
UC Irvine
ICS Technical Reports

Title
Agents for collecting application usage data over the Internet

Permalink
https://escholarship.org/uc/item/80f9145d

Authors
Hilbert, David M.
Redmiles, David F.

Publication Date
1997

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/80f9145d
https://escholarship.org
http://www.cdlib.org/

Notice; This Maten.
may be protected
by Copyright Law
(Title 17 U.S.C.)

Agents for Collecting Application Usage Data
Over the Internet

David M. Hilbert and David F. Redmiles

{dhilbert.redmiles} @ics.uci.edu

&AR

C.3
VOO

Technical Report UCI-ICS-97-41
Department of Information and Computer Science

University of Califomia, Irvine
Irvine, Califomia, 92697-3425

October 1997

ABSTRACT

Empirical evaluation of software systems in actual use is critical in software engineering. Prototyp
ing, beta testing, and usability testingare widely employed to refine systemrequirements, to detect
anomalous or unexpected system and user behavior, and to evaluate software usefulness and usabil
ity. The World Wide Web enables cheap, rapid, and large-scale distribution of software for evalua
tion purposes. However, current techniques for collecting usage data have not kept pace with the
opportunities presented by Web-based deployment. This paper presents an agent-based approach
and prototype system that makes large-scale collection of usage data over the Internet a practical
possibility.

Keywords Application usage monitoring, Intemet-scale usability data collection, remote usability
testing, expectation-driven event monitoring,expectationagents

Agents for Collecting Application Usage Data Over the Internet

David M. Hllbert David F. Redmiles

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425 USA

+ 1 714 824 3100

{dhilbert,redmiles} @ics.uci.edu

ABSTRACT

Empirical evaluation of software systems in actual use is
critical in software engineering. Prototyping, beta testing,
and usability testing are widely employed to refine system
requirements, to detect anomalous or unexpected system
and user behavior, and to evaluate software usefulness and
usability. The World Wide Web enables cheap, rapid, and
large-scale distribution of software for evaluation purposes.
However, current techniques for collecting usage data have
not kept pace with the opportunities presented by Web-
based deployment. This paper presents an agent-based
approach and prototype system that makes large-scale
collection of usage data over the Internet a practical
possibility.

Keywords
Application usage monitoring, Internet-scale usability data
collection, remote usability testing, expectation-driven
event monitoring, expectation agents

1 INTRODUCTION

The Internet and World-Wide-Web make it possible to
rapidly distribute prototypes and beta releases to large
numbers of users at low cost. In principle, the Internet
could be used as a large-scale test-bed for gathering data
about application use with actual users of the systems being
tested. In practice, however, this can be difficult due to the
number of users, the time and labor involved in collecting
data, the lack of scalable tools for automatic data collection,
and the lack of proper incentives for high-quality, voluntary
data collection on ^e part ofusers. Asa consequence, most
usability evaluations are limited to small scale tests in the
usability lab, and feedback from beta testing is typically
gathered manually by beta testers themselves. Since data
are collected manually, and because beta testers pay the
price of bug reporting while vendors receive most of the
benefit, both the quality and quantity of data is limited.
Fragmentary reporting leads to difficulty in reproducing

and analyzing problems, and typically only the most
obvious or unrecoverable errors are identified.

Despite these challenges, large-scale, Internet-based
collection of usage data with prototype and beta releases
has the potential of providing useful empirical guidance for
application development. Data collection is also important
beyond initial prototype and beta evaluation stages. For
example, data about which application features are most
frequently used in practice can suggest which features to
optimize as well as how to best focus development and
testing effort. Continued collection is necessary to detect
when usage patterns shift, thereby invalidating results of
data collected in earlier stages. Ongoing collection is
necessary to provide empirical guid^ce in subsequent
application maintenance and enhancement.

We propose an approach to automatic usability data
collection, based on application usage monitoring, that
makes ongoing, large-scale use a practical possibility. The
specific contributions of our approach include: (a) explicit
treatment of "usage expectations" in the development
process to improve design and focus data collection, (b) a
flexible agent-based approach to monitoring that allows
instrumentation to evolve dynamically as monitoring needs
change, without requiring modifications to application
code, and (c) flexible event processing embedded within
instrumentation to providedistributedfiltering and multiple
levels of abstraction in collected data.

In the following section, we describe the state of the
practice in application usage monitoring and explain why
current techniques cannot be used on a large scale over the
Intemet. Next we describe a scalableagent-basedapproach
in which agents collect data on behalf of developers over
the Intemet. Finally, we discuss the current status and
evaluation of a prototype implementation followed by
related work and conclusions.

2 CURRENT APPLICATION USAGE MONITORING

Application usage monitoring is a technique for collecting
data about human-computer interactions for the purpose of
evaluating application usability. Often referred to as
"monitoring" or "logging" techniques in the HCI literature
[2][20], usage monitoring involves instrumented
applications or windowing systems that log information

about user interactions while test subjects complete pre-
specified tasks with interactive applications. The data
collected by these means are often used in conjunction with
video and experimenters' notes to identify potential flaws
in user interface design. Analysis is often aided by
spreadsheets or other more specialized analysis tools, and
presented to developers potentially resulting in changes to
the system being studied.

