231) = 1(a43)+ (645642123) = 6456421235.

Lemma 2.46. Let w be an irreducible packed word. There exists a unique factorization of

the form w = uAv which maximizes the size of u. In this factorization, let v' and i® such
that v = Y;a(V'),

e either v' = e and i* = 1°,
* orv isirreducible and 1 < i < max(v’).

We call it the blue-factorization of a word.
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) & ° [}

1
[ ] [ ]
[ ] [ ] [ )
Ul [ ] [ ] [ ] [ ] e b
UAV = A = °

U 2123 312312

6456421235

Figure 2.2: Box digrams: the operation A.

Example 2.47. Here is a first detailled example of a blue-factorization of an irreducible packed
word:
Consider the irreducible packed word w = 654623314.

* The first step is to remove the last letter ¢ = 4. Here there are multiple occurences of the
last letter in w, then o = e, we get w’ = 65462331 which is a packed word, but is not
irreducible.

* The second step is to set w] as the first irreducible factor of w’ and w the rest of w'.
This way w’ = w//u and the size of u is maximized. Here w} = 3213 and v = 2331.
Leti =i—max(u) =4—-3=1.

* Finally, we get the following decomposition of w (see Definition 2.41 for ) and Defini-
tion 2.44 for A):
w = 654623314 = uAya(w)) = (2331)A1)1(3213) = 2331A32131.

Example 2.48. Here are some other blue-factorizations:

234313 = 1At (1232) = 1412322 245413 = 1A1)50(1232) = 1413432
11 = cAtye(1) = eall 112 = 11At0(e) = 11A1

Proof. Let w be irreducible and let (i, o, w’) be the unique triplet such that w = v, (w') ac-
cording to Lemma 2.43.

If i = max(w) and it appears only one time (i.e. & = o and ¢ = max(w’) + 1) then the
blue-factorizations is w = w’ A1)y (€).

In any other case, we write w' = w|/w)/.../w,, the decomposition into irreducibles.
Let u = wh/ ... /wj and ' = i — max(u). We have that 7/ < max(w]) otherwise w wouldn’t
be packed and 1 < i’ otherwise w wouldn’t be irreducible. If & = o then 1 # i’ otherwise w
wouldn’t be irreducible. Then we have w = uA1;«(w]) where the size of v is maximized. [

Remark 2.49. When restricted to permutations, blue-factorization is equal to a red-factorization
applies to the inverse. Let o be a permutation and 0 = u»v be the red-factorization of o,
then 0~! = ' Av~! is the blue-factorization of o~ 1.

Definition 2.50. A packed word w is blue-irreducible if w is irreducible and w = uAv implies
that u = e(and w = v).



32 Hugo Mlodecki

Here are some useful lemmas on the operation A. There are some similarities with Lem-
mas 2.11 and 2.12, Corollary 2.14, and Proposition 2.15.

Lemma 2.51. For any u,v,w € PW with w # ¢, we have uA (vAw) = (v/u) Aw.

y O y O

(4 ]
w' w' )j

Proof. Let u,v,w € PW with w # ¢, and let w’ and i® such that w = ;o (w').

uA(VAW) = UA(V(itmax(w))e (W'/V))
= ¢(i+max(v)+max (uw))e (( /U)/u>
= ¢(i+max(u)+max(u))a (w'/(v/u))
= (v/u) Aja (W)
= (v/u)Aw. O

Lemma 2.52. For any u,v,w € PW with v # €, we have uh(w/v) = w/(uAv).

Z'a

Proof. Letu,v,w € PW with v # € and let v" and i such that v = ;a (V).

uA(w/v) = uk(w/i. (V')

uAY(w/v")

= W(itmax(u)= (W /V") /u)

= ¢(l+max (u))™ ( /( /u))

= W/P(i+max(uy)e (V'/1)

= w/(uAv). ]

Remark 2.53. Theses relations are the same up to symmetry as the one with » (Lemmas 2.11
and 2.12). So adding the associativity of shifted concatenation u/(v/w) = (u/v)/w, the two
operations A and / verify relations of the skew-duplicial operad [BDO20].
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Corollary 2.54. For any u,v € PW, we have that uAv is irreducible if and only if v is irre-
ducible.

Proof. By contradiction, if v = wv;/vy then by Lemma 2.52 uAv = wv;/(uAvy). Now
if uAv = w;/wy as the value of the last letter of uAwv is greater than max(u) we have
that wy = w) - w} - i such that pack(w}) = u. We also have that w, / pack(w} - 1) = v. O

Proposition 2.55. For any word w, w = uAv is the blue-factorization of w if and only if v is
blue-irreducible.

Proof. Let w € PW and let uAv be the blue-factorization of w. Let v; and vy such
that v = v, Ave, then (vy/u)Avy = w by Lemma 2.51, but in the blue-factorization the size
of u is maximized so |(v;/u)| < |u| and then we have that v; = € so v is blue-irreducible.
Letw € PW and let v and v such that w = uAv and v is blue-irreducible. By contradiction,
suppose that there exists v/, v such that w = ' Av’ with |u| < |u’| and v" # €. Then necessarily u
is a suffix of /. Let u” such that v’ = u” - u, then pack(u")Av’ = v. But v is blue-irreducible.
So the size of w is maximal if v is blue-irreducible. 0

Thanks Remark 2.49 the following proposition is immediate.

Proposition 2.56. A permutation o is blue-irreducible if and only if o~ is red-irreducible.

2.2.2 Blue-forests from decomposed packed words using )

As in Section 2.1.2 we will apply recursively the blue-factorization of the former section to
construct a bijection between packed words and a certain kind of labeled biplane trees.

In this construction, the labels can be a blue-irreducible word for skeleton, or an integer with
asign a € {o, e}. In order to differentiate the trees from the one of the previous section, we will
draw them in blue. As before, for a labeled biplane tree, we denote the trees by Nodeg(z, fo, f;).

Example 2.57. Nodeg(1°, [],[]) = and

Noden(1*, Node(1°, . ], Nodea(1°, 1. ) = ...

We apply recursively the global descent decomposition and the blue-factorization of
Lemma 2.46. We obtain an algorithm which takes a packed word and returns a biplane forest
where nodes are decorated by blue-irreducible words:

Definition 2.58. Exactly as Definition 2.23 of Frg. and Trge, we now define two func-
tions Fpge and Tpgke. These functions transform respectively a packed word and an irreducible
packed word into respectively a biplane forest and a biplane tree. These functions are defined in
a mutual recursive way as follow:

* Fpae(€) = [] (empty forest),
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* for any packed word w, let w; /wy/ ... /wy be the global descent decomposition of w,
then Fpge(w) = [TBske (Wi ), TBske(Wk—1), - - -, Thske(w1)] (notice the inversion compared
to Definition 2.23).

w1

0 Tpske (W) Thske(Wk—1) Thske(w1)

| o A e

W,

* for any irreducible packed word w, we define Tpg.(w) := Nodeg (v, Fpge(u), []) where
w = uAv is the blue-factorization of w.

" %@
v j — 0=

g Wlth v = Q/Ji(x (U/)

FI%skc(u)

Example 2.59. Let w = 8967647523314, here is the global descent decomposition
w = wy/wy with w; = 12 and w; = 67647523314. Now, we have the blue-factorization
of wy and w- using Lemma 2.46 as

wy = 1Ao(e). and  wy = 23314101+ (343142) = (122/1) A3431421,

on

Lol

8967647523314

It gives the following forest:

Fpeke(8967647523314) = [T (12), Theke(67647523314)]

. gma D

FBske(2331) FBske(l)

e@/@

Definition 2.60. A labeled biplane forest (resp. tree) is a blue-skeleton forest (resp. tree) if
and only if it is labeled by blue-irreducible words and no node has a right child.

We want to prove that the functions Fpg,. and Tggye are bijections. To do that, as for Frgee
and Tgg, we first define the two inverse functions.



COMBINATORIAL THEORY 4 (1) (2024), #1 35

Definition 2.61. We now define two functions Fp, _ and Ty, . that transform respectively a blue-
skeleton forest and tree into packed words. These functions are defined in a mutual recursive
way as follow:

* FB*ske(H) =6

* for any blue-skeleton forest f = [t1, ..., ], we define

FB*ske(f) = TB*ske(tk)/ s / Tgske(tl)'
(notice the inversion compared to Definition 2.26)

Wy,

t1 to tr -
k—1 *
@%O o«% @%O — o with w; = T (f)-

* for any blue-skeleton tree ¢ = Nodeg(v, f;, []), we define

*

Thae(t) = Frge(fr)Av.

