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ABSTRACT OF THE THESIS

Challenges in network-based classification of gene expression profiles

by

Sanath Kumar Ramesh

Master of Science in Computer Science

University of California, San Diego, 2012

Professor Trey Ideker, Chair

Classification of gene expression profiles to distinguish one disease state

from another is essential for the realization of personalized medicine. Recent ap-

proaches towards this problem use prior knowledge about interaction among bio-

molecules to improve classification accuracy and the biological relevance of the pre-

dictive features. However, many such network-based methods do not significantly

outperform their unconstrained counterparts in terms of sensitivity and specificity

due to unexplained reasons. This behavior, observed across diverse datasets and

methods, is a cause of concern as it implies that something is wrong with the

data, the algorithms or both. This work focuses on understanding the reasons be-

hind this problem through extensive simulation of gene expression profile to help

viii



the development of better classifiers in the future. We infer that when using net-

works whose interactions do not agree well with the patterns of gene expression,

improvement in classification performance will not be significant. Because this im-

provement is dependent on the classifier also, future network-based methods need

to understand their properties with respect to network noise and know the quality

of actual network mapping to make meaningful inferences from the performance

results.
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Chapter 1

Introduction

Classification of tumor types for effective prognosis and treatment has been

primarily based on histopathological appearances of the tissue. However, consid-

ering the diversity in treatment outcomes even within the same tumor class, many

researchers have turned to genome-wide expression profiles to identify stronger

prognostic and predictive markers for the disease. Some major challenges with

biomarkers have been lack of reproducibility across cohorts [8] and, for some dis-

eases, lack of classification accuracy [3]. This issue stems, in part, from the fact

that not all the cases are the same disease, at least on the molecular level.

To address these shortcomings, many groups are beginning to implement

classification approaches that draw from prior knowledge about cellular architec-

ture and function to tie together individual genes and proteins into networks.

Chuang et al. [3] highlighted the predictive power of protein subnetworks as op-

posed to individual gene markers for classification of breast cancer metastasis. In

their approach nodes of the network are scored using the genes expression value

and a greedy search is performed to identify high scoring subnetworks. Scores of

such subnetworks are used as feature values for classification using a logistic regres-

sion framework. At about the same time, Rappaport et al. [18] also came up with

a technique to include network information into support vector machines based on

spectral graph theory. Following up these efforts, many methods [16] [24] [13] [15]

[10] [6] [23] have been proposed to improve both the classification accuracy and

the relevance of biomarkers.
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Network biomarkers are beginning to improve diagnosis and stratification

of disease [6] due to several key benefits. The two important ones are robustness

across cohorts (Figure 1A) and enrichment for disease genes (Figure 1B). When

similar sets of biomarkers are identified across cohorts, they tend to be reliable

and more relevant for prognosis. Enrichment for disease genes argues that at least

some network biomarkers identified are related to the causes of disease rather than

some possibly distal downstream effect.

Puzzlingly, however, few network-constrained classification methods actu-

ally perform better than their unconstrained counterparts in terms of sensitivity

and specificity (Figure 1C). On the one hand, this is not surprising as any fea-

ture combination available to the network-constrained method is also available

when this constraint is removed and, in fact, the unconstrained method can ac-

cess many additional feature combinations which may lead to better classification

performance. On the other hand, it is conceivable that at least some network-

constrained method may outperform an unconstrained classifier since it can better

generalize across cohorts.

Therefore, it is yet unclear why network-based methods do not outper-

form network-free methods in classification of patient molecular profiles. Potential

reasons could be a. Deficiency in network knowledge i.e. interactions in the net-

work either wrongly or partially capture the expression pattern of genes. b. The

network-based methodologies proposed to-date are unable to effectively use in-

formation encoded by the biological network. c. Patient molecular profiles are

simply not as complex as widely assumed i.e., some disease states are already well-

captured by a linear combination of a small number of genes, meaning that prior

network knowledge is simply unnecessary for good classification. This leads us to

a more immediately pressing question: are there certain data sets / classification

problems for which we expect network-based biomarkers to outperform a standard

biomarker set based on individual mRNA or protein levels?

