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Abstract
We explore the interaction  between information sampling and 
the structure of the social  environment in the case of two 
prominent social learning strategies: imitate-the-best and 
imitate-the-majority. In a series of simulations a group of 
agents made repeated choices between options. We varied the 
building  blocks of the strategies used by agents, the structure 
of the social network and characteristics of the task 
environment. A key factor influencing strategies’  success is 
the speed with which they are able to respond to 
environmental change. In  general, imitate-the-best  provides a 
faster response compared to imitate-the-majority and larger 
samples help the former but hurt the latter. Less efficient 
networks decrease the performance of both, but are more 
detrimental for imitate-the-majority. Our findings highlight 
the role of sampling and social  structure in the study of social 
learning, an area not sufficiently explored before.

Keywords: Social learning;  information sampling; social 
networks; simple heuristics; simulation; decision-making

Introduction
Humans and other animals obtain information via social 
learning. This is an efficient way to save the time and effort 
involved in individual trial-and-error learning and is known 
to underlie our capacity for culture. Despite the diverse list 
of empirical evidence for its use in the wild (Laland, 2004; 
McElreath, et al. 2008), theoretical models exploring the 
adaptive nature of social learning strategies lack sufficient 
detail to explain when we should expect to observe them. 
Most models study unstructured groups and focus only on 
the decision phase of implementing a strategy (e.g. imitate-
the-majority), leaving open an important dimension 
affecting strategy performance: the interaction between 
information sampling and the structure of the social 
environment.  The present study is an attempt towards filling 
this gap in the literature. 

Social learning is often based on limited samples of the 
social environment. Most communities consist of sizable 
groups where an individual cannot survey all other group 
members within reasonable time before making a decision. 
Consider migrating animals deciding between multiple 
directions, individuals in an organization trying to jointly 

solve a problem or stock traders trying to predict the best 
investment option (Couzin, Krause, Franks & Levin, 2005; 
March, 1991). In such situations the way information about 
options is sampled from the social environment is likely to 
be an important aspect of any strategy. The structure of the 
social network in which social learning takes place can then 
in turn affect the options available for sampling. Previous 
work has shown that different network structures and their 
efficiency can affect the diversity of options in the 
population and the time it takes groups to converge on a 
solution (Lazer & Friedman, 2007; Mason & Watts, 2012). 
How does the performance of different strategies depend on 
the way they sample information and on the social 
environment in which they are embedded?

To address this question we study two representative 
social learning strategies: imitate-the-best and imitate-the-
majority (Boyd & Richerson, 1985; Laland, 2004) and 
model them as decision heuristics that consist of different 
building blocks: search, stop and decision rules (Gigerenzer, 
Todd & the ABC Research Group, 1999). By explicitly 
modeling these three phases we are able to test their relative 
contribution to strategy success in different social 
environmental structures.

 Overall, a general characteristic shared by many social 
learning strategies, including those we study here, is that 
they alter the structure of the social environment by 
increasing the frequency of the correct option (i.e. the one 
with the highest payoff) and simultaneously decreasing the 
diversity of options in the group. This is a result of their bias 
towards specific sources (best member, majority) and their 
selectiveness (e.g. copy only if payoff better)1. This property 
has been extensively studied in the context of biased cultural 
transmission (Boyd & Richerson, 1985) and suggests a key 
factor influencing strategy success in a changing 
environment: the speed with which they increase the 
frequency of the correct option in the group and,  therefore, 
their ability to respond to environmental change. Our goal 
here is to show how this speed can be influenced by the 
strategy’s building blocks (their sampling and decision rule) 
and by the structure and efficiency of the social network. 

In what follows we derive specific expectations, based on 
previous literature and preliminary analytic calculations, 

1 One can relax this assumption if other selective forces (e.g. natural selection) are at work.
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about the effects of different building blocks and network 
structures on imitate-the-best and imitate-the-majority.

We consider a hypothetical situation where a group of 
agents make repeated choices between two options (one 
correct, the other incorrect). Whenever the environment 
changes, the previously correct option becomes incorrect 
and vice versa.

