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Mechanisms of diffusion in associative polymer networks: 
evidence for chain hopping

Peter B. Rapp‡,†, Ahmad K. Omar‡, Bradley R. Silverman, Zhen-Gang Wang, David A. 
Tirrell*

Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. 
California Blvd., MC 210-41, Pasadena, CA, 91125

Abstract

Networks assembled by reversible association of telechelic polymers constitute a common 

class of soft materials. Various mechanisms of chain migration in associative networks have 

been proposed, yet there remains little quantitative experimental data to discriminate among 

them. Proposed mechanisms for chain migration include multichain aggregate diffusion as well 

as single-chain mechanisms such as “walking” and “hopping”, wherein diffusion is achieved 

by either partial (“walking”) or complete (“hopping”) disengagement of the associated chain 

segments. Here we provide evidence that hopping can dominate the effective diffusion of chains 

in associative networks due to a strong entropic penalty for bridge formation imposed by local 

network structure; chains become conformationally restricted upon association with two or more 

spatially separated binding sites. This restriction decreases the effective binding strength of chains 

with multiple associative domains, thereby increasing the probability that a chain will hop. For 

telechelic chains this manifests as binding asymmetry, wherein the first association is effectively 

stronger than the second. We derive a simple thermodynamic model that predicts the fraction of 

chains that are free to hop as a function of tunable molecular and network properties. A large set 

of self-diffusivity measurements on a series of model associative polymers finds good agreement 

with this model.
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INTRODUCTION

Polymer chains can associate through non-covalent interactions (e.g., by hydrogen 

bonding,1–4 metal-ligand coordination3, 5–10 or hydrophobic forces1, 11–14) to form 

reversible networks. Within such networks, clusters of associative domains serve as 

transient junctions.15 The dynamic nature of the junctions permits diffusive transport of 

chains throughout the network and facilitates spontaneous reorganization or “healing” 

of the network in response to mechanical damage. Reversible polymer networks have 

been proposed for application in tissue engineering,16–17 controlled drug delivery,18 and 

organic electronics and battery technology.19–20 Understanding the factors that control 

polymer diffusion in reversible networks is important for optimizing material performance 

in these settings, and for elucidating the principles that govern macromolecular transport 

in biological systems. For example, eukaryotic cells utilize networks of non-covalent 

interactions to regulate protein transport into the nucleus,21–22 and to control the localization 

of growth factors and cytokines in the extracellular matrix.23

Previous experimental5–7, 11, 13, 24–26 and theoretical11, 15, 27–30 investigations of associative 

polymer networks have sought to relate their bulk physical properties (viscosity, elastic 

modulus, relaxation rate) to the underlying structural and dynamical configurations of 

the constituent chains. When the chains are not significantly interpenetrated (i.e., in the 

unentangled regime), network stress relaxation is typically attributed to chain disengagement 

from the junctions. Although this simple single-chain picture serves as the foundation 

for several successful rheological models,11, 30–31 the physical basis for self-diffusion 

in associative networks is decidedly less clear. Despite nearly 30 years of conceptual 

development,27, 32 no single mechanistic picture of how the constituent chains move has 
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found quantitative experimental validation. This stands in contrast to our more complete 

understanding of self-diffusion in unassociative polymer solutions, for which mechanisms 

such as reptation find strong experimental support.33–36

For diffusion in the unentangled regime, two complementary mechanistic schemes have 

been predominantly invoked. If a chain disengages from the network completely such that 

it temporarily has no bound segments, it may diffuse freely over relatively large distances 

before rebinding (we refer to this process as “hopping”, Figure 1). Alternatively, center-of-

mass translation of the chain may be achieved by stepwise dissociation and reassociation 

of individual chain segments (in a process akin to “walking”), without the chain ever 

becoming completely untethered from the network. Baxandall considered the diffusion of 

single multisticker chains reversibly interacting with a mean-field (structureless) network, 

predicting an ensemble of walking modes.27 The walking diffusivity was proportional to the 

sticker dissociation rate, and inversely proportional to the number of stickers (effectively 

Rouse-like). Rubinstein and Semenov subsequently proposed a “sticky Rouse” picture 

which postulated that the bound chains are carried along in large multichain clusters.15 

Recent simulations37 indicate that such cluster diffusion may become particularly important 

when the network is under steady shear, but its role in quiescent-state relaxation remains 

unclear. Both theoretical treatments disregard hopping, i.e., the fraction of free chains is 

assumed to be negligible. Olsen and co-workers invoked a form of bound diffusivity along 

with chain hopping to rationalize anomalous “super-diffusive” behavior within associative 

networks, wherein the effective diffusion coefficient appears to increase with time over a 

finite length-scale.10, 13 Recently they proposed transient escape from network junctions, 

corresponding to a transition between walking and hopping, as the molecular origin of this 

intriguing phenomenon.32

The present study is motivated by our earlier observation that the sequential binding of the 

two ends of a telechelic polymer to a reversible network appears “asymmetric”, i.e. the 

first association is stronger than the second, despite identical molecular properties of the 

terminal associative domains.25 We now demonstrate that marked differences between the 

intrinsic and effective binding strengths of associative domains on multisticker chains are a 

general feature of unentangled reversible networks. Whereas the intrinsic binding strength 

of a sticker is set by its molecular properties, the effective binding strength of the sticker 

is sensitive to the local structure of the network and is attenuated by the presence of other 

concurrently bound stickers on the same chain. The origin of this effect is a strong entropic 

penalty imposed on chain entry into conformationally restricted states during sequential 

binding events. A given chain must sacrifice rich sets of conformations in order to bind 

multiple junctions simultaneously. This constraint significantly amplifies the fraction of free 

(hopping) chains and diminishes as the ratio of the chain size to the network size increases.