To answer some of these questions, we analyze the performance of network-

constrained classification via an extensive set of simulations. We explore the in-

fluence of key factors on network-based classification: a. Coverage and error of
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network mapping; and b. Size of the disease pathway influencing a disease. We

show that under certain conditions, increasing network coverage and accuracy can

in fact strongly improve the performance of molecular classification. Finally, we

highlight that contrary to popular belief, classification performance alone is only a

partial metric for assessing the utility of network information. A complete under-

standing of the properties of classifiers with respect to mapping error and knowing

the quality of the actual network mapping are essential for a realistic assessment.
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Figure 1: Performance of network-based classifiers on real datasets. (A)
Correlation of the features ranked by NwpropSVM on two different datasets show
that the results tend to be highly reproducible across cohorts. (B) and (C) are
reproduction of Figures 4B and 4C from Dutkowski et al. (B) Among the top
25 features selected by Network Guided Forest (NGF), Random Forest (RF) and
NGF on a permuted network (NGF **), NGF selects a significant amount of disease
related genes. (C) Classification performance of NGF in terms of AUC does not
improve when compared to RF and NGF ** (D) Other network-based classifiers
exhibit similar behavior as in Panel C on five different expression datasets. **
denotes that the algorithm was run on a permuted network.



Chapter 2

Materials and Methods

2.1 Overview of the simulation framework

The purpose of simulation is to create an expression dataset where there is

full control over the characteristics of the data while being able to implant a signal

that is representative of some the biological properties found in gene expression

profiles. Therefore, a protein-protein interaction network, downloaded from the

STRING [20] database is used as a prior knowledge to generate patient molecular

profiles that follow the interaction structure (Figure 2). Each profile is assigned

a phenotype which is typically binary such as ”disease” and ”normal”. Patients

that have a disease show increased or reduced expression for certain disease genes

whose expression value is drawn from a normal distribution with mean µ and

standard deviation σ. All other expression values are drawn from a standard

normal distribution. Since the parameters µ and σ control the signal to noise ratio

in the data, their values are empirically determined to minimize signal content as

described in the results chapter.

To encode prior knowledge of interactions into the expression data, disease

genes are selected from the pathway structures present in the network. This idea

is motivated by the observation from many expression studies that genes causal

to a disease commonly fall within pathways that are responsible for some cellular

function such as cell cycle, DNA repair etc. Also, these genes within a pathway are

known to interact heavily among themselves than with genes from other pathways

5
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giving raise to an interaction topology called communities. To make the simulation

generic, instead of choosing disease genes from biologically validated pathways, we

choose them from regions of an interaction network that exhibit the community

structure. Even though a pathway could be held responsible for a disease, not

all genes in the pathway get expressed in all disease patients. This stochasticity

is the result of widely varying genetic, environmental and demographic makeup

of each patient and is also one source of complexity within expression datasets.

This is precisely the reason why we expect network-based classifiers to outper-

form their unconstrained counterparts, as they can grasp the common expression

pattern within pathways instead of getting confounded by the stochasticity in in-

dividual gene expressions. Therefore, in the simulation also, every disease gene

gets differentially expressed in a random subset of disease patients. We add noise

to the simulation by differentially expressing a few genes among randomly chosen

normal patients.

To generate the expression data, pathways were identified in the STRING

network by detecting network communities using the Qcut algorithm [19]. For

simulations, a 2000 node network was constructed out of the original network by

selecting pathways until enough number of nodes is present. Results presented in

this work (Figure 3A and Figure 4) were generated with one pathway of around

50 genes showing differential expressed in disease patients. The generated expres-

sion data has 600 patients split into 300 disease and 300 normal patients. Equal

number of disease and normal patients was fixed to avoid classifier bias towards

the over-represented class. To encode the stochasticity in expression, each disease

gene was differentially expressed in 20% of the disease patients picked at random.

