
Lawrence Berkeley National Laboratory
LBL Publications

Title

Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a 
Sharpea-enriched microbiome characterised by lactic acid formation and utilisation

Permalink

https://escholarship.org/uc/item/80d9t5qg

Journal

Microbiome, 4(1)

ISSN

2049-2618

Authors

Kamke, Janine
Kittelmann, Sandra
Soni, Priya
et al.

Publication Date

2016-12-01

DOI

10.1186/s40168-016-0201-2
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/80d9t5qg
https://escholarship.org/uc/item/80d9t5qg#author
https://escholarship.org
http://www.cdlib.org/


RESEARCH Open Access

Rumen metagenome and
metatranscriptome analyses of low
methane yield sheep reveals a Sharpea-
enriched microbiome characterised by
lactic acid formation and utilisation
Janine Kamke1, Sandra Kittelmann1, Priya Soni1, Yang Li1, Michael Tavendale1, Siva Ganesh1, Peter H. Janssen1,
Weibing Shi2,3, Jeff Froula2,3, Edward M. Rubin2,3 and Graeme T. Attwood1*

Abstract

Background: Enteric fermentation by farmed ruminant animals is a major source of methane and constitutes the
second largest anthropogenic contributor to global warming. Reducing methane emissions from ruminants is
needed to ensure sustainable animal production in the future. Methane yield varies naturally in sheep and is
a heritable trait that can be used to select animals that yield less methane per unit of feed eaten. We previously
demonstrated elevated expression of hydrogenotrophic methanogenesis pathway genes of methanogenic
archaea in the rumens of high methane yield (HMY) sheep compared to their low methane yield (LMY)
counterparts. Methane production in the rumen is strongly connected to microbial hydrogen production
through fermentation processes. In this study, we investigate the contribution that rumen bacteria make to
methane yield phenotypes in sheep.

Results: Using deep sequence metagenome and metatranscriptome datasets in combination with 16S rRNA
gene amplicon sequencing from HMY and LMY sheep, we show enrichment of lactate-producing Sharpea
spp. in LMY sheep bacterial communities. Increased gene and transcript abundances for sugar import and
utilisation and production of lactate, propionate and butyrate were also observed in LMY animals. Sharpea
azabuensis and Megasphaera spp. act as important drivers of lactate production and utilisation according to
phylogenetic analysis and read mappings.

Conclusions: Our findings show that the rumen microbiome in LMY animals supports a rapid heterofermentative
growth, leading to lactate production. We postulate that lactate is subsequently metabolised mainly to butyrate
in LMY animals, producing 2 mol of hydrogen and 0.5 mol of methane per mol hexose, which represents 24 %
less than the 0.66 mol of methane formed from the 2.66 mol of hydrogen produced if hexose fermentation was
directly to acetate and butyrate. These findings are consistent with the theory that a smaller rumen size with a
higher turnover rate, where rapid heterofermentative growth would be an advantage, results in lower hydrogen
production and lower methane formation. Together with previous methanogen gene expression data, this builds
a strong concept of how animal traits and microbial communities shape the methane phenotype in sheep.
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Background
Methane is a particularly strong greenhouse gas with a
global warming potential of 34× that of CO2 [1]. Ap-
proximately, a third of all methane emissions derived
from human-related activities are from enteric fermenta-
tion in livestock [2] and are emitted mostly from rumin-
ant animals. Animal breeding has been used for many
years to select for desirable production traits in ruminant
livestock, and breeding low methane emitting animals is
being investigated [3–6]. This work has identified animals
with methane emission yields (g methane/kg dry matter
intake/day) consistently lower or higher than the average
animal methane yield, and these animals have been used
to breed LMY and HMY lines [5]. The methane yield trait
is heritable, and feed particle retention time [7, 8] and
rumen volume [3] are thought to contribute to the pheno-
type. In ruminants, most of the methane is produced in
the reticulo-rumen by the action of methanogenic ar-
chaea. Previously, it was reported that the main difference
between rumen methanogen communities from rumen
samples of LMY and HMY sheep was the differentially
higher expression of genes involved in the hydrogeno-
trophic methanogenesis pathway in HMY sheep [9].
There are several possible substrates for methanogen-

esis in the rumen that originate from bacterial fermenta-
tion, including hydrogen, carbon dioxide (CO2), formate,
acetate and methyl compounds [10]. Among these,
hydrogen and CO2 are the main substrate for methano-
genesis in the rumen [11, 12], and the majority of hydro-
gen produced from microbial carbohydrate fermentation
is used for methane production [12]. Thus, there is a
strong connection between microbial fermentation pro-
cesses, their hydrogen production and methane forma-
tion by the methanogenic archaea in the rumen [13],
and it is likely that rumen bacterial communities and
their activities contribute to the methane yield pheno-
type of the animal. Differences in the relative abun-
dances of bacteria producing large amounts of hydrogen
in the rumens of HMY and LMY animals also support
this theory [14]. Here, we used 16S ribosomal ribo-
nucleic acid (rRNA) gene amplicon sequencing and
metagenomic and metatranscriptomic sequence analyses
of rumen samples from naturally HMY and LMY cohorts
of sheep to investigate the hypothesis that the differ-
ences in animal methane yield phenotype are linked to
differences in bacterial gene abundance and/or tran-
scriptional activity.

Results
Animal measurements
An overview of the analyses of methane emissions, pH,
fermentation acids, 16S rRNA gene amplicon sequencing
and metagenome/metatranscriptome sequencing is pro-
vided in Additional file 1: Table S1. The methane yield

phenotypes of 23 cross-bred rams (selected from a larger
cohort of 96 animals) fed a pelleted lucerne diet were
determined previously [9] on two occasions. Animals
were classified as LMY (mean 11.44 g methane/kg dry
matter intake (DMI)), HMY (mean 15.85 g methane/kg
DMI) or as falling between these extremes as “inter-
mediate methane yield” (IMY, mean 13.89 g methane/kg
DMI) animals, with a significantly different 28 % me-
thane yield difference between the HMY and LMY
groups (P = 0.0001) [9].
Rumen content samples were taken from animals im-

mediately after the last day of methane measurement
and the pH, and fermentation products of all samples
were measured. There were no differences in pH be-
tween HMY and LMY groups (P = 0.93). Volatile and
non-volatile fatty acids in rumen samples were measured
(Fig. 1), and acetate, propionate and butyrate were in the
expected ranges [15] and did not differ significantly
between the LMY and HMY sheep (Fig. 1a). The other
fermentation products were present at low concentrations;
formate, isobutyrate and isovalerate were <0.7 mM, valer-
ate was 1 to 2 mM, while lactate was variable, being very
low in HMY (mean 0.014 mM) and higher in LMY sheep
(~0.9 mM) but with large variations between individual
samples (Fig. 1b). Caproate was the only fermentation
product that was significantly different (P = 0.003) be-
tween the two groups of sheep, being ~2.5× greater in the
LMY sheep (Fig. 1b).