We first incorporate these ideas into a simple thermodynamic model that predicts the 

fraction of chains that are free to hop as a function of tunable network and molecular 

properties. We then test our model predictions with a large set of self-diffusivity 

measurements obtained in telechelic associative protein hydrogels and find consistent 

agreement with the model. Surprisingly, hopping is the dominant mode of diffusion despite 

the large enthalpic penalty for dissociation. Furthermore, hopping remains a major diffusion 
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mechanism for multisticker chains with as many as five stickers. These results provide new 

insight into the chain transport dynamics of an important class of polymeric materials.

THEORY

Network model.

We consider associative networks in the dynamic regime where chain dissociation is much 

slower than the characteristic Rouse relaxation of the constituent chains (typical for most 

experimental associative networks). We model the network as an ensemble of multisticker 

chains having S total associative domains (“stickers”) that are equally-spaced along the 

chain, with stickers capping the ends of the chain. A chain can partition into i ≤ S bound 

states, where i = 0, 1, 2… S represents the total number of stickers bound to the network. 

One can define corresponding equilibrium constants Ki (where Ki is the binding constant 

characterizing the transition from i − 1 to i bound stickers) that describe how the chain 

distributes among these various states. For example, telechelic chains have two terminal 

stickers (S = 2) and can be partitioned into three sequential states (Figure 2A). In the free 

state f, neither chain end is bound to the network (i = 0). By reversible association with the 

network, the chain may transition into either the dangle state d (one end bound, i = 1) or the 

bound state b (both ends bound, i = 2). Two species compose the bound state of telechelic 

chains: bridges (B), where the chain ends are bound to two different junctions, and loops 

(L), where both ends converge on the same junction. Conversion among these three states is 

controlled by two equilibrium constants K1 = [d] / [f] and K2 = [B] / [d] + [L] / [d] = KB + 

KL.

Previous approaches to modeling reversible networks consider chains interacting with a 

mean-field background and neglect spatial correlations between junctions (i.e., they envision 

a structureless network).15, 27, 32 Overlooking local network structure in this way fails to 

capture an essential loss of entropy upon binding. The following theoretical considerations 

suggest that this entropic penalty attenuates each Ki of a multisticker chain for all but the 

first association, leading to an effective network binding strength that is much smaller than 

would be expected from the mean-field approach. For telechelic chains, this manifests as 

binding asymmetry, with K1 > K2 arising from conformational restrictions imposed on the 

bridge state. Simple thermodynamic considerations predict that this difference in binding 

strengths decreases as the chain size (N) becomes large relative to the characteristic mesh 

size (M) of the network (Figure 2B). In the limit of N ≫ M, the chains begin to perceive the 

network as “mean-field-like” such that K1 ≈ 4K2.

Statistical mechanics of chain binding.

Each equilibrium constant Ki described in the preceding section may be formally defined as 

the ratio of the number of chain configurations with i bound stickers to the number with i 
− 1 bound stickers, weighted by the binding energy. The equilibrium constants are obtained 

by equating the chemical potentials of the chains in each state (i.e., μi = μi-1). Neglecting 

interchain interactions apart from junction binding, one readily finds:
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Ki = Zi
Zi − 1

exp( − βΔE) (eq. 1)

where Zi represents all possible configurations of a chain with i bound stickers, β = 1 / 

kBT, and ΔE is the energy released upon binding of one of the stickers to a network 

junction. We model individual chains as consisting of N statistical segments each of Kuhn 

length bk. We consider probe chains with end-to-end distance Rprobe = bkN1/2 within a 

network of characteristic mesh size (inter-junction spacing) Rmesh ~ M1/3, where M is 

the number of statistical segments in the chains that compose the network. The latter 

scaling arises under the condition that as the network chains increase in size, the total 

concentration of polymer remains fixed such that the junction density linearly decreases with 

M. For telechelic polymers, the integral Z0 ~ Ωf (N, bk) = ∫ P(R; N, bk)dR counts the 

number of accessible configurations in the free (unbound, i = 0) state to within a constant 

prefactor. This prefactor is inconsequential, as it may be absorbed into a reference chemical 

potential.38 P(R) represents the normalized end-to-end vector probability density function of 

the free probe chains, and as such, Z0 is taken to be unity without loss of generality.

When one end of a telechelic chain attaches to a network junction (in a transition from free 

to dangle, i = 1), the chain energy changes by an amount ΔE. This transition entails a loss 

of translational entropy, as a dangling chain is restricted to a small fraction ϕj (proportional 

to the junction density) of the total system volume. However, the untethered chain end may 

still explore the local space around the junction. Additional losses in conformational entropy 

may therefore be neglected, provided the junction itself is small and the dangling chain does 

not “feel” the presence of other bound chains (1 − ϕj ≈ 1). These considerations suggest 

Z1 ≈ 2ϕj Ωf, where the factor of two arises because a chain can occupy the dangle state by 

engaging either one of its ends (i.e., there are twice as many configurations of a telechelic 

chain with one sticker bound as for a “monochelic” chain with its only sticker bound39), and 

these two configurations are degenerate. From eq. 1, we obtain K1 = 2ϕj exp(−βΔE).

The chain faces a new challenge during the second binding event (transition from dangle 

to bridge, i = 2). In order to form a bridge, the untethered chain end must bind to a new 

junction some (vector) distance R away from the chain end that is already bound. The 

probability of finding this second junction depends on the local structure of the network. 

