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ABSTRACT:  We present a three dimensional fluid-structure coupling between SPH and 3D-DDA for 
modelling rock-fluid interactions. The Navier-Stokes equation is simulated using the SPH method and 
the motions of the blocks are tracked by a Lagrangian algorithm based on a newly developed, explicit, 
3D-DDA formulation. The coupled model is employed to investigate the water entry of a sliding block 
and the resulting wave(s). The coupled SPH-DDA algorithm provides a promising computational tool to 
for modelling a variety of solid-fluid interaction problems in many potential applications in hydraulics, 
rock mass stability, and in coastal and offshore engineering.

the landslide generated waves are the main hazard. 
Historic examples of larger slides producing tsuna-
mis include the Shimabara event in, Japan in 1792 
and the slide at the Ritter Island Volcano into the 
sea northeast of New Guinea in 1888, which is the 
largest lateral collapse of an island volcano to be 
recorded in historical time, (Ward and Day, 2003). 
A major future collapse of the Cumbre Vieja vol-
cano at La Palma on the Canary Islands has been 
suggested, (Ward and Day, 2001).

The complexity of the water-rock mass interac-
tion has been studies using both experimental and 
analytical methods. Fritz (2002) and Fritz et al. 
(2003a, b, 2004) performed experiments to study 
waves created by a deformable landslide in a 2D wave 
tank. Zweifel et al. (2006) also used experiments to 
study the non-linearity of impulse waves. Huber and 
Hager (1997) looked at both 3D and 2D impulse 
waves. Raichlen and Synolakis (2003) performed 
experiments with a freely sliding wedge representing 
a land slide. Liu et al. (2005) used the same type of 
experiments to validate a numerical model, based on 
the large-eddy-simulation approach. Recently, Sæle-
vik et al. (2009) performed two-dimensional experi-
ments of wave generation from the possible Åkneset 
rock slide using solid block modules in a transect 
with a geometric scaling factor of 1:500.

The numerical simulation approaches used a 
number of different methods. For example, Harbitz 
(1992) simulated tsunamis generated by Storegga 
slides using linear shallow water equations. Jiang 

1  GENERAL INSTRUCTIONS

In geotechnical engineering and rock mechanics flu-
id-solid interaction is often thought of and presented 
in terms of the influence of seepage through the 
rock mass and has been historically treated without 
recourse to discrete body mechanics. However, water 
flowing over the rock mass or rock impacting on a 
body of water represent completely different types of 
problems, which not only require the consideration of 
discrete body mechanics, but also the consideration 
of 3-D geometry in order to provide a realistic repre-
sentation of the phenomena. For example, rock slides 
and rock falls into confined bodies of water, such as 
lakes, fjords and dams, have been known to produce 
large amplitude waves with disastrous consequences 
such as the 1934 rock slide into Tafjord in Western 
Norway (Sælevik et al. 2009). There, 1.5  ⋅  106  m3 
of rock plunged into the fjord and produced water 
run-up heights up to 60 m and resulted in the death 
of 41 people. Other examples are the Lituya Bay, 
Alaska, where an earthquake caused a sub-aerial 
rock slide into Gilbert Inlet on July 8, 1958, yielding 
a maximum run-up of 524 m, (see Fritz et al., 2001) 
and the Vaiont reservoir disaster, 1963, where the 
waves over-topped the dam and claimed 2500 casual-
ties, (see e.g. Semenza and Ghirotti, 2000).

Local mass gravity flows and slumps are believed 
to be regularly triggered by earthquakes. In some 
cases, such as for the 1998 Papau NewGuinea 
event, (Bardet et al., 2003; Lynett et al., 2003), 
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and Leblond (1992, 1994), Fine et al. (1998), 
Thomson et al. (2001), Imamura et al. (2001), 
Titov and Gonzalez (2001) used nonlinear shal-
low water approximation to model the slide-water 
system as a two-layer flow. Lynett and Liu (2002) 
discussed the limitations of the depth-integrated 
models with regards to landslide-generated waves, 
and developed fully nonlinear weakly dispersive 
model for submarine slides that is capable of simu-
lating waves from relatively deep water to shallow 
water. Grilli and Watts (2005) derived and vali-
dated a two-dimensional fully nonlinear dispersive 
model that does not have any restrictions on the 
wave amplitude, wavelength, or landslide depth, 
and describes the motion of the landslide by the 
position of its center of mass.

The limitation of these approaches has been the 
assumption that the slide mass, soil or rock, could 
be approximated as an equivalent fluid mass or a 
continuous solid. While this approximation may be 
adequate and valid in many instances, it is desirable 
to be able to model the complexity of individual 
rock blocks interacting with water independently, 
thus allowing a greater flexibility in the type of 
phenomena that is modelled.