Readers interested in further details regarding data storage
and analysis may wish to consult other papers regarding
existing techniques [6][8][11][13][27][28]. This paper
focuses specifically on data collection, since data collection
impacts choice of subjects (e.g. laboratory subjects vs.
actual users), study setting (e.g. usability labs with
specially configured workstations vs. normal working
conditions), and study duration (e.g. short experiments vs.
ongoing evaluation). Unfortunately, existing approaches are
not intended for ongoing, large-scale use with actual users
under normal working conditions.

One problem is that most current approaches do not
appropriately separate instrumentation from application
code. As a result, it is difficult to evolve instrumentation as
monitoring needs change without affecting the application
being monitored. In order to modify the type, format, or
amount of data that is captured, the application typically
needs to be modified and re-delivered. An obvious strategy
to deal with this problem has been to collect information
directly from the windowing system. This, however, results
in a deluge of low-level event data that must be filtered
before any meaningful analysis can be performed.

To avoid modifying instrumentation that is intermingled
with code, or perhaps as a result of inserting probes directly
into the windowing system, experimenters are often left
with little choice but to collect as much data as possible —
at very low levels of abstraction — and to defer all
processing and analysis until after data have been collected.
This presents serious problems for Internet-scale use. The
volume of interaction events generated by a single user
engaged in a single session is extremely high. In the context
of the Internet, that volume must be multiplied by
numerous users, engaged in numerous sessions, at
numerous distributed sites. The network load that would be

generated by transmitting every mouse movement of even a
small percentage of Microsoft Word users, for example,
would be staggering. Furthermore, experience from testing
in software engineering as well as HCl suggests that data
should be collected and analyzed at multiple levels of
abstraction [31].

3 EXPECTATION-DRIVEN EVENT MONITORING

We propose an approach to large-scale application usage
monitoring based on the notion of "usage expectations". In
the following subsections, we discuss the importance of
usage expectations in the development process, provide an
overview of our approach, and describe a simple usage
scenario.

3.1 Expectations in the Development Process

When developers design systems, they have numerous

expectations about how users, and the operational
environments in which those systems are embedded, will
behave. We call these usage expectations [7]. When the
environment in which a system is deployed or its users
behave in unexpected ways, various problems can ensue.
Such problems typically result in sub-optimal user and
system performance, and can, in safety- or security-critical
systems, lead to much more serious consequences.

Developers' expectations are based on their knowledge of
the requirements, past experience in developing systems,
knowledge of the domain, knowledge of the specific tasks
and work environments of users, and past experience in
using applications themselves. Some of these expectations
are explicitly represented, for example, those that are
specified as requirements or in use cases.Some are implicit,
including assumptions about usage that are encoded in
screen layout, key assignments, program structure, and user
interface libraries.

For example, implicit in the layout of most data entry forms
is the expectation that users will complete them from top to
bottom, with only minor variation. In laying out menus and
toolbars, it is usually expected that frequently used or
important functions can be easily recognized and accessed,
and that functions placed on the toolbar will be more
fi-equently used than those deeply nested in menus. Such
expectations are typically not represented explicitly, and as
a result, frequently fail to be tested adequately.

Detecting and resolving mismatches between developers'
expectations and actual usage is important in improving
usability. Once mismatches are detected, they may be
corrected in one of two ways. Developers may change their
expectations about usage to belter match actual use, thus
refining the system requirements and eventually making a
more usable system. For example, features that were
expected to be used rarely, but are used often in practice can
be made easier to access. Alternatively, users can learn
about developers' expectations, thus learning how to use the
existing system more effectively. For instance, learning that
they are not expected to type full URL's in Netscape
Navigator can lead users to omit characters such as
"http://".

3.2 The EDEM Approach

Expectation-driven event monitoring (EDEM) is an agent-
based approach to application usage monitoring, in which
expectations are encoded in the form of software agents,
called expectation agents, that monitor usage and perform
various actions when encapsulated expectations are
violated. Figure 1 depicts a software development process
in which developers (and/or usability experts): (1) identify
usability expectations to be checked as applications are
developed, (2) create agents to monitor user interactions,
(3) deploy agents to run on users' computers, and (4)
receive feedback from agents regarding mismatches in
expected versus actual usage.

The particular action highlighted in Figure 1 and in this
paper in general involves agents reporting data back to
developers. However, agents can perform numerous actions

Agents are deployed to run on users' computers

Developers design
application and
create agents

Developers \
refine the
application
and/or agents

Agents observe users
^ as they interact

w/application

y Agents delect
tnismaiches and

collect data/feedback

Agents report back to developers
to inform application evolution

Figure 1. A software development process augmented with
agents for collecting usability data.

including notifying users and/or developers of mismatches,
reporting system state and/or event history to developers for
debugging purposes, providing guidance or suggestions to
users, or collecting feedback directly from users [10].