Microbial community composition of HMY and LMY animals
At a threshold >0.2 % relative abundance, 70 bacterial
taxa (97 % sequence similarity) were recovered from the

Fig. 1 Concentrations of major (a) and minor (b) fermentation acids
in rumen content samples from LMY and HMY sheep. Fermentation
acids were determined by GC-MS after derivatisation and normalisation
to an ethyl butyrate internal standard, and concentrations shown are
in millimolar. **P < 0.01. Green bars represent LMY (n = 8), and orange
bars HMY samples (n = 8)
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16S rRNA gene amplicon sequences, while 67 taxa were
retrieved from the metagenome-derived 16S rRNA
genes. Differences in bacterial community composition
were estimated using principal coordinate analysis based
on the Bray-Curtis dissimilarity metric (PCoA, Fig. 2).
HMY animal samples clustered separately from the LMY
animals for both the amplicon and the metagenome
datasets, while samples from IMY animals fell in between
(Fig. 2). At the family level, four taxa made up appoxi-
mately 70 % of the 16S rRNA gene amplicon sequences
and 16S rRNA genes derived from the metagenome data
in all samples: Prevotellaceae, Lachnospiraceae, Rumino-
coccaceae and Erysipelotrichaceae (Fig. 3). While there
was no significant difference (P ≤ 0.05) in the abundance
of Prevotellaceae between HMY and LMY animals, all
other taxa showed differential abundance, with Lachnos-
piraceae and Ruminococcaceae being more abundant in
HMY samples and Erysipelotrichaceae more abundant in
LMY samples based on amplicon sequencing data (Fig. 3a).
The metagenomic 16S rRNA gene data confirmed the sig-
nificantly higher abundance of Ruminococcaceae in HMY
animals and Erysipelotrichaceae in LMY animals (Fig. 3b).
At the genus- and species-level resolution, nine taxa
showed significantly different relative abundances in HMY
and LMY samples based on one-way ANOVA (P ≤ 0.05),
four of which were more abundant in HMY animals and
five were more abundant in LMY animals (Table 1). The
most notable were Sharpea sp. and S. azabuensis (both
family Erysipelotrichaceae), which were more abundant in
LMY animals based on both amplicon and metagenome
datasets, making up 6.3 and 7.5 % of the bacterial 16S
rRNA gene reads from the LMY animals, respectively.
Megasphaera spp. were also significantly more abundant
in LMY samples in both datasets, with an average relative
abundance of ~1 % in these animals. All three taxa were
negatively and significantly correlated with methane yield
in the Spearman’s rank correlation analysis (Table 1). In

HMY animals, smaller differences in relative abundances
were found at the genus and species level, with higher
abundances of Anaerostipes sp. (~1 % in both amplicon
and metagenome datasets) and Verrucomicrobia family
RFP12 (mean 0.17 %).

Differentially abundant KEGG genes and transcripts
Three statistical analyses, Wilcoxon rank sum (WRS) test,
sparse partial least squares (sPLS) regression and gene set
enrichment analysis (GSEA), were used to identify differ-
entially abundant KEGG genes in the metagenome and
metatranscriptome datasets. Strong correlations between
predictor genes/transcripts and animal methane yield
were revealed by sPLS regression, with an adjusted R2 of
0.962 (P = 1.57 × 10−14) and 0.987 (P = 2.2 × 10−16) for
metagenome and metatranscriptome data, respectively
(Additional file 2: Figure S1). These predictor genes over-
lapped well with genes and transcripts that were signifi-
cantly differentially abundant in the WRS test (Additional
file 3: Table S2) and resulted in a similar representation
of gene categories as found by GSEA (Additional file 4:
Table S3). We subsequently focused on selected subsets
of genes/transcripts where correspondence to methane
yield was supported by at least two of these analyses. De-
tailed results for each statistical analysis are elaborated in
Additional file 5: Text S1, Additional file 3: Table S2. Simi-
lar to the microbial community composition data, the ma-
jority of differentially more abundant genes, transcripts
and pathways identified were associated with the LMY
animals. For the subsequent analyses, we focused on the
most significant gene categories, including amino acid
biosynthesis, phosphotransferase systems (PTS), galactose
metabolism and short chain fatty acid metabolism.

Biosynthesis of amino acids
GSEA identified amino acid biosynthesis pathways
among the highest enrichment scores in our datasets

Fig. 2 Principal coordinate analysis of rumen bacterial communities from HMY (red), LMY (green) or IMY (grey) sheep based on 16S rRNA gene
amplicon sequence data (a) and 16S rRNA genes retrieved from the metagenome dataset (b). Percentage of data variation explained by the
analysis is shown in brackets
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(Additional file 4: Table S3). The most striking differences
were found in genes related to the formation of intermedi-
ates of aromatic amino acid biosynthesis, including 3-
dehydroquinate biosynthesis, chorismate biosynthesis via
the shikimate pathway (K01626/aroF, K01735/aroB,
K03785/aroD, K00800/aroA, K01736/aroC) and prephenate
and 2-oxo-3-phenylpropanoate formation (K14170/pheA)
(Additional file 6: Figure S2, Additional file 7: Table S4).
These intermediates are substrates for a variety of reactions
forming, for example, phenylalanine, tyrosine, tryptophan,
vitamin E and ubiquinone. No significant differences were
observed on a transcript per gene level. Several genes
within the methionine biosynthesis pathway (K01739/metB,
K01760/metC, K00549/metE) had higher gene and/or

transcript abundance in LMY animals, and several of these
genes were chosen predictor genes with a negative cor-
relation to methane yield (Additional file 8: Figure S3,
Additional file 7: Table S4). Genes involved in lysine
(K00674/dapD), proline (K00286/proC), valine (K01687/
ilvD) and arginine (K05830/lysJ) biosynthesis had greater
gene or transcript abundances in LMY animals and were
often negatively correlated to methane yield according to
sPLS (Additional file 7: Table S4).

PTS and galactose metabolism
GSEA identified PTS as a highly enriched pathway in
the metagenome dataset from LMY animals (Additional
file 4: Table S3). WRS and sPLS regression analyses with

Fig. 3 Relative abundance of the most highly represented bacterial families based on 16S rRNA gene amplicon sequencing data (a) and 16S rRNA
genes retrieved from the metagenome dataset (b) from rumen content samples of LMY (green) and HMY (orange) sheep. **P < 0.01, *P < 0.05. Error
bars denote one standard deviation
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both metagenome and metatranscriptome data also sup-
ported higher abundance of PTS genes in LMY and a
negative correlation to methane yield (Additional file 7:
Table S4). Genes and/or transcripts involved in the
transport of several sugars were significantly more
abundant in LMY animals based on WRS, including N-
acetyl-galactosamine, cellobiose, fructose, glucose, lac-
tose, sorbose, beta-glucosides, galactitol and mannose.
With the exception of lactose, and the addition of
K02790 (malX) for maltose PTS, genes of all these
PTSs were selected as predictors in the sPLS regression
(with negative coefficients) for methane yield. PTS dif-
ferences were not observed at the transcript per gene
level (Additional file 7: Table S4).
Galactose metabolism was identified by GSEA as sig-

nificantly enriched in LMY animals in both the metagen-
ome and metatranscriptome datasets (Additional file 4:
Table S3). The majority of the genes/transcripts signifi-
cantly more abundant in LMY animals, or with correl-
ation to methane by sPLS, belonged to PTS systems.
However, K01220 (lacG) encoding 6-phospho-beta-galac-
tosidase, K00917 (lacC) encoding tagatose 6-phosphate
kinase and K08302 (gatY) encoding tagatose-1, 6-
diphosphate aldolase also had significantly different gene
and/or transcript abundances. These genes were also
identified in sPLS regression analysis as predictor genes
for methane yield with negative correlation coefficients
(Additional file 7: Table S4). These genes have functions
in the degradation of the imported sugars (e.g. lactose)
to D-glyceraldehyde-3-phosphate that is subsequently
processed via glycolysis (Additional file 9: Figure S4).
Significant differences in transcript per gene between
HMY and LMY animals were not found for any of
the genes.

