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Enzymatic Computation and Cognitive Modularity

H. CLARK BARRETT

Abstract: Currently, there is widespread skepticism that higher cognitive processes,
given their apparent flexibility and globality, could be carried out by specialized
computational devices, or modules. This skepticism is largely due to Fodor’s influential
definition of modularity. From the rather flexible catalogue of possible modular features
that Fodor originally proposed has emerged a widely held notion of modules as rigid,
informationally encapsulated devices that accept highly local inputs and whose opera-
tions are insensitive to context. It is a mistake, however, to equate such features with
computational devices in general and therefore to assume, as Fodor does, that higher
cognitive processes must be non-computational. Of the many possible non-Fodorean
architectures, one is explored here that offers possible solutions to computational
problems faced by conventional modular systems: an ‘enzymatic’ architecture.
Enzymes are computational devices that use lock-and-key template matching to iden-
tify relevant information (substrates), which is then operated upon and returned to a
common pool for possible processing by other devices. Highly specialized enzymes can
operate together in a common pool of information that is not pre-sorted by information
type. Moreover, enzymes can use molecular ‘tags’ to regulate the operations of other
devices and to change how particular substrates are construed and operated upon,
allowing for highly interactive, context-specific processing. This model shows how
specialized, modular processing can occur in an open system, and suggests that skepti-
cism about modularity may largely be due to failure to consider alternatives to the
standard model.

1. Introduction

So we can now (maybe) explain how thinking could be both rational and

mechanical. Thinking can be rational because syntactically specified opera-

tions can be truth preserving insofar as they reconstruct relations of logical

form; thinking can be mechanical because Turing machines are machines.

However things eventually work out for computational nativism in cog-

nitive science, this really is a lovely idea and we should pause a moment to

admire it. Rationality is a normative property; that is, it’s one that a mental

process ought to have. This is the first time that there has ever been a remotely
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plausible mechanical theory of the causal powers of a normative property.

The first time ever (Fodor, 2000, p. 19).

Of all the theoretical approaches that have been offered for understanding mental

processes, none has been as successful, both in terms of popularity and explanatory

power, as the computational theory of mind (CTM). CTM views thought as

computation: the use of algorithmic rules to systematically map inputs, i.e., infor-

mation instantiated in neurochemical patterns, onto outputs, i.e. different patterns

of information that have been systematically transformed. What makes the patterns

in question information is that they ‘stand for’ something: that they, in turn, can be

mapped onto something in the world or mind. The mapping operations are

computations. From Babbage, to Turing, down to modern artificial intelligence

and neural network researchers, this has been and remains a beautiful and beguiling

idea: it means that ‘to the extent that thought consists of applying any set of well-

specified rules, a machine can be built that, in some sense, thinks’ (Pinker, 1997, p. 68).

However, whereas Pinker and many others hold that all (or most, or much) of

actual human thinking may be computational in the sense described here, Fodor,

among others, is skeptical. As he puts it, ‘it hadn’t occurred to me that anyone

could think that it’s a very large part of the truth; still less that it’s within miles of

being the whole story about how the mind works’ (Fodor, 2000, p. 1).

This has become one of the central debates in the cognitive sciences: the extent

to which the processes of thought are carried out by computational devices or

procedures, and in particular, specialized ones (see, e.g., Buller and Hardcastle,

2000; Coltheart, 1999; Fodor, 2000; Samuels, 1998; Samuels, Stich and

Tremoulet, 1999; Segal, 1996; Sperber, 1994). On one side, it is argued that

those aspects of thought that are functionally organized and reliably truth generat-

ing could scarcely be carried out by anything but such procedures (this has been

called the ‘Massive Modularity Hypothesis’; Sperber, 1994). On the other side, it is

argued that such an architecture could not possibly account for the observed

flexibility, context-sensitivity, and globality of thought.

As Sperber (1994) has observed, if the brain contains specialized computational

devices, what their properties are is ‘a matter of discovery, not stipulation’. But

current debates about modularity have been hung up on very specific and narrow

assumptions—stipulations, in fact—about how specialized computational proce-

dures must be instantiated. In particular, Fodor’s (1983) model has been very

influential in this regard, and as he has shown, accepting it appears to entail

rejecting the notion that most of what we think of as cognition could be handled

by computational devices of any kind (Fodor, 2000). But might there not be other

ways of instantiating specialized computational procedures?

My objective in this paper is to show that, while the Fodorean model of

modularity has been both important and influential, it has been perhaps too

influential, because it has foreclosed ways of thinking about modularity other

than the very specific model he proposed in his 1983 book. In principle, there

are a large number of possible computational architectures that are non-Fodorean
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in nature. Here, I elucidate the features of one possible system, an enzyme-like

system in which modules all have access to a central blackboard or bulletin board,

and in which there are no rigid routing procedures between modules. The enzyme

metaphor for modularity was originally proposed by Sperber (1994), and bears

resemblance to other, existing models in the cognitive sciences, such as Selfridge’s

pandemonium model (Selfridge and Neisser, 1960) and the classifier system model

developed by Holland and colleagues (Holland, Holyoak, Nisbett and Thagard,

1986). Unlike Fodorean modular systems, enzymatic systems require no ‘meta-

module’, or routing system, to route information, and do not require input

restriction or compartmentalization mechanisms to restrict their access to subsets

of a global database. These are important details of the Fodorean model which, as

Fodor (1983, 2000) shows, render it implausible as a model of central cognitive

processes. The mistake, I argue, lies in assuming that Fodor’s architecture is the

only possible one.

Here I return to the first-principles logic of CTM as a source of predictions

about the design of cognitive architecture. CTM was originally invoked to explain

the functionally organized, truth-preserving and truth-generating qualities of cog-

nition. Its main assumptions are that cognition is computation, and that cognition

works because computational procedures are designed to systematically derive

useful information from their inputs. Although it is often left unsaid, this cannot

be an accident: to the extent that computational procedures are so designed, it is

because of a history of natural selection. Accepting these premises entails searching

for the design features that would be required for such a system to be implemented.

And this search, in turn, can be informed by consideration of the problems that

such a system would face in carrying out its evolved functions.

As Fodor (2000) points out, central cognitive processes face information-proces-

sing problems that peripheral systems do not face. Here, I will focus on the

adaptive problems faced by systems designed to (1) preserve the systematically

true properties of information they process, while (2) routing information to

procedures that can generate useful inferences from it. Of all possible architectures,

not all solve these problems equally well. This is a source of insight about the

design of cognitive architecture. While this paper in no way solves all of the

problems faced by central computational systems, it is intended to show how

adopting the design stance with respect to information-processing problems can

point to possible solutions in ways that defeatist skepticism about the power of

computational systems cannot.

2. First Principles of CTM

Fodor (2000), in summarizing CTM, suggests that the rationality of thought

depends on the truth-preserving qualities of computational operations, which are

truth-preserving in turn by virtue of the fact that they obey the laws of logic.

Although the terms logic, rationality, and truth may approximately capture certain
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principles whereby the mind works, they must be qualified. They cannot literally

be general principles of cognition, because minds are not, in fact, logic machines,

but survival machines. The functional design features of cognitive devices were

shaped by feedback from their effects on the survival and reproduction of the

organisms that contained them, and nothing else.