0 %) — v

) :j with v = wz’“ (U,) and u = F]?Tske(f”‘

e

Lemma 2.62. The functions Fgg,. and Fy,_ (resp. Tpye. and Ty, ) are two converse bijec-
tions between packed words and blue-skeleton forests (resp. irreducible packed words and blue-

skeleton trees). That is to say Fgl,, = Fp and T, = Th.

Proof. The proof structure is the same as the one of Lemma 2.27 with use of statements comming
from this subsection. We can see in this table some of the main statements that are exchanged
for this dual part:

Lemma 2.7 Lemma 2.46 red-factorization and blue-factorization.
Definition 2.10 | Definition 2.50 | red-irreducible words and blue-irreducible words.
Corollary 2.14 up-v irreducible <= v irreducible

Corollary 2.54 uAv irreducible <= v irreducible.
Proposition 2.15 upv red-factorization <= v red-irreducible

Proposition 2.55 | uAwv blue-factorization <= v blue-irreducible.
Definition 2.23 | Definition 2.58 | Freke> TReke aNd Fggies T Bske-
Definition 2.25 Definition 2.60 red-skeleton forest and blue-skeleton forest.

E3

Definition 2.26 | Definition 2.61 | Fp ., True and Foyer The-

]

Now that we have the blue-skeleton, we will add right forests to every nodes to have biplane
trees. For every nodes, if v is the blue-irreducible word in the label, then with Lemma 2.43
v = ;e (v'), 1* is the new label and F(v') is the new right forest.
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Here is the formal definition of Fg(w) and Tg(w) which is very similar to Definition 2.58,
only the third item is different. The labels are now pairs of an integer and a sign o € {o, o}.

Definition 2.63. The forest Fg(w) (resp. tree T(w)) associated to a packed word (resp. irre-
ducible packed word) w are defined in a mutual recursive way as follows:

* Fp(e) = [] (empty forest),

* for any packed word w, let wy/ws/ ... /wy be the global descent decomposition of w,

then Fp(w) == [Tg(wg), Tg(wg_1), - .., Tp(w;)] (notice the inversion compared to Defi-
nition 2.28).
o T (wi)
0 Tg(wy) Tp(wk—_1) —_—
0 o
Wi

* for any irreducible packed word w, we define Tg(w) := Nodeg(i®, Fg(u), Fg(v')) where
w = uAY;a(v') is the blue-factorization of w.

:
v ﬂ — 0= ¢ T~

FB (u) FB (1)/)

Example 2.64. Consider again w = 8967647523314. We start from the blue-skeleton forest
from Example 2.59.

Fpake (8967647523314) = Q @/ QD/GD

Tp(343142)

B<12) TB(E

(1)
Tg(e)
)

Fp(8967647523314) = (1) (o)
Ts(e) T

Fp(8967647523314) =
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Definition 2.65. Let ¢ be a labeled biplane tree. We write ¢t = Nodeg(i®, fy, f,) where i € N.,
a€{o,e}, fy=1[01,...,4,],and f, = [rq,...,74], which is depicted as follows:

t= A
R/

g T1 Td

The weight of ¢ (w(t)) is the number of nodes with o in t. By extension, the weight of a
forest is the sum of the weight of its trees.

Lemma 2.66. The weight of a forest (resp. a tree) obtain by the functions ¥y (resp. Tg) is equal
to the maximum value of the word. i.e. Yw € PW, w(Fg(w)) = max(w), Yw € PW with w
irreducible, w(Tg(w)) = max(w).

Proof. We prove by induction with the following hypothesis, for n € N:

Vw € PW,,, w(Fp(w)) = max(w),

Vw € PW,, with w irreducible, w(Tg(w)) = max(w). (2.10)

The base case is given by the first item of Definition 2.63 as Fg(¢) = [] and w([]) = max(e) =0
by convention.

Let us fix n > 1 and suppose that the hypothesis (2.10) holds. Let w € PW,,; and
w = wy/wy/ ... /wy be the global descent decomposition of w.

o If k£ =1, we have Fg(w) = [Tp(w)]. Let w = uAt);a(v) withi € Nygand o € {o, @} be
the blue-factorization of w, then, depending of « the node is counted or not:

w(Tp(w)) = w(Nodeg(i*, Fg(u), Fg(v))) = (14) w(Fp(u)) + w(Fg(v)). The sizes of

w and v are at most n so by induction w(Tg(w)) = (1+) max(u) + max(v) = max(w).
e If £ > 2, by induction on each factors, we have that

w(Fp(w)) = w(Te(wy))+: - -+w(Tp(wg)) = max(w;)+- - -+max(wy) = max(w). [

Definition 2.67. Using the same notations as in previous Definition 2.65, we say that ¢ is a
blue-packed tree if it satisfies:

‘o
2 N ,é are blue-packed trees > L<i<wln), R
Loty p ' ly,...,l, and r; are blue-packed trees.

An ordered list of blue-packed trees is a blue-packed forest.

Remark 2.68. The same remark as Remark 2.33 can be done with blue-skeleton trees that can be
interpreted as flattened representations of blue-packed trees. Symmetrically, blue-packed trees
can be interpreted as unfolded representations of blue-skeleton trees. We use the operation );«
to change between blue-packed and blue-skeleton trees.
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Note 2.69. In the same way as Note 2.34 we add the following notations:

* Fpn the set of blue-packed forests of size n, (Fp, = {Fp(w) }wepw,,)s

* Tp, the set of blue-packed trees of size n, (¥p, := {Ts(w) }wepw, With w irreducible),

* g, the set of blue-packed trees of size n such that the left forest of the root is empty,
Mpn = {Ts(w)}wepw, With w blue-irreducible). In particular, the blue-skeleton of a
tree of 9, consist of a single node labeled by a blue-irreducible word.

Remark 2.70. The set )15, can be described as a disjointed union of sets depending on 7 and a.
Let F% denote the set of blue-packed forests of weight n that can be right children of a node
labeled by i* (see Definition 2.67 for conditions), we have the following description:

Np, = |_| {NOdeB(ia7 H7 fr) ‘ fr S Sgn,p} (2.12)

Analogously, we use §pske, T pske and INpsie for blue-skeleton forests, trees and trees with
only one node.

We can remark that for n = 1 we have 9ip; = Tp; = Fprand Vn > 1,Np, C Tp, € Sin.

Once again we define two functions in order to prove that F'g and Ty are bijections.

Definition 2.71. We define here the functions Fy; (resp. Ty ) that transform blue-packed forest f
(resp. tree t) into a packed word. We reverse all instructions of Definition 2.63 as follows:

* Fp(l) =«

* for any non empty blue-packed forest f = [t1, 15 ..., tx], then

Fi(f) = T (te)/ Tps (te-1)/ - -/ Tis (1)
(notice the inversion compared to Definition 2.36).

t to ,—ik—
O&O%O%KOE ” T e =To)

* for any non empty blue-packed tree t = Nodeg(i%, f, f), then
Ty (t) = Fp (fo) A (F (fr))-

4 % — v :j with v/ = F]_;,k(f’l‘) and u = F];(ff)

g r1 Td

f/, fr
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ifa=o

« * ~ =
As Yo (Fy (f,)) is only defined if ¢ < max(Fy(f,)) (4+1) (see Definition 2.41), there might
be a problem with this definition. We prove in the following Lemma 2.72 that this is the case
ift € Tp.

Lemma 2.72. For any blue-packed forest f, Fy (f) is a well defined word and its maximum
value is w(f). For any blue-packed tree t, Ty (t) is a well defined word and its maximum is w(t).

Proof. We prove by induction with the following hypothesis, for n € N:

Vf € Sp<n, Fg(f)is well defined and max(Fy (f)) = w(f), (2.13)
* t) *

Vt € Tpepn, Ty (t)is well defined and max(Ty (¢)) = w

The base case is given by the first item of Definition 2.71 as F; ([]) = ¢ and w([]) = max(¢) = 0.
Let us fix n > 1 and suppose that the hypothesis (2.13) holds. Let f = [t1, ..., tx] € Fpni1-

* If k=1, itis sufficient to prove the second item of (2.13). Lett =Nodeg (i%, f¢, f) € Thni1-
According to Definition 2.67 with notations of Definition 2.65 there are two cases:

— d = 0and i = 1°. We have that max(F5(f,)) = max(e) = 0soi < 0+ 1
and 1o (¢) = 1. Now by induction on f,, we have that F; (f;) is a well defined word
and its maximum value is w( f;). Finally Ty () = Fy, (f/) Aia (€) = Fg (fo)\ia (€)
is a well defined word and its maximum is the last value: max(Fy (f;)) + 1 = w(t).