Short chain fatty acid metabolism
Many genes involved in short chain fatty acid metabol-
ism were differentially abundant in the metagenome
and/or metatranscriptome datasets and were identified
as predictor genes in sPLS (Additional file 7: Table S4),
and some sub-pathways of special interest to rumen
fatty acid metabolism appeared to be related to me-
thane yield. These included genes encoding pyruvate
fermentation to lactate and further through to propion-
ate, including the acrylate pathway (Fig. 4, Additional
file 7: Table S4). KEGG gene K00016 (ldh), which
encodes NAD-dependent L (+)-lactate dehydrogenase
(L-LDH, EC: 1.1.1.27), had a higher read abundance in
LMY animals (P < 0.05) and was among the predictor
genes with a negative coefficient (−0.0069) in sPLS re-
gression of metagenome data. At the metatranscrip-
tome level, genes involved in the degradation of lactate
to propionate showed significantly higher read counts
in the LMY animals (Fig. 4, Additional file 7: Table S4).
These included genes K00249 (acd) encoding acyl-CoA
dehydrogenase (EC: 1.3.8.7) and K01026 (pct) propion-
ate CoA transferase (EC: 2.8.3.1), both of which were
also identified as predictors of methane yield in sPLS
based on metatranscriptome data with coefficients of
−0.0239 and −0.0146, respectively. The KEGG gene
database does not include representative genes for
lactoyl-CoA-dehydratase (lcdA; EC: 4.2.1.54). Using cri-
teria similar to those used for human gut microorgan-
isms [16], we created a custom dataset based on lcdA
gene sequences that encode the alpha subunit of
lactoyl-CoA-dehydratase, which is considered an indi-
cator gene for propionate production via the acrylate
pathway [16]. Metagenome and metatranscriptome read
mappings to this dataset revealed significant higher

Table 1 Bacterial taxa (97 % sequence similarity) with taxonomy assigned to highest possible resolution, differing in mean relative
abundance (%) between HMY and LMY animals measured at two time points. Significances are based on one-way ANOVA and
Bonferroni corrected P values

Taxon: order/family/genus Methane yield
group

Amplicon Metagenome Spearman

P Low High P Low High R P

Clostridiales/Christensenellaceae High <0.01 0.05 0.42 NS 0.05 0.27 0.8 <0.01

Clostridiales/Lachnospiraceae/Anaerostipes High <0.01 0.12 1.2 NS 0.13 1.02 0.58 <0.01

Verrucomicrobia/Verruco-5/WCHB1/RFP12 High <0.01 0.02 0.17 <0.01 0.03 0.16 0.67 <0.01

Bacteroidales/BS11 High NS 0.03 0.35 <0.05 0.01 0.1 0.6 <0.01

Erysipelotrichales/Erysipelotrichaceae/Sharpea Low <0.05 6.43 0.49 <0.05 6.3 0.58 −0.52 <0.01

Coriobacteriales/Coriobacteriaceae/Collinsella aerofaciens Low <0.01 0.42 0.02 <0.05 0.62 0.01 −0.6 <0.01

Clostridiales/Eubacteriaceae/Pseudoramibacter Low <0.05 0.19 0.09 NS 0.25 0.1 NA NA

Clostridiales/Veillonellaceae/Megasphaera Low <0.05 1.02 0.06 NS 1.41 0.07 −0.54 <0.01

Erysipelotrichales/Erysipelotrichaceae/Sharpea azabuensis Low <0.05 7.47 0.55 <0.05 7.83 0.68 −0.7 <0.01

Taxa with significant difference (P ≤ 0.05) in either 16S rRNA gene amplicon or 16S rRNA gene metagenome sequence abundance are shown. Spearman’s Rank
Correlation based on amplicon sequencing data is included where −0.5 ≤ R ≥ 0.5 and P ≤ 0.01
NS not significant, NA not applicable
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(P = 0.02) gene abundance in LMY animals (mean 6.75
reads per million (RPM)), compared to HMY animals
(mean 0.37 RPM, Additional file 10: Table S5). Most of
the reads mapped to lcdA from Megasphaera spp., which
are known to produce propionate from lactate via the
acrylate pathway in the rumen [17]. No differences in lcdA
transcript or transcript/gene abundances were observed
between LMY and HMY animals.
Genes encoding the butyrate formation pathway also

showed correlations to methane yield (Fig. 5, Additional
file 7: Table S4). With the exception of genes K00023
(phdB) for acetoacetyl-CoA reductase (EC:1.1.1.36) and
K00929 (buk) for butyrate kinase (EC:2.7.2.7), all genes
encoding the conversion of pyruvate or acetyl-CoA to
butyrate showed higher transcripts per gene levels in
LMY animals. Many of these genes also had significantly
higher transcript counts in LMY animals and were se-
lected by sPLS as predictor genes with negative correl-
ation to methane yield (Fig. 5, Additional file 7: Table S4).
No significant differences were observed on the meta-
genome level, which indicates that differences related
to butyrate formation may be directly related to differences
in gene expression.

Our data also support a connection between methane
yield and genes involved in the formation of butyrate
from succinate (Additional file 4: Table S3), which were
more abundant in LMY animals or negatively correlated to
methane yield. These included genes K00043 (gbd) encod-
ing 4-hydroxybutyrate dehydrogenase (EC: 1.1.1.61) and
gene K14534 (abfD), which encodes the bifunctional en-
zyme 4-hydroxybutyryl-CoA dehydratase/vinylacetyl-CoA-
delta-isomerase (EC: 4.2.1.120/5.3.3.3, Additional file 7:
Table S4). The product of this bifunctional enzyme is
crotonoyl CoA, which is subsequently transformed to
butyrate (Fig. 5a).

L (+)-lactate dehydrogenase
The elevated abundance of L-LDH genes (K00016, ldh,
EC: 1.1.1.27) in LMY animals prompted us to investigate
these in more detail. We reassembled ldhs from the
combined metagenome and metatranscriptome data,
which resulted in 198 genes with predicted protein lengths
≥310 aa, that were considered near full-length. These
genes were analysed phylogenetically against known ldhs
from rumen bacteria (Additional file 11: Figure S5) and
were assigned to 11 rumen ldh clusters: Butyrivibrio