Effects of decision rules. In general, as long as the correct 
option is used by the majority of agents in a group and the 
environment is stable, both imitate-the-best and imitate-the-
majority will converge to the correct option. However, 
under the assumption that the best member can be reliably 
identified within the sample, the imitate-the-best will always 
converge faster because it requires only a single agent with 
the correct solution to reach a decision, whereas imitate-the-
majority requires at least two out of three. As soon as the 
environment changes, the correct option will be in minority. 
In this case, imitate-the-best will still be able to find it, 
however, as predicted by the Condorcet Jury Theorem 
(CJT), imitate-the-majority will never find the correct 
option because it requires that the proportion of agents with 
the correct option be higher than 0.5 (e.g. Grofman, Owen 
& Feld, 1983).  

Effects of information sampling and sample size. The 
CJT  prediction may no longer hold when sampling is 
involved. Even if the correct option is in minority, imitate-
the-majority may still be able to find it. Sampling as 
opposed to group-level aggregation can create situations 
where the correct option is more frequent in one’s sample 
than overall in the group. When agents with such samples 
choose the correct option, this further increases the correct 
option’s frequency in the group as a result of the 
environment altering feature of social learning discussed 
earlier (Boyd & Richerson, 1985). Smaller samples are 
more likely to produce such situations, both because they 
are more likely to be biased and because they require fewer 
agents with the correct option in order to reach a decision. 
This suggests two situations where smaller as opposed to 
larger samples should benefit imitate-the-majority. First, 
whenever the group is converging towards the incorrect 
option,  smaller samples will delay this process and keep the 
payoffs of the group higher for the longer time. Second, 
when the correct option is in minority, smaller samples will 
make it more likely to accidentally have a majority of agents 
with the correct option.  In contrast,  for imitate-the-best 
larger samples are always more advantageous,  because they 
increase the chance of finding at least one agent with the 
correct solution. 

Effects of network structure.  Previous studies have 
demonstrated that higher network efficiency increases the 
speed with which information spreads and consequently 
decreases the diversity of information in the group.  More 
efficient networks should, therefore, favor all strategies. 
Network efficiency depends on a variety of factors (Mason 
& Watts, 2012); here we focus on clustering and average 
path length. As networks become more clustered and 
average path lengths increase, their efficiency decreases, 
and they maintain diversity for a longer time (Lazer & 

Friedman, 2007). We hypothesize that in such networks, the 
speed with which different strategies can find the correct 
option will become more important. As a result, the 
difference in speed between imitate-the-best and imitate-
the-majority should become even larger. More clustered 
networks could have an additional effect by enabling the 
occurrence of relatively homogeneous clusters using the 
same option. If this option is incorrect, imitate-the-majority 
using a sample within that cluster will not be able to find the 
correct option. In contrast, imitate-the-best should be less 
affected by diversity of information as it only requires a 
single agent with the correct option.

Method

Overview

We simulated a situation where multiple agents (N=100) had 
to make repeated choices between different number of 
options by acquiring information from their contacts. The 
choices they made directly affected their payoffs. 
 We created three social networks differing in their 
efficiency (as measured by clustering and average path 
length). Each agent had the same number of contacts in the 
network (d=10) and was assigned one of four decision 
strategies. Each strategy sampled randomly among one’s 
contacts but differed in its stopping and decision rule. The 
agents’  task was to make repeated choices between different 
number of options (2 or 10) at each time-step using their 
decision strategy. The environment could change on each 
time-step (ti) with some probability (pc) affecting the payoff 
of options at the next time-step (ti+1). The simulation was 
run for t=1000 time-steps and each condition was replicated 
30 times2.  To evaluate the performance of different 
strategies we tested them both in isolation and in an 
evolutionary competition where better performing strategies 
could replace worse performing ones. More specifically the 
simulation consisted of the following steps: 

1) at t=0 agents were placed in the networks and randomly 
assigned a decision strategy and an initial option 

2) from t=1 onwards, agents sampled the options and 
corresponding payoffs at ti-1 of their contacts

3) made a choice between sampled options based on their 
decision rules

4) only in the evolutionary competition: switched strategies 
with a small probability (introduced from t=50)

5) the environment changed with a certain probability, 
leading to a different option with the highest payoff

6) payoffs for the choice from step 3) were determined

Note that there is a lag between the information acquired 
from contacts and the realization of the agent’s payoff in the 
sense that information is collected before environmental 
change occurs, thus allowing for the possibility of acquiring 

2 Sensitivity analyses revealed that running the simulation for 2000 time-steps and 60 replications produced identical results.
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outdated information when the environment changes to a 
new state.