Whereas a dangling chain has no external constraint imposed on its end-to-end distance, 

bridged chain conformations in which the two chain ends do not overlap with two different 

junctions cannot exist. Significant conformational entropy may therefore be lost during 

bridge formation, provided the network junctions tend to be separated by some characteristic 

distance Rmesh. Although gels are isotropic and generally lack long-range order, local order 

(i.e., spatial correlation between junctions) is expected as a natural consequence of gelation: 

the network junctions cannot get too close to each other without placing elastic stress on 

neighboring chains.25

We formalize this network-imposed entropic constraint by restricting the second end of a 

bridged chain to a significantly reduced volume fraction ϕjg(R; Rmesh). Here g(R; Rmesh) 

represents the normalized junction pair distribution function, which maps the probability 
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of finding a second junction as a function of position along a radial axis originating from 

the first junction. The entropic penalty for bridge formation at distances R will be large 

when g(R) < 1 for ∥R∥ < Rmesh such that junctions are locally “depleted” on the length 

scale of a dangling chain. The penalty becomes even larger when Rmesh is larger than the 

preferred size (equilibrium end-to-end distance) of the free or dangling chain, in which case 

a bridged chain is also forced to stretch. If the junction spacing is sufficiently large, it may 

be thermodynamically favorable for a chain to remain in the dangle state or to form a loop. 

Because the loop state is intramolecular, it is assumed to be independent of local network 

geometry, similar to the dangle state.

To incorporate these expectations into the network model, we count bound chain 

configurations as the sum of bridges and loops, with the bridge configurational integral 

ΩB weighted by the local junction density. Thus Z2 = ϕj
2 ΩB + ϕj ΩL, where ϕj

2 ΩB is the 

conformational entropy of bridged chains, and the corresponding configurational integral 

is ΩB = ∫ P(R)g(R)dR. In analogy to the dangle state, the entropy of loops is ϕj ΩL, and 

we choose to let ΩL take the same functional form as Ωf, i.e. ΩL ~ ∫ P(R)dR. However, 

we restrict the bounds of this conformational integral to a small distance l approximating 

the end-to-end distance of looped chains. This integration limit represents a renormalized 

cubic form of the classical Jacobson-Stockmayer factor, which quantifies the entropic cost of 

constraining a polymer chain to a cyclic conformation.40–42. In our case, l can be estimated 

directly from rheological data (see Inclusion of loops below) or treated as an adjustable 

parameter in order to generate constrained model “fits” to experimental data. From eq. 1, K2 

= [(ϕj ΩB + ΩL) / 2Ωf] exp(−βΔE).

The preceding theoretical considerations provide the following integral expression for the 

ratio of K1 to K2 for a telechelic polymer:

K1
K2

= 4Ωf
ΩB + ΩL/ϕj

(eq. 2)

The ratio is independent of binding energy. It is possible to neglect loops entirely by setting 

ΩL = 0. In this case, the above ratio becomes independent of junction density and is simply:

K1
K2

= K1
KB

= 4Ωf
ΩB

= 4∫ P(R)dR
∫ P(R)g(R)dR ≥ 4 (eq. 3)

Taken together, eq. 2 and eq. 3 distill our key prediction for the reversible binding of 

telechelic polymers: we expect K1 > 4K2 in any network with spatially correlated junctions. 

Although both associative domains have the same intrinsic binding strength (e.g., the 

enthalpy of association is the same), the effective binding strengths of the domains differ. 

This discrepancy between K1 and K2 is a consequence of different entropic constraints 

that govern the two binding events. Whereas translational entropy is lost during both 

associations, additional conformational entropy is lost in the second association due to 

restrictions on end-to-end distance enforced by the spatial separation of network junctions. 

In effect, the network binding affinity of a chain end is reduced whenever the other chain 
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end is already bound. This conformational entropic penalty is expected to decrease as a 

probe chain increases in size relative to the mesh. For an infinitely long telechelic probe 

in a finite mesh, the effect of local network structure should disappear completely (apart 

from topological constraints imposed by the network strands). In this case the untethered 

chain end would behave like a free chain end: it would have a global “view” of the 

network (it could access all open sites) such that bridge formation would not be constrained 

by the location of the other end. K1 = 4K2 is predicted in this mean-field limit due to 

the degeneracy of the dangle state. We emphasize that our model is not a self-consistent 

thermodynamic model for establishing the point of network formation.28, 43 Rather, we 

presuppose that the conditions are such that a gel is in fact formed, in order to explore the 

influence of network structure on the state populations of the chains.

Connection to diffusion mechanisms.

The above thermodynamic model predicts the relative magnitudes of K1 and K2 as a 

function of the size of a probe chain in relation to the mesh size of the network. Under 

the assumption that g(R) is a function of Rmesh only, eq. 3 comes to depend on a single 

parameter, the dimensionless probe size r ≡ Rprobe / Rmesh ~ bkN1/2M−1/3. The model can 

thus be tested by placing increasingly large monodisperse test chains in networks of various 

sizes and measuring K1 and K2. These binding constants together specify the equilibrium 

fraction of free (i.e., hopping) chains as [f] = [1 + Kl + K1K2]−1 = [1 + Keff
2]−1, where 

Keff = (Kl + K1K2)1/2 represents the effective binding coefficient for the entire chain. 