In this paper we present Discontinuous Defor-
mation Analysis (DDA) coupled with Smoothed 
Particles Hydrodynamics (SPH) numerical model 
for the study of rock-fluid interaction in 3-D. Since 
its introduction by Shi (1993), 2-D DDA has been 
extensively developed in theory and computer codes, 
and there has been a significant interest in extend-
ing the formulation to 3-D. Shi (2001 a, b) presented 
the 3-D block matrices such as mass matrix, stiff-
ness matrix, point load matrix, body load matrix, 
initial stress matrix and fixed point matrix. Herein 
we present new explicit time integration procedure 
for the solution of 3D-DDA algorithm in order 
to reduce the computational effort and memory 
requirement. A uniform spatial discretization 
method is utilized to eliminate unnecessary contact 
computations. The contact resolution is handled by 
FCP approach (Fast Common Plane, Nezami et al. 
2004) and HalfEdge data structure is used to handle 
the frequent navigation into the topological infor-
mation associated with polyhedral blocks.

Smoothed Particle Hydrodynamics (SPH), a 
meshless Lagrangian method, is a method that can 
capture the complexity of free surface flow with 
fragmentation and splashes. The SPH technique 
was conceived by Lucy (1977) and further devel-
oped by Gingold and Monaghan (1977) for treat-
ing astrophysical problems. Its main advantage is 
the absence of a computational grid or mesh, since 
it is a Lagrangian particle based method. This 
allows the possibility of easily modelling flows with 
a complex geometry or flows where large deforma-
tions or the appearance of a free surface occur.

The interaction model uses SPH to model the 
fluid and the rigid body solids are modelled using 
3-D DDA. However, the general interaction model 
we propose works with any type of solid model 
representation as long as the object is represented 
by a polygonal surface and the fluid by Lagrangian 
particles.

2  Contact Detection using 
Uniform Grid

Contact detection and resolution is the most time-
consuming part of DEM/DDA analyses and gen-
erally takes about 80% of the overall computational 
time for particles (Horner et al. 2000). Contact 
resolution and detection is commonly performed 
in two consecutive phases (Perkins and Williams 
2001), namely, neighbor search and contact detec-
tion (Figure 1). Neighbor search phase develops a 
neighbor list of all potential interacting particles 
within a neighborhood of the target particle. To 
speed up the contact detection process a prob-
lem region is divided into a number of cells and 
blocks are “mapped” into cells according to the 
locations of their vertices. The contact detection 
is carried out only between potential block vertices 
contained in each cell (Figure 1). Re-mapping of 
cells is triggered whenever one block moves out-
side its original cell space. For example in Figure 1, 
block A’s box list includes boxes 7, 8, 12, and 13; 
and box B’s block list includes particles 14, 15, 19, 
20, 24 and 25 and block C’s box list includes boxes 
4, 5, 9, 10, 14 and 15. These lists are obtained by 
defining a cuboid bounding volume around each 
particle and comparing it against the boxes. In this 
paper the faces of the cuboid bounding volume are 

Figure 1.  Cell mapping of block (1, 2, 3, …-Cell Number 
and A, B, C-Blocks).
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confined to be parallel to coordinate planes of the 
global coordinate system.

The performance of the neighbor search algo-
rithm is dependent on the particle shape and the 
ratio of the box size S to the average bounding box 
size D50 (Nezami et al. 2004). Nezami et al. (2004) 
suggest that contact search optimal perform-
ance correspond to the approximately S/D50 = 1.5 
(Nezami et al. 2004).

3  CONTACT RESOLUTION USING FCP 
ALGORITHM

After a search for the colliding objects is made for 
all discrete blocks, the next step is to find the points 
of intersection on the sides of the home element 
with the sides of the near element. Common-plane 
(CP) algorithm was introduced by Cundall (1998) in 
order to reduce the expensive object-to-object con-
tact detection problem to a less expensive plane-to-
object contact problem in DEM. The CP is defined 
as a plane bisecting the space between the objects. 
After CP has been located each object is tested sepa-
rately for contacts with the common-plane. Nezami 
et al. (2004) proposed the fast common plane (FCP) 
method in which they improved the original CP 
algorithm by adding a fast method to identify the 
right candidates for the plane. In FCP, the number 
of iterations is significantly reduced by limiting the 
search space of the CP to a few candidates. In our 
approach, the FCP method is applied to the contact 
detection and the common-plane is selected as the 
reference plane for vertex-to-vertex, vertex-to-edge 
and edge-to-edge contacts in the 3-D DDA.

The FCP algorithm to find the CP consists of 
following five steps (Nezami et al. 2004):

i.	 If  there is a CP from the previous time step 
then use it as the initial guess for the CP in this 
time step. Otherwise, set the CP as the perpen-
dicular bisector (PB) plane of the line connect-
ing the centroids of the two blocks.

ii.	 Based on the guess CP, find the closest vertices A 
and B in two contacting blocks. If more than one 
pair of closest vertices have the shortest length (i.e., 
those vertices are equidistant), then any of them 
can be chosen to proceed with the algorithm.

iii. � For the two closest vertices A and B found 
in Step 2, check all candidate planes of and 
find the one with the largest gap or smallest 
overlap. The candidate planes could be on the 
plane listed below:

		  a. � Type a: The PB plane of segment AB.
		  b. � Type b: The plane passing through the mid-

point of segment AB parallel to one of the 
faces of particles A or B. For particle A, only 
faces which include the vertex A are considered. 