Decision strategies

We studied four decision strategies that differed in their 
building blocks (see Table 1). For each strategy we assumed 
that agents sample among their contacts randomly, and stop 
after collecting either a small (n=4) or a large sample 
(n=10)3. They then decide to try an option that is either 
endorsed by the majority of the sample contacts or by the 
agent that had the best payoff in the last time-step. In all 
cases agents only switch to a new option if that option’s 
payoff was higher at the previous time-step than the option 
they are currently using. In situations where these two 
payoffs are equal or when the majority rule results in ties, 
agents chose randomly.

Table 1: Decision strategies

Sampling rule Stopping rule Decision rule

random
 sample of 
contacts

n=4 imitate-the-majority
random

 sample of 
contacts

n=10 imitate-the-majorityrandom
 sample of 
contacts

n=4 imitate-the-best

random
 sample of 
contacts n=10 imitate-the-best

In order to keep track of a changing environment any 
social learning strategy requires that there is some form of 
individual learning generating novel options,  therefore, we 
allowed new information to enter the population through 
copying error, a parameter we fixed at pe=0.01. That is, on 
each step there was a 0.01 chance that the agent does not 
consider the option used by its contacts, but a randomly 
selected option, however, agents only switched to this 
option if it had a higher payoff at the previous time-step. 
This lies in contrast with other studies which allowed new 
information to enter the group by assuming that whenever 
other agents’ payoffs are lower or equal, the agent does not 
stick with its own option but explores other options 
randomly (Lazer & Friedman, 2007; Mason & Watts, 2012). 
These studies, therefore, allowed for a higher amount of 
innovation than our model.  In this way we explore the 
performance of social learning strategies when aided with 
only a minimum amount of individual learning.

Decision environment

Two factors affecting the decision environment were varied 
in different simulations: a) the number of options available  
and b) the rate of environmental change.  To manipulate the 
first factor we assumed that agents choose either between 2 
or 10 options with payoffs ranging from 1 to 2 and from 1 to 

10 respectively. At any given time, only one option had the 
highest payoff. On the first time-step agents were assigned 
options randomly. In conditions with 2 options, we varied 
the initial proportion of the correct option in the group 
(pinit=0.2, 0.5 or 0.7). For 10 options each option had the 
same initial proportion. For the second factor we assumed 
that the payoffs of options can change on each time-step 
with probability pc=0.001, 0.01, 0.1 or 0.4 reflecting a 
discreet scale between slow and fast rates of change. We ran 
all possible combinations of environmental change on all 3 
network structures described below.

Network structure

Three different networks were created, ranging from most 
efficient to least efficient as measured by two standard 
indicators in the network science literature (Mason & Watts, 
2012): clustering coefficient and average path length. The 
clustering coefficient measures the extent to which the 
network is dominated by isolated cliques, which from a 
communication perspective decreases the efficiency of a 
network by making it harder for information to spread the 
higher the clustering. Consider an example where small 
groups of tightly connected agents exchange information but 
because groups are isolated from other groups information 
spreads much slower between these small units. 
  Another measure of efficiency is average path length, the 
average number of steps it takes to get from any agent to 
any other agent in the network. The shorter the path length 
the more easily information can spread.  The efficiency of a 
network is known to affect how quickly information spreads 
from one part to another, however, it can also enable 
maladaptive information to spread more rapidly as in the 
case of panics following flu pandemics or stock bubbles. 
Many real-world networks are known to have both high 
clustering and low average path lengths thus representing an 
intermediate level of efficiency.  These small-world 
networks (Watts & Strogatz, 1998) can be mimicked by 
performing random re-wirings on edges of a lattice.  In line 
with previous studies (e.g. Schwenk & Reimer, 2007), we 
started by first generating a random directed lattice and then 
rewired it with a 0.1 probability to obtain a small-world 
network4. In addition we created a fully-connected network 
absent of any structural properties to be able to compare to 
previous studies that focused on unstructured groups (see 
Table 2).  All three networks had a fixed degree of 10 and a 
total of 100 nodes (d=10, n=100).