Below we infer experimental K1 and K2 values from extensive measurements of polymer 

self-diffusivities made within telechelic protein hydrogels. The equilibrium constants are 

obtained under the assumption that hopping represents the only diffusive mode. Interpreting 

the data in this way, we find that eq. 3 accurately describes the experimental equilibrium 

constant ratios. This concordance provides indirect evidence for the predominance of 

hopping in comparison to other diffusive modes (e.g. walking or cluster diffusion) in the 

networks examined.

Generalization to chains with multiple stickers.

The derivation of binding constants for telechelic chains may be generalized to obtain S 
total equilibrium constants Ki that govern the binding to the network of multisticker chains 

with i ≤ S associative domains bound to the network at any given time. The chain is first 

decomposed into S − 1 flexible “blocks” between adjacent stickers, i of which are bound. 

The entropy associated with each block is then calculated, and Zi is obtained as the product 

of the numbers of configurations available to each block. We derive the exact Ki values 

for the cases of S = 3 and S = 5 in the Supporting Information (Table S1). In analogy to 

telechelic polymers, our key prediction for multisticker chains is that the conformational 

restrictions enforced by junction separation influence each association, such that Ki > Ki+1 

holds for all i ≤ S − 1.
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RESULTS AND DISCUSSION

Network design and characterization.

We designed a series of reversible telechelic networks to test the predictions of the model 

just described. Artificial proteins are well suited to exploring the physical properties of 

reversible networks: they are structurally well-defined, monodisperse, and easily varied by 

changing their DNA coding sequences. We cloned and expressed a family of 21 P(EnP)m-

type protein polymers (Figure S2), where P is an associative domain that forms pentameric 

coiled-coils (network junctions), and En is a flexible elastin-like linker (Tables S2 and 

S3). When swollen in aqueous buffer, PEnP proteins formed transparent hydrogels with 

classical “Maxwell-type” rheological signatures (Figures S3 and S4). We could easily vary 

the mesh size and terminal modulus of each gel by changing the number of repeats of the 

elastin midblock (n = 3 – 24), without significantly perturbing the network relaxation rate 

(Figure S5 and Table S4). The terminal network modulus of each “n-mesh” approximated 

the molecular weight dependence expected from rubber elasticity theory (G’ ~ Mν), with ν 
= −1 expected for affine networks,44 and ν = −0.9 ± 0.2 observed experimentally (Figure 

S5).

Measurement of equilibrium constants.

The equilibrium constants K1 and K2 for telechelic polymers in each n-mesh were estimated 

by measuring the effective diffusivities of size-matched (N = M) and mismatched (N ≠ 

M) fluorescently-labeled test chains (“n-probes”, n = 3 – 48) having either zero (En*), 

one (EnP*) or two (PEnP*) terminal coils, where * indicates that the proteins have a 

C-terminal cysteine for fluorophore conjugation (Figure 3A). The effective diffusivities 

of the probes were measured by fluorescence recovery after photobleaching (FRAP).45–46 

In this technique, a small region of a sample labeled with a dilute fluorescent species is 

briefly exposed to a high-intensity laser to promote local, irreversible inactivation of the 

fluorophore. Subsequent recovery of fluorescence in the photobleached region (“bleach 

spot”) reports on the mobility of the labeled species. The effective diffusivity DS of a test 

chain carrying S associative domains is obtained by fitting the FRAP trace to a renormalized 

Fickian diffusion model (see Supporting Information).25, 45–46 The diffusivity can be related 

to binding equilibrium constants through the equation:

D0
DS

= 1 + K1 + K1K2 + ⋯ + ∏
i = 1

S
Ki = 1 + ∑

j = 1

S
∏
i = 1

j
Ki (eq. 4)

where D0 = Df is the effective Fickian diffusivity of the test chain in the free state.

The derivation of eq. 4 assumes that reversible binding of the chains is fast relative to the 

time scale of free diffusion during the FRAP experiment, which we validated previously 

for PEnP gels.25 For the experimental regime probed here, we estimate that kon* a2 / 

D0 ≈ 102 – 103 for the case when the bleach spot radius a = 10 μm, and kon* is the 

(concentration-dependent) pseudo-first-order association rate constant. Eq. 4 further assumes 

that network chains have a negligible mobility once bound, such that all chain migration 
occurs through the hopping mechanism, i.e., single chains must completely disengage 
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from the network (enter the free state) in order to undergo center-of-mass translation. 

Therefore, if the equilibrium constants inferred from this equation are consistent with our 

thermodynamic model, hopping is indicated to be the dominant diffusive mode. Inversely, if 

the correspondence to theory is poor, other diffusive modes must be invoked. Similar logic is 

readily extended to multisticker chains (see Evidence for multisticker chain hopping below).

To begin, we obtain D0 by monitoring the fluorescence recovery rate of an En* test chain 

that cannot bind the network and is therefore “locked” in the free state. K1 is then obtained 

by measuring the mobility D1 of an EnP* probe, and entering the values of D0 and D1 into 

eq. 4. Note that the equilibrium constant thus obtained reflects the association strength of 

chains with only one sticker (EnP* probes), i.e. K1 = ϕj exp(−βΔE). Because the dangle 

state is degenerate for telechelic chains, the equilibrium constant measured for EnP* must 

be multiplied by two to obtain K1 for a PEnP* probe. Finally, K2 for telechelic chains is 

obtained by measuring D2 for a PEnP* probe, and supplying it into eq. 4, together with D0 

and K1. At each step we allow D0 to decrease following a default Rouse scaling D0 ~ N−1, to 

take into account the added friction of the additional P domain. Although the conformational 

properties of this domain in the unbound state are unknown, adjusting D0 ~ Nv using a 

weaker (v = −0.6) or stronger (v = −2) scaling exponent has essentially no effect on the 

inferred binding constant ratios, i.e. this scaling adjustment is minor. Iterating this procedure 

for many probe-mesh combinations provides experimental K1 / K2 ratios as a function of N 
and M, which are proportional to the molecular weights of the test chain and the network, 

respectively.