Usage Scenario

.EDEM provides developers with tools for defining agents,
dynamic displays for visualizing the components and
events of the interface being monitored as well as agent
activity, and an agent runtime system that allows agents to
be downloaded to monitor user interactions on user
computers, while reporting data back to centralized or
federated groups of developer computers.

To see how EDEM helps developers collect valuable usage
data, consider the following usage scenario. A group of
developers are designing a form-based application to help
customer representatives at a hypothetical phone company
take customer orders over the phone. See [7] for a more
detailed scenario. The user interface of the order form must
be well-suited to users' tasks and users must be aware of
how to most efficiently use the interface in order to
maximize the number of orders that can be taken in a given
amount of time.

After involving users in design, constructing use-cases,
performing task analyses, doing cognitive walkthroughs,
and employing other user-centered design techniques, a
prototype implementation of the order form application is
ready for deployment. Figure 2 shows the customer
information section of the order form. Developers are
interested in verifying that their expectations, particularly
those relating to efficiency, are actually met by users of the
prototype. In particular, they are interested in verifying that
users complete input fields in the order expected, and that
the ZIP field in the customer information section is used to
automatically complete the City and State fields, as
expected.

!El Phone Seivice - Addiess

Fie Options

Nam iDavid F. Redrndes

No.afPhonesH PrimoyUse Personal

Seivice Options...

Figure 2. Customer information section of a hypothetical
phone service order form.

:CDFMAg,ml(diloi

LOST ENT
1 BJIJIKUS
t LQsf.ia:^

I LCTWATHI
! Liten..c»:

Autea*k4MWBd

|Enw.aPMdit.i'
'•Ew* PllSwiU-l- i Aa Ba

Candkm pCS
I

Figure 3. A simple agent editor.

Figure 3 shows an agent editor that allows developers to
specify expectation agents without writing code. In Figure
3 (upper-left) the developer expresses interest in detecting
when the user begins editing the Stale field in the order
form and adds this event to an agent (lower-right) that will
"fire" whenever the user edits the City or State fields while
the ZIP field is empty. This agent then runs on users'
computers monitoring user interactions and reporting data
back todevelopers when expectations areviolated byactual
usage. Collected data is stored in a database and standard
plotting andanalysis tools are usedto analyze results.

The main contribution of our approach, as it has thus far
been described, is our explicit treatment of usage
expectations in the development process. Treating usage
expectations explicitly helps developers think more clearly
about the implications of design decisions. Because
expectations can be expressed in terms of user interactions,
they can be monitored automatically, thereby allowing
information to be gathered on a potentially large scale.
Expectations provide a principled way of focusing data

collection so that data is only collected surrounding
"critical incidents" in which usability problems have
actually occurred. In the following section we describe how
our approach allows monitoring to evolve without affecting
the deployment of applications being monitored, and how
agents provide distributed event filtering and abstraction.

4 IMPLEMENTATION

4.1 Expectation Agents

Expectation agents are currently represented as instances of
a simple Java™ class with attributes describing triggers,
guards, and actions. Triggers are specified in terms of user
interface event patterns that are continually checked as
users interact with the application. Guards are predicates
involving user interface component state variables that are
only checked once an agent trigger has been activated.
Actions may include arbitrary code, but usually involve
pre-supplied actions such as generating higher level events
for further hierarchical event processing, interacting with
users to provide suggestions and/or collect feedback, and
finally reporting data back to developers.

Agent triggers are specified in terms of event patterns of the
following form:

• "A or B or ..."(Disjunction)

• "A and B and ..."(Conjunction)

• "A then B then ..."(Sequence)

• "(A and B) with no intervening C"
(Conjunction with Exclusion)

• "(A then B) with no intervening C"
(Sequence with Exclusion)

Where variables A, B, and C are filled in by specifying:

• a component from the user interface plus an event
(e.g. LOST_EDIT: City (Field) which occurs when
the City (Field) component is edited and then
another component is edited), or

• another agent and agent event
(e.g. FIRED: AddressCompleted which occurs
when the AddressCon^leted agent has fired)

Agent guards are specified in terms of condition patterns of
the following form:

• "A or B or ..."(Disjunction)

• "A and B and ..."(Conjunction)

Where variables A and B are filled in by specifying:

• a component from the user interface and some expres
sion involving its properties
(e.g. value = Zip (Field) or
value > 10 :NuinPhones (Field)), or

• another agent and some expression involving its proper
ties

(e.g. enabled = false:AddressStarted or
count > 100:ZipBeforeCityState)

An optional time limit may also be specified to require that
the agent's event pattern be satisfied within a specified
interval.