Fig. 4 Functions involved in pyruvate fermentation to propionate via lactate production and utilisation via the acrylate pathway in relation to methane
yield. Coloured boxes indicate that related genes were chosen predictors of methane yield with negative correlation based on sPLS analysis of
metagenome (blue) or metatranscriptome (green) data. Bar charts show mean read counts (normalised to RPM) in HMY (orange) and LMY (green)
metagenome (genes) and metatranscriptome (transcripts) datasets. 1No reference genes for this function were available in the KEGG database; read
mappings were performed based on custom database. *P < 0.05 based on WRS. Error bars denote one standard deviation
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(clusters 1 and 2), Sarcina (clusters 1 and 2), Selenomonas,
Lachnospiraceae, Olsenella/Clostridium, Sharpea/Kandle-
ria, Treponema/Ruminococcus, Ruminococcus and Mega-
sphaera and one “metagenomic” cluster. Metagenome
read mappings to the reassembled ldh genes showed dif-
ferential abundances of 56 genes between HMY and LMY
animals (38 more abundant in LMY, 18 more abundant in
HMY, Additional file 12: Figure S6). The most differen-
tially abundant ldh genes with higher reads counts in
LMY animals were genes 2 and 3 (Additional file 12:
Figure S6), which associated phylogenetically with S. aza-
buensis (Additional file 12: Figure S6) and gene 1, affiliated
with Kandleria vitulina. Other ldh genes with significantly
higher gene or transcript abundance in LMY animals
showed phylogenetic affiliation with homologs from the
genera Selenomonas, Treponema, Ruminococcus, Mega-
sphaera and the ldhmetagenome-cluster genes (Additional
file 11: Figure S5 and Additional file 12: Figure S6). The
majority of ldh genes with higher gene or transcript
abundance in HMY animals showed phylogenetic

affiliation with Sarcina spp., Ruminococcus spp. and
Selenomonas ruminantium.
Mapping of the metatranscriptome reads showed 15

differently abundant ldh transcripts, (3 more abundant
in HMY, 12 more abundant in LMY, Additional file 12:
Figure S6), whose genes also showed significant differ-
ences at the metagenome level but not at a transcript
per gene level. Noteworthy was the very high expression
of ldh gene 7, associated with Selenomonas ruminantium
(Additional file 11: Figure S5) in two samples from
HMY animals (rank 33 and rank 45). These samples had
approximately 477 and 276 RPM, respectively, compared
to 0.05–6.35 RPM in the other HMY animals, but the
reason for these high transcript levels is unknown.

Mapping of metatranscriptome reads to Sharpea azabuensis
and Megasphaera elsdenii genomes
As described above, 16S rRNA gene amplicon sequen-
cing and general metagenome and metatranscriptome
analysis indicated the association of Sharpea spp. and

Fig. 5 Functions involved in butyrate production from pyruvate or acetyl-coA in relation to methane yield. Schematic overview of functions
involved in butyrate production (a). Green boxes indicate that related genes were chosen predictors of methane yield with negative correlation
based on sPLS analysis of metatranscriptome data. Bar chart showing mean read counts (normalised to RPM) in high (orange) and low (green)
metagenome (genes) and metatranscriptome (transcripts) data (b). Mean read count number (RPM) for butyrate production functions based
on transcript per gene for low (green) and high (orange) methane yield samples (c). *P≤ 0.05 based on WRS. Error bars denote standard deviations
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Megasphaera spp. with LMY animals. We selected two
representative rumen isolate genomes for these organ-
isms, S. azabuensis DSM20406 and M. elsdenii J1, and
mapped the metatranscriptome reads from all HMY and
LMY sheep back to these genomes to gain an overview
of gene transcription in these key species.
For both genomes, significant (P ≤ 0.01) differences were

observed between the total number of reads mapped to
each genome between HMY and LMY animals (Additional
file 13: Figure S7). An average of 937 RPM from HMY
animals and 11372 RPM from LMY animals mapped
to the S. azabuensis genome and 0.76 RPM from HMY
animals and 2276 RPM from LMY animals mapped to the
M. elsdenii genome.
From the genes in S. azabuensis, which showed gene

expression of more than 1 RPM over all samples (2200
genes in total), all were more highly transcribed in LMY
samples and for 1811 of these genes the difference was
significant (P ≤ 0.05). The most highly expressed genes
in LMY animals were associated with PTS components
for lactose/cellobiose, mannose/fructose/sorbose, glucose,
mannose/fructose/N-acetylgalactosamine, cellobiose and
fructose transport as well as central sugar metabolism/fer-
mentation genes such as glyceraldehyde 3-phosphate
dehydrogenase (K00134), and fructose-1,6-bisphosphate
aldolase (K01624, Additional file 14: Table S6). S. aza-
buensis lactate dehydrogenase genes were also signifi-
cantly more highly expressed in LMY animals (P < 0.01,
Additional file 14: Table S6). Interestingly, the D-lactate
dehydrogenase gene was highly expressed with a 12-
fold increase in expression in the LMY samples. L-lac-
tate dehydrogenase was also significantly more highly
expressed (P < 0.01) in LMY samples but at lower abun-
dance, with an average of 0.99 RPM in LMY animals,
compared to 0.12 RPM in HMY animals. This matches
our results from the ldh gene reassembly (L-LDH gene
2) and metatranscriptome read mapping. Among the
top ten most highly expressed genes were three genes
potentially involved in energy storage through glycogen
synthesis, such as glycogen synthase (K00703), and two
subunits of glucose-1-phosphate adenylyltransferase
(K00975, Additional file 14: Table S6). All of the shi-
kimate pathway genes that were enriched in the LMY
animals also had significantly more transcripts mapped
to S. azabuensis (K01626, K01735, K03785, K00800,
K01736, K14170, Additional file 14: Table S6), along
with shikimate 5-dehydrogenase (EC:1.1.1.25, K00014)
and shikimate kinase (EC:2.7.1.71, K00891). Transcripts
from S. azabuensis genes encoding lysine (K00674), pro-
line (K00286) and valine (K01687) biosynthesis were also
more abundant in LMY animals, but the transcripts from
methionine (K01739, K01760, K00549) and arginine
(K05830) biosynthetic genes did not differ significantly in
abundance between the LMY and HMY animals.

A total of 1046 M. elsdenii genes showed gene expres-
sion values of ≥1 RPM over all samples, all of which
were more highly expressed in LMY animals, and 1012
(96.7 %) of which were not expressed at all in HMY ani-
mals. Out of these genes, 122 showed significantly differ-
ent expression values between HMY and LMY samples
(P ≤ 0.05) when considering uncorrected P values, but
none after correction for false discovery rate. High vari-
ability of transcript counts between LMY samples was
observed, with three LMY samples (ranks 1, 2 and 7)
showing high transcript counts (average over all genes of
4–6 RPM) while the remaining LMY samples showed
similar transcript read counts to the HMY samples
(average over all genes 0.004–0.00007 RPM). On aver-
age, the most highly expressed genes with significantly
higher abundance in LMY samples (Additional file 15:
Table S7) included a lactate permease (IMG gene ID
2628045111, mean expression in LMY animals 11.64
RPM) and a potentially fused gene of a lactate-utilising
protein with LutB domain and iron-sulphur binding pro-
tein (IMG gene ID 2628045659, mean expression in
LMY animals 10.15 RPM). The L-lactate dehydrogenase
gene (K00016) was also significantly more expressed in
LMY samples at a level of 2.21 RPM. Several genes in-
volved in lactate fermentation to butyrate, rather than to
acetate, were highly expressed in LMY samples including
genes encoding pyruvate-ferredoxin oxidoreductase,
acetyl-CoA C-acetyltransferase, 3-hydroxybutyryl-CoA de-
hydrogenase, enoyl-CoA hydratase, butyryl-CoA dehydro-
genase and acetate CoA transferase (Additional file 15:
Table S7, Additional file 16: Figure S8). Metatranscrip-
tome read counts of the indicator gene of the acrylate
pathway, lactyl-CoA dehydrogenase (lcdA), from M. elsde-
nii (IMG gene ID 2628046107) were low in LMY (mean
0.04 RPM) and showed no significant differences to HMY
samples, where no reads mapped to this gene. None of the
genes encoding the shikimate pathway or biosynthesis of
methionine, lysine, proline, valine or arginine had tran-
scripts that were differentially abundant when mapped to
the M. elsdenii genome.