Organisms’ computational systems are designed to preserve certain properties of

information as it passes through their computational procedures because maintain-

ing those properties had important consequences for inference and decision-

making that impacted survival and reproduction in ancestral environments. In

principle, organisms in the past could have entertained many true, rational, and

logical thoughts (as well as many false, irrational, and illogical ones) that had no

impact on fitness, and therefore, no impact on the cognitive design of the organ-

isms entertaining them. Of those properties of information that evolved computa-

tional systems preserve, many might rightly be regarded as ‘true’; some might not

be; and other kinds of information that might be perfectly ‘true’, or have plenty of

implications for matters of truth, might be systematically discarded because they

had no impact on fitness in past environments. A similar analysis applies to logic

and rationality: what is respected by the computations of evolved systems is not

logical principles per se, but rather, computational principles that reflect enduring

structural properties of the world, some of which might correspond to principles of

formal logic, and some not. On this view, deviations from rationality are not only

possible but likely, if the stable properties of the world on which computational

rules depend for their truth-preservingness are systematically altered.

In short, placing our hope for the rationality of thought on the existence of

domain-general, abstract principles of logic is misguided because there is no reason

to expect that a mind containing such principles ever evolved. However, natural

selection can engineer computational mechanisms that embody domain-specific,

content-specific, context-specific principles of inference and information handling

that evolve because they are ‘truth-preserving’ in a more narrow sense, relying on

specific structural properties of the world that have been true in the past (Tooby

and Cosmides, 1992). Fodor is right about the beauty of truth-preserving opera-

tions, but wrong about the kinds of truth that they evolved to preserve.

What do we mean by ‘truth preserving’? To a logician, a truth preserving

operation is one that reliably generates true propositions as outputs, provided

that the inputs are true. For example, a categorical syllogism is truth preserving:

All men are mortals; Socrates is a man; therefore, Socrates is mortal. Not only that,

operations such as this are truth deriving, or truth generating: the output is some-

thing we didn’t know before. One can imagine other, more content-specific

operations that generate reliable inferences from inputs, e.g.: That animal is a

predator; that animal is looking at me; therefore, that animal might chase me. This kind

of property—the ability to infer or predict something that was not previously

known on the basis of available inputs—would be a useful property for evolved

computational systems to have, even though a given operation might be truth

preserving only under restricted conditions, and only for restricted inputs. When
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we speak of truth preserving operations, we can speak of them quite legitimately in

this sense.

In addition, in a system in which information passes through many stages,

selection will favor operations that preserve some elements of the information as

it is processed, and alter others. For example, information about a lion that enters

the retina will undergo many transformations as it passes from system to system. As

it does, it is important that certain key aspects of the information not be lost: for

example, the fact that it is about a lion, the fact that the lion is over there, and so on.

In short, we expect processing systems to be designed to preserve information of

certain kinds, and to discard others. Subsequently, there must be a way of reliably

getting information that has been preserved to those systems designed to use it.

3. Specialized Computational Devices

In order for a computational system to function, it must contain inference proced-

ures, or rules. These cannot be just any rules, because many would systematically

produce nonsense rather than truth. Moreover, there must be more than one rule,

because what counts as truth preserving depends on the kind of operation being

performed as well as on the kind of information it is being performed on. There is a

‘truth’ about whether my index finger will land on the space bar of my keyboard

when I reach for it that is not computed by my mind using the rules of syllogistic

reasoning. What one rule can do, another one can’t; each must be tailored to the

kind of operation for which it is responsible. This is the origin of the notion of

computational specificity: computational processes require multiple, specialized

kinds of algorithms.

Marr (1982), Fodor (1983) and others have suggested that such algorithms could

be instantiated in specialized computational devices (SCDs). An SCD is a device

that (1) accepts information of a particular kind (i.e., information that meets certain

input requirements), (2) performs specified operations on it (computations), and (3)

outputs the resulting information in a format useable by other systems. In principle,

such devices, and their potential benefits, are not difficult to imagine. For example,

one can imagine a ‘snake detector’, designed to solve the problem of detecting

snakes by monitoring visual input and firing, or outputting a representation along

the lines of ‘there’s a snake’ whenever it detects a snake-like, sinusoidal shape. To

function properly, SCDs must (1) encounter the information that they are designed

to process, and (2) encounter it in a format that they can use. This ‘routing’

problem constitutes a principal focus of current debates over the computational

architecture of the mind (Fodor, 2000).

For SCDs in perceptual input systems, it is not particularly difficult to imagine

requirements (1) and (2) being satisfied. For example, one could imagine a snake

detector simply wired up to monitor retinal output for snake-like shapes.

However, we know that in fact, raw retinal output does not simply afford

representations of objects or shapes. There must be additional computational
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devices, what Fodor (1983) calls sensory transducers, which take retinal output and

turn it into a format other devices can use. There must also be devices that ‘parse’

this output into things like object representations, and pass them to devices such as

snake detectors. As Fodor (1983), Marr (1982), Pylyshyn (1986), and others have

pointed out, the visual system has a design of this kind: it is composed of many

devices or modules, each designed to perform a particular task that others cannot

perform.

In order for these mechanisms to carry out the functions for which they were

designed, there is a sense in which they must be coevolved: the design of one

depends, in some way, on the design of the other. In the case of the object parser

and the snake detector, they must be co-designed in such a way that the snake

detector can properly use and interpret the information produced by the object

parser. In other words, not only must information be in a format that can be passed

between the two devices, but there must also be a convention of interpretation.

Because objects were, by definition, not marked (or parsed) as such in the input

to the object parser, however the parser ends up marking them, the snake detector

must be designed to exploit/assume this marking convention. This is a crucial step

for truth preservation, and it is likely to be a general principle of modular cognitive

systems. When one device outputs information, there must be properties in that

information—aspects of its representational format—that allow its ‘meaning’ to be

properly interpreted by other devices.

4. Possible Routing Architectures

One way of ensuring that information doesn’t get misinterpreted is to have

SCDs arranged such that the outputs of some SCDs are matched to the inputs

of others in one-to-one fashion, like pipes. The output of one device is simply

fed into the input of another device (see Figure 1). This is one way of handling

problems of routing, and of ensuring that there is no miscommunication

between devices in the interpretation of information formats and content.

Information conventions can be extremely local, and the receiving system

‘knows’, or can be designed to assume, where the information is coming

from, and therefore what it is about.

This is the kind of architecture that Fodor (1983) originally proposed for input

systems (and other peripheral systems, such as motor systems). Such architectures

are composed of ‘vertical’ systems, or faculties. In vertical systems, information

flows one way, in a bottom-up fashion; modules are arranged in layers, such that

once information enters a device in one layer, it cannot subsequently enter another

device in the same layer; and information is routed from one device to another.

Consequently, different modules have access to different pools or sources of

information. As Fodor puts it, they are non-overlapping.