— d = 1. In this case, we can directly apply the hypothesis (2.13) on f, and f,. Ac-
cording to Definition 2.67 we have that

So Ty (t) is well defined. Moreover

*

max(Tg (1)) = max(Fg (f) At Fy (f,)
max(Fg (f;)) + max(Fp
(

)
B (f (fr))(+1)
= w(fo) +w(f)(+1) =

t).

o If £ > 2, the weight of trees are at least 1 so we can apply (2.13) on trees of f. 0

Theorem 2.73. The functions F'g and FB* (resp. Ty and TB* ) are two converse bijections between
packed words of size n and blue-packed forests (resp. irreducible packed words and blue-packed
trees) of size n. That is to say Fg! = Fy and T3' = Tg.

Proof. The proof structure is the same as the one of Theorem 2.38 which is similar to the one
of Lemmas 2.27 and 2.62. But with use of statements comming from this subsection. We can
see in this table some of the main statements that are exchanged with their counterpart:
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Lemma 2.7 Lemma 2.46 red-factorization and blue-factorization.
Definition 2.10 | Definition 2.50 | red-irreducible words and blue-irreducible words.
Corollary 2.14 up-v irreducible <= v irreducible

Corollary 2.54 uAv irreducible <= v irreducible.
Proposition 2.15 upv red-factorization <= v red-irreducible

Proposition 2.55 | uAwv blue-factorization <= v blue-irreducible.
Definition 2.28 Definition 2.63 Fr, Tr and Fg, Tg.

Definition 2.30 weight of red-forests (3 size of labels)
Definition 2.65 | weight of blue-forests () | nodes with o).
Lemma 2.31 Lemma 2.66 w(Fr(w)) = |w| and w(Fp(w)) = max(w).

Definition 2.32 | Definition 2.67 | red-packed forest and blue-packed forest.
Definition 2.36 | Definition 2.71 | F, T and F3, Tj.

]

Remark 2.74. As we can see in Sections 2.1 and 2.2, the role of size and weight are exchanged
for red and blue-forests. For red forests, the size (number of nodes) is equal to the maximum
letter of the word associated while the weight (Definition 2.30) is the number of letter of the
associated word. For blue-forests, it is the opposite, the number of letters of the associated word
is equal to the size of the forest while le maximum letter is equal to the weight (Definition 2.65)
of the forest. That is why we denote the set of red packed forests of weight n by § 5, and the set
of blue-packed forests of size n by § 3.

Example 2.75. There is a unique forest in S B1, namely (1©), here are the 3 forests of §powith

,FB(21) () (o), Fp(11) .\. We show

, Fp(213) = , Fp(231) = @ ./.
@

the associated packed word:F(12) =

5

below the forests of §p53:

(®
Fg(123) = , Fp(132) =
@

Fo(312) = /' ©.Fa(32l) = © © ©. Fp(122) = , Fr(212) = .
@
® @
5(221) = @ ,FB 112) = & , Fp(121) = , Fp(211) ‘\.@
® @
@
Fp(l1l) = o

More examples n be found in the annexes section with Tables 4.2 to 4.7.

We conclude by the main theorem of this subsection. It is the dual of Theorem 2.40.
Theorem 2.76. For all n € N we have the three following equalities :
dim(WQSym,,) = #§5, and dim(Prim,)=#%p, and dim(TPrim,) = #Mg,.

Proof. The proof is similar to the one of Theorem 2.40 thanks to Theorem 2.73 instead of The-
orem 2.38. [
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3. Bases for totally primitive elements

In this section we construct two bases of primitive and totally primitive elements of WQSym
and WQSym*. Thanks to Theorems 2.40 and 2.76 we now have the combinatorial objects to
index those bases and we know that their numbers agree with the dimensions. We therefore
only need to show that they are linearly independent. We will proceed by showing that the
decompositions through maximum and through last letter preserve the total primitivity.

As in Section 2, we start by working on WQSym* associated to the color red and do the
same work on the primal WQSym associated to the color blue.

3.1. Dual (Red)

3.1.1 Decomposition through maximums and totally primitive elements

Definition 3.1. Let [ = [iy,...,4,) with0 < ¢y < ... < i,. We define a linear map
®; : WQSym* — WQSym* as follows: foralln € Nand w = wq - ws - - - w,, € PW,,,
L R¢I(w) if ip <n+p,
‘bf(R’”)'_{ 0 ifi,>n+p. 3.1y

Definition 3.2. Let [ = (iy,...,i,) with 0 <i; < ... < i,. We define a projector
771 WQSym* — WQSym* as follows: foralln € Nand w = wy - ws - - - w,, € PW,,,

71(Ry,) = {

These are orthogonal projectors in the sense that 77 = 77 and 770 75 = 0 (I # J).

R, if w; = max(w) if and only if i € I,

0 else. (32)

Lemma 3.3. For any I, we have Im(®;) = Im(7;) where Im( f) denotes the image of f.

Proof. Forany [, the inclusion Im(®;) C Im(77) is automatic by definition of ®; and 7;. Indeed,
forany w € PW,, if i, < n+pthen ®;(R,) = Ry, () and 77 (Ry, (w)) = Ry, (w) and @;(R,,) = 0
otherwise. By linearity Im(®;) C Im(7;).

For any I, the inclusion Im(®;) D Im(7;) is a consequence of Lemma 2.4 and linearity.
Indeed, for any w € PW, 7;(R,) = R, & (w; = max(w) < i € I). If 7(R,) = R,
let w’ be such that ¢;(w') = w using Lemma 2.4, then ®;(R,,) = R,, = 7;(R,,). By linearity
Im(®;) D Im(7y). O

Lemma 3.4. For any I, the projection by 1; of a totally primitive element is still a totally prim-
itive element, so that 7/(TPrim") = Im(7;) (| TPrim”. Moreover,

TPrim* = (P Im(r;) N TPrim" . (3.3)
I

Proof. Let w a packed word. We have A_(77(R,,)) = (77 ® Id) o AZ(R,,) by definition of 7;
and A. Indeed, in AL(R,), the deconcatenations cannot be done before the last maximum
letter of w. By linearity, for all p € TPrim”, we have AL(7;(p)) = (77 ® Id) o A(p) = 0.
The same argument works on the right so that 7;(p) € TPrim". Morevover 7; are orthogonal
projectors so TPrim* = @@, 7;(TPrim") = @, Im(7;) N TPrim". N
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3.1.2 The new basis P

Definition 3.5. Let ¢, ..., be k red-packed trees, I = [iy, ..., %), fi = [(1,...,{,] be ared-
packed forest and f, € F., be a red-packed forest that can be right children of a node labeled
by I,

Pp =R, (3.4)
]P)tl _____ ty T Ptk < (]Ptk71 < ( o= ]Ptl) .. .), (35)
PNoder (I, fi=t1,tals fr) = (Pers Py o, Py Proder (1,],£)) (3.6)
PNoder (1,0,1,) = Pr(Pf, ). (3.7)
Example 3.6.
< P 5(P
Py —By <P ) < (P o)

= R14342 + Ry1342 + Ryzra2 + Ryzaro — Rogzar — Raozar — Razoar — Ryzam
More examples can be found in the annexes section with Table 4.8 and Figures 4.2 and 4.4.
Theorem 3.7. For all n € Nyy:
1. (Py) ez, is a basis of WQSym;,

2. (P¢)tex,, is a basis of Prim),

3. (Py)iem,,, is a basis of TPrim’.

Proof. We do a mutually recursive induction on n to prove these three items.
As dim(WQSym3) = dim(Prim]) = dim(TPrim]) = 1 the base case is trivial. By Propo-
sition 1.1, Item 2 up to degree n implies Item 1 up to degree n. Similarly, Theorem 1.2 shows
that Item 3 up to degree n implies Item 2 up to degree n. By induction it is sufficient to show
that Items 1 and 2 up to degree n — 1 implies Item 3 for n.