Discussion
Our analyses of the bacterial metagenome and metatran-
scriptome datasets in this study show clear differences
between rumen bacterial communities of HMY and LMY
sheep based on community composition, gene abundance
and gene expression. The microbiomes of HMY and LMY
sheep were previously shown to differ in expression of
methanogen genes involved in the hydrogenotrophic
methanogenesis pathway [9]. We hypothesised that this
was a response of methanogens to the supply of hydrogen
in the rumen, which is likely influenced by the fermenta-
tion processes of other rumen microbes, which in turn is
governed by particle retention time and/or digesta passage
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rate in sheep [14]. The results from the detailed analysis of
the bacterial metagenome and metatranscriptome datasets
presented here support the hypothesis that the rumen
bacterial fermentation in LMY sheep leads to lower hydro-
gen formation, thereby causing less methane production
by the methanogenic archaea. We have also identified a
set of microbial genes whose abundances and expression
profiles show strong predictive ability in quantifying
methane yield. Microbial DNA sequences correlated
with methane yield have recently been reported in cattle
[18–21], indicating that such genes could be generally use-
ful as markers to predict methane yield phenotypes across
ruminant species.

Increased abundance of lactate producers in LMY rumen
microbiomes
While the microbiomes of HMY animals showed an in-
creased abundance of the families Lachnospiraceae and
Ruminococcaceae, the microbiomes of LMY animals
showed 10- to 13-fold enrichment of the genus Sharpea
and accordingly, members of the family Erysipelotricha-
ceae to which Sharpea belongs. In LMY animals, 16S
rRNA gene sequences assigned to Sharpea spp., from ei-
ther amplicon or metagenome sequencing, represented
~14 % of total bacterial sequences. S. azabuensis is a
Gram positive, heterofermentative anaerobe, capable of
growth on a range of common sugars and produces
lactate and CO2 from fermentation of glucose [22]. Shar-
pea spp. or family Erysipelotrichaceae 16S rRNA gene
sequences have often been retrieved from ruminants.
More recently, in an extensive survey of microbial com-
munities in multiple cohorts of sheep with low and high
methane yields, Kittelmann et al. [14] reported that the
“S” LMY ruminotype was enriched with S. azabuensis
sequences, among other lactate and succinate producers,
representing on average 11.9 % of the bacterial 16S
rRNA genes. It was postulated that the “S” ruminotype
resulted in less hydrogen being formed from rumen fer-
mentation, which in turn, supported smaller numbers of
hydrogenotrophic methanogens and less methane for-
mation. Our observations confirm that the microbial
community in the LMY sheep analysed here belong to
the “S” ruminotype. The reason for enrichment of
Sharpea spp. in LMY sheep may be related to the obser-
vation that some animals appear to have naturally
smaller rumen size, and a higher ruminal turnover rate
[3, 23]. It has been hypothesised that a higher rumen
turnover rate selects for microorganisms that are capable
of fast, heterofermentative growth on soluble sugars,
producing less hydrogen, which leads to less methane
formation [14]. The definitive experiments linking
microbial communities, rumen size and turnover rate
directly with methane yield are yet to be conducted, but
the association found between Sharpea spp. abundance

and low methane yield from this study lend weight to
this hypothesis. Sharpea spp. appear to fulfil this role in
LMY sheep, but it is possible that other rumen micro-
organisms with similar growth and metabolic properties
may dominate on other diets or within different rumin-
ant hosts.

Increased sugar transport and rapid fermentation leads to
more lactate production
The proposed fermentation scheme of the “S” rumino-
type community in the LMY animals is supported in our
study by differences in the abundances of bacterial genes
and transcripts encoding for PTSs and galactose metab-
olism. Individual components of PTSs are commonly
found in rumen bacterial genomes, but our analysis of
genomes sequenced via the Hungate1000 project (http://
genome.jgi.doe.gov/TheHunmicrobiome/) show that the
PTS genes most highly enriched in the LMY animals
(cellobiose, fructose, glucose and lactose) are particularly
abundant in species of Sharpea, Clostridium, Enterococcus
and Kandleria and in Erysipelotrichaceae bacterium
NK3D112 (Additional file 17: Table S8). Furthermore,
mapping the metatranscriptome read data to the S. aza-
buensis genome confirmed higher transcription of several
PTS systems in LMY sheep from this organism. It also
showed higher transcription level of genes involved in
sugar fermentation such as glyceraldehyde-3-phosphate
dehydrogenase and fructose-1,6-bisphosphate aldolase
(Additional file 14: Table S6), further supporting the the-
ory of rapid sugar processing by this organism. The en-
richment of cellobiose- and glucose-specific PTS
transporters is consistent with the degradation of the fibre
component of the sheep lucerne diet, via the action of cel-
lulases and cellobiases that generate cellobiose and glu-
cose, respectively. The elevated level of fructose-specific
PTS transporters also makes biological sense, as sucrose
(a disaccharide of fructose and glucose) is a major compo-
nent of the soluble carbohydrates found in lucerne [24].
However, the occurrence of lactose PTS transporters is
surprising, as lactose is not a sugar produced by plants. It
is known that genes annotated as lactose-specific PTS
transporters in Lactococcus lactis [25] and Streptococcus
gordonii [26] actually mediate galactose transport, thus it
is probable that the lactose-specific PTS transporters
(lacEF) identified in the rumen actually encode galactose
PTS transporters. The elevated gene abundance of
tagatose-6-phosphate pathway genes in LMY in our study
that are involved in galactose metabolism supports this
idea. Galactose is a significant sugar found in lucerne,
making up ~1.5 and 1.4 % of the cell wall monomer com-
position of leaf and stem fractions, respectively [27].
Under conditions of rapid sugar fermentation in a high

flux system, bacteria also need to synthesise more cel-
lular components to keep pace with increased growth
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requirements. This necessitates the generation of more re-
ducing potential to drive cellular reactions, such as fatty
acid synthesis, and the production of more amino acids
and nucleic acids to support increased bacterial growth.
This scenario is consistent with the enrichment in the
LMY animals of genes involved in the shikimate pathway
which links carbohydrate metabolism to the synthesis of
the aromatic amino acids, tyrosine, phenylalanine and
tryptophan, as well as to the formation of co-enzymes
and vitamins. In bacteria, this pathway is tightly regu-
lated by direct metabolite feedback inhibition and/or
by repression at the genetic level [28–30] to control
the energetically expensive synthesis of aromatic com-
pounds. Regulation of the pathway is also exerted via a
metabolic control where the rate of enzyme synthesis
is related to the growth rate of the cell [31]. Therefore,
increased expression of shikimate pathway genes is a
strong indicator that the LMY rumen microbiome is
directing metabolism towards increased anabolic pro-
cesses to support faster microbial growth. The map-
ping of shikimate pathway gene transcripts enriched in
the LMY animals to the S. azabuensis genome is also
an indication that these organisms are important con-
tributors to this anabolic process.
Phylogenetic, as well as metagenomic and metatranscrip-