edemJceniel.Agenil
nanie="Eoier ZIP field first",
eveDtPatten>s"A B or

events®Vcctor(2,
edem.kernel EvemRecord[

Damc="aiy(FicId)". type="coinpODent". evenia"GOT_EDrrj.
edein.keme1.EventRecord[

naine®"Sute(FieId)", type®''component". evenr»"GOT_EDlT']],
c(»iditionPanen)®"A or B or

cooditionssVectc^ I.
edefn.kemel.ConditionRecatl(

name®"Zip(Fidd)". type®"coniponcm". condinon3«dem.kemc1.G>ndid<H)(
predioMe®"®",
key=-value".
value®"",
De£aie®"false*']]],

timcLinut®"",

actionsedem.lcemel.Action[
[Tcssagc="Erucr luf befixe Qty/State. Qty/Stme canbeconpleied automaticaDy.",
intetnipiUser®"false",
feedback®"true",
logs'lrue".
lo£Tiin6s"fal$e".
log\Uues®"fake".
summafya-true".
suminai>Coums"niie"],

iq)ett="mie".
eaaMed®"mie'')

Figure 4. ASCII version of the agent specified in Figure 3.

This simplified trigger and guard notation facilitates a
form-bas^ authoring environment. Arbitrary patterns can
be specified by composing agents (as explained below).
Figure 4 shows an ASCII represenution of the agent
specified in Figure 3.

4.2 Monitoring Architecture

In our prototype Java implementation, the top level ID of
each application window to be monitored as well as each
user interface event is passed to EDEM for processing. This
is accomplished through the use of two simple librarycalls.
The first call is made only once when a new application
window is created. The second call is made each time the
application processes a user interfaceevent. Typically, this
only requires two lines of source code to be inserted,'
There are subtleties involved in automatically mapping the
transient, implementation-dependent IDs of user interface
components to persistent names for use in monitoring. We
overcome this by allowing the developer to provide a name,
in code, for each component that is expected to be
prominent in monitoring,^ Once this has been
accomplished, the component hierarchy of the interface is
detect^ automatically, and agents are defined in terms of
user interface components and events.

Once agents have been defined, they are serialized and
stored in ASCII format in a file that is associated with a

1.This is not necessary on platforms where userinterface components and
events canbeobserved aswell asqueried from a separate process connect
edto thewindowing system. Most windowing systems do notsupport this
functionality, however.

2.A non-robust mapping canbegenerated automatically. Requiring the de-
velopo^ to providealiases for components is the most robust and maintain.
ti}le way toaccomplish this mapping, however, the details astowhy this is
so are beyond the scope of this paper.

dopment Computer

Java Virtual Machine

/AppUcationXTop Level Wndow^ EDEM
U1 Components | & U1 Events [Active Agents

Property Queries

Property Values

Agent Specs
saved w/ URL

I)i'\bJ(ipinent Com]
' 'im

Collected

Data

EDEM Server

User Conn

Java Virtual Machine

Agent
Spedflcations

HTTP Server

Agent Specs
loaded via URL

^pplicationXTop Level Window EDEM
UI Components | & UI Events (Active Agents

Property Queries

•
Property Values

Figure 5. The EDEM architecture.

URLon a development computer. When the application of
interest is run, the URL is automatically downloaded and
agents are instantiated on the user's computer. A standard
HTTP server is used to field requests for agent
specifications and a standard E-mail protocol is used to
send agent reports back to development computers. An
EDEM server is used to store agent data reports for later
analysis. Agents may therefore be modified, added, and
deleted incrementally without requiring modifications to
the application being monitored. Figure 5 shows a high-

level view of the EDEM architecture.

In sum, expectation agents act as reconfigurable
instrumentation that can be incrementally modified to
collect data about application usage as needed. This
architecture provides a general solution for allowing
instrumentation to evolve flexibly in a large-scale,
distributed system, without requiring the systems being
monitored tobe modified when monitoring needs change.
4J Event Filtering and Abstraction

While separating instrumentation from application code is
important in allowing instrumentation to evolve without
impacting application deployment, we do not enforce a
separation between the collection of data (typically
prefonned by instrumentation) and filtering andabstraction
of the data (typically performed manually after data have
been collected). This is because Internet-scale demands that
data be filtered close to the source to avoid undue network
traffic. Placing filtering indeployed applications in the form
of agents does not affect application deployment because
our architecture allows agents to be modified dynamically
as new dataneeds arisewithout impacting application code,
as described above.

Filtering is accomplished by allowing event abstraction to
occur within agents. Instead of reporting every event that
occurs, agents detect significant patterns of lower level
events and generate higher level events for use in further
processing. Agents are implemented on top of an industry
standard component model, the JavaBeans""^ specification
[30], that standardizes how arbitrary software components
make events, properties, and methods available to one
another. Agent triggers are specified in terms of patterns of
component events; agent guards are specified in terms of
predicates involving component properties; agent actions
may involve invocation of component methods.

Because agents themselves, like the components they
monitor, conform to the JavaBeans specification, they too
can be monitored in the same way that user interface
components can be monitored. It is therefore possible to
composeagentshierarchically to detect patterns of eventsat
increasing levels of abstraction. When an agent detects a
pre-specified pattern of lower level events, a higher level
event is automatically generated (the "FIRED" event).
Other agents can then detect patterns of these higher level
agent events. This allows a multi-level model of events to
be constructed in which higher level, abstract events are
specified in terms of combinations of lower level events. A
multi-level event model for usability data collection has
been implemented using this approach and is described in
[10].