For all £ € N, let 7, be the canonical projector on the homogeneous component of degree k
of WQSym*. We define 7, := Zk o M- Fix I = [iy,...,4,) with p < n and u a packed
word of size n — p. Notice that if p = n we immediately have v = ¢ and AL(®;(R.)) = 0.
We suppose now that p < n. By Equation (1.26), in the half coproduct A_(®;(RR,)) all the
maximums must be in the left tensor factor, which therefore must be at least of degree ¢,. By
linearity, for all x € WQSym, _

p’

n—1

A(®r(x) =D Prom@mua; | o Alx). (3.8)

J=ip
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Thanks to Corollary 1.4 for f = [ry,...,7r4 € Frn—p, the coproduct A(IP’ ) is computed by
deconcatenation of forests. Soif f € F5, _p» in particular r, is of weight at least n — i, + 1 then
for j > i, we have n — 1 —j < w(r,) so that all the terms in the previous sum vanishe. A similar
reasoning applies to A, (®;(x)) using the fact that f € §},,_, imply 1 <4y < w(ry).

So for all ¢ = Nodeg(I,[], fr) € Mgy, we have that AL(P) = AL(P;(Py)) = 0
and A, (P) = A, (®;(Py,)) = 0.

Moreover, by induction we have that {P; | f € §},_,} are linearity independent
as {Py | f € Srn—p} is a basis of WQSymy, . Recall the description of 91z, in Remark 2.35
as a disjointed union of sets depending on /:

Npn = |_| {Noder (L, [, £r) | fr € Fhn_p}- (3.9)

I

Since ®; is injective on WQSym, , then {®;(Py) | f € %, ,} are linearly independent.
According to Lemma 3.3, for all f € §},, , we have ®;(IPy) € Im(7;) N TPrim},. Moreover,
thanks to the direct sum of Equation (3.3):

TPrim, = @ Im(77) N TPrim;,

and by definition of P, in particular Pxode, (1,],7,) = Pr(Py,), the family {P; | t € g, } are
linearly independent. Finally, by cardinalities of Theorem 2.40 it is a basis of TPrim,. 0

Remark 3.8. The basis P is indexed by red-packed forests (§z). We will also use red-skeletons
(S rske) or packed words (PW) as index thanks to the bijections of Remark 2.33 and Fy of
Definition 2.28.

3.2. Primal (Blue)

3.2.1 Decomposition through last letter and totally primitive elements

Definition 3.9. Leti € N.j and o € {o, e}. We define a linear map
Vo : WQSym — WQSym as follows: foralln € Nand w € PW,,,

Qyow) ifa=oand 1 <i < max(w)+ 1,
Vo (Qu) = ¢ Quuw) ifa=eand1 < i< max(w), (3.10)
0 else.

Definition 3.10. Let i € N and o € {o, e}. We define a projector
Tia : WQSym — WQSym as follows: for alln € Nand w = wy - wy - - - w,, € PW,,

Qu, ifw,=ianda=eandi € |[wy,...,w, 1],
Tio(Qp) =< Qp ifw,=ianda=oandi ¢ [wy,...,w,_1], (3.11)
0 else.

These are orthogonal projectors in the sense that 72 = 7,0 and T 0 755 = 0 (i # j or o # ).
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Lemma 3.11. For any i and o, we have Im(V o) = Im(7;o) where Im(f) denotes the image

of f.

Proof. For any i and «, the inclusion Im(W;«) C Im(7;e) is automatic by definition of W«
and 7, and linearity. Indeed, for any w € PW,, Tja (V0 (Qy)) = V40 (Qy).

For any i and any «, the inclusion /m(W;o) O Im(7;) is a consequence of Lemma 2.43 and
linearity. Indeed, for any w € PW, if 7,0 (Q,,) = Q,, then w,, = 1.

With w’ = pack(w; ... w,_1) we have V;a (Qy) = Qp = Tia (Qy)- O

Lemma 3.12. For any i and «, the projection by T;« of a totally primitive element is still a totally
primitive element, so that T;«(TPrim) = Im(7;) [ TPrim. Moreover,

TPrim = @ Im(7«) N TPrim . (3.12)

a,t

Proof. Let w a packed word. We have A<(7;0(Qy)) = (Tie ® Id) o A<(Q,) by definition
of 7;« and A<. Indeed, in Ag (Qu), the decomposition can’t be done under the last letter of w.
By linearity, for all p € TPrim, we have A< (7« (p)) = (Tie ® Id) o Ax(p) = 0. The same
argument works on the right so that 7;o(p) € TPrim. Morevover 7;. are orthogonal projectors
so TPrim = @, ; 7io (TPrim) = P, ; Im(7:2) N TPrim. O

3.2.2 The new basis O
Definition 3.13. Letty,... ¢, 7 € Tp, f, € {[|,[r]} and fi = [(1,...,{,] € TB,

Op:=Q,, (3.13)

Oty =0y, = (©tk~—1 < (..=20y4)...), 3.14)
ONodeg (i, fi=[t1,.- 6. 5) = (Ot Ory, - ., O, Onodep (i2,[.£.))» (3.15)
OnNodep (i,1,,) = Yie (O, )- (3.16)

Example 3.14.
O =0 <0
€ (1 =7 @
a7 @7
=0 =0 -0 <0 ) )
(1)

= 34122 + Q24133 + Qua233 + Qus212 + Qa2313 + Quai323
— Q34212 — Q24313 — Q14323 — Quz120 — Quo133 — Qui233.

=< U (O

More examples can be found in the annexes section with Table 4.8 and Figure 4.5.
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Theorem 3.15. Forall n € Nyq:
1. (Of)fezy, is a basis of WQSym,,
2. (O¢)texy, is a basis of Prim,,
3. (O)temy, is a basis of TPrim,,.

Proof. The proof structure is the same as the one of Theorem 3.7 except for some statements
that are exchanged as we can see in this table:

Equation (1.26) | Equation (1.23) | left corproduct in basis R and Q.
Remark 2.35 Nin = LU {Nodexr (1, [], f)fr € Shn_p}s
Remark 2.70 Npn = |, ,{Nodeg(i®, [], )| fr € Sgn_p}.
Lemma 3.3 Lemma 3.11 Im(®;) = Im(77) and Im(¥ ;o) = Im(7;a).
Lemma 3.4 TPrim* = @, Im(r;) N TPrim”,
Lemma 3.12 TPrim = @, Im(r«) N TPrim .
Theorem 2.40 dim(TPrim)) = #MNz, ,
Theorem 2.76 | dim(TPrim,,) = #MNg, .

O

Remark 3.16. The same remark as Remark 3.8 can be done on the basis Q. Indeed, it is defined
with blue-packed forests (§p), it is nevertheless possible to use the blue-skeletons (§pske) Or
packed words(P W) thanks to the bijections of Remark 2.68 and Fg of Definition 2.63.

4. Isomorphism between WQSym and WQSym*

According to Corollary 1.3 WQSym (resp. WQSym™) is freely generated as a dendriform
algebra by TPrim (resp. TPrim®). Therefore, any linear isomorphism between TPrim
and TPrim”™ would lead to a bidendriform isomorphism between WQSym and its dual.
Thanks to the two bases P and O any graded bijection between red-irreducible and blue-irredu-
cible packed words leads to such an isomorphism. We first make explicit how this is done. Then
the bijection is actually obtained as the restriction to red-irreducibles of an involution on all
packed words. The definition of the bijection requires a new kind of forest mixing red and blue
factorizations, namely bicolored-packed forests.

4.1. A combinatorial solution to an algebraic problem

In this Section 4.1, we use the skeleton representation for bases IP and O as said in Remarks 3.8
and 3.16. Moreover we fix a graded bijection 1 between red-irreducible and blue-irreducible
packed words.

Definition 4.1. Recall that (IP;);cq,,, is a basis of TPrim, (Theorem 3.7) and (O}):cm,,, is a
basis of TPrim,, (Theorem 3.15). By linearity, setting

fm (b)) €Mp,  and  Mu(P)=O. 1)
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forallt = (v) € Mg, defines a linear isomorphism between the vector spaces TPrim’ and
TPrim,,

Definition 4.2. We define 0, as the extension of y from red-skeleton to blue-skeleton forests by:

Vi=Ttr,....te] €Fr, ou(f):=[outr),...,0.(tx)] 4.2)
Vt = Nodeg (v, fo,[]) € Tr, 0,(t):= Nodeg(u(v),o.(fe),[])- 4.3)

Definition 4.3. We denote >, the unique bidendriform isomorphism from WQSym* to
WQSym which verify for all f € §x:

Su(Pr) =0o,p) “@.4)

The existence and unicity are guaranteed by Corollary 1.3.