The FRAP method, combined with the total control of chain structure characteristic of 

protein synthesis, allowed us to tune the properties of the network independent of the 

embedded fluorescent tracers and provided great flexibility in testing our model predictions. 

We acquired a total of 298 FRAP traces on 15 different probes in 4 different meshes (60 

unique probe-mesh combinations) in order to explore a wide range of different probe-to-

mesh ratios (r = Rprobe / Rmesh). Since the shape and intensity of the bleach spot were 

found to be moderately sensitive to the structure of the probe (Figure S6), we acquired an 

additional 173 control FRAP traces on size-matched En* probes in each of the 4 meshes. 

Using a generalized Gaussian bleach spot fit-and-track algorithm, we found the measured 

diffusivity to be insensitive to variation in the bleach spot profile over a wide range of bleach 

efficiencies. Representative FRAP traces for each of the probes in the 6-mesh network, along 

with their corresponding Fickian diffusion fits, are presented in Figure S8. The values of DS 

obtained from all 60 probe-mesh combinations (n ≥ 4 replicates per combination) are plotted 

in Figure S9.

Power-law fits to diffusivity data.

Our model predicts that, as probe chains increase in size above the mesh size of the network, 

K1 / K2 will decrease monotonically. Coarse power-law fits to the diffusivity dataset provide 

a qualitative test of this prediction. Polymer diffusivities typically exhibit power-law scaling 

with molecular weight, i.e. D ~ Nα where the molecular weight exponent α is negative (e.g. 

α = −1 in the Rouse model).15, 47–48 By measuring these exponents, we can infer additional 

molecular weight exponents β for each equilibrium constant Ki ~ Nβ from a scaling analysis 
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of eq. 4. In the 6-mesh, α0 = −1.5, α1 = −0.9 and α2 = −1.5 for D0, D1 and D2 respectively 

(Figure 3B). From eq. 4 we infer β1 = α0 − α1 = −0.6 for K1 as well as β2 = α1 − α2 = 

0.6 for K2. Critically, the molecular weight exponent for K2 is positive, implying increasing 

association strength of the second chain end as the test chain becomes longer. Moreover, the 

exponent corresponding to the K1 / K2 ratio, β1 − β2 = −1.2, is strongly negative, consistent 

with weakening of the entropic constraint for bridge entry as the chain length grows. These 

results are in qualitative agreement with our model.

That the free-chain diffusivity exhibits a molecular-weight exponent that is stronger than 

Rouse-like (α0 = −1.5 for D0) may indicate crossover between different regimes (i.e., Rouse 

to reptation-like49) as the probe chains become large relative to the mesh size; its precise 

origin requires further investigation. We attribute the negative value of β1 to excluded 

volume effects (e.g., end group association on the test chain starts to become sterically 

hindered by the large pervaded volume of the chain itself), which are not included in our 

model. Presumably such effects would hinder both associations to a similar extent, in which 

case they should minimally affect the experimental K1 / K2 ratio. Note that the binding 

constants are not expected to have formal power-law dependencies on N, so there is no 

rigorous basis to expect the molecular weight exponents β to hold generally.

Quantitative comparison to theory.

A quantitative comparison of the experimental equilibrium constant ratios to the 

thermodynamic model (eq. 2 and eq. 3) requires estimates of the mesh size Rmesh and the 

probe size Rprobe. Reasonable estimates for these key parameters are readily obtained (see 

Supporting Information).50–53 The estimated probe sizes range from 6.1 to 21.4 nm, whereas 

the smallest (3-mesh) and largest (24-mesh) networks have mesh sizes of 12.2 nm and 17.3 

nm, respectively (Table S4 and Table S5). Since we examine chain lengths below the thermal 

blob size (such that excluded volume interactions and correlations can be largely neglected; 

see Supplementary Equations and Derivations in the Supporting Information), we evaluate 

the configurational integrals using the formula P(R; N, bk) = (3 / 2πNbk
2)3/2 exp(−3R2 / 

2Nbk
2),44 the probability density function for an ideal (Gaussian) chain. For simplicity, we 

approximate g(R; Rmesh) as a Heaviside step function activated at Rmesh. Except ΩL, all 

configurational integrals are taken over the range of possible sizes of the chain, which for a 

Gaussian chain is the interval [0, ∞].

Figure 3C plots K1 / K2 predicted by eq. 3 as function of the reduced (dimensionless) 

probe size r, together with experimental K1 / K2 data obtained from FRAP experiments 

in the 6-mesh. The experimental K1 / K2 ratio decays monotonically as the probe size 

increases, in good agreement with the prediction from eq. 3 (no loops). This correspondence 

is obtained without any externally fit model parameters or data transformation, beyond 

obtaining reasonable estimates for chain and network dimensions. Note that the difference 

in binding constants is significant even when the probe chains have the same dimensions as 

the mesh (K1 / K2 ≈ 20 is observed for r = 1), pointing to the critical role played by local 

junction order as opposed to chain stretching. The data thus support a central hypothesis 

of the thermodynamic model: chains in the bridge state are conformationally constrained 

beyond the mean-field prediction, and the conformational constraint reduces the effective 
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association strength of the chains. The entropic penalty for bridge formation increases as the 

chains decrease in size within a network of fixed dimensions.