3 Sensitivity analyses with sample sizes n=3 and n=9 produced similar results and we do not report them here.

4 Other networks with lower values of rewiring produce similar results, therefore, we omit them.
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Table 2: Types of networks used in the simulation
    (n=100, d=10)

Network Clustering
coefficient

Average 
path length

Rewiring 
probability

Lattice 0.67 5.55 p=0
Small world 0.31 2.35 p=0.1
Fully 
connected 1 1 p=1

Evolutionary competition

In order to properly evaluate each strategy we look at 
their performance both in isolation (in homogeneous groups 
using the same strategy) and by directly testing different 
strategies against each other (heterogeneous groups) in an 
evolutionary competition. In the former we are interested in 
isolating the factors contributing to the success of different 
strategies, whereas in the latter we wish to evaluate them in 
a competitive setting where the performance of a strategy 
can depend on the strategies used by other agents in the 
group. Evolutionary competitions are a popular method in 
the study of social learning (e.g. Rendell, et al. 2010) where 
the strategy accumulating the highest payoff has the best 
chance of reproducing and spreading in the population, 
while the worst performing strategies die out. The 
prevalence of a strategy is, therefore, a clear-cut measure of 
its success in a given environment. 

There are many ways to implement an evolutionary 
dynamic. Here we chose the ‘imitation process’ (Nowak, 
2006) in order to reflect a plausible real-life scenario.  We 
assumed that on each time-step, randomly selected agents 
change their strategies to one of their contacts’ strategy with 
a probability proportional to the cumulative payoff of that 
contact. If none of the contacts has a higher payoff, the 
agent keeps its strategy, and in situations of equal payoff 
random choice is implemented. We fixed the parameter 
specifying the probability of strategy change to ps=0.02 thus 
expecting 2 agents switching strategies on each time-step. 
Evolutionary dynamics were introduced from the t=50 time-
step to allow for a burn-in period.

Simulation results

Figure 1A shows the overall performance of the four 
different decision strategies observed in isolation, measured 
by their rate of environmental tracking (percentage of agents 
using the correct option on each time-step).  We show the 
results for 2 options, probability of environmental change 
pc=0.001, and initial probability of correct option pinit=0.5,  
averaged across networks5.  To make the main results easier 
to view, we focus on the time-steps before and after 
environmental change occurring at t=100. Figure 1B shows 
the frequency of different strategies in the evolutionary 

competition averaged across networks for the same 
environmental condition. Overall, imitate-the-best 
consistently outperforms imitate-the-majority both in 
homogeneous and heterogeneous groups. This result holds 
in all network structures and in environmental conditions. 

Figure 1. Panel A. Performance of strategies observed in 
isolation. Panel B. Frequency of strategies in the 
evolutionary competition.  Results are shown for 
environmental conditions pc=0.001 and pinit=0.5, averaged 
across networks.

Effects of information sampling

From Figure 1A we can see the number of time-steps it 
takes groups using each of the strategies to converge on the 
correct solution after the environment has changed. As 
expected,  imitate-the-best benefits somewhat from larger 
samples, however, even its small sample version 
outperforms both versions of imitate-the-majority. The 
opposite is the case for imitate-the-majority, which is hurt 
by larger samples and actually performs better when it 
samples fewer people.  This result highlights that speed with 
which different strategies can recover after environmental 

5 Results for 10 options and other rates of environmental change and initial probability of correct option do not change the main 
conclusions and we do not present them here.
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change is crucial to their success and demonstrates that 
different sampling regimes should be adopted depending on 
the decision rule used.