Example 4.4.
I ; 2 -
| Crte)
g = Gy G

EH (an) = ©fB

In the following example, we take 1(212) := 122 and p(w) := w for other words with a size
less than 3 as they are simultaneously red-irreducible and blue-irreducible packed words.
Here are all red and blue-irreducible packed words of size 1, 2 and 3:

Red : 1, 11, 132121212111, Blue : 1, 11, 132121122111.

o @ )@

These two forests are the same as those used in Examples 3.6 and 3.14. So we have here the first
example of the isomorphism from the basis R to the basis QQ:
Rigseo + Ratzeo + Rugiao + Rygazo \ Q34122 + Q24133 + Q14233 + Quzo12
2y = | +Qu2313 + Qu1323 — Q34212 — Qo313
—Roazar — Ragzar — Ragoar — Ruzan
— Q14323 — Quz120 — Qua133 — Qui233

Example 4.5.

We now have a construction of a bidendriform isomorphism for any graded bijection p be-
tween red-irreducible and blue-irreducible packed words.
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4.2. Full decomposition of packed words into bicolored forests

In order to define a bijection between red-irreducible and blue-irreducible packed words, we
need a new kind of forests that mixes up the red and blue factorizations. More precisely, we will
recursively alternate these factorizations. We start with an unexpected lemma which implies that
starting by red or blue does not matter.

Lemma 4.6. For all a,b,c € PW, with ¢ # ¢, the following relations hold:
av(bAc) = bA(awc) and awl=aAl, 4.5)

where 1 is the packed word of size 1.

1 O ]
a a
C* —‘ —_— C* |:|
b b

Proof. Let a € PW and 1 the packed word of size 1, by Definitions 2.5 and 2.44 a»1 = a\1
and Al = a\1.

Let a,b,c € PW, with ¢ = ¢;---¢c, of size n > (0. We start by assuming that
¢, # max(c) which implies that ¢ = ¢;(1a(c*)) = Yia(p;(c*)) with 1,4, a, ¢* unique by
Lemmas 2.4 and 2.43. With this relation we can deduce:

a(bAc) = av (bAYe (¢r(c?))
= a»(wwmax(b ( I(
= a>(¢z+maX(b (¢r(c™/b
= a><¢l<wz+max a(C*
= ¢I+|a\(a/@/}i+max a(
- ¢I+|a\(wi+max(b)o‘(a/

)

~

a0

bA(awc) = ba(aw¢r(Yie(c")))

= bA(¢r4pa(a/1in(c7)))
= DA(r141)(Vin(a/c")))
= bA (Vo (Prija (a/c)))
= Vit max(b) (¢1+|a| (a/c*)/b)
= Vismax(v) (Pr+1a (/" /D))
= ¢I+|a|(77/}i+max b)a(a/C /b))

The case where ¢,, = max(c) can be decomposed into different particular cases. In each of these

cases, it is possible to find a relation with two different writings of c that begin with ¢ or ¢ just
like ¢ = ¢1(Via(c*)) = e (@7(c*)). These cases with the associated relation are:
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* the case where c is the packed word 1 then ¢ = ¢;(€) = Y0 (€),
* the case where c is of the form ¢/\1 then ¢ = ¢ () = ¥10(¢),

* the more general case where there is more than 1 maximum including the one at the end
then ¢ = ¢r.,(c*) = 1/Jc;(¢1(0*))~

In each of these cases it is possible to prove with a similar method that a» (bAc) = bA(apc). [

Example 4.7. Here are some examples of this relation:

1> (1A1) = 213 — 1A(1p1),
110 (1242111) = 44533123 = 12A(11»2111),
110 (21A123) = 5534216 = 21A(11»123),
1 (11243132) = 56361124 = 1124 (1»3132).

Definition 4.8. Let w be an irreducible packed word. Let w = z»u be the red-factorization
of w and let u = yAz be the blue-factorization of u. Then w = x»(yAz) is called the red-
blue-factorization of w. Symmetrically we define w = 3’ A(2'»2’) the blue-red-factorization
of w.

Lemma 4.9. Let w = z»(yAz) be the red-blue-factorization and let w = y' A(x'»2") be the
blue-red-factorization of an irreducible packed word w.

With these two factorizations, we have that z = z' and it is both red-irreducible and blue-
irreducible packed word. Moreover,

o citherz=2 =1L, y=a2"=candx =y
corz=x,y=1.
Example 4.10. Here are some examples of red-blue-factorization and blue-red-factorization:

12»(cAl) =213 = 12A(er1),
11»(12A41211) = 44353123 = 12A(11»1211),
553421» (cAl) = 5534216 = 553421 A(em1),
1»(112A43132) = 56361124 = 112A(1»3132).

Proof. We start by prooving the case where z = 2’ = 1,y = 2’ = eand x = ¢/. Let w’ be an
irreducible packed word and w = w’\1. We have that w = w'»1 is the red-factorization of w and
w = w’A1 is the blue-factorization of w. In this case we immediately have that w = w’'»(eAl)
is the red-blue-factorization of w and that w = w’A(e» 1) is the blue-red-factorization of w.

Now let w be an irreducible packed word of size n that cannot be written as w’\ 1. In other
words, there is a maximum strictly before the last letter of w (3i < n, w; = max(w)).

We define the two sets of triplet of packed words that verify equations of the factorizations
for w:

Srp(w):={(a,b,c) € PW, c# e, w = ar(bAc)},
Spr(w):={(a,b,c) € PW,c+# e, w = bA(arc)}.
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Thanks to Lemma 4.6 these two sets are equal, we define S(w) := Spp(w) = Spr(w).

In the red-blue-factorization w = z»(yAz), we maximize the size of x, then we maximize
the size of y in the remaining word. In the blue-red-factorization we commute the order of
maximizations. We will caracterize S(w) and see the limit of the two maximizations to prove
that they can commute.

Let w* be the packed word comming from w where the last letter and all occurences of the
maximum are removed and let I = [iy,...,1%,], %, o such that w = ;o (¢7(w*)). By hypothesis,
we have that [ # @&. Let w* = w;/--- /wy be the global descent decomposition of w*. Let ¢
be the maximum such that |w;/ - -+ /wy| < 41, i being the position of the first maximum of w.
Let 7 be the minimum such that |w, /- - /wg| < n — i, — 1, i, being the position of the last
maximum of w before the last letter. As i; < 4, by definition, we have that ¢ < r. We can
caracterize the set S(w):

Sw) ={(a=wi/--- fww,

b=wp/ - wy,
c= ¢(i—max(b))a (¢I—|a\(wr0+1/ T /’wgo_1>)),
with 7* < rand £ < (°}. O

Here are all packed words that are both red-irreducible and blue-irreducible of size less
than 4:
1, 11, 111121132,

1111 1121 1132 1211 1212 1221 1231 1232 1243 1312 1321
1322 1323 1332 1342 1423 1432 2121 2122 2132 2143 3132

n 112134 5 6 7 8 9
i, ePW, | 11322196 (2008 | 23184 | 297456 | 4199 216
i,€6, |1]0|1]|5 32| 236 | 1951 | 17827 | 178418

Table 4.1: Number of both red-and-blue-irreducible packed words and permutations.

Recall our notations for Hilbert series of an algebra A, A(z2):= > " dim(4,)2",
P(2):= > dim(Prim(A,))2" and T (2) = 3.2 dim(TPrim(A,))2".

n= n=

Recall the relations between these series:
P =A/(1+ A) orequivalently A = P/(1 — P) (see Proposition 1.1),

T = A/(1 + A)? or equivalently P = T (1 + A) (see Theorem 1.2).

If we define the serie 7 = Zﬁ i,2" where i, is the number of both red-and-blue-irreducible
words of size n, then we have the following relation:

T=A/(1+ A+ 2P orequivalently T = (T — 2)(1 + A) + z.
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So far we have seen red-biplane trees and blue-biplane trees. In this section we define red-
blue-biplane trees and blue-red-biplane trees, the edges of these trees are of two different colors
and the labels are red-and-blue-irreducible packed words. We denote by Noderg(z, fo, f.) (resp.
Nodegg (z, fo, f-)) the biplane tree whose edges between the root and the left forest f, are red
(resp. blue) and edges between the root and the right forest f, are blue (resp. red).