tomic data, indicated an increased abundance and activity
of Sharpea spp. Consequently, rapid fermentation of
sugars released from lucerne in the LMY rumen would be
expected and would result in the production of lactate and
CO2. Lactate is formed as a means of quickly dumping re-
ducing equivalents under conditions of rapid glycolytic flux
[32]. Lactate is not a major product of rumen fermentation
under normal conditions, but when animals are fed a
carbohydrate-rich diet with high levels of soluble sugars,
lactate can accumulate [33]. Our VFA data did not show a
significant difference in lactate concentration between
LMY and HMY animals but suggest a trend towards higher
lactate concentration in LMY animals (Fig. 1), which sup-
ports the theory of rapid fermentation and lactate forma-
tion in these animals. Lactate can be formed via the action
of two different forms of NAD-linked LDHs (nLDHs); one
produces L (+)-lactate (LnLDH, EC 1.1.1.27) while the
other (DnLDH, EC 1.1.1.28) produces D (−)-lactate. In the
metagenome datasets, only the LnLDH genes were differ-
entially abundant in the LMY animals, and phylogenetic
analysis of their amino acid sequences showed that some
of the most abundant LnLDH genes were associated with
Sharpea spp. and with Kandleria spp., other potential lac-
tate producers closely related to Sharpea [34]. Mapping
the metatranscriptome reads to the S. azabuensis genome
showed higher expression of the DnLDH gene in this or-
ganism which suggests increased production of lactate by
Sharpea organisms in LMY animals comes from both
LnLDH and DnLDH activity.

Increased lactate conversion to propionate and butyrate
in LMY animals
High lactate production in the rumen is known to re-
duce rumen pH and select for lactate-utilising organisms
[35]. The observations of a 17-fold enrichment of 16S
rRNA and ldh (L-LDH gene 28) genes, as well as a sig-
nificant increase of transcripts from lactate-utilising
Megasphaera spp. in LMY animals (Additional file 13:
Figure S7), are consistent with this expectation. M. elsde-
nii is considered to be the main fermenter of lactate in
the rumen, accounting for up to 74 % of the lactate
fermentation in the rumen of dairy cattle [17]. Its rela-
tive abundance in the bacterial community is also known
to increase under conditions of rapid sugar fermentation
and lactic acidosis [36] and Megasphaera was one of the
two genera found to be more abundant in low residual
feed intake (efficient) dairy cows [37]. Lactate permease
and a gene encoding a potential lactate utilisation pro-
tein were found among the most highly transcribed
genes based on metatranscriptome read mappings to the
M. elsdenii genome (Additional file 15: Table S7). To-
gether with the L-lactate dehydrogenase, these genes
appear to be involved in lactate uptake and processing
to pyruvate. This metabolism of lactate by Megasphaera
is likely to explain why there was no shift in the pH of
the LMY rumen samples.
M. elsdenii produces propionate via the acrylate path-

way, as well as producing acetate, butyrate, valerate, and
traces of caproate from various reactions involving
acetyl-CoA derived from lactate oxidation via pyruvate
[17]. Genes encoding the acrylate pathway were reported
to be enriched in the microbiomes of efficient dairy
cows, and many of these genes were annotated as being
from M. elsdenii [37]. In the total metagenome and
metatranscriptome data from the current study, KEGG
genes of the acrylate pathway showed significantly more
abundance in LMY animals at both gene and transcript
abundance levels (Fig. 4), as did genes involved in the
transformation of pyruvate to butyrate on transcript and
transcript per gene level (Fig. 5). However, fermentation
to butyrate seems the more likely pathway used by M.
elsdenii in the LMY animals, as the indicator gene for
the acrylate pathway, lactyl-CoA dehydrogenase (lcdA),
was only significantly more abundant in LMY animals
on the metagenome level. Furthermore, direct mapping
of the metatranscriptome data to the M. elsdenii genome
showed that this gene was not highly transcribed. The
remaining genes of the acrylate pathway are also in-
volved in other pathways and are not useful for predict-
ing propionate formation. Instead, fermentation to
butyrate seems more likely, considering the high meta-
transcriptome read counts of genes involved in this
pathway (Additional file 16: Figure S8). These results fit
well with a current model for lactate utilisation by M.
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elsdenii under steady state conditions where lactate is
converted predominantly to butyrate (54 %) with some
acetate formation (12 %) and no propionate formation
[38]. Several ldh genes with strong abundance and tran-
scriptional activity in LMY animals fell into a separate
phylogenetic cluster (“metagenomic cluster”) with no
closely related reference ldh genes (Additional file 11:
Figure S5 and Additional file 12: Figure S6). This indi-
cates that some potentially important players involved
in lactate production and utilisation in the rumen are
not yet identified and their metabolic end products or
impact on hydrogen and methane formation are not
known.
Lactate conversion to butyrate, instead of to propionate,

produces 2 mol of hydrogen per hexose, which could pro-
duce 0.5 mol of methane via the hydrogenotrophic path-
way. A direct fermentation of hexoses to butyrate and
acetate by, for example, members of the Ruminococcaceae
would produce 2.66 mol of hydrogen and allow 0.66 mol
of methane to be formed [13]. Thus, lower hydrogen
production via the lactate to butyrate pathway would
decrease methane production by 24 % and provides
an explanation for the lower methane yield in animals
with the “S”-type microbiome.
The preceding analyses indicate that the rumens of

LMY sheep support a rapid fermentation by Sharpea,
producing lactate, which is converted to mainly butyrate
by Megasphaera. One might therefore expect increased
lactate and butyrate concentrations in the rumen of
LMY animals. Measurement of fermentation acids did
not reveal any trend towards increased production of
butyrate in the LMY animals, but a high degree of vari-
ability of lactate concentrations was observed between
LMY samples, and the trend was towards higher lactate
in the LMY samples. Our bacterial abundance and gene
expression data predict that lactate production in the
LMY rumen is balanced with lactate utilisation, such
that significant differences in lactate concentrations
compared to the HMY rumen are not observed. Butyr-
ate is absorbed by the rumen epithelium where it is con-
verted to β-hydroxybutyrate and acetoacetate and used
as energy substrates for the epithelial cells. It is well
known that butyrate stimulates rumen development
[39] and that butyrate infused into the rumen causes
papillary growth [40]. In dairy cattle, the rate of butyrate
absorption from the rumen increases with increasing
butyrate concentration, and a smaller rumen volume re-
sults in higher butyrate absorption [41]. Therefore, we
propose that increased production of butyrate in LMY
animals is balanced by greater absorption of butyrate
across the rumen epithelium. Further experiments are
required to examine the flux of both lactate and butyr-
ate in the rumen of LMY animals to confirm these
predictions.