As mentioned before, without sampling,  imitate-the-
majority will converge on an incorrect option whenever the 
proportion of agents using the correct option is smaller than 
0.5.  As expected, these results do not hold when decisions 
are based on sampled information as opposed to overall 
group aggregation. As visible in Figure 1A, imitate-the-
majority is able to find the correct option even when the 
proportion of agents using it falls under 0.5. As a sensitivity 
check, we reran our simulations with pinit=0.2 and copying 
error of pe=0, allowing no new information to enter the 
population. Even then, imitate-the-majority can still 
converge on the correct option, in particular when it uses 
small samples.

Figure 2. Performance of different strategies in the three 
network structures. Results are shown for environmental 
conditions pc=0.001 and pinit=0.5

Effects of network structure

Overall, we find that regardless of strategy, more efficient 
networks are faster at spreading information and that this 
helps groups in all conditions. However, we observe an 
effect for network structure on the relative difference 
between strategies.  Figure 2 shows that the difference 
between strategies is least pronounced in the fully connected 
network absent of any structural properties, however, as 
networks become more structured (thereby decreasing the 
efficiency and speed with which information flows), the 
difference between imitate-the-best and imitate-the-majority 
becomes more pronounced.

The effect of network structure is especially visible 
immediately after environmental change. In networks with 
high clustering and long path lengths such as lattice, 
relatively isolated agents may form homogeneous groups 
possessing the same information. In these situations, 
imitate-the-majority has problems finding the correct option.  
The larger the sample, the more prone is this strategy to get 
stuck. As expected, the performance of imitate-the-best is 
less affected by network structure.

Discussion
Our goal was to study how information sampling and the 

structure of the social environment affect the performance 
of two representative social learning strategies: imitate-the-
best and imitate-the-majority. We modeled social learning 
strategies as heuristics consisting of different building 
blocks and embedded them in three social networks in a task 
involving repeated choices between multiple options. 

Overall, we find that imitate-the-best consistently 
outperforms imitate-the-majority and our results suggest 
that the reason underlying this finding is the speed with 
which different strategies are able to respond to 
environmental change. This speed is affected both by 
different building blocks and the structure of the social 
environment.  Imitate-the-best is always faster at finding the 
good option because its decision rule requires fewer correct 
instances in the sample and larger samples are always 
beneficial. In contrast,  sample size has a counterintuitive 
effect on imitate-the-majority with smaller samples 
increasing the likelihood and thereby the speed of finding 
the correct option. The relative difference between imitate-
the-best and imitate-the-majority, however, is moderated by  
network structure. More efficient networks (those with 
lower clustering and shorter path lengths) benefit all 
strategies and decrease the difference between them while 
less efficient networks (with more clusters and longer path 
lengths) increase the difference by having a worse impact on 
imitate-the-majority. 

Information sampling as opposed to group-level 
aggregation has an additional effect on imitate-the-majority: 
it can still converge on the correct option, even if less than 
50% of the group is using it. This result lies in contrast to  
the predictions of the Condorcet and related Theorems on 
full group-level aggregation of information in a single trial 
(Grofman, Owen & Feld, 1983). 
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Both imitate-the-best and imitate-the-majority have been 
extensively studied both theoretically and empirically (e.g. 
Conradt & Roper, 2003; Garcia-Retamero, Takezawa & 
Gigerenzer, 2006; Hastie & Kameda, 2005; Katsikopoulos 
& King,  2010; McElreath, Wallin & Fasolo, 2012). Much of 
this work has studied small and unstructured groups and 
focused exclusively on the decision-phase of implementing 
these strategies (but see Pachur,  Rieskamp & Hertwig, 2005; 
Schwenk & Reimer, 2007 for exceptions in other contexts). 
We believe that this leaves many important details affecting 
strategy success unaddressed and can be one reason why 
some studies reach different conclusions. The present study 
is a first step towards developing a more general framework 
for capturing the interactions between the building blocks of 
social heuristics and the structure of the social and task 
environments that they exploit. We propose that their study 
can bring novel insight into our understanding of social 
phenomena including the evolution of different social 
learning rules, the diffusion of innovations in cultures or the 
strategy selection process in social domains.
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