Agent output is logged during execution and sent back to
development computers viaE-mail when the application of
interest is exited. The main contributions of this aspect of
ourapproach include the following. First, by pushing event
abstraction into"instnimentation" andcloserto the source,
event data can be filtered and abstracted before being sent
across thenetwork. Second, byallowing higher level events
to be specified in terms of lower levelevents,eventdata can

be collected and analyzed at multiple levels of abstraction.

5 EVALUATION

It is important to evaluate to what extent the data collected
by expectation agents is subsequently useful in design
improvements. It is also important to verify that the benefits
of collecting usability data outweigh the costs of authoring
and maintaining agents. To date our approach has been
applied within the context of a research demonstration
project conducted by Lockheed Martin C2 Integration
Systems for the Global Transportation Network (GTN)
project^

Our initial experience with GTN suggests that the time,
effort, and expertise required to integrate with EDEM and
to author agents is not extensive, and that significant data
can nonetheless be captured. Also, because our approach
allows agents to be deployed dynamically, investment in
data collection is incremental, and the number of agents can
be kept down by focusing on only a limited number of
usability questions at any given time. Further investigation
within the context of GTN and evaluations with more

quantifiable results are planned for the future.

We are also addressing a number of other challenges that
must be overcome before the potential of Internet-scale
usability data collection can be realized. These challenges
range from technical to social, including: agent
maintenance; data storage and analysis; integration of
expectations into the development process; privacy; and
finally, non-disruptive techniques for requesting user
feedback to augment automatically collected data.

With respect to agent maintenance, we have already
identified mitigating factors that minimize the impact of
maintenance concerns [10]. With regard to data storage and
analysis, we are investigating existing techniques for
managing and processing temporal and sequential data
[5][6]. With regard to integrating expectations into the
development process, we are investigating relationships
between expectations and usability requirements, cognitive
walkthroughs, use cases, and other artifacts that already
exist in the development process. With regard to privacy,
since we do not collect arbitrary low-level data for
unspecified purposes, but rather, higher level information
for specified purposes, it is easier to justify collection, and
users can be given discretionary control over what is
reported. Finally, with regard to non-disruptive collection
of user feedback, we have investigated various scheduling
and control mechanisms to limit agent execution and filter
agent requests for user attention [23].

It should be noted that developers cannot anticipate all
areas where usability may break down, thus automatic
detection of expectation violations is only part of a

l.GTN is a system th^ gathers, integrates, and distributes transportation-
related information and acts as the central clearinghouse of transportation
information for the Department of Defense. Tie system will eventually be
come the U.S. Transportation Command's primary command and control
system and a fully integrated component of the Department of Defense's
command and control infrastructure.

complete usability engineering solution. Our system has
been designed so that users can determine for themselves
when undetected breakdowns have occurred, and use the
same reporting mechanisms to send information back to
developers including program state, event history, as well
as comments. Nonetheless, this approach is intended to be
used in conjunction with existing usability engineering and
evaluation techniques. It is not intended as a replacement.

6 RELATED WORK

6.1 Application Usage Monitoring

As mentioned above, current approaches to application
usage monitoring do not address issues of ongoing, large-
scale use. Observation is achieved by inserting
programmatic probes directly into application code or by
tapping into the windowing system's event queue.
Distribution is achieved by writing collected data directly
toa file or other stream for later processing. Filtering arid
abstraction is typically performed manually by usability
analysts after distribution and before analysis. In
expectation-driven event monitoring, observation, filtering,
and abstraction all take place within expectation agents.
Expectation agents act as dynamically reconfigurable
probes that perform filtering and abstraction prior to
distribution, thereby reducing network bandwidth
requirements, and allowing data to be collected at multiple
levels of abstraction. Agents may be updated dynamic^ly
as monitoring needs change. Figure 6 illustrates this
contrast.

The strengths of current approaches involve techniques for
synchronizing event data with video data and observers'
notes [11][32], and post-faclo analysis [6][8][11][32].
While EDEM is primarily intended for use in situations
where video equipment and human observers are not
present, integration with existing video synchronization
techniques as well as post-facto analysis tools is planned as

Current application usage monitoring:

Programme
Instrumentat

1Observation] Distribution

Human

Analyst

filtering &'
. Abstraction. Analysis

Expectation-driven event monitoring:

Hnmati

Analyst

Figure 6. EDEM contrasted with current applicationusage
monitoring.

Someexperimenters have begun to explore remote usability
evaluation using the Internet [9]. However, data filtering
and reporting is only partially automated in that users must
be trained to identify "critical incidents" themselves, and
then press a "report" button which sends data about events
immediately preceding and following the user-identified
incidents back to experimenters. This is useful and is
included as a feature of EDEM, however, users aretypically
unaware of when their actions violate developers'
expectations. Expectation agents are thus indispensable in
detecting mismatches without having to depend on pro
active users.