Conclusions
The amplicon, metagenome and metatranscriptome data
analysed in this study demonstrated strong evidence of a
Sharpea-enriched, “S”-type bacterial community associ-
ated with LMY sheep. There is a clear pattern of gene
and transcript abundance reflecting rapid heterofermen-
tative growth in the rumen with lactate formation and
subsequent metabolism to butyrate. These differences
are consistent with a smaller rumen and a higher rate of
digesta turnover in LMY animals, leading to a micro-
biome that produces less hydrogen and therefore less
methane. In contrast, the HMY animals show less
enrichment of specific bacterial taxa and maintain com-
munities similar to those commonly found in other
ruminants. Based on these results, we present a concept
to explain the differences in bacterial communities and
how they influence methane formation in the LMY and
HMY animal cohorts (Fig. 6). In this concept, the com-
munity structure of the HMY rumen has higher abun-
dance of members of the Ruminococcaceae and
Lachnospiraceae, while the LMY community is enriched
in Erysipelotrichaceae, especially Sharpea spp. We
propose that this community shift is caused by physical
differences in rumen size and turnover rate, where the
smaller, faster turnover, LMY rumen selects for rapid
bacterial fermenters, such as Sharpea spp. The higher
abundance of Sharpea spp. is accompanied by increased
lactate production and by a corresponding increase in
conversion of lactate to butyrate by Megasphaera spp.
These community differences result in a fermentation
shift, from fermentation of hexoses to butyrate and acet-
ate (mediated by organisms belonging to the family
Ruminococcaceae in HMY animals), to fermentation of
hexoses to butyrate only, via a two-step process (involv-
ing Sharpea spp. and Megasphaera spp., in LMY ani-
mals). The one-step HMY fermentation is predicted to
generate 2.66 mol of hydrogen per mol hexose and
0.66 mol of methane, while the two-step fermentation in
LMY animals gives 2 mol of hydrogen leading to 0.5 mol
methane. Thus, it is predicted that the LMY rumen
would produce approximately 24 % less methane. Of
course, these pathways do not represent all of the fer-
mentation occurring, and so, the overall methane differ-
ence is smaller. The demonstration of distinctly different
rumen microbiomes between LMY and HMY animals
supports the notion that the methane yield phenotype in
sheep is a repeatable and heritable trait which can be
selected in breeding programmes [42, 43]. Genetic and
phenotypic correlations of methane outputs with various
production traits in sheep (weaning weight, live weight
at 8 months of age, dag score, muscle depth, and fleece
weight at 12 months of age) have been measured [5] to
establish whether selecting for LMY in sheep will be
beneficial from an animal production point of view.
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Most of the correlations with production traits were
weak and not significantly different from zero, but for
fleece weight, the correlation estimates suggest a low
economically favourable relationship. Therefore, in con-
junction with methane yield measurements, rumen
microbiome characterisation will be a helpful screening
tool for selecting low methane emitting sheep.

Methods
Methane yield measurements and sampling
The sampling of rumen contents from sheep, data pro-
cessing and analysis have been described previously [9].
Methane yield measurements (in g methane/kg dry mat-
ter intake DMI) were made on 23 animals, after adapta-
tion to a pelleted lucerne diet, on two occasions in June
2011 using open circuit respiration chambers within
the New Zealand Methane Measurement Centre at
AgResearch Grasslands, Palmerston North. The animals
were ranked based on methane yield and classified as
HMY (4 animals), LMY (4 animals) or IMY (15 animals)
methane yield animals (Additional file 1: Table S1).
Rumen content samples were collected from each animal
4 h after feeding via stomach intubation on the morning
following the completion of each methane measurement,
except for one IMY animal (rank 19), for which rumen
content samples could only be retrieved at one time point.
Analysis of volatile fatty acids was conducted on all 45
samples. DNA and RNA were extracted from each sample

and used for data generation as follows. DNA amplicon
sequencing was conducted for all 45 samples, metage-
nomics and metatranscriptomic sequencing was con-
ducted on the samples from 10 sheep at the two time
points (20 samples total) including four LMY, four HMY
and two IMY animals (Additional file 1: Table S1). The se-
quencing produced an average of 217 million metagenome
jointed reads (51 Gb) per sample and 35 million metatran-
scriptome reads (7 Gb) per sample [9]. For detailed infor-
mation on analysis of fermentation acids, 16S rRNA gene
amplicon sequencing and analysis, processing of metagen-
ome and metatranscriptome data and metagenome and
metatranscriptome read based annotation, please refer to
the supplementary materials (Additional file 5: Text S1).
All read mapping analyses, to either the KEGG data-
base, newly assembled genes in this study or reference
genomes, were conducted using artefact and rRNA
filtered, merged metagenome and metatranscriptome
2 × 150 bp paired end reads from metagenome and
metatrancriptome data (Additional file 1: Table S1 and
Additional file 5: Text S1).

Statistical data analyses
We used three methods of statistical analysis to compare
results from categorical (HMY, LMY) data based on in-
dividual genes (WRS) and pathways (GSEA) and direct
correlations to methane yield via sPLS regression. All
statistical analyses were conducted using RPM-normalised
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Fig. 6 Schematic concept of bacterial processes influencing hydrogen and methane formation in low and high methane yield animals according
to results of this study

Kamke et al. Microbiome  (2016) 4:56 Page 12 of 16



read count matrices. Differential gene abundance and
expression on a pathway level was estimated by GSEA
[44], using read count data from HMY or LMY animals
only (n = 16) based on KEGG pathways. Using the desktop
application GSEA-P [44], we pre-ranked genes by a
signal-to-noise metric score and estimated normalised
enrichment score (NES), nominal P values and false dis-
covery rates (FDR) by permuting phenotypes 10,000 times.
Initial gene selection of methane predictors were assessed
using sPLS regression of methane yield on KEGG genes
[45, 46], using the optimum sparsity tuning parameter
(eta) and number of hidden components (K) predicted in
the mean squared prediction error plot (MSPE) for each
dataset. The 95 % confidence intervals of the coefficient
for each selected KEGG gene were estimated and predic-
tors with intervals shifting from positive to negative cor-
relation or vice versa were excluded from the set of
predictor KEGG genes. We then estimated the correla-
tions between the chosen specific KEGG genes and me-
thane yield. We also manually compared the selected
KEGG gene sets of the sPLS regression analysis of each
dataset with the results of categorical statistical analysis
using WRS with 10,000 permutations [9] and the path-
ways enrichment scores from the GSEA. We verified
whether the two different sampling time points had an
influence on the gene or transcript abundance values and
their association to the methane yield phenotype for the
four HMY and LMY animals for our selected subsets of
genes (Additional file 7: Table S4) and whether these
difference were significant, using one-way ANOVA and
WRS. Here, we used a “repeated measures ANOVA” via
a general linear mixed model framework treating ani-
mals as random effects. Our results showed that for the
majority (491 out of 496) of the KEGG genes these dif-
ferences were not significant with P > 0.05 in either test
and for the remaining five KEGG genes (K01220,
K02787, K02796, K00158, and K00772) the differences
between sampling days did not outweigh difference re-
lated to methane yield group (e.g. all genes remained
more or less abundant in the respective methane yield
phenotypes). We therefore focused all analyses on compar-
isons between methane yield groups or direct correlation
to methane yield, only.

Read extraction, assembly and phylogenetic analysis of
L-lactate dehydrogenase (ldh) genes
For phylogenetic assignment, ldh genes were reas-
sembled based on raw reads and contigs from existing
assemblies, with hits to KEGG gene K00016 from both
metagenome and metatranscriptome data (see Additional
file 5: Text S1) and ldh genes with a protein length of ≥310
aa were considered near full-length and included into the
phylogenetic analysis. Reference ldh sequences from
rumen bacterial isolates with hits to K00016 were

extracted from the IMG/M database in June 2015. Amino
acid sequences were aligned using MUSCLE [47], and
alignments were imported into ARB (v.6) [48] for manual
refinement. Phylogenetic maximum likelihood bootstrap
trees with 100 re-samplings were constructed using
RAxML (v.7.7.2) [49], and the best scoring tree including
bootstrap values was re-imported into ARB for cluster
annotation.