But in the imaginary example of the object parser and the snake detector, the

object parser does not ‘know’ whether or not the information it just processed was
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about a snake, and therefore whether it should be sent directly and only to the

snake detector (i.e. to a particular module in the next layer downstream). Rather,

the snake detector sits there ‘observing’ the information coming out of the object

parser, and waiting until it detects a match with its snake template. Many other

detectors must be doing so as well; the object parser is not simply producing output

for the benefit of the snake detector. In design terms, it would be an ineffective

design if the snake detector, in making its snake / no snake decision, used up the

information so that other devices in the same layer could not use it. Instead, it

would be useful for the information to return to or remain in the pool—or at least

not be used up—so that other devices, such as face detectors, artifact detectors, etc.,

could scrutinize it for a match (Kurzban, 1996).

Figure 2 illustrates an architecture that has this design, in which many modular

devices have access to the same common pool or bulletin board of information

(also sometimes called a blackboard architecture; see Pylyshyn, 1999). In this

architecture, all representations can be scrutinized by all devices. When a repre-

sentation fails to meet the input criteria of a device, it is returned to the pool

unaltered (e.g. in Figure 2, representation 2 is returned unaltered by device B).

When a representation does meet the input criteria of a device, it is processed and

then re-posted to the same bulletin board for further scrutiny by other devices (e.g.

in Figure 2, representation 2 is processed by device C and returned, perhaps with

altered content, as 2C). It is possible to imagine a design that would leave a copy of

the original unaltered in the pool as well.

INFORMATION INPUTS

MODULE LAYER 1

MODULE LAYER 2

MODULE LAYER 3

INFORMATION OUTPUTS

Figure 1 Vertical pipe architecture
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Although re-posting violates the Fodorean assumption of one-way or strictly

bottom-up, vertical processing, such a feature would be useful if a given

representation could, in principle, satisfy the input conditions of more than

one device in the system. Otherwise, the representation would get used up, i.e.

removed from the pool, by the first device able to process it. One could

imagine disastrous consequences if, for example, there were a squiggly line

detector, distinct from the snake detector, in the same system; if a snake

representation met the squiggly line detector first, no snake alarm would be

sounded. Crucially, in the bulletin board design, the output of the object parser

is publicly available for many, many SCDs to scrutinize. Presumably, the

evolved function of the object parser is to produce object representations for

the potential use of every computational subsystem that is designed to take

parsed object representations as input.

Fodor himself has proposed that while peripheral systems have the sort of

vertical, compartmentalized pipe architecture depicted in Figure 1, ‘central’

systems—those responsible for most aspects of ‘higher’ cognition, such as reason-

ing, inference, and so on—do not. In a sense, his model bears some similarities to

the bulletin board model of cognition in that peripheral input systems output

their computational products into a common, central pool (see Figure 3).

The existence of a central pool, however, is where the similarity ends, because

Fodor (2000) explicitly denies that processing of information in the pool could be

handled by specialized devices. He resists the idea that central processes could be

A B C D E F G

2 5
6

7 4

4G

2C
3

2

1

4D

Figure 2 Bulletin board architecture
Information packets ( labeled 1 through 7) are posted on a ‘bulletin board’ or public representational space that
is visible to all modules (modules are labeled A through G). Modules constantly monitor the bulletin board for
representations that they are able to process
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composed entirely of specialized computational devices in which all devices in

the system have access to exactly the same information. Indeed, he argues that

because modular systems accept only local inputs, a global processing system com-

posed entirely of modular devices could not be instantiated by any kind of computa-

tional system of which we are currently aware. However, not only is it possible for

such a computational system to be instantiated, such systems actually exist, and in

abundance. Every living cell contains computational systems that use an open, central

pool of information, monitored by thousands of different kinds of specialized

devices: namely, enzymatic processing systems. These systems show one way that a

bulletin board architecture of the kind suggested above could be instantiated.

5. The Enzyme Model

The analogy between enzymes and cognitive modules was first proposed by

Sperber (1994). While cognitive modules are not literally enzymes, they are

Central
system 

Input
systems 

Sensory
transducers

SENSORY
INPUT

Figure 3 Fodor’s model of the mind
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computational devices that systematically transform inputs to outputs, without

many of the restricting features of Fodorean systems. It is useful to consider the

relationship between the design features of real enzymes and the possible design

features of cognitive modules that have enzymatic properties, or what might be

called ‘cogzymes’.1

Enzymes catalyze reactions: they systematically combine substrates

(molecules) to form new products (other molecules). This can be regarded as

a kind of computation (see Figure 4; in fact, Magnasco, 1997, has shown that

enzymes are Turing universal). Consider the following description by Coen

(1999):

. . . Each cell contains many thousands of different types of proteins, each

with a different shape, according to the process it guides. . . . Suppose A

encounters a large molecule, a protein, that has a shape with a nice little

pocket that A fits into very comfortably. We could imagine, for example, that

the pocket in the protein matches the shape of the A molecule, like a lock

matching a key. . . . If the protein has another nearby pocket that matches

molecule B, then when B is bumped into, it will also tend to stick . . . if they

are held in the right way, they will react with each other, joining up to form a

new molecule, C. In this way, the shape of the protein, the structure of its

pockets and crevices, can facilitate a reaction: A and B coming together to

make C (Coen, 1999, p 24).

Like our hypothesized snake detector, enzymes use a template to detect specific

substrates; they are passive, monitoring a pool of substrates until a match is found;

1 Thanks to Tom Dickins for suggesting this term.

Enzyme
Substrate A

Substrate B 

Reaction

= C 

1) Specific inputs 2) Operation 3) Outputs

Product C 

→A, B A + B

Figure 4 Enzymatic computation
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and when they encounter a substrate that matches their template, they system-

atically transform it into something new, in a rule-like fashion. Thus, enzymes have

the three basic properties of specialized computational devices:

(1) Enzymes accept information of a particular kind, generally in the form of

chemical substrates with particular properties that meet the binding

specificity criteria of the enzyme in a ‘lock and key’ fashion.

(2) Enzymes perform specific operations on the information they admit, catalyzing

reactions that produce reaction products with different properties than

the input substrates. While an A þ B ! C type reaction was used in the

example above (see Figure 4), other kinds of operations can be carried

out by enzymatic systems as well, including C! A þ B, A ! B, and so

on. In each case, the computation is specific and dependent on the

properties of the substrates in interaction with the properties of the

enzyme.

(3) Enyzmes output the resulting information in a format useable by other systems.

In other words, the products of enzymatically catalyzed reactions can

then participate in further chemical reactions. There can be enzymatic

processing cascades, feedback loops, and so on.

The structural features of enzymes related to these properties are shown in

Figure 5. Clearly, cognitive modules are not enzymes; enzymes are simply a

metaphor. In this metaphor, information processing is catalysis. Enzymes are

computational devices that solve problems that cognitive computational systems

also face: they achieve functional specificity in an ‘open’ system. Some aspects of

the metaphor are relevant for cognitive systems, and some are not. Relevant aspects

include:

Recognition

Recognition

Rejection

Rejection

Substrates Enzyme

Figure 5 Binding specificity
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Access generality with processing specificity. One can have an enzymatic system in

which all of the enzymes in the system have access to all of the substrates, and in

which only the ‘correct’ reactions are catalyzed. This is because of the lock-and-

key nature of molecular recognition processes, which depend on the diffusion of

information for their proper functioning (Alberts et al., 1994; although there exist

enzymes embedded adjacently in substrates to increase processing efficiency). To

take another metaphor, one can put a variety of enzymes and a variety of substrates

together in the same bag (i.e. without distinct compartments), shake vigorously,

and presto: many reactions have been catalyzed, substrates have been turned into

products, and, most importantly, the enzymes have catalyzed only those reactions

they were designed to catalyze.