63 Software Process Event Monitoring

Numerous researchers have investigated techniques for
capturing software process event data for the purpose of:
analyzing and improving the software process [35],
validating the process with respect to a formal model [4],
generating a formal model based on process events [4], or
applying metrics to help guide the process (e.g., to
automatically apply analysis tools when changes to code
increase the likelihood of faults based on software metrics
and historical data) [25].

While differing substantially in intent, EDEM bears some
similarity to systems such as Amadeus [25] and YEAST
[15] that detect process events and take pre-specified
actions in response. However, many critical process events
are difficult to detect automatically, including
communication, coordination, and decision making events
[35]. As a result, process event data is somewhat less
amenable to automatic collection than is user interaction
data. EDEM could,however, be usedas a toolfor detecting
process-related events in so far as those events are
expressible in terms of user interactions occurring within
software tools supporting the process in question.

Future work may involve the use of EDEM to do pattern
discovery in addition to pattern validation [4]. This involves
generating models to characterize unanticipated patterns in
event data as opposed to simply delecting when particular
patterns have been satisfied or violated. This, however, will
require either more network band-width and server disk-
space for data transmission and storage, or alternatively,
more sophisticated processing within expectation agents
themselves. In our prototype implementation, we have
attempted to be sensitive to utilization of network band
width, server disk-space, as well as the use of client
processing resources. However, if network band-width and
server disk-space are not serious issues in a given
experimental situation, then pattern discovery may be
I>erformed on servers with the help of separate analysis
tools once data have been collected.

6.3 Distributed System Debuggingand Monitoring
Work in the area of distributed systemdebugging has led to
approaches with characteristics similar to those found in
EDEM. Event-based behavioral abstraction (EBBA) is an
approach to distributed system debugging in which models
of expected program behaviors arecreated andcompared to

actual behaviors exhibited by the program [3]. TAGS is a
specification-based testing system that applies a similar
approach [22]. EDEM can be viewed as a "debugging" or
"testing" tool for user interfaces that compares models of
expected use to actual use. However, because these
debugging and testing tools are primarily designed for use
in development situations as opposed to ongoing use on
users' computers after deployment, they require
significantly more memory, storage, and processing
resources than EDEM.

Work in the area of distributed system monitoring has also
addressed some of the issues addressed by EDEM. Our
approach is similar to the Generalized Event Monitoring
(GEM) approach presented in [19] in that it distributes
event filtering and abstraction mechanisms as close as
possible to event sources, as opposed to performing
filtering and abstraction after distribution of event data.

6.4 Agents

In contrast to interface agents that act primarily as "user
assistants" [17], expectation agents act primarily as
"developer assistants" by monitoring application use,
detecting when environmental conditions and/or user
behavior violate developers' expectations, and reporting
databack todevelopers forevaluation purposes.

6.4.J Agent Representation
There are numerous techniques that might be used to
represent expectation agents. State-based representations
are well suited for expressing expectations about sequences
of events regardless of the values of input fields or the state
of the system. For example, the expectation that users will
fill in fields left to right and top to bottom. State-based
agents relyprimarily on the orderof events occurring in the
user interface. By registering interest in particular events,
transitions can be triggered when those events occur.
Current technologies for state-based systems are well
developed and used in both requirements engineering and
programming [34].

Rule-based representations [7] are well suited for
expressing expectations that hold over entire interactions
regardless of the order of events. For example, developers
might expect users to not fill in fields for both credit card
payment and COD (cash on delivery). Rule-based agents
rely primarily on the value of input fields and the state of
the system. By registering interest in particular fields, these
agents can be triggered when those fields change. Current
technologies for rule-based systems are also well
developed.

Mode-transition-based representations incorporate features
of both rule-based and state-based representations. They
represent expected behavior as tables of modes (i.e.,states)
and transitions which are guarded by conditions (i.e., rules).
For example, when an airline customer representative is
searching for a group of seats on a single flight, they might
be expected to enter another query whenever the previous
query yielded less available seats than was specified in the
"number of travelers" input field. Mode-transition-based
technologies have been well developed and are primarily

used in requirements engineering [1].

We have chosen what is basically a mode-transition-based
representation, in which agents are specified in terms of
triggers, guards, and actions. A similar approach was used
in early work on agents by Malone and colleagues [18]. In
their approach, agents are represented using a trigger,
query, and action. Queries are roughly equivalent to guards
in our approach.

Because we are interested in defining agents to act upon
specific patterns of user interface events, we use a symbolic
representation as opposed to a statistical representation
such as used by Sheth and Maes [26]. Statistical techniques
and other data mining approaches may eventually be used
to do post-hoc analysis of already collected data for the
purpose of discovering pattcms as described above.

6.4.2 Agent Mobility
Expectation agents must move from development
computers to user computers prior to execution. Stamos and
Gifford [29] introduced the concept of remote execution in
which servers are viewed as programmable processors.
EDEM can be thought of as a programmable processor in
which expectation agents are the programs. Agents are
authored and maintained on development computers and
transported to user computers to execute remotely and
report data back to developers. Several researchers have
begun to look at sophisticated techniques for achieving
agent mobility [12][]4][24]. Rus and colleagues [24]
describe an approach in which agents sense network status
and navigate adaptively based on reactive plans. There are
also a number of commercially (and fieely) available
mobile agent platforms [21], of which Telescript [33],
introduced by General Magic, Inc. in 1994, was perhaps the
first.