Definition 4.11. The bicolored forests Frp(w) and Fpr(w) (resp. trees Trp(w) and Tgr(w))
associated to a packed word (resp. irreducible packed word) w are defined in a mutual recursive
way as follows:

* Frp(e) = Fpr(e) = [] (empty forest),

o for any packed word w, let w = w;/ws/ ... /wy be the global descent decomposition,
then Frp(w) = [Trp(w:), Tre(ws), . . ., Tre(w)],

wy Trp(wk)
0 Trp(wi) Trp(w2)

* for any packed word w, let w = w;/ws/ ... /wy be the global descent decomposition,
then FBR (w) = [TBR(wk), TBR(wk_l), c. ,TBR<IU1)].

w1y Ter(wk)
0 Tpr(ws) Tgr(w1)

sz s m@%@m

Wy,

(notice the same inversion as in Definitions 2.58 and 2.63 for Fgg.)

* for any irreducible packed word w, let w = ap(bAc) be the red-blue-factorization, then
TRB (’LU) = NodeRB (C, FRB (CL) s FRB (b))

—— [m]

b Fre(a) Frg(b)

» for any irreducible packed word w, let w = bA(apc) be the blue-red-factorization, then
TBRI(IU) = NodeBR,(c, FBR(b), FBR,(G)).

] O
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Example 4.12. For this example we write the word w in hexadecimal in order to have a big and
clear example, let w = DDDCCCEBBEI9F A587653213449. The word w is irreducible so
there is only one tree in the forest. To have Trp(w), we start by the blue-red-factorization,

w=DDDCCCEBBE9F A 58765321344 9 = 3332224114» (58765321344 A1321).

Then we decompose each sub-word according to their global descents and do
blue-red-factorizations recursively until we have only both red-irreducible and blue-irreducible
packed words:

w = 3332224114 (58765 321344 A1321),
— 333222411 4p((14321/3213 44) A1321),

]
= ((111/111)»(11A11))»((14321/(((1/1)a11)»11))a1321)

DDDCCCEBBE9FAS5587653213449

Trp(w) = /@ZD\

Frp(3332224114) Frp(58765321344)

Trip(3332224114) Tirp(14321)  Trp(321344)

More examples can be found in the annexes section with Tables 4.2 to 4.7.
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Definition 4.13. There are two types of bicolored trees, the only difference is that colors red
and blue are inverted. Let ¢ be a labeled biplane tree. We write ¢ = Nodegg(w, fo, f,) where
w e PW, f,=1[l,...,4,]is the left forest of t and f, = [r1,...,74] is the right forest of £. We

depict t as follows:
t — A
161 e E T

g (] Ta

We say that ¢ is a red-blue-packed tree if it satisfies:

1; z 1[]’ or { w # 1 is red-irreducible and blue-irreducible,

#, is a red-blue-packed forest. fr and f, are red-blue-packed forest.
Definition 4.14. The weight of a bicolored-packed tree is the sum of the size of packed words
in the nodes.

We have already done it four times (Definitions 2.26, 2.36, 2.61 and 2.71) and we will do it
one last time, to prove that Frg, Trp, Fpr, Tar are bijections, we define Fi, Trg, Far, Tor
and prove that they are the inverse maps.

*

Definition 4.15. We define here the maps F,5, T, Fpr, T that transforms bicolored-packed
forests and trees into packed words. We reverse all instructions of Definition 4.13 as follows:

* Fiip([)) = Fir([]) = € (empty packed word),

» for any red-blue-packed forest f = [t1, 5. .., tx], we have

@& % f?% — J with w; = Tyg(t).

* for any blue-red-packed forest f = [t1, 15 ..., tx], we have
FBR(f) = [TBR<tk)7 TBR(tk—l)7 s 7TBR(t1>]'

~ A 0
M@ {O% m — J with w; = Ty ().

* for any red-blue-packed tree ¢ = Nodegg(c, fr, f), we have
Trp(t) = Frp(fo» (Frp(f)Ac).
—— O

. A , R - swith a = Fig(fe)

g T ... S Tq ¢ and b:FR*,B(fT)‘
Je fr ’
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* for any blue-red-packed tree t = Nodegg(c, f, f-), we have
Tpr(t) = Fpr(fr) A(Fpr(fo)wc).

[m]

! noe and b= F;5(f0)

fe fr b

Theorem 4.16. The maps Frp and F .y (resp. Trp and Tyy) are two converse bijections be-
tween packed words of size n and red-blue-packed forests (resp. irreducible packed words and
red-blue-packed trees) of weight n. That is to say F;;5 = Fpp and T = Trp. We have the
same result with inversions of red and blue.

Proof. 1t is simple to prove by induction on the size of the trees that domain and codomain
are as announced and that the functions are inverse to each other. The proof is similar to
the proofs of Lemmas 2.27 and 2.62 and Theorems 2.38 and 2.73 using Definition 4.11 of
Frp, Trp, Fgr, Tsr, Definition 4.13 of bicolored-packed forests and trees and Definition 4.15
of Frp, Trp: For, Ter- O

Remark 4.17. We now have two new families of forests §rp and §pr that are in bijection with
packed words and therefore in bijection with red-packed and blue-packed forests. As in Re-
marks 3.8 and 3.16, this gives us two other way to index bases @ and P of WQSym and
WQSym*.

4.3. An involution on packed words

We are now in position to define a bijection between red-irreducible and blue-irreducible packed
words. This bijection is actually the restriction of an involution defined on all packed words.
Precisely, we will define two transformations on bicolored forests

We need to define the notion of mirror transformation of bicolored-packed forests and trees.
This transformation is defined from a red-blue to blue-red or from blue-red to red-blue, so in the
notations we will use XY instead of /7B or B R to point out where the swap is made.

Definition 4.18. The mirror transformation of a bicolored-packed forest f = [t1, ..., ;] is given
by f:= [t;, - ,ﬂ] where a is the mirror transformation of ¢; recursively defined as follows. For

any t = Nodexy(z, f¢, f) then
%"._ NOdeyx(Z, ﬁ? ﬁ) if 2 7& 17
' Nodeyx(1, fo,[]) ifz=1.
Note that when 2 # 1, the left and right forests are swapped whereas they are not when
z = 1. But in the latter case, we have necessarily f, = f, = []. These two cases correspond

to the two cases of Definition 4.13 so the mirror transformation of a red-blue-packed forest is
indeed a blue-red-packed forest.
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Example 4.19. Here are two examples of mirror transformations.

eo»:c and

Proposition 4.20. For all packed words w, both associated bicolored-packed forests Frp(w)
and Fgr(w) are mirror image of each other.

Proof. The proof is a computation of mirror transformation (Definition 4.18) on each items of

Definition 4.11 of Frg. For the first three items the computation of f:= [ﬂ, ey ﬂ] is sufficient.
Thanks to the relation of Lemma 4.9 (x» (yAz) = yA(x»z)inthe case z # 1) the two remaining
items are also simple computation of ¢. 0

Definition 4.21. The color swap of a bicolored-packed forest f = [t1,...,1;] is given by
f:: [ﬁ, o ,tAl] where t: is the color swap of {¢; recursively defined as follows.
For any ¢ = Nodexvy (z, fs, f-) then 1= Nodeyx(z, ﬁ, ﬁ)

In other words, it is a recoloration of each edges using the other color. Every blue edges
become red and vice versa.

Example 4.22. Here are two examples of color swaps.

More examples can be found in the annexes section with Table 4.8.

When we focus on the packed words associated to these forest, the color swap correspond
to the swap of the two operations » and A in a bicolored-factorization. More precisely, if w is
an irreducible packed word and w = z»(yAz) is the red-blue-factorization of w, then the color
swap on the associated forest correspond to w’ = zA(y»2).

Lemma 4.23. Mirror transformation and color swap commute. It means that for all bicolored-

packed forest f, we have (f) = (]?)
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f=f
Sr <— SBR

w—FrB V \ / YFB}&U)

PW S T N PW

WHFBI{m \/ \1 AFR_]%(J()

SBr = SrB
f=f

Figure 4.1: Commutative diagram of maps on bicolored-packed forests.

Proof. The proof is immediate. Indeed, the definition of mirror transformation is independant
of color swap and symmetrically, the color swap is independant of the tree shape. [

o —

Corollary 4.24. The diagram on Figure 4.1 is commutative. So @ := FyL(Fpr(w)) is an
involution on packed words.

Proof. Thanks to Proposition 4.20 and Lemma 4.23 the diagram is immediately commutative.
The mirror transformation and the color swap are independant involutions so the conjunction is
an involution. L

Corollary 4.25. The application w — W send blue (resp. red) irreducibles packed words to red
(resp. blue) irreducibles packed words.