This finding has important implications for the dominant mechanism of chain diffusion. 

Reducing the effective association strength of the chains increases the fraction of free 

(dissociated) chains. Moreover, using eq. 4 to infer experimental binding constants implicitly 

assumes negligible translational motion in the bound state (i.e., all fluorescence recovery 

is attributed to the movement of free chains). The fact that this inference provides binding 

constant ratios consistent with eq. 3 supports the assumption that at equilibrium, effective 

diffusion in PEnP networks is dominated by hopping. For this assumption to be invalidated, 

an alternative diffusive mode having the same functional dependence on network structure 

as the equilibrium fraction of free chains would need to be identified. Other diffusive modes 

such as walking27 or multichain diffusion15 may still be important for related dynamic 

network phenomenon (e.g. stress relaxation).

Inclusion of loops.

Dimensional analysis of eq. 3 reveals that, when loops are neglected and g(R) is the unit 

step function, K1 / K2 is determined solely by the dimensionless probe size r. In eq. 2, 

however, loop inclusion introduces a concentration dependence via the term ΩL / ϕj. Careful 

analysis of this concentration-dependence further substantiates the thermodynamic model. 

The concentration may be expressed as ϕj = (2c / Rmesh)3, where c = 1.89 nm represents the 

“cluster size” or characteristic dimension of a network junction (see Supporting Information 

for the numerical determination of this parameter). Since ΩL is integrated over the interval 

[0, l], it is convenient to define a second dimensionless parameter x ≡ l / c and integrate over 

the new interval [0, x]. In this case the ratio ΩL / ϕj ~ (l / c)3 is approximately independent of 

c for fixed values of x (Figure S10). With this construction, eq. 2 depends solely on r and x, 

and accounting for loops amounts to obtaining a reasonable estimate for the dimensionless 

integration limit x.

Since ΩL and ΩB are theoretically related to the gel modulus (to first order, only bridged 

chains are elastically effective), it is possible to estimate x based on rheological data (eq. 

S10 and Figure S11). This provides x = xrheo = 0.41 ± 0.28 across the four different meshes 

examined here (Table S4). In practice, eq. 2 is quite sensitive to the value of x due to the 

cubic nature of the volume integral (i.e., ΩL / ϕj ~ x3). One can also obtain x = xmin by 

systematically varying x in order to minimize residuals between model-constrained “fits” of 

eq. 2 to the experimental K1 / K2 values (Figures S11 and S12), which provides. Figure 3C 

presents a single-parameter fit of eq. 2 to the 6-mesh data with xmin = 0.26 (xmin = 0.32 ± 

0.09 is obtained from collating the estimates across each of the four meshes, Table S4). The 

fit captures an observed softening of the experimental rise in K1 / K2 at low r (relative to the 

“loop-free” prediction of eq. 3), an effect attributable to the increased prevalence of loops. 

The fits are qualitatively better in the smaller (3- and 6-mesh) gels, which we attribute to 

decreased local order in the more open (12- and 24-mesh) gels, for which K1 / K2 also tends 

to be lower (Figure S12).

Although the data in each mesh were acquired at fixed mass concentrations (ρ = 100 mg/

mL), the junction density ϕj is different in each mesh because of differences in midblock 
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length. Accounting for loops provides a means to compare the measurements of K1 / K2 

from each mesh (Figure S9). This comparison is obtained by subtracting the concentration-

dependent terms (i.e., ΩL / ϕj) from the experimental K1 / K2 ratios to obtain the “loop-free” 

ratio K1 / KB. Combining eq. 2 and eq. 3 reveals that K1 / KB = [K2 / K1 − ΩL / 4ϕj]−1. 

Using xmin = 0.26 to perform the subtraction leads to a satisfying collapse of the entire 

dataset (298 total measurements) onto the universal “loop-free” curve of eq. 3 (Figure 3D). 

The K1 / KB values obtained in this way vary over a remarkable 300-fold range, exceeding 

103 for r = 0.36, obtained with the (smallest) 3-probe in the (largest) 24-mesh. Moreover, the 

data appear to approach the predicted mean-field asymptote: K1 / KB = 4.9 – 8.3 is obtained 

from the largest probes in each mesh over the domain r = 1.2 – 1.8. The coherence of this 

large dataset with model predictions further reinforces the validity of the hopping inference.

Concentration dependence.

In order to test the concentration dependence of eq. 2 more directly, we acquired an 

additional 54 FRAP traces in size-matched (N = M) 6-mesh networks at 4 additional mass 

concentrations, varying ρ between 50 and 250 mg/mL (equivalent to ϕj = 0.012 – 0.057, 

all above the gelation point). The binding constants obtained from these measurements are 

plotted in Figure 4, along with eq. 2 evaluated at xmin = 0.37 ± 0.05 (optimized for the 

concentration dataset). Substantial formation of loops is evident experimentally at the lowest 

concentrations, with K1 / K2 ~ ϕj for small ϕj. K1 / K2 then falls sharply above ϕj = 0.035, 

consistent with increased bridge formation as the junction spacing becomes smaller (with 

a fixed probe size). Although the experimental decrease in K1 / K2 is sharper than eq. 2 

predicts, the model qualitatively captures a local maximum in the data, which corresponds to 

a crossover between loop-dominant (low r) and bridge-dominant (high r) regimes. Excluded 

volume effects not included in the model are likely to be important in the real network at 

higher concentrations, and could shift the location of this predicted local maximum.