Because expectation agents are published in a well-known
location and only transported once per execution, their
requirements for mobility are fairly straightforward. As a
result, we have avoided dependencies on special-purpose
mobile agents platforms and opted instead for a more
standard and ubiquitous transport mechanism. Expectation
agents are associated with URL's on development
computers and downloaded to user computers via standard
hypertext transfer protocol (HTTP).

6.4.3 Agent Interface
A large portion of the research community in agents works
on the issue of interfacing software agents to their human
users. Great emphasis is given to anthropomorphism
[16][17]. We believe this approach is critical for many
classes of users and can greatly improve the chances of
agents being adopted. However, in our current research, we
have developed a more literal, low level, and "precise"
interface between the agents and their primary users. We
believe this approach to be appropriate because of the
sophistication of the users, namely, software developers,
and because of the need for precision in defining
expectations. Anthropomorphism may eventually be
incorporated as a mechanism for interacting with end users
of the applications being monitored, to request feedback

from them, or to provide suggestions based on developers
expectations [10].

7 CONCLUSIONS

The main contributions of this paper include an
expectation-driven approach to event monitoring and an
agent-based architecture that together make large-scale
collection of usability data on the Internet a practical
possibility. Initial experience with the Global
Transportation Network project indicates that valuable
usage data can be captured with only modest investment on
the part of developers.

By treating usage expectations explicitly in the
development process, we provide a principled way of
focusing data collection. By encapsulating instrumentation
within expectation agents, we allow monitoring to evolve
flexibly without impacting the deployment of applications
being monitored. Finally, by embedding event abstraction
mechanisms within expectation agents, we allow events to
be filtered in a scalable way, reducing network bandwidth
requirements, and allowing data collection to address
events at multiple levels of abstraction.

ACKNOWLEDGMENTS

The authors would like to thankJ. Robbins, A. Girgensohn,
F. Shipman, A. Lee, and A. Turner, who worked on
precursors to this work and who continue to provide insight
and support.

This work is financially supported by the National Science
Foundation, grant number CCR-9624846, and by the
Defense Advanced Research Projects Agency, and Rome
Laboratory, Air Force Materiel Command, USAF, under
agreement number F30602-97-2-002I. The U.S.
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright annotation thereon.

REFERENCES

1. J.M. Allee and J. Gannon. Stale-based Model checking
of event-driven system requirements. IEEE Transac
tions on Software Engineering, Jan. 1993.

2. R.M. Baecker,J. Grudin, W.A.S. Buxton, S. Greenberg,
eds. Readings in Human-Computer Interaction: Towa^
the Year 2000. Morgan Kaufmann Publishers, Inc., San
Francisco, OA, USA, 1995.

3. PC. Bates. Debugging heterogeneous distributed sys
tems using event-based models of behavior. ACM
Transactions on Computer Systems,\o\. 13,No. l,Feb.
1995.

4. J.E. Cook. Process Discovery and Validation through
Event-Data Analysis. Ph.D. Thesis, Technical Report
CU-CS-817-96, University of Colorado, Sep. 1996.

5. S. Fickas and M. Feather. Requirements Monitoring in
Dynamic Environments. In Proceedingsof the Second
IEEEInternational Symposium on Requirements Engi
neering, York, England,Computer Society Press,Mar.
1995.

6. C. Fisherand P. Sanderson. Exploratory sequential data

analysis; exploring continuous observational data. Inter
actions, Vol.3, No. 2, ACM Press, Mar. 1996.

7. A. Girgensohn, D.F. Redmiles, and F.M. Shipman m.
Agent-Based Support for Communication between
Developers and Users in Software Design. In Proceed
ings of the Knowledge-Based Software Engineering
Conference '94. Monterey, CA, USA, 1994.

8. M.L. Hammontree, J.J. Hendrickson & B.W. Hensley.
Integrated Data Capture and Analysis Tools for
Research and Testing onGraphic^ User Interfaces. In
Proceedings ofCHI'92, ACM Press, Monterey, CA,
USA, May 1992.

9. H.R. Hartson, J.C. Castillo, J. Kelso, W.C. Neale.
Remote Evaluation: The Network as an Extension of the

Usability Laboratory. In Proceedings ofCHI'96, ACM
Press, 1996.

10. D.M. Hilbert, J.E. Robbins, and D.F. Redmiles. Sup
porting Ongoing User Involvement in Development via
Expectation-Driven Event Monitoring. Technical
Report UCI-ICS-97-19, Department of Information and
Computer Science, University of California, Irvine,
May 1997.