Some examples can be found in th annexes section with Tables 4.9 and 4.10.

Proof. If w is a red-irreducible packed word, then the red-blue-factorization of w is of the form
w = e (yAz). Then the color swap correspond to the words w’ = eA(y»z) which is blue-
irreducible. 0

4.4. Main theorem

In Section 4.1 we fixed a graded bijection x between red-irreducible and blue-irreducible packed
words. After that, we extend it to all red-skeleton forests as 0,. We finished by defining >J,, as
a bidendriform isomorphism from WQSym* to WQSym. Now we can set y : w — @ as
a graded bijection. The extension o, correspond to the color swap on red-packed forests (i.e.

o, fr—= f) Finally we have the following theorem:

Theorem 4.26. The linear map Y. : WQSym* — WQSym defined as for all packed forest f,

L(Py) =05
is a bidendriform isomorphism between WQSym* and WQSym.

Proof. This theorem is a direct consequence of Corollaries 1.3 and 4.25. [
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Conclusion

The main contribution of this paper is the combinatorial construction of biplane trees. They are
the combinatorial ingredient which completes the algebraic theory of Foissy [Foil 1] and allows
us to describe the explicit isomorphism. Besides, they are also an innovative combinatorial
family and open promising research perspective.

Generalization of the inversion of permutation to packed words

The inherent difficulty of finding an explicit isomorphism between WQSym and its dual lies in
the fact that there is no “inversion” operation on packed words. Indeed, in the case of FQSym,
the Hopf algebra indexed by permutations, the isomorphism is given by the inversion of permu-
tations. The solution we offer, using biplane trees, is actually not a generalization of FQSym
in this sense. Indeed, even though permutations are a subset of packed words, the restriction of
our involution on packed words to permutation is not the inversion. In particular, if a permuta-
tion o is both red-irreducible and blue-irreducible, its image is itself and not its inverse. This is
the case for all packed words which are both red-irreducible and blue-irreducible. Nevertheless,
our involution is somehow “compatible” with the inversion in the sense that if we arbitrary de-
cide that the image of o is o~ for all ¢ such that o is a red-blue-irreducible permutation, then
the rest of construction ensures that the image of o is 0~ for all permutations (not necessarily
irreducible anymore). But we don’t know how to define the inversion on red-blue-irreducible el-
ements which are not permutations, which is why to stick with the identity in all case, including
permutations.

Stays the open question: is there a generalization of the inversion of permutations on packed
words? In other words, one would want an involution on packed words which restricts to the
inversion on permutations and gives a bidendriform isomorphism between WQSym and its
dual. A consequence of our work is that it is sufficient to find such an involution on red-blue-
irreducible packed words.

Generalization of the biplane trees to parking functions

A long term goal would be to somehow generalize the structure of biplane trees to all biden-

driform Hopf algebras. The first step would be to look at the Hopf algebra indexed by parking

functions PQSym. Indeed PQSym is also a bidendriform bialgebra and parking functions are

a superset of the packed words. The question of generalizing the structure to parking functions in-

volves both combinatorics and algebra. The first thing is to compute bases of PQSym in which

the shuffle product is not shifted. It can be done with a generalization of Definition 1.29[BZ09].
The lines of research induced by this work are the following:

* How to generalize biplane tree structure to PQSym?

* We will then look for what are the necessary and sufficient ingredients to develop biplane
tree structures and obtain bidendriform automorphisms on all bidendriform bialgebras.
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Link between bidendriform bialgebras and skew-duplicial operad

As said in Remarks 2.13 and 2.53 the operations » and / (resp. A and /) unexpectedly verify
relations of the skew-duplicial operad [BDO20]. These relations reveal a new application of the
skew-duplical operad applied on packed words.

e Can we find a skew-duplical structure on WQSym which is linked to the bidendriform
structure?

* More generally, is there a link between bidendriform bialgebra and skew-duplical?

Link between bidendriform bialgebras and L-algebras

As said in Remark 2.21, the sequence that count unlabeled biplane trees is the dimensions of
the free L-algebra on one generator (see [Ler11]). It would be interesting to investigate the link
between L-algebra and bidendriform bialgebras through the use of biplane trees.

The study of the operad on the three operations {», A, /} is a start in order to study the link
between bidendriform bialgebras and the skew-duplical operade or L-algebras.
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Annexes

In Tables 4.2 to 4.7 we have red-packed forests, blue-packed forest and bicolored-packed forests
associated to all packed words of size smaller than 4.

In Table 4.8 we have the isomorphism between WQSym (bases O and Q) and its dual (bases
P and R) for size smaller than 3. Basis O and P are indexed by bicolored-packed forests. This
illustrates the main theorem of Section 4.4.

In Table 4.9 we have the involution of Corollary 4.25 for all packed words of size 4. They are
organized by evaluations. Red-irreducible (resp. blue-irreducible) packed words are underlined
in red (resp. blue).

In Table 4.10 we have the involution of Corollary 4.25 for all red-irreducible packed words
that are not blue-irreducible. It correspond to words underlined in red in front of a word under-
lined in blue in Table 4.9.

The matrix of Figure 4.2 is redundant with the column R and [P of Table 4.8. Note that even
though the matrix of Figure 4.3 is symmetric, it is not the case anymore on Figure 4.6. Even if
we restrict to permtuations, the matrix is not symmetric for size 5.

=123
132
213
231
312
321
T 1122
212
221
112
121
211
111

123 e
132). 1 -1. 1
213 (-1 . 1 . . .
231|-1-1'1 1 -1.
312, . -1 . 1 .
32101 . . -1-11
1220, . . . . . .
212 . . . . . 1 1 . . .
21y, . . . . . . . 1 -1.
]
2ry. . . . . . -1. . . 11
2100, . . . . . L. . . . 1.
I |

Figure 4.2: Change-of-basis matrix from P5 to Rs.
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OO OO | 0O

2 o | o | | o

21

‘ Frp(w) ‘ Fpr(w) ‘

FB (w)

FR(U)>

w

ONIC;
RN MR
© ©
"Byl @ %R 55 % 8| %6 @ |3 @
GG GGGGO/OON% 0@@00\00 © GG @G GG
oll0 Ol O Ble® Ol o | ¢ [© ® &
“aly e el 6 8| %0 0| 2| @

Table 4.2: All packed words of size smaller than 3 and forests associated to it.
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eSS g=as =
— = AN NN N — AN~ = A~
123 |1 . .
132, 1 .
213 . . 1 . .
2310, . . .1
312. . .1 . .
321, . . . .1 ..
1220, . . . . . 11
2121, . . ...
722 S |
2. . ... ... 1.
1522 T
200 . . . ..
my. ... 0 ]

Figure 4.3: Change-of-basis matrix from Q3 to Rj.
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’ w TR(U)) TRB<UJ) ‘
D D
1234 > >
© ©
© o
®
1243 . D
©
D
1324 | ©
© © ©
©
©
1342 & -
©
>
1423 =
o D
©) ()
© !
© @)
1432
0 S
© O]
D 0 D D
2134 (1 (rf (1 (1
010, 010, 010 010
® ®
92143 © G,
010 O
D 0) D D
2314 010 O 010 O
© @ o ©
® o)
2413 o | & W
010 @
D 0) D D
3124 | o (O G0 O 010
© @ © ©
(=) )
3142 ©) (D ()
© G100,
3214 AV s AV =
000f O | o | ocs

Table 4.3: Packed words of size 4 and associated forests (part 1).
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) @ | @
1233 | (T O,
@ @ @
D
1323 ©
o,
D!
1332 (D
o
(1.2) (1)
233 | 5 B D o %@
0
(13 (i) ()
2313 ve
@ o o o
3123 o ARG (7S
@ @ O, O,
D! @)
3132 o O
O, &
i 9 o o
3213 DO | O DO | O

Table 4.4: Packed words of size 4 and associated forests (part 2).
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\w ‘ TR(IU) ‘ ‘ TRB(UJ) ‘ TBR(w) ‘
® D o
1223 33 0 O
& | oG
@
1232 )
O
© )
1322 ) @
(1)
W &
0 ©® 0 0
2123 | a3y G © O]
o oo D O,
© ©
92132 ) 0
o O
(D) Y (D) O,
2213 e @ S
© e
92312 ® S B G
o