It is interesting to note that eq. 2 specifies a region at very low ϕj < ϕj* = ΩL / (4 − ΩB), for 

which K1 < K2 and the difference in binding strengths inverts. This concentration regime lies 

below the theoretical mean-field percolation threshold for a pentameric network, pc = 1 / (f 
− 1) = 1 / 4 for f = 5.44 Substituting ϕj* into eq. S10 provides the theoretical bridge fraction 

at this concentration, [B]* = ΩB / 4 ≤ pc, i.e. this concentration is so low that the network no 

longer exists. Hence we expect K1 > K2 for telechelic chains whenever a network is present, 

at least within networks assembled from pentameric crosslinking domains.

Evidence for multisticker chain hopping.

The presence of additional associative domains on a polymer chain increases its binding 

to the network. As a result, a multisticker chain with S ≥ 2 stickers is intrinsically less 

likely to hop than the corresponding telechelic polymer. However, the chain will also 

experience additional conformational restrictions whenever two or more of its stickers form 

a bridge between spatially separated junctions. The entropic penalty for “full” association 

of a multisticker chain (i.e., all stickers in the bridge state) may thus be very high, such 

that binding is substantially reduced. In analogy to telechelic polymers, we can define an 

effective network binding coefficient Keff for multisticker chains as:
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Keff = ∑
j = 1

S
∏
i = 1

j
Ki

1/S
(eq. 5)

such that D0 / DS = 1 + Keff S (cf. eq. 4). For telechelic polymers, the effect of local network 

structure is to reduce K2 relative to K1, such that Keff = (Kl + K1K2)1/2 is smaller than 

expected. Similarly for a multisticker chain, the effective binding strength of a given sticker 

is attenuated by the presence of other concurrently bound stickers on the same chain such 

that Ki+1 is always less than Ki, thereby reducing Keff even further (relative to the case 

of the same polymer in an uncorrelated or mean-field network). As with telechelics, this 

should amplify the fraction of free chains, and thus the probability that a chain will migrate 

by “hopping” (complete network disengagement before rebinding) (Figure 1). Comparing 

the predicted binding strengths and diffusivities of multisticker chains with experiments 

thus provides a stringent test of the effect of local network structure on equilibrium chain 

transport.

We synthesized multisticker probes with S = 3 and S = 5 stickers, and compared their 

effective binding strengths in a telechelic 6-mesh network to the exact theoretical predictions 

for polymers of this type (see Supporting Information for a derivation of the key equations; 

representative binding configurations for a chain with S = 3 stickers are presented in Figure 

S1; relative theoretical values of each Ki for S = 5 are presented in Table S1). To predict 

Keff for multiblocks, the model requires an estimate for K1, obtained by FRAP using the 

En* (S = 0) and EnP* (S = 1) probes. To correctly account for loops, we also integrate each 

loop configurational with xmin = 0.26 based on the minimization of residuals for telechelic 

chains in the 6-mesh (see the eq. 2 fit in Figure 3C). The prediction for S = 2 thus contains 

some information from a model-constrained fit to data from the same probe type, whereas 

the predictions for S = 3 and S = 5 do not. We observe striking agreement between the 

new multisticker predictions and the experimental values of Keff inferred from eqs. 4 and 5 

(Figure 5).

In analogy to telechelics, the fraction of free multisticker chains is readily computed as [f] 
= [1 + Keff S]−1, providing a simple way to estimate the contribution of hopping to the total 

diffusivity. Assuming the measured diffusivity DS contains contributions from only hopping 

and walking, then DS = Dhop + Dwalk = [f]D0 + Rmesh
2 / 6τb. Here we have assumed that a 

bound chain can translate of order the mesh size within a bound time τb = ωc
−1 ≈ 1 sec, set 

by the relaxation rate of the network (Figure S5). Using the theoretical [f] and experimental 

D0, we can directly predict Dhop = [f]D0 with the model. If this prediction is similar to DS as 

measured by FRAP, we can infer that hopping is the dominant mode of chain migration.

Figure 5 plots DS measured by FRAP together with the hopping prediction Dhop for all 

multistickers. The hopping prediction is essentially exact for S = 2 and S = 3. Remarkably, 

Dhop / DS = 0.36 for S = 5, suggesting that ca. 36% of these multisticker chains migrate 

by hopping, whereas the remaining chains undergo translational motion through a new 

diffusive mechanism. The theoretical bound mobility of telechelic chains in the host network 

is Dwalk = Rmesh
2 / 6τb = 1.61×10−5 μm2 s−1 (calculated for a 6-mesh). Guest chains 

with S = 5 stickers appear to approach this lower bound (Figure 5B), suggesting that the 
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new diffusive mode represents reorganization of the host network itself (i.e., “walking” of 

telechelic chains) around the multisticker guest. In support of this claim, we observe that 

(Dhop + Dwalk) / DS = 0.88 ≈ 1 for these guest chains. The fact that DS ≫ Dwalk holds 

for all but the stickiest chain is direct, model-independent evidence that walking and other 

diffusive modes based on bound configurations (including multichain cluster diffusion) do 

not contribute meaningfully to the diffusivity of any of the smaller chains.

Most notably, ignoring the influence of local network structure on effective network binding 

affinity leads to incorrect predictions for Dhop due to a drastic underestimation of the 

fraction of free chains. For chains with S = 5 stickers, for example, [f] = [1 + (K1)5]−1 ≈ 
1×10−9 for the case where all stickers bind with the same affinity as the first. Considering 

local network structure, however, provides [f] = [1 + (Keff)5]−1 ≈ 1×10−5, i.e. the number of 

free chains increases by a factor of 104. This result highlights the profound extent to which 

entropic constraints can influence the dynamics of single chains in reversible networks. 