Increasing the size of this subset would reduce the stochasticity, and hence the

usefulness of a network-based classifiers. Expression data that is synthesized us-

ing this approach is classified using three different classifiers a regular support

vector machine (SVM) [4] that does not use network information; GraphSVM [18]

and NwpropSVM (See Section 2.3) that are extensions to SVM made to include

a network into classification. Both network-based methods are supplied with the

original network which was used to generate the expression data and their classi-
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fication performance is compared against SVM as a baseline.

Admittedly, this model is a clear simplification of the true biology by making

use of only few essential characteristics that have been established about biological

Figure 2: Simulation Framework. From a real network, pathways are chosen
as network communities. Genes in the pathway get differentially expressed in a
random subset disease patients by drawing their expression value from a normal
distribution with µ = 1.5 and σ = 2.5. All other genes draw their expression
from standard normal distribution. Noise is added to the data by differentially
expressing a few genes among normal patients also.
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systems. We can suggest several more complex models which may possibly add

more biology to the framework, but not without sacrificing some of the flexibility

to explore the data characteristics in terms of signal and noise. To a network-based

classifier, expression data and interaction networks are the only source of signal.

In the simulation framework, expression signal can be increased by a) varying the

number of disease genes or b) adjusting to make a normal distribution that has

little overlap with a standard normal distribution. Network signal, on the other

hand, can be decreased by a) adding or remove edges from the network or b)

picking disease genes from pathways that exhibit poor topological connectedness.

With these four dials, we can inject different amounts of signal and noise into

the data to recognize conditions where network information will be necessary for

accurate classification.

2.2 Datasets

To evaluate network-classifiers, we chose five different expression studies.

Among the five datasets, Wang (GSE 2034) [22], Bos (GSE 12276) [1] and Ivshina

(GSE 4922) [12] datasets were downloaded from NCBIs Gene Expression Omnibus

[7] and processed with RMA from affy R package [9]. van de Vijver dataset [21],

along with its class labels, are the ones used in Dutkowski et al [6]. In both Wang

and van de Vijver datasets, classification was done to differentiate metastatic versus

non-metastatic patients. Ivshina et al. studied the ability of expressed profiles to

identify different tumor grades. Since it was reported that grades G2 and G3 were

difficult to classify using traditional approaches, we used them evaluate the power

of network-based methods. Finally, Hernandez-Lobato et al. [11] showed the

superiority of their network-based classification algorithm with expression data

from Bos et al. We used the same dataset with patients split into two classes

those with metastasis free survival of time less than 21 months and greater than

21 months. RNASeq data for breast cancer was downloaded from The Cancer

Genome Atlas with the status of her2 as the class labels. Both for classification

of real data as well as simulation, protein-protein interaction network downloaded
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from STRING database v9.0 [20] was used after filtering for top 10% of edges based

on the interaction score. In all the classification runs, only the genes present in

both the interaction network and expression data were used.

2.3 Network-based classification algorithms

2.3.1 GraphSVM

It is well known that genes that interact have similar expression profiles.

Going by this observation, GraphSVM reduces the noise in the expression of a gene

by retaining only the signal components that are common among its neighbors and

attenuating all other components. In other words, high frequency components, that

are likely to be noise, are detected using the expression of its interacting partners

and filtered out using techniques from spectral graph theory and discrete Fourier

transform. Let V be the set of vertices in the interaction network and let L be the

graph Laplacian of the network. Let 0 = λ1 ≤ ... ≤ λn be the eigenvalues of L and

e1, e2, ..., en be its eigenvectors. Since the eigen-basis of L forms the Fourier basis,

the discrete Fourier transform f̂ ∈ Rn of the expression data f is defined as

f̂i =
∑
u∈V

ei(u)f(u), i = 1, 2, ..., n; (2.1)

Generally, the eigenvectors corresponding to larger eigenvalues tend to have

higher variance on the graph, and are likely to be noise. Fourier transforms corre-

sponding to each eigenvector is computed as a sum of the transforms on each node

so as to capture the variance from the entire graph. Therefore, when recovering

the expression matrix from the Fourier transform, an exponential decay function

based on the eigenvalues is used to strongly attenuate high frequency components

alone.