How is the input specificity of enzymes—their binding specificity and catalytic

specificity—achieved? It is achieved through a template matching process, in

which the fit of a chemical substrate to the binding site of the enzyme (an exposed

surface of a three-dimensional macromolecule) is tested. Molecular recognition is

achieved by the simultaneous formation of many weak chemical bonds between a

substrate molecule and this template, in a lock-and-key fashion. There need be no

mechanism that delivers substrates to enzymes; recognition events can occur by

chance collision. Enzymes thus depend on diffusion in order for molecular recog-

nition to occur. For the analog of such a system to be instantiated in the brain,

there would therefore have to be a neural equivalent of diffusion, such as massively

parallel distribution of information.

Multidimensional input criteria and byproduct processing. The reason that binding

procedures of enzymes have analog properties is that many individual chemical

bonding events contribute to the recognition process. The sum of these determine

recognition; there can be better or worse degrees of fit. In this sense (i.e. fuzzy

input criteria) the input procedures of enzymes resemble neural networks more

than classical symbol-manipulation systems. There can be byproduct reactions, in

which enzymes couple with substrates that mimic in some way, either by chance or

by design, the substrates that the enzyme evolved to operate on (Alberts et al.,

1994). Many synthesized drugs are analogs of this kind, designed to fit the active

sites of enzymes not originally evolved to process them. In Sperber’s (1994) terms,

these analogs would be part of the actual domain of an enzyme, though not part of

its proper domain. Low levels of byproduct processing by enzyme-like cognitive

devices may be what permit novel combinations and processing of representations

beyond, in some sense, what the mechanism was designed to do. They might

permit particular kinds of novel inference, such as metaphoric inference or analogy,

via structural alignment/overlap. Nevertheless, enzymes evolve so that their recog-

nition criteria are specific enough to function essentially as Boolean yes/no gates

that effectively pick out a single kind of molecular substrate from all of the

chemicals in the cytoplasm in which they normally find themselves, and reject

others.

Class-level processing, carry-through, and tags. Another interesting property of

enzymes is that they can be designed to pick out not just one substrate, but to

270 H. C. Barrett

# Blackwell Publishing Ltd. 2005



identify substrates of a particular class—for example, molecules that all have one set

of subunits in common, even if subunits in other portions of the molecule vary. In

some cases, the non-recognition portions of the molecule will be carried through

the catalytic process without alteration (i.e. they will be ‘preserved’), and in other

cases these non-recognition portions will be operated on by the enzyme. This

property of carry-through is an important one that not all systems have. For example,

parallel distributed processing (PDP) systems have difficulty with operations in

which one portion of a representation is systematically altered while the rest is

unchanged (Marcus, 2001). In contrast, enzymes can easily perform operations

such as, for example, for all X, X ! X þ Y.

One way in which class-level processing is achieved in actual enzymatic systems

is through the use of molecular tags: chemical substrates added by one enzymatic

process, which are then used by subsequent processes for recognition purposes.

Classes of substrates can be given a common tag, which can admit them to or

restrict them from certain processes. Biochemical examples of such tagging pro-

cesses include methylation and phosphorylation, which can enhance or block

transcription of tagged DNA sequences.

Horizontal and top-down control. In real enzymatic systems, tags added to substrates

can influence how they are processed by other devices they may later encounter.

This allows for horizontal and ‘top down’ control, in which the outputs of devices

can influence other devices at the same horizontal level, a kind of feedback which

is not typical of Fodorean modular systems (Fodor, 1983, p. 64). In addition,

enzymatic devices can emit tags or signals that are unattached to particular repre-

sentations, but that have widespread effects throughout a system, turning many

devices on or off, or modulating their operations (see Figures 6 & 7). In cognitive

Input domain BInput domain A

Device A Device B

Output Output

Figure 6 Horizontal control

Enzymatic Computation 271

# Blackwell Publishing Ltd. 2005



systems, one could imagine signals such as a danger signal emitted by one device

that turned on or off a host of other devices, or altered their processing thresholds.

6. Encapsulation and Domain Specificity

The hardware level biochemical details of enzyme functioning, such as weak

covalent bonding, methylation, and so on, are not the central point here.

Rather, the enzyme model is important because it points to potential computa-

tional solutions to problems that standard versions of modular architecture are said

to face. Based on principles of computational design, Fodor (2000) has argued that

A

B

Figure 7 An enzymatic switch allowing horizontal control
In absence of a secondary compound, the enzyme is ‘on’ (A); presence of the secondary compound turns the
enzyme ‘off’ (B)
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modular systems are unable to perform the kinds of tasks and account for the kinds

of phenomena that are routinely observed in everyday thought, such as sensitivity

to the context in which information is presented, the global revision of beliefs

based on a single new piece of information, and so on. However, these problems

depend critically on particular features of Fodorean systems that enzymatic systems,

despite the fact that they are computational, highly specialized, and modular, do

not have.

In The Modularity of Mind (1983), Fodor offered a list of properties that he

suggested were typical of modules, including: Domain-specificity, informational

encapsulation, obligatory firing, shallow output, rapid speed, inaccessibility to

consciousness, characteristic ontogenetic course, dedicated neural architecture,

and characteristic patterns of breakdown (see Fodor, 1983, for a definition and

description of each of these properties). It is interesting to note that while Fodor

explicitly pointed out that none of these criteria should be regarded as necessary or

defining of modules, they have been widely interpreted as such (Coltheart, 1999). It

is often assumed that a process that lacks one of these properties cannot, by

definition, be ‘modular’.

Each of these potential characteristics of modules is invoked and discussed to

some degree in the literature on modularity. But increasingly, encapsulation has

come to be seen as the defining feature of modules (Coltheart, 1999; Fodor, 2000;

Samuels, 1998; Samuels et al., 1999; Segal, 1996; Sperber, 1994). As Fodor put it

recently, ‘A module sans phrase is an informationally encapsulated cognitive

mechanism, and is presumed innate barring explicit notice to the contrary’

(Fodor, 2000, p. 58). He does agree that one could speak of modularity without

encapsulation, i.e. to define modules as ‘functionally individuated cognitive

mechanisms’ (see Coltheart, 1999, for a similar definition in terms of domain

specificity), but suggests, and rightly so, that ‘Probably everybody who thinks

that mental states have any sort of structure that’s specifiable in functional terms

qualifies as a modularity theorist in this diluted sense’ (Fodor, 2000, p. 56).