Our new dataset also provides a quantitative test of an original mean-field prediction from 

Baxandall, which also neglects the local structure of the network.27 His prediction that 

multisticker self-diffusion should be Rouse-like, with DS ~ S−1, appears too weak. It is 

possible that this prediction could still hold in the regime of total binding (no free chains). 

Such a regime is perhaps experimentally accessible for S ≫ 5.

CONCLUSION

Several distinct mechanisms of chain diffusion in unentangled associative polymer networks 

have been proposed over the past three decades. Here we present evidence that hopping 

(diffusion of “free” chains that are transiently disengaged from the network), can be the 

dominant mode of chain transport in such systems, even in networks in which the intrinsic 

association strength is high. We propose a simple thermodynamic origin for this behavior: 

an entropic penalty that reduces the effective strength for all subsequent binding events 

once the first “sticker” is bound. This effect amplifies the fraction of free chains and 

promotes hopping, even for chains with many stickers. Predictions of the thermodynamic 

model explain the observed dependences of the effective diffusion coefficient on chain 

length (including mismatches in the lengths of network and probe chains), network junction 

density, and number of stickers in networks formed from monodisperse artificial proteins. 

We believe the behavior described here to be characteristic of associative macromolecular 

networks of many different kinds.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Diffusive migration of associative polymer chains through reversible networks can occur 

via partial or complete disengagement of the associative segments, i.e. by “walking” or 

“hopping”. Here we provide evidence that Dhop ≫ Dwalk in model networks.
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Figure 2. 
Schematic representation of telechelic chain partitioning in reversible networks. (A) Two 

equilibrium constants K1 and K2 control chain partitioning among three sequential states: 

free (f), dangle (d) and bound (b). The bound state consists of bridges (B) and loops (L). (B) 

Local network structure affects the binding equilibrium of telechelic chains. When the chain 

size (N) and mesh size (M) are the same, an entropic penalty for bridge formation manifests 

as binding asymmetry (K1 > K2). As the chains become larger than the mesh, the difference 

in binding strengths decreases to the mean-field limit (K1 ≈ 4K2).
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Figure 3. 
Experimental binding constant ratios inferred from diffusion measurements: correspondence 

to theory supports chain hopping. (A) Elastin-like probes with different lengths and numbers 

of stickers were placed in size-matched (N = M) and mismatched (N ≠ M) “n-mesh” PEnP 

networks. Equilibrium constants were inferred from FRAP diffusivity measurements via eq. 

4, i.e. assuming exclusive hopping. Estimating a single K1 / K2 ratio requires independent 

diffusivity measurements from three different probe types having zero (En*), one (EnP*) or 

two (PEnP*) stickers. (B) Representative diffusivities in a 6-mesh (80 total measurements, 

≥ 4 per probe type). Approximate molecular weight exponents for each probe type were 

estimated from coarse power-law fits (see discussion in main text). (C) The experimental 

K1 / K2 data (mean ± std. dev.) in the 6-mesh reveal binding asymmetry for telechelic 

chains. The data are plotted against the dimensionless probe size r ≡ Rprobe / Rmesh ~ 

bkN1/2M−1/3. The “loop-free” prediction from eq. 3, and the single-parameter fit of eq. 2 
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with xmin = 0.26 are shown; xmin = lmin / c is the best-fit dimensionless integration limit 

for the looping configurational ΩL (see discussion in main text). (D) Loop subtraction with 

xmin = 0.26 permits comparison of the K1 / K2 data from each mesh to eq. 3 (shown are 

mean K1 / KB ratios deduced from 298 total measurements, ≥ 4 per probe type). Error bars 

in panel D are omitted for clarity, but are analogous in size to those in panel C. The dotted 

line represents the mean-field limit K1 / KB = 4.
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Figure 4. 
Concentration dependence of the binding constant ratio in a 6-mesh network. K1 / K2 is 

proportional to ϕj (junction density) for small ϕj, then falls sharply above ϕj ≈ 0.04 due 

to a decrease in junction spacing. Eq. 2 qualitatively captures this behavior, with xmin = 

0.37 ± 0.05, b = 0.95 nm and N = 72. Error bars depict mean ± std. deviation from n = 

76 total measurements, with ≥ 2 measurements per probe type per concentration. The mass 

concentrations range from 5 – 25% (w/v), i.e., ρ = 50 – 250 mg/mL.
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Figure 5. 
Hopping dominates the diffusion of multisticker chains in telechelic networks. (Top) 

Measurements of Keff inferred from experimental DS and eqs. 4 and 5 are in good agreement 

with model predictions for chains with S = 2, 3 and 5 associative domains. (Bottom) 

Comparison of DS measured by FRAP and Dhop predicted from the thermodynamic model. 

All measurements were taken in 10% (w/v) 6-mesh networks using size-matched probes 

(i.e., the intersticker spacing N corresponds to the mesh size M). Symbols depict mean ± std. 

deviation from n ≥ 4 measurements per probe type. All model predictions were made using 

xmin = 0.26. The prediction from Baxandall27 assumes DS ~ S−1. “No local order” assumes 

that all binding events have the same strength as the first association, i.e. all Ki = K1. The 
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theoretical mobility of bound chains is calculated as Dwalk = Rmesh
2 / 6τb = 1.61×10−5 μm2 

s−1.
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