∀f ∈ RV , Sφ(f) =
n∑
i=1

f̂φ(λi)ei (2.2)

And,

φ(λi) = exp(−βλi) (2.3)
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The Euclidian distance between two expression profiles based on Sφ can be

expressed as inner products, which on simplification yields a positive semi-definite

kernel function. This kernel is used in the support vector machine framework to

construct an optimal-margin hyper-plane separating the expression vectors belong

to the two classes.

In our experiments, R language [17] implementation of this algorithm pro-

vided in pathClass package [14] was used. However, the recursive feature elimina-

tion step added to the algorithm in pathClass was turned off to use the original

method proposed in [18].

2.3.2 Network propagated SVM (NwpropSVM)

Network propagation is the idea of averaging the expression of genes over a

connected network region based on the mechanics of water flowing through pipes.

Assume that the edges of a network are pipes of equal capacity. Nodes act as tanks

where water is pumped to as well as drained from. Water is pumped at constant

rate through each node at quantity proportional to the expression of the gene. At

every node, a constant amount of the stored water is lost at every time interval.

Assuming at every time interval, water flows from one node to its neighbors, under

this setup, a steady state will be reached at some time point where the change in

water quantity at every node will be negligible. This quantity becomes the final

expression level of that node. The new expression matrix based on the propagated

expression levels is classified using a regular linear kernel support vector machine.

We used the LibSVM [2] implementation through the R language interface provided

by e1071 package [5]. This method is named as NwpropSVM in this thesis.

Intuitively, if all the genes in a pathway get over-expressed but in different

subsets of disease patients, network propagation will result in a uniformly increased

expression of all pathway genes in all disease patients. Such a prominent signal

can be very easily learnt by classifier such as SVM, leading to improved sensitivity,

specificity and accuracy of classification.

Mathematically, network propagation is very simple to compute. In order

to normalize for the node degrees, adjacency matrix A of the network is modified
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as follows:

M = D(−0.5)AD(−0.5) (2.4)

where D is a diagonal matrix with the node degrees being the diagonal elements.

With the normalized adjacency matrix, iteratively propagate the expression

of each gene as follows:

Fi+1 = (α · Fi ·M) + (1− α)E; F0 = E (2.5)

where Fi+1 denotes the expression matrix obtained after i + 1 rounds of network

propagation, is the original expression matrix and is a scalar that controls the

fraction of network information and original expression data that gets infused into

the propagated expression matrix. This equation has a simple closed-form fixed

point that is obtained by letting Fi+1 = Fi in Equation 2.5:

F = (1− α)(1− αM)−1E (2.6)

Even though the idea of network propagation had been proposed elsewhere

in the literature, this is the first instance of its use in classification of gene expres-

sion data.

All the results reported in this work were obtained with a 5-fold cross vali-

dation that was repeated 100 times to compute the Area Under ROC Curve.



Chapter 3

Results

3.1 Better data is necessary to improve classifi-

cation

The premise behind network-based classification is that gene expression is

regulated by the interactions among genes and gene products. Therefore, in theory,

classifiers that know these interactions can better estimate the impact of each genes

expression on a phenotype based on the impact of its interacting partners, leading

to improved classification. However, this theory did not hold in practice when we

evaluated the performance of network-based classifiers on five different expression

datasets (Figure 1D) NwpropSVM remains insensitive to network information,

whether it is the real or a permuted network, showing no substantial increase in

AUC over SVM; GraphSVM, on the other hand, is not even able to match the

performance of SVM. To examine whether this trend is due to faulty algorithms,

we turned to simulations where a gold-standard interaction network is available

for classification. With a synthetic dataset generated as described in the Materials

and Methods chapter, classification performance of GraphSVM and NwpropSVM

is shown in Figure 3A. Both the classifiers show significant improvement in AUC

because of the network, suggesting that network-constrained classifiers are useful,

but with high quality datasets.