What is encapsulation, then? Encapsulation refers to the fact that a module’s

operations are not sensitive to information outside of its proper inputs (in a certain

sense, a non-encapsulated algorithm is therefore logically impossible). As Fodor

(1983, p. 69) puts it, ‘the claim that input systems are informationally encapsulated

is equivalent to the claim that the data that can bear on the confirmation of

perceptual hypotheses includes . . . considerably less than the organism may

know’. For example, if one nudges one’s eyeball with one’s finger, the world

appears to move despite the clear and explicit high-level knowledge that it is the

eyeball, not the world, which is moving. Presumably, this is because the visual

mechanisms involved are not designed to take into account externally caused

movement of the eyeball, or knowledge thereof. Fodor calls this ‘modularity

with a vengeance’ (1983, p. 67). A second and related property is domain speci-

ficity, which refers to constraints on the range of information a module can access

(Fodor, 1983, p. 47). Visual and auditory input analyzers do not have access to, or
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use, the same information, and are therefore domain specific, at least with respect

to each other (their inputs are non-overlapping).

While domain specificity and encapsulation are conceptually distinct properties,

they are related in that they both concern constraints or boundaries on the

information that a module uses. In Figure 6, the encapsulation of device B is

violated by the fact that output from A can influence its operations (this output

from A could include, for example, contextual signals that would alter how B

interprets / processes its input). The breadth of ‘domain B,’ on the other hand,

presumably determines how domain specific device B is (note that there is a sense

in which information in domain A influences B’s operations, through device A). In

the case of enzymes, because their operations are causally linked to the shape of

their input domain (active site), the properties of domain specificity and encapsula-

tion are not necessarily separable; the exact same properties of the device’s active

site can determine both its input conditions (and, therefore, domain specificity) and

its operations (and, therefore, encapsulation). In the case of real enzymes, it is

interesting to note that substrates emitted by another enzyme can interact with an

enzyme’s active site and thereby alter its operations. The presence of a secondary

compound can, among other things, block processing of a substrate by interfering

with the active site, turning it ‘off’ (Figure 7), or be required to turn it ‘on’ by

altering the shape of the active site so as to accept the substrate (e.g. a molecular tag

can be required before the substrate is processed). Whether or not one wishes to

consider these regulatory substrates part of the device’s ‘proper domain’ or not

seems to be largely a semantic issue that is made moot by precise specification of

design. More importantly, the presence of horizontal control, and control by

potentially contextual signals, does not seem to render the device any less modular.

Informational encapsulation and domain specificity are both properties related to

the input specificity of a device, so they will be considered together here under the

rubric of input specificity, or input restriction. Regarding input specificity, two

distinct issues are important: first, the distinction between access specificity, i.e. the

breadth of information to which a device has access, and processing specificity, i.e. the

breadth of information that a device actually processes; and second, the degree to

which modules can be controlled or influenced horizontally or top-down by the

outputs of other devices. Enzymes differ from Fodorean modules as conventionally

construed because (a) they are access-general while processing-specific and (b) they

are subject to rich horizontal control by other devices, and therefore sensitive to

factors of context, etc., outside of their principal input domains.

7. Access Specificity vs. Processing Specificity

One reason why modular devices are widely considered to be poor candidates for

central cognitive processes is because of the ‘globality’ of central processes. It is

widely believed (though never proven) that central cognitive processes, in general,

have access to all of the information in central knowledge stores. When trying to
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figure out how to fix my leaking drain, for example, it feels like I can bring

virtually any bit of knowledge I have to bear on the problem. A glance at Figure 1

shows why Fodorean modules appear to be poor candidates for central processes:

their inputs are highly local. Clearly, devices that solve the routing problem by

restricting their input pool will be unable to access all of the representations within

an information store, a major problem for globality. The problem arises, however,

not from the functional specificity of the devices, but how information is routed to

them.

The enzyme model shows how processing specificity can be achieved even with

complete access generality. Consider the snake detector and the face detector

mentioned above. These devices have completely overlapping access specificity,

because they both monitor the exact same pool of outputs of the object parser.

This is not to say, however, that they are not functionally specific devices, nor that

they admit the same inputs for processing. If one imagines each device to admit

input on the basis of matching to a particular ‘template’, then neither actually

processes information that the other processes. From a functional perspective, this

is a very useful design: both have access, at least in principle, to the same informa-

tion, even if each is selective about which information it actually processes.

As the example of the snake detector showed, for many kinds of information-

processing systems with computational division of labor, i.e. for many systems

composed of multiple SCDs, the best design for the system will be for the

components of the system not to be access-restricted with respect to each other’s

inputs. Publicly accessible bulletin boards, with information in commonly proces-

sable formats to which many mechanisms have access (e.g. in this case, snake

detectors, face detectors, artifact detectors, and so on), have design advantages

that natural selection may have favored in many cases. The reason is that this

design allows for the benefits of the computational division of labor to be reaped:

the object parser does its job once, and many other systems can then exploit the

output.

While not all computational systems need have a bulletin board design, many

might. Access restriction can be unnecessary and / or disadvantageous when SCDs

have precise input criteria, and are therefore able to ‘decide for themselves’ which

information they process (they thus do not require ‘meta-modules’ in order to

route information, a problem raised by Fodor in his critique of massive mod-

ularity). This reasoning fits very well with many of the arguments that Fodor

(2000) raises about why central systems can’t be modular. We know that thinking

is ‘flexible’ or ‘holistic’ in that it can use information of diverse kinds and sources in

reaching conclusions; from an evolutionary perspective, we have reason to believe

that the ability to bring to bear many different kinds of information on a given

problem would have been favored by selection.

One could imagine access-general enzymatic systems that were still hierarchical,

i.e. that still had one-way flow: there could be, for example, layers of modular

devices each of which scrutinized a common pool of outputs from the layer just

below it. A central bulletin board design, on the other hand, has just a single pool,
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from which inputs are drawn and into which outputs are deposited. This is access

generality with a vengeance. This design allows for multiple processing

(reprocessing) of the same representation (Figure 2), which is not possible in a

vertical system in which processing is separated into horizontally segregated, one

way processing streams (Figure 1). This is a very useful feature, because it allows for

computational devices to leverage the work done by other devices within the same

system. It also allows for the possibility of horizontal regulation of modules by

other modules, either by altering representations in some way to which other

devices are sensitive, or by emitting a system-wide signal. Each of these has distinct

advantages. The open pool design allows for many kinds of context effects and

interactive leveraging of computational power.

The advantages enjoyed by access-general systems come at a cost. In particular,

when an information transfer system is entirely access-general, it can no longer use

‘pipes’ to guide information from one device to another. In the interstices between

devices, information is in danger of getting lost, unless a solution can be found for

coupling information of specific kinds to the devices capable of processing it, and

ensuring that information is properly interpreted as it passes from device to device.

Again, the enzyme model suggests a solution, in the form of tags that regulate how

and when substrates are processed.

8. Semantic Tags, Scope Restriction, and Processing Specificity

From an adaptationist point of view, various properties of information might be

expected to be preserved by cognitive operations, other properties altered, and

others simply destroyed or left behind. One of the most fundamental properties of

information that one might expect to be preserved is reference, or aboutness.

Continuing with the example above, when a lion is encountered, information

‘about’ the lion will enter the brain through sensory input systems. It is important

that, as this information passes through various computational procedures, it retains

some identifier, some way for each subsequent processing subsystem that it

encounters to ‘know’ that it is ‘about a lion’. How might this be achieved by an

enzymatic computational system?