Read mapping to reference genomes from rumen isolates
and reassembled ldh and lcdA database genes
Reference genome sequences and gene annotations from
the rumen isolates S. azabuensis DSM20406 and M. elsde-
nii J1 were obtained from the Department of Energy Joint
Genome Institute Genome portal [50]. Metatranscriptome
reads of each HMY and LMY sample were mapped to the
two reference genomes as well as metagenome and meta-
transcriptome reads to all reassembled ldh genes and all
genes in the custom lcdA genes database (for information
on database construction, see Additional file 5: text S1)
using BBmap (http://sourceforge.net/projects/bbmap/)
with an ID cut-off of 98 % sequence similarity for ldh
genes and genome sequences, and 60 % sequence similar-
ity for lcdA genes and counting ambiguous reads for all
matching genes. Read counts were normalised to RPM,
and statistical analysis of normalised read counts was con-
ducted in R via the WRS test and Benjamini-Hochberg
correction (for all genes in isolate genomes and ldh genes)
to select genes or transcripts with significantly different
abundances between the HMY and LMY animals.

Functional comparison to the Hungate 1000 genomes
Functional identifiers of KEGG orthology genes from the
metagenome dataset that showed significant correlation
to methane yield in both the WRS test and sPLS ana-
lyses were uploaded into IMG/MER and used as screen-
ing IDs for all the bacterial genomes available from the
Hungate 1000 project (http://genome.jgi.doe.gov/The-
Hunmicrobiome/) and all additionally available bacterial
genomes derived from rumen habitats in June 2015
using the “functions versus genomes” tool in IMG/MER.

Additional files

Additional file 1: Table S1. Overview of samples analysed in this study
and methods of analysis conducted. (PDF 223 kb)

Additional file 2: Figure S1. Sparse partial least squares regression
analysis (sPLS) of gene (A) or transcript (B) abundances correlated
with animal methane yield plotting low (green), intermediate (blue)
and high (red) methane yield animals based on gene abundance or
expression values of selected predictor genes. (TIF 168 kb)

Additional file 3: Table S2. KEGG genes from metagenome (DNA) and
metatranscriptome (RNA) data commonly identified in sparse partial least
squares analysis (sPLS) and Wilcoxon rank sum test (WRS) correlated to
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methane yield/significantly differentially abundant between high and low
methane yield sheep. (PDF 507 kb)

Additional file 4: Table S3. Gene set enrichment analysis of metagenome
and metatranscriptome datasets. Pathways with genes differentially present
or expressed based on nominal P value (NOM P val ≤0.05) are shown,
ranked by normalised enrichment score (NES). Corrected P values for
false discovery rate (FDR q val) and familywise-error rate (FEWER P val)
are shown. (PDF 88 kb)

Additional file 5: Text S1. Detailed results for the statistical analysis and
additional methods. (DOCX 40 kb)

Additional file 6: Figure S2. Functions involved in synthesis of aromatic
amino acid precursors in relation to methane yield. Green boxes indicate that
related genes were chosen as predictors of methane yield with negative
correlation based on sPLS analysis of metatranscriptome data. The bar chart
shows mean read counts (normalised to RPM) in high (orange) and low
(green) metagenome (genes) and metatranscriptome (transcripts) data.
*P < 0.05 based on WRS. Error bars denote standard deviations. (TIF 268 kb)

Additional file 7: Table S4. Statistical data of KEGG genes related to
low or high methane yield animals for Wilcoxon rank sum test (WRS) and
sparse partial least squares analysis (sPLS). (PDF 1543 kb)

Additional file 8: Figure S3. Functions involved in methionine
biosynthesis in relation to methane yield. Blue shaded functions indicate
that related genes were chosen predictors of methane yield with negative
correlation based on sPLS analysis of metagenome data. Bar chart shows
mean read counts (normalised to RPM) in high (orange) and low
(green) metagenome (genes) and metatranscriptome (transcripts)
data. *P < 0.05 based on the WRS test. Error bars denote standard
deviations. (TIF 185 kb)

Additional file 9: Figure S4. Lactose degradation functions correlated
with methane yield. Coloured boxes indicate that the corresponding
genes were predictors of methane yield with negative correlation
based on sPLS analysis of metagenome (blue) or metagenome and
metatranscriptome (purple) data. Bar charts show mean read counts
(normalised to RPM) in high (orange) and low (green) metagenome
(genes) and metatranscriptome (transcripts) data. *P < 0.05 based on
WRS. Error bars denote standard deviations. (TIF 189 kb)

Additional file 10: Table S5. Read mapping statistics of metagenome
and metatranscriptome data for lcdA genes. (PDF 83 kb)

Additional file 11: Figure S5. Phylogenetic maximum likelihood tree of
lactate dehydrogenase genes based on a multiple sequence alignment
including sequences >310aa from the metagenomic reassembly and
reference sequences from selected rumen microorganisms. Bootstrap
support of ≥75 % is illustrated by open and ≥90 % by filled circles.
Colour shadings mark genes with significantly (P≤ 0.05) more abundance in
low metagenome (green), low metagenome and metatranscriptome (blue),
high metagenome (orange) and high metagenome and metatranscriptome
(red) samples. Reference sequences of lactate dehydrogenase genes from
microbial isolates are shown with the relevant strain name and the 10-digit
gene identifier in the IMG database. The out-group consisted of 14
lactate dehydrogenase amino acid sequences from protists. The scale
bar represents 0.4 % sequence divergence. (TIF 1161 kb)

Additional file 12: Figure S6. Barplot showing metagenome (A) and
metatranscriptome (B) read count numbers based on read mappings
against reassembled rumen metagenome lactate dehydrogenase genes
(K00016). Shown are genes with significantly different read count abundance
(P ≤ 0.05) between low (green) and high (red) methane samples based
on Wilcoxon rank sum tests and Benjamini-Hochberg correction.
Metatranscriptome data for gene 7 was excluded due to unusually high
expression values in high methane yield sheep (see the “Results” section).
(TIF 72 kb)

Additional file 13: Figure S7. Total metatranscriptome reads mapped
to Sharpea azabuensis DSM20406 and Megasphaera elsdenii J1 genomes
in high (red) and low (green) methane yield sheep. Whiskers (error bars)
above and below the box indicate the 90th and 10th percentiles; ** indicate
significant difference (P≤ 0.01, based on Wilcoxon rank sum test) between
total RPM metatranscriptome reads mapped to the genome in high and
low methane yield animals. (TIF 709 kb)

Additional file 14: Table S6. Differentially expressed genes of Sharpea
azabuensis DSM20406 in low methane yield sheep according to
metatranscriptome read mapping. (DOCX 25 kb)

Additional file 15: Table S7. Top 50 most highly and significant
differentially expressed genes of Megasphaera elsdenii J1 in low methane
yield sheep according to metatranscriptome read mapping. (DOCX 17 kb)

Additional file 16: Figure S8. Overview of pyruvate degradation
functions correlated with methane yield in Megasphaera elsdenii J1 (A). Bar
charts show mean read counts (normalised to RPM) in high (orange) and
low (green) metatranscriptome (transcripts) data. *P < 0.05 based on
WRS (B). (TIF 191 kb)

Additional file 17: Table S8. KEGG functions from metagenome data
commonly identified in Wilcoxon rank sum test and sparse partial least
squares analysis as related to methane yield against their occurrence in
Hungate 1000 and other rumen-derived genomes available in the IMG
database in June 2015. (XLSX 204 kb)
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