Parameters of the simulation are chosen such that a boost in performance

12
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Figure 3: Classification performance on simulated data. With a gold-
standard network used to simulate the expression data, network-based classifiers
improve accuracy (Panel A). Simulation parameters were chosen such that signal
from the generated expression data would be weak and that a network is necessary
to realize substantial classification accuracy. Effect of expression signal is examined
in Panels B and C where pathway signal is silenced by selecting disease genes at
random. To minimize expression signal, simulation parameters were chosen to be
the values in Panel B and C where both network-based methods yielded low AUC.
In Panel C, the numbers on the line graph are the actual AUC values obtained
by each classifier. They are showed to illustrate how increasing the number of
expressed genes could easily benefit network classifiers despite not having any
pathway signal.
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on the synthetic dataset (Figure 3A) is only because of the network information

and not due to the inherent signal in the expression profile. To this end, we

simulated a new expression data where the signal from network was silenced by

randomly selecting disease genes from the entire gene set instead of selecting from

pathways. Signal from expression data was progressively increased to measure its

independent effect on classification. Figure 3B shows classification performance as

a result of varying the mean of expression of disease genes keeping standard devia-

tion constant. Because all other genes draw their expression from standard normal

distribution, high overlap of the two distributions and therefore low AUCs are ex-

pected around the mean value of zero. Even though neither network-constrained

classifier gets undue boost in AUC in high signal regions, a mean value of 1.5

was chosen for the expression of disease genes for all the simulations results pre-

sented here. The idea is to keep the expression signal low such that even small

improvements lent by the network would be apparent. Another source of signal in

the expression data is the number of disease genes that show differential expres-

sion. Here again, disease genes were randomly selected and Figure 3C records the

gain/loss in AUC of network-constrained methods over SVM. When more than

hundred disease genes show differential expression, NwpropSVM shows an unjus-

tified improvement in AUC over SVM, which could be simply an artifact of the

network used. Therefore, throughout this work, a pathway having about fifty

genes was picked for differential expression in simulation. Knowing the proper-

ties of simulated data, result from Fig 3A adds more confidence on the power of

network-based classifiers, recapitulating the need for better data.

3.2 Noisy networks may or may not affect clas-

sification performance

Large-scale interaction networks are often a conglomeration of direct (physi-

cal) interactions and indirect (functional) interactions derived from high-throughput

experiments, co-citations, computational predictions, and orthologous interactions

found in other species. Such networks, are prone to noise in terms of false positive
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and false negative interactions interactions occurring within the cell but not cap-

tured by the network are false positives while those that do not occur in nature

but present in the network are false negatives. When network-based classifiers

prioritize feature selection based on genes connected in the network, false positives

would cause genes to be missed from the selection while false negatives could lead

classifiers to pick noisy gene combinations as predictive ones. Both forms of noise,

therefore, are detrimental to classification performance.

Having already established that high quality networks would improve clas-

sification, we next chose to investigate how reducing the network quality would

affect performance. Through simulation, an expression data is generated using

pathway information from a network and classified using the same network but

with noise added to it. False positives are added by removing edges and false neg-

atives by adding edges to the network. While non-network classifiers will not be

affected, network-constrained counterparts are susceptible to making wrong pre-

dictions based on noise. Figure 4 displays performance of SVM, NwPropSVM

and GraphSVM as a function of noise in the network, in form of a heatmap.

Darker shades indicate lower AUC and lighter shades denote higher AUCs. With

the heatmap of SVM (Figure 4A) as the baseline, it can be observed that Nw-

propSVM (Figure 4B) performs no worse than SVM. GraphSVM (Figure 4C), on

the other hand, exhibits a gradual decrease in AUC when more noise is added to

the network.