Suppose that the object parser outputs an object representation, a package of

information about size, shape, texture, distance, etc., all bound together as the

representation of a single object, which then, as a substrate, floats around the

common pool, colliding with a variety of recognition enzymes. As it contacts

each of these enzymes, fit with the active site of each recognition enzyme is tested.

When a positive match is found, processing occurs. For example, suppose that

something in the object representation satisfies the input criteria of the lion

recognition mechanism. This enzymatic processing system then catalyzes a parti-

cular reaction: it adds a ‘tag’ to the object substrate that identifies it as a lion—a

LION tag (see Figure 8). This can be thought of as a semantic tag.
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This design is useful in the context of truth preservation because it provides a

solution to the ‘preservation of aboutness’ problem described above. Because of the

importance of preserving aboutness, we expect semantic tags, once added, to be

carried through many, if not all, computational processes that operate on informa-

tion to which the tag is attached (although tags could also be removed in some

cases; note also that tags need not be literally tags, just any consistent, convention-

ally recognized alteration of some portion of the representation).

What is the functional value of preserving aboutness information? Because the

truth-preserving properties of computational procedures apply only to restricted

classes of information, there must be a way of coupling information with proced-

ures that will be truth preserving with respect to it. Semantic tags permit informa-

tion to be coupled to computational procedures that are appropriate to it. A

‘LION’ tag, in effect, carries the information, ‘Attention all procedures that can

generate true inferences from information about lions: here’s something for you’.

A one-to-one input-output piping system is one, rather inelegant and inflexible

way of solving the routing problem; such systems face the problem that mechan-

isms outputting lion information must ‘know’ where to send it. Semantic tags,

however, bypass this problem. The tagged information is posted on the bulletin

board for other mechanisms to make use of; the outputting device does not need to

know in advance where to send the information.

An implication of the logic of semantic tags is that they should have causal

properties: representations should be admitted to or excluded from processes on

the basis of the tags they carry (rendering them ‘syntactic’ under Fodor’s (2000)

definition). The function that such tags serve has been called ‘scope restriction’ by

Cosmides and Tooby (2000, p. 60): they ‘regulate migration of information among

subcomponents of the human cognitive architecture.’ Not only can such tags permit

information to be processed by procedures appropriate to it, they can prevent

information from being processed by inappropriate procedures, i.e. procedures

Lion tag

Lion tagLion tag

Object rep

Object rep
Object rep

Other lion-
specific
mechanisms

Lion
recognition
device

Object

representation

catalysis

Figure 8 Catalysis of a tagging reaction
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that will not be truth preserving with respect to the class of information in question

(the class that carries the tag). They are part of what Cosmides and Tooby call a

scope syntax: semantic tags ‘bound the scope’ of processes to which tagged

representations can be admitted. Without such devices, it would be difficult for

evolved computational procedures to consistently maintain their truth preserving

character.

In biochemical systems, scope restriction is achieved in similar ways, with tags,

such as methyl groups, that permit or restrict the admission of substrates (e.g. DNA

sequences) to certain enzymatic operations (e.g. transcription / translation). Tags

can thereby provide a kind of functional input restriction, even in the absence of

hard-wired piping. Like a child safety lock, a single tag can render a representation

‘out of bounds’ for a host of computational processes without establishing a wall or

physical partition between the representation and those processes. This functional

input restriction can, in turn, be instantly removed by removing the tag. This is not

possible with a vertical Fodorean routing system of the kind depicted in Figure 1,

in which the processing pathways that information can follow are pre-set. Fodor

has suggested that modularity may be regarded as a property defined by the

database that a device has access to. Tag-mediated input restriction suggests that

the input pool of a device could in principle be changed on the fly, granting or

denying access to a database simply by changing the set of representations to which

a particular tag is attached, without altering the design of the device in any way.

9. Processing Cascades and the Computation of Higher-order Semantic

Properties

If a tagging system is to function properly, the tags added by one set of computa-

tional devices should be used as input criteria by other computational devices

(perhaps in combination with other properties of the representation to which they

are attached). By adding a tag, a device helps to couple information to other

procedures appropriate to information of that kind.

Evolutionary considerations suggest the possible existence of computational

procedures specialized to operate on kinds of information relevant to semantic

categories that seem rather abstract, such as predators, kin, mental states, social

exchanges, and many more ‘content’ domains as well (Tooby and Cosmides,

1992). If such specialized computational procedures exist, natural selection must

have found a way to couple them with the appropriate inputs. However, it seems

unlikely that such coupling could be achieved by a one-step template matching

system. As Fodor (2000) has pointed out, one cannot use simple cue detection to

achieve such coupling for many higher-level semantic categories: for example, it

seems unlikely that a single template could be engineered that could identify social

exchanges, or mental states, solely from raw perceptual cues.

It is, however, possible to compute higher-level semantic categories through the

serial operation of multiple computational processes, each of which computes a
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semantic primitive (adds a semantic tag) that can then be used by other computa-

tional processes as input. If each computational device returns its output to the

public representational pool, higher-order semantic categories can be computed.

Consider, for an example, how the semantic property PREDATOR might be

computed from perceptual input, using an imaginary example. We could envision

a three-step process. First, information from a lion passes through the object

parsing system, and is deposited in the central pool. Next, this representation is

matched with a perceptual template that adds a LION tag and returns it to the

public representation pool. Finally, a third mechanism takes as input the representa-

tion with the LION tag—perhaps using something akin to a lookup table of animal

tags that satisfy its input criteria—and adds a PREDATOR tag (see Figure 9).

Now this representation contains at least two tags, LION and PREDATOR

(which are now attached to all of the information in the representation, such as

where the object is, whether it is approaching, and so on). A multi-step process was

required to compute the higher-order semantic category; addition of the

PREDATOR tag would not have occurred without the prior addition of a

LION tag. Once the PREDATOR tag is added to the representation, this tag

can then be used to admit this information to various predator-specific computa-

tional procedures. A ‘higher-order’ or ‘abstract’ semantic category has been com-

puted from raw sensory inputs. In principle, there is no reason a particular

representation could not carry many, many tags. This is part of the benefit of

bulletin-board style, unencapsulated representational systems. Note that not all tags

used by an evolved computational system, nor the information used to compute

them, need be ‘innately specified’. For example, one can imagine semantic tags that

are evolutionarily novel in their specific content (e.g. LION), but which are still

tokens of a pre-existing semantic category of PREDATOR.

The use of processing chains to compute higher-order, abstract semantic cat-

egories—thereby coupling content-specific computational processes with appro-

priate input—probably occurs in many evolved computational systems. For

example, evolutionary logic suggests that degree of relatedness through descent

from a common ancestor—kinship—might be expected to be taken into account

when making various decisions. Yet, degree of relatedness with an individual

cannot be computed from a simple perceptual template. Rather, there must be

multiple mechanisms that use a host of cues, such as co-residence during child-

hood, the way other people treat the individual in question, etc., to compute

relatedness (Lieberman, Cosmides and Tooby, 2003).

Lion tag Lion tag Predator tag

Object rep Object rep

Predator
lookup
table

device Etc.