Table 4.5: Packed words of size 4 and associated forests (part 3).
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lw [ Taw) Tg(w) | Tre(w) | Ter(w) |
®
1123 O g‘ go
& “L @ @
- ®
1132 0
& G
O | e o o
1213 e@ .
O,
- ©
1231 ©
> &
- &
1312 D
= &
- S
1321 )
> o
o
213 ®@/® o¢° @00
©
2131 2 o W @&

Table 4.6: Packed words of size 4 and associated forests (part 4).
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(v | Tr(w) |
1222
o
92122
©
9912 | 29
©
(1)
1122
Gli‘.'
D)
1212
‘.lilb
D
1221
‘.lilb
D,
2112
‘.lilb
D,
2121
(2
D
1112
©
1121
©
1211
Q29
1111

Table 4.7: Packed words of size 4 and associated forests (part 5).
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R

R, | P O O O @
R12 - RQl P Q}/Q) O Q>/G> Q12 - Q21
RQl P @ @ @ @ @ QQl
RH P @ O @ Qll
P

(]

123 — 213 — 231 + 321

123 — 213 — 312 + 321

132 — 231

132 — 312

213 — 312 + 231 — 132

213 4+ 312 — 231 — 132

231 — 321

312 — 321

132 + 312 — 231 — 321

231 + 132 — 321 — 312

ST
ST ST

321 321
122 — 121 + 212 — 211 122 — 221
212 122 — 212
221 211
112 — 221 112 — 211
121 121 — 211
121 + 211 221
111 111

Table 4.8: The automorphism of WQSyms.
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1234 [ 1234 | [1233[3123| [122372123 1123 | 1123
1243 | 1243 1323 | 1323 1232 | 1232 1132 | 1132
1324 | 1324 1332 | 1332 1322 | 1322 1213 | 1213
1342 [ 1342 | [ 21333213 | 2123|1223 | | 1231|1231
1423 [ 1423 | [ 2313|2313 | | 2132 | 2132 1312 | 1312
1432 | 1432 | | 2331|3212 | [ 2213|2113 | | 1321 1321
2134 | 2134 | | 3123 [ 1233 | |[2231|3112| |[2113 2213
2143 | 2143 | | 3132 | 3132 | | 2312 | 2131 2131 | 2312
9314 | 3124 | [ 3213 2133 | [ 2321 | 3121 2311 | 3312
2341 | 4123 | | 32313122 | | 3122 3231 3112 | 2231
2413 | 3142 | | 3312 | 2311 3212 | 2331 3121 | 2321
2431 | 4132 | | 3321 | 3211 3221 | 3221 3211 | 3321
3124 | 2314
3142 | 2413
3214 | 3214
3241 | 4213
3412 | 3412

3421 | 4312
4123 | 2341 1122 | 2112 1222 | 2212 1112 | 1112

4132 | 2431 1212 | 1212 2122 | 2122 1121 | 1121
4213 | 3241 1221 | 1221 2212 | 1222 1211 | 1211
4231 | 4231 2112 | 1122 2221 | 2111 2111 | 2221

4312 | 3421 | | 2121 | 2121
4321 | 4321 | [ 22112211 |1111] 1111

Table 4.9: The involution w — @ on packed words of size 4.

Recall that in Table 4.9 packed words are organized by evaluations. Red-irreducible (resp. blue-
irreducible) packed words are underlined in red (resp. blue).
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23514 | 41253 | [ 24314 [ 31424 | [ 23413 | 31242 | [ 22413 | 31142
24513 | 41352 | | 24413 [ 31442 | [ 24313 | 31422 | | 23412 | 31241
25314 | 41523 | | 41234 [ 12344 | [32413 | 32142 | | 24213 | 31412
25413 | 41532 | | 41324 [ 13244 | | 34123 | 23141 | | 24312 | 31421
32514 | 42153 | | 42134 | 21344 | | 34213 | 32141
35124 | 34152 | | 42314 | 31244 | | 32313 | 23133
35214 | 43152 | | 42413 | 34142 | | 33123 | 12333

43124 | 23144 | | 33213 | 21333

43214 | 32144
23213 | 21313 | | 22312 | 21131 | [ 22212 | 12222 | | 24113 [ 33142
23312 | 21331 | | 23212 [ 21311
31223 | 21233
32123 [ 12233 | | 31123 | 11233 | [ 23112 | 22131 | | 22112 [ 11222
32213 [ 21133 | | 31213 | 12133
32312 | 23131 | | 3211322133 | | 21112 | 11122

Table 4.10: The involution w +— @ on red-irreducible packed words that are not blue-irreducible

of size 5.
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9SNNS NS0 NNN T EO SRR NN O SRS NgET RO S RRY D soom-Sogess
BN 9823 759885 57798555588805 085855808885 85885848¢853 2285858585
______ SnAdRE5RHATESS99999005RESSRERH oSS NERESRESH CEEEEEEEEEE
[ .
1. -1 P 1
1 1 .
1 P -1-21 1 1 -1
1 -1 L 1
1. B B e T -1. 1
1. .. L
L B 1 -1
1 -1 1 .
T 11 -1. - -l-11
-1 | N -1
-1 R N 11 -11 -1 ELE NS I B |
11 .
-l -1 1 -
1 N N 1 .
11 B B 1 -1. 1
PR U B B | -
1 1 1 -1 -1 -1 1 -111 -1
-1 . 1
1 -1 1 -1. 1
1 -1
1 -1 R B S |
1 1. . -1
1 -1 R N
.
11 1 .
1. 1 -1
1
1
LT LI | 1
1 1 1 .
. 1 -1
. 1 P
1 -1 -1 -1 1
1. -1
B I -1 1
1.
-1 1. 1 1
-1 1 1
. 1.
-1 -1 1 1 11 B
R P |
11 . -1 -1 -1
1 .11 . 1
1 1. 1 R | -1
1.
L 11
1 - 1.
1
11
1.1
[ -1
1.
-1 1. 1
. 1 1 o
1 1. LN B |
. -1 1. ..
1 . 1 11
-1 1
-1 1 B -1 1
-1 1 -1 . -1 1
L. F T R A |
1.
1.
-1 1
1 .
-1 11
-1 [
1.
-1 .1
-1 11
-1 1.
1

Figure 4.4: Change-of-basis matrix from P, to Ry.
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R PR R R R R R R R R R R R g zzYaz885%a3
SEaFARY559999929508R a8Rd9 2558808888519 SRRa8=99558
-1
1
-1 .
1 1 -11
1 -1 -l-11
1 -1
1
-1 .
1 -11
-1-11
-1l
1
-1
-1
-1
. 1 1
1 -1
1 -1 1 -11
-1 11 R |
-1l
B -1
1
. -1
1 .
-1, . ..
Al o- 1
1 -1-11 .
PRSP SRR BN
P L I S e ¢
-1 .
-1 1
-1 1
N -1
-1 P
-1 o
-1 -1l 1 -1
11 . .
1 R RN .
1 1
R U
-1
RN I
1.
1 1. -1
1.
. 1
-1 1 .
o 1 -1
1 1. 1.
1 -1 1
-1 - B
-1 1 1
1 .
1 11 -1 1 .
1. 1
1
1.
1.
1.
1.
1

Figure 4.5: Change-of-basis matrix from Q4 to Q.
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R R R R R R R R R R R R R R R s R B R TzfszZAaf§faz
R e R R R R SRE=8Z88538
-1
1
. 11
1 1 -1
1 -1
1 .
. 1
. 1 ..
-1 1 L 1
1
1
. 1
1 .
1 .
I 1
11 . . o
-1 1 11
11 1
-1 12 . 1 .
. 1 -1 11 1 1 11 -1 -1
1 . .
1. -1 1 -1 1 1
1 . .
-1 1. - 1 11 1 -1 -1
1 . 1 N
. . 1 11
. 1. 1
1 1 1 . L
1 1 P 1 -1 -1
. 1
1 1 -l .
1 .
1 1
1 11 1 . R P
. 2 1 1 -11 1
1 . 1
1 .
[ | .
111
11
1.1
1.
. 1
.. . 1. .. 1
1 -1 1 1 11 1
. 1 -1 1 o
1 . -1 2 1 21
. 1
1 -1 1 -1 PN | 1 .
1 -1 1 -1 -1-1 -1 . 1 1
1
1 1
1 .- .
11 1
12,1 .
. 1 1
1 . o
2 201
1 11

Figure 4.6: Change-of-bas

s matrix from Qy to R.
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