11. D.E. Hoiem, K.D. Sullivan. Designing and Using Inte
grated Data Collection and Analysis Tools: Challenges
and Considerations. In Jacob Nielsen ed.: Usability
Laboratories, Special Issue ofBehaviour &. Information
Technology, Vol. 13, No. 1 & 2, Apr. 1994.

12.D. Johansen, R. van Renesse, and F. Schneider. Operat
ing System Support for Mobile Agents. In Proceedings
of the 5th IEEE Workshopon Hot Topics in Operating
Systems, 1995.

13. J. Kay and R.C. Thomas. Studying Long-Term System
Use. Communications ofthe ACM, Vol. 38 No. 7, Jul.
1995.

14. K. Kotay and D. Kotz. Transportable Agents. In Pro
ceedings of the Workshop on Intelligent Information
Agents. 1994.

15. B. Krishnamurthy and D.S. Rosenblum. Yeast: A Gen
eral Purpose Event-Action System. IEEE Transactions
on Software Engineering, Vol. 21, No. 10, Oct. 1995.

16.B. Laurel. Interface Agents: Metaphors with Character.
In The An ofHuman-Computer Interface Design, Addi-
son-Wesley Publishing Company, Reading, MA, 1990,
pp. 355-365.

17. P. Maes. Agents that reduce work and information over
load. Communications ofthe ACM,vol.37, {no.7), July
1994,pp.30-40, 146.

18.T.W. Malone, K.Y. Lai, and C. Fry. Experiments with
Oval: A Radically Tailorable Tool for Cooperative
Work. In Proceedings ofthe Conference on Computer
Supponed Cooperative Work (CSCW '92). (Toronto,
Canada) ACM, New York, Oct. 31-Nov.4, 1992, pp.
289-297.

19. M. Mansouri-Samani and M. Sloman. An Event Service
for Open Distributed Systems. In Proceedingsof the
Joint International Conference on Open Distributed
Processing (ICODP) and Distributed Platforms
(ICDP), Toronto, Canada, May 1997.

20.J. Nielsen. Usability Engineering. AcademicPress, AP
Professional, Cambridge, MA, USA. 1993.

21. ObjectSpace, Inc. ObjectSpace Voyager andAgent Plat
forms Comparison. ObjectSpace white paper, 1997.

22. D.J. Richardson. TAOS: Testing with Analysis andOra
cle Support. In Proceedings of the 1994 International
Symposium on Software Testing and Analysis, Aug.
1994.

23. J.E. Robbins, D.M. Hilbert, and D.F. Redmiles. Extend
ing Design Environments to Software Architecture
Design. Toappearin The InternationalJournal ofAuto
matedSoftware Engineering. SpecialIssue: The Bestof
KBSE'96.

24.D. Rus,R. Gray, and D. Kotz. Transportable Agents. In
Proceedings ofAutonomousAgents 1997 (Marina Del
Rey, California, USA), 1997.

25.R.W. Selby, A.A. Porter, D.C. Schmidt, and J. Bemey.
Metric-Driven Analysis and Feedback Systems for
EnablingEmpirically Guided Software Development.
In Proceedingsof the ThirteenthInternational Confer
ence on Software Engineering, 1991.

26.B. Sheth and P. Maes. Evolving agents for personalized
information filtering. In Proceedings ofthe Ninth Con
ference on Artificial Intelligencefor Applications
(Orlando, FL) IEEE Computer Society Press, Los
Alamitos, CA, March 1-5, 1993. p.345-52.

27.A.C. Siochi and R.W. Ehrich. ComputerAnalysis of
User Interfaces Based on Repetition in Transcriptsof
User Sessions, ACM Transactionson InformationSys
tems. Vol. 9, No. 4, Oct. 1991.

28. A.C. Siochi and D. Hix. A Study of Computer-Sup
ported User Interface Evaluation Using Maximal
Repeating Pattern Analysis. In Proceedings of CHr91,
New Orleans, LA, USA, ACM Press, Apr.-May 1991.

29. J. Slamos and D. Gilford. Remote Execution. In ACM
Transactions on Programming Languages andSystems,
12(4):537-565, October 1990.

30.Sun Microsystems. JavaBeans™ API Specification,
Version 1.01. Jul. 1997. (URL: http://java.sun.coni/
beans/).

31. R.M. Taylor and J. Coutaz. Workshop on Software
Engineering and Human-Computer Interaction: Joint
Research Issues. In Proceedings of the International
Conference on Software Engineering '94, Sorrento,
Italy, May 1994.

32.P. Weiler. Software for the Usability Lab: A Sampling
of CurrentTools. In Proceedings ofINTERCHI'93,
Amsterdam, The Netherlands, ACM Press,Apr. 1993.

33.J.E. White. Telescript Technology: the Foundation for
theElectronic Marketplace. General Magic white paper.
General Magic, Inc., 1994.

34. J. Wing. A Specifier's Introduction to Formal Methods.
IEEE Computer, Sep. 1990.

35.A.L. Wolfand D.S. Rosenblum. A Study in Software
ProcessData Captureand Analysis. In Proceedings of
the SecondInternational Conference on Software Pro
cess. 1993.