Figure 9 Catalysis of a secondary tagging reaction
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This perspective leads one to expect richly tagged representations, which can be

admitted to a variety of computational processes on the basis of having specific tags

or even specific combinations of tags. One could also imagine multiple copies of a

representation being spawned, with different combinations of tags (for example, it

might make sense to preserve uncorrupted copies of representations using ‘raw

data’ tags that block them from processing; Cosmides and Tooby, 2000). A given

representation may have many tags, which admit it to computational procedures

specialized for semantic categories of different kinds. For example, a given repre-

sentation could simultaneously carry tags such as ABOUT-LION, ABOUT-

OBJECT, ABOUT-INTENTIONAL-AGENT, etc. Each tag would admit the

representation in question to some computational processes, and restrict it from

others. Such tags might also be used to control the features of computational

processes themselves, by acting as secondary substrates that alter the ‘shape’/

computational properties of an enzyme, thus controlling the computations being

performed on the representation itself.

10. The Syntax / Semantics Problem

The notion that a system of tags might be used to couple information of specific

content (semantic) types with particular content-specific computational procedures is

different in many respects from the more traditional view of computational proce-

dures as analogous to content-free, logical operations, which are specifically designed

not to be sensitive to the content of the representations they operate on. Indeed, the

observation that real-life thought processes do appear to be strongly sensitive to the

content of representations has been used to argue that such processes could not be

computational in the conventional sense (Fodor, 2000).

In Fodor’s critique of the Massive Modularity Hypothesis, what he regards as

perhaps the most substantial problem for computational systems of any kind is that

they are sensitive only to the ‘syntactic properties’ of the representations they

operate on (Fodor, 2000, p. 24). Turing machines are indeed insensitive to the

content or meaning of the symbols they operate on, as are all of the ‘truth

preserving’ operations of formal logic (modus ponens, etc.). As long as the input

representations satisfy the ‘well-formedness’ (syntactic) rules of any computational

system, they will be processed according to the rules of the system (for example,

‘p’ in a representation admitted to a modus ponens algorithm needs to be in the

form of a proposition; p can’t be, for example, a pixel bitmap or a 21/2 D

sketch). Consequently, a property of the algorithms of formal logic is that the

semantic properties of the representations they operate on are invisible to them.

Although a syllogism machine that is fed false premises may output false conclu-

sions, as far as the machine is concerned, ‘truth’ has been preserved, in the sense

that it has obeyed the truth-preserving rules that it was designed to obey.

The problem is that cognitive processes are, in fact, sensitive to the meaning of

the representations they process—notoriously so. The results of such sensitivities
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are known in cognitive psychology as ‘content effects’ (Cosmides, 1989; Griggs

and Cox, 1982). A classic example is the Wason selection task, which was

originally designed to test just the kind of content-independent computational

abilities that one might expect people to have if logical principles were instantiated

in the laws of thought. The evidence suggests that they aren’t.

In the Wason task, subjects are given a rule of the form if P, then Q, a series of

cards showing on one side whether P is true and on the other side whether Q is

true, and asked to turn over whatever cards are necessary to determine if the rule is

broken. In contrast to what one would predict if subjects used the laws of formal

logic, the pattern of cards turned over depends heavily on the content of P and Q.

For example, if the rule is ‘if there is a vowel on one side of the card [P], then there

is an even number on the other side [Q]’, the pattern of cards subjects turn over,

i.e. which of the cards P, not P, Q, and not Q they select, tends to be different than

if the rule is ‘if you are drinking beer [P], then you must be over 21 [Q]’

(Cosmides, 1989; Griggs and Cox, 1982).

Why is this a problem? For Fodor, it is a problem because the rule that is used to

determine which cards to turn over should be sensitive only to the syntactic properties

of the Ps and Qs it is operating on. Recall that one test for whether a property is

syntactic or not is substitutability: can you swap out one P for a different P, and still

have a well-formed representation? If one considers two well-formed statements of

the form if P, then Q, one can see that this is, in principle, possible:

(A) If there is a vowel on one side of the card, then there is an odd number on the

other side of the card.

(B) If you give me ten dollars, then I will give you my watch.

One can, in fact, mix and match the Ps and Qs in some ways and still have an

intelligible if-then statement, for example: If there is a vowel on one side of the card,

then I will give you my watch. The intelligibility of this suggests that there are at least

some mechanisms for which there is an odd number on the other side of the card and I

will give you my watch are substitutable, and, therefore, are syntactically identical.

But the substitutability test can be a test in the other direction as well. In fact, we

can state this as a kind of deduction rule:

When replacing P1 with P2 in a representation causes the representation to be

processed differently by a particular procedure, P1 and P2 are not syntactically

substitutable/identical with respect to that procedure.

In other words, while sentences (A) and (B) above may appear to have the same

syntactic form to some procedure (e.g. a procedure for detecting grammatical well-

formedness), this does not mean that they necessarily have the same form for all

procedures. This is what Cosmides (1989) proposes: that I will give you my watch is a

kind of representational element that is admitted to a cheater detection algorithm,

whereas there is an odd number on the other side of the card is not. For formal logic, P
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and Q are syntactic categories that can take any propositions as input, but for

whatever logic the mind is using, this is not true—the tags that P and Q carry

influence how they are processed.

While Fodor is aware of Cosmides’ claim, he is skeptical that a representation

such as I will give you my watch could be ‘marked’ in some way that places it in a

different syntactic category, for some mechanisms, than there is an odd number on the

other side of the card. This is because he assumes that the inputs to a cheater

detection mechanism would have to be purely perceptual (this is entailed by his

equation of modular devices with input systems), and therefore that the device

would need to rely on some kind of perceptual cue to ‘decide whether what it’s

looking at is a social exchange’ (Fodor, 2000, p. 75). Because there are unlikely to

be simple perceptual cues that could reliably pick out social exchanges and only

social exchanges, he cannot envision such a device. As he puts it, even if social

exchanges in some ancestral environment were ‘orange with gray stripes’, they are

not likely to be now. ‘So the massive modularity thesis can’t be true unless there

is, inter alia, a module that detects the relevant Subtle Cues and infers from them

that a social exchange is going on’ (Fodor, 2000, p. 76).

But modules need not accept only perceptual cues as data; they can leverage the

prior operations of other devices, and combine perceptual with contextual

information. The use of semantic tags can in principle solve the problem of

how ‘orange color’ is added to a representation: just as Fodor says, there may be,

‘inter alia, a module that detects the relevant Subtle Cues and infers from them

that a social exchange is going on’. Or, more likely, there might be many

modules, each of which adds a tag to a representation on the basis of certain

properties. Among the requirements for admission to the cheater detection

mechanism, the representation must be tagged as being a social transaction, and

as involving costs and benefits; the final set of tags could be assembled by devices

each of which computes only a part of the necessary information (Figure 10).

That such prior tagging is crucial is suggested by the experimental observation

that the contextual story in which the rule is presented can cause subjects to
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Figure 10 Enzymatic computation of social contract primitives

282 H. C. Barrett

# Blackwell Publishing Ltd. 2005



interpret the same rule as either a social contract or a ‘descriptive’ (non-social-

contract) rule. In real life, I might hand you my watch as an offer to sell it, or to

hold it while I swim; the interpretation of the same percept will depend on

context and prior knowledge. This makes sense from a design perspective. The

social contract system is designed to pick out events that are defined by abstract

social properties, not perceptual ones.