In addition to measuring the impact of network noise, results from Figure 4

highlight a more important and often overlooked property of network-based clas-

sifiers knowledge about the classification algorithm is necessary to summarize its

effect on data. Performance of general purpose classifiers such as SVM is known

to degrade with increase noise in the data. Since network-based classifiers are fre-

quently an extension of the general purpose ones, common wisdom is that their

performance would also degrade with increase in network noise. However, Figure 4

illustrates that even among two classifiers built on top of the same general purpose

classification framework (SVM), one could be completely insensitive to noise and

the other could be very sensitive. This observation is very important to solve the
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puzzle that many network-constrained classifiers did not improve in performance

compared to their unconstrained counterparts while high quality networks aid

in classification, noisy ones may or may not hurt performance depending on the

specifics of the algorithm. In this context, we can offer a further interpration of

the results in Figure 1D. If the STRING network was noisy, GraphSVM would

exhibit poor classification while NwpropSVM would neither improve nor reduce

performance when compared to SVM. This insight is also consistent with the re-

sult from Figure 1D that even on a permuted network which has no information,

NwpropSVM would perform just as well as SVM.
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Figure 4: Effect of network noise on classification performance. Ex-
ploring all possible combinations of network noise by simultaneously adding False
Positive and False Negative edges to the original network, a heatmap of AUCs
for SVM (Panel A), NwpropSVM (Panel B) and GraphSVM (Panel C) is shown.
Even though both network-based methods are extensions to SVM, they react in
completely opposite ways to network noise. NwpropSVM is sensitive to network
noise, but doesnt do any worse than regular SVM. GraphSVM, on the other hand,
produces almost no useful classification with high amounts of netwprork noise.



Chapter 4

Conclusion and Future Work

Adding prior knowledge to aid molecular classification is an exciting and

promising idea. Much success of these integrated classifiers is because of their

ability to identify disease biomarkers as not just single genes but a combination

of interacting genes. Network biomarkers tend to be stable across cohorts and

therefore form excellent targets for therapeutic intervention. However, the main

issue with many classifiers is that adding network information does not seem to

improve sensitivity and specificity of the classification. In this paper, we inves-

tigated the reasons for this problem by simulating gene expression data using a

known interaction network. This allows us to evaluate classifiers on this synthetic

expression data using a gold-standard network to understand their behavior under

ideal conditions. With simulation, it is possible to vary the proportions of signal

and noise in the data to capture all conditions from ideal to imperfect.

Under ideal conditions, all classifiers that are considered here realize a boost

in AUC when using network information. However, when adding noise to the

network, NwpropSVM perform less than ideal but no worse than SVM. On the

contrary, performance of GraphSVM degrades gradually with increase in amount

of noise in the network and reaching AUCs close to 0.5 when there is no more

signal. Reasoning the results from Figure 1D using this trend, it is conceivable that

the STRING network used for classification is not adding any information. The

actual network is not necessarily uninformative, but for the five expression studies
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considered in this work, it seems to be a poor prior. Four (Wang et al.[22], van

de Vijver et al.[21], Bos et al.[1], Ivshina et al.[12]) of the five expression data had

been previous used for network-based classification that showed an improvement

in performance. Therefore, the expression of genes in the data follows a particular

pattern but the pattern is not properly captured by the STRING network.

Network biomarkers promise to improve the accuracy of classification as

well as reproducibility across datasets. In this work, we have shown that even

though network-based classifiers do not improve accuracy on real datasets, they

would work as expected when the quality of datasets is improved. However, we

demonstrated the results through AUCs derived from cross-validation on a single

dataset. In the future, we hope to examine how these methods perform when

trained on one dataset and tested on another. The current simulation framework

has to be extended to generate two datasets that are based on the same prior

knowledge but differ in the process of generation. This would be essential to

capture the variances between two expression studies on different cohorts and

different measurement platforms.
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