11. Globality, Abduction, and Catalytic Equilibrium

We are now in the realm of ‘higher’ cognition, which, unlike perceptual processes,

seems quite flexible, and unlike the ‘computational reflexes’ that are said to result

in such things as optical illusions (Fodor, 1983; Pylyshyn, 1986). There is wide-

spread resistance to the notion that the kinds of semantic processes described above

could be handled by modular systems. For example, the fact that a given sentence

has so many shades of meaning and leads to so many possible inferences is taken by

many as proof itself that no modular system could be responsible for these effects.

Fodorean systems do indeed seem incapable of accounting for the global and

flexible properties of higher cognition, given their narrowly restricted input

pools and the impossibility of horizontal and top-down information transfer. In

particular, Fodor (2000) suggests that the phenomenon known as abductive infer-

ence, or ‘inference to the best explanation’, cannot be accounted for by any

computational system, because a wide and diverse array of facts might bear on

what the best explanation is. Facts must percolate through the entire system, and

there is no way of deciding in advance which facts are relevant. The problem, as

Fodor sees it, is that modular systems are ‘computationally local’, whereas phe-

nomena like abduction are ‘computationally global’. Information does not spread

throughout Fodorean systems, but remains only in the relevant processing stream.

Although specific solutions to problems such as abduction are not proposed

here, several features of enzymatic modular systems may render them better

candidates than Fodorean systems for solving problems like abduction, global belief

revision, and context effects on inference. First, percolation (diffusion, and diffu-

sion with catalysis) is possible: there is nothing to prevent the same representation

from passing through many different computational procedures, and a given

representation may be compared to many beliefs (i.e. other representations in the

system) simultaneously (in this sense, enzymatic systems are parallel processing

systems). Second, unlike Fodorean systems, enzymatic systems allow for the pos-

sibility of feedback, including both positive feedback (e.g. amplification) and

negative feedback (e.g. inhibition). For example, the bucket brigade algorithm of

Holland et al. (1986) suggests a means of reinforcing hypotheses consistent with

evidence. Third, reprocessing means that tagging of a representation by one

procedure can affect how it is then processed by other procedures; the same

piece of information can lead to different inferences depending on how it has

been previously tagged (which in turn can depend on the context in which it is
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presented). Searle (2002), for example, suggests that no rule-based (computational)

system could account for the difference in how the verb ‘cut’ is understood in ‘cut

the grass’ and ‘cut the cake’, nor why the sentences ‘cut the sun’ and ‘cut the

mountain’ violate our intuitions. But one can imagine a system for tagging

different substance kinds that would lead to ‘Cut the grass’ and ‘Cut the cake’

being admitted to different inferential processes, and ‘Cut the sun’ and ‘Cut the

mountain’ being blocked because of lack of substance tags.

Unlike Fodorean systems, in enzymatic computational systems every device in

the system has access, in principle, to every representation in the system, and

therefore, can in principle leverage the inferential power of every other device in

the system. In a system where information is allowed to propagate through all

relevant inference devices, all inferences that the system is capable of generating,

given its current set of rules and its complete knowledge database, will be gener-

ated. One might think of this kind of global process—representations seeping

through the system by diffusion and generating all possible inferences as they

go—as the system going to catalytic equilibrium. Abduction is, in a sense, the

reverse of this process—taking a diverse set of facts and back-generating the single

fact which, when passed through many inference systems, would produce these

diverse inferences. It seems at least intuitively plausible that these processes could

be something akin to reaching catalytic equilibrium in a massively parallel inference

system. The scope of propagation of new facts can in turn be governed by tags that

regulate which pieces of information are allowed to interact. For example, some-

thing like a ‘pretense’ tag could prevent counterfactual information that is being

entertained from corrupting true beliefs (Cosmides and Tooby, 2000). While the

details remain to be worked out, catalytic processes appear to be more promising

candidates for handling phenomena such as belief revision than are Fodorean ones.

12. Conclusion

Many features of the enzyme model presented here are not new in cognitive science.

For example, Selfridge’s (Selfridge and Neisser, 1960) pandemonium model, originally

intended to be a model of perceptual processes, involves many independent devices or

‘demons’ that scrutinize a common database, or blackboard, of information, and report

in parallel, and competitively, to higher-level demons that make decisions on the basis of

their collective output. The classifier system model (Holland et al., 1986) also uses a

bulletin board design, a system of tags, and further innovations such as the bucket

brigade algorithm as a means of inferential feedback. Nevertheless, widespread skepti-

cism about the possibility of higher cognitive processes being handled by specialized

devices persists. One major reason for this, I have argued here, is that the success of

Fodor’s model of modularity has impaired peoples’ ability to imagine other possible

architectures. Add to this the widespread belief that endorsing modularity implies

endorsing large numbers of complicated devices specified in every detail by large

numbers of gene loci (which it doesn’t), and people are prone to accept out of hand

Fodor’s claim that central processes can’t be modular, and can’t even be computational.
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Fodor’s argument is a case where the conclusion reached—that thinking can’t be

computational even in principle—should make us highly suspicious that at least

one of the premises is wrong. What is likely to be incorrect is the premise that all

systems composed of specialized devices must be Fodorean modular systems.

Evolutionary logic alone makes this assumption suspect. Because Fodorean mod-

ules have poor design features for solving problems faced by central cognitive

processes, we should expect that the devices that handle central cognition don’t

have those features. Moreover, we can use adaptationist design logic to generate

hypotheses about computational designs that could solve those problems. In

particular, central cognitive systems face problems of information routing, and

the integration of information from diverse sources, that are not faced by peripheral

systems that operate only on highly localized inputs. At the same time, just as

perceptual mechanisms gain inferential power by instantiating specialized routines

tailored to the kinds of information they are designed to process, so might central

inference mechanisms. Putting these two observations together can be a powerful

source of insight about the possible design features of central systems.

Unfortunately, many prefer to be persuaded by Fodor’s argument that it is better

to throw up one’s hands and declare central processes a mystery.

The enzyme model is offered not only as an existence proof, i.e. that non-Fodorean

modular systems are possible and exist, but also, as a step towards applying the logic of

adaptationism to understanding information handlingwithin themind. Just as engineers of

the world-wide web have developed systems of tags and routing for the control of infor-

mation in vastly parallel, open systems, and search engines that perform abduction-like

global inferences quickly, so natural selection might have designed similar systems for the

handling of information in the brain. There is nothing about the problem that implies that

the devices towhich the information is being routed are not highly specialized.

Finally, it is worth noting that analogies to real biological systems like enzymes

might offer different insights than analogies to artificial systems such as the CPU

architectures of modern computers. In the long run, natural selection is much

more innovative at finding solutions to problems than are people. To date, the

devices imagined in cognitive science have been constrained by the properties of

computers that we ourselves have built. But we may not have begun to imagine

the devices that natural selection has created. They are bound to be more ingenious

and stranger than anything we have yet invented ourselves.

Center for Behavior, Evolution, and Culture

Department of Anthropology, UCLA
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