For  particle B, only faces which include the 
vertex B are considered.

		  c. � Type c: The plane passing through the mid-
point of segment AB parallel to one edge 
from particle A and one edge from particle B. 
For particle A, only those edges which share 
the vertex A are considered. For particle B, 
only those edges which share the vertex B are 
considered.

		  d. � Type d: The plane passing through the mid-
point of segment AB parallel to one edge 
from one of the particles.

iv.	 If the CP obtained in Step 3 is the same as the 
one from Step (ii), then it is the correct common 
plane. Otherwise go to Step (ii). This is an itera-
tive algorithm, with consisting of steps (ii)–(iv) 
in each iteration. The number of iterations 
required to find the CP is usually very small and 
the position of the selected CP is accurate. This is 
mainly because the iteration is done to locate the 
two closest vertices, rather than the CP itself.

4  Compact data structure 
(HALFEdge)

FCP algorithm needs access to topological infor-
mation such as faces and edges sharing the same 
vertices A and B, as just explained. The simplest 
way of storing the information is a data structure 
that explicitly stores all topological entities; and 
all the adjacency relationships among them. This 
allows very efficient query process, but demands 
high, sometimes prohibitive, storage space. Moreo-
ver, editing tasks may demand high computational 
efforts because several adjacency relationships 
have to be updated. In this paper, authors use 
the compact adjacency-based topological data 
structure for representing the polyhedral block 
so called HalfEdge (HE). The HE data structure 
allows adjacency information to be found in near 
real time, making it especially useful for FCP algo-
rithm where frequent access is needed to different 

Figure 2.  Possible CP for colliding blocks.
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types of adjacency information and also reduces 
redundancy.

The main idea of the half-edge is to “split” 
each edge along its length and store pointers to 
its previous and next edges, see Figure 3. The full 
implementation in C++ can be seen in Algorithm 1 
(Gustav, 2010).

A face is not defined explicitly instead it can be 
found by using the next or previous pointers. With 
this data structure, finding neighboring faces of a 
vertex is O(1) and for a complete mesh O(n) and 
the topological queries of the polygon mesh can be 
performed easily and quickly. The time complexity 
of these queries is linear in the amount of informa-
tion gathered and independent of global complex-
ity. For example, iterating over the faces adjacent 
to a vertex requires the following sequence of steps 
(Gustav, 2010):

i.	 Find an edge connected to the given vertex.
ii.	 Step out on the edge loop and insert the face 

connected to this edge.
iii.	Use edge- > next- > pair- > next to traverse to 

next face and insert this face into the temporary 
vector.

iv.	Repeat step (iii) until encountering the face 
inserted in step (i).

Algorithm 1: Half-edge data structure.
class Halfedge { // topology
public:
Vertex* vert;
Halfedge* next;
Halfedge* prev;
Halfedge* pair;
Face* left;
};
class Vertex { //geometry
public:
float x, y, z;
Halfedge* edge;
};
class Face {
pulic:
Halfedge* edge;
};
class Polyhedron {
public:
Vertex verts [V];
Face faces [F];
Halfedge edges [3F];
};

5  Explicit Time Integration 
Scheme

Let Dn and Dn+1 denote the approximation to 
the values D(t) and D(t  +  1) for a time step ∆t, 

respectively. Recall the system of equations Eq. 1 
of motion for a DDA system (Shi, 1993):

MD CD KD Fn n n n
 

+ + + ++ + =1 1 1 1 	 (1)

with D D D( ) , ( )0 0 0 0= =   as initial boundary con-
ditions. In the above M, C, K are the global mass, 
damping and stiffness matrices, F is the time 
dependent applied force vector, and  D D, , D and 
denote acceleration, velocity and displacement 
vectors, respectively.

Original DDA time integration scheme adopts the 
Newmark (1959) approach, which for a single degree 
of freedom can be written in the following manner:

u u tu t u t ui i i i i+ + ++1
2

1
2

1
1
2

= + −





+∆ ∆ ∆  β β 	 (2)

   u u tu tui i i+ + +1 1 11= + − +( )γ γ∆ ∆ 	 (3)

where  u u, , and u are acceleration, velocity, and dis-
placement respectively, ∆t is the time step, β and γ are 
the collocation parameters defining the variation of 
acceleration over the time step. Unconditional sta-
bility of the scheme is assured for 2β ≥ γ ≥ 0.5. DDA 
integration scheme uses β = 0.5 and γ  = 1, thus set-
ting the acceleration at the end of the time step to 
be constant over the time step. This approach is 
implicit and unconditionally stable. Substituting 
Eqs. 2 and 3 into Eq. 1 results in the system of equa-
tions for solving the dynamic problem:

2 2 2
2 1 1∆ ∆ ∆t

M
t
C K D F

t
M C Dn n n+ +





= + +



+ +


� (4)

Figure 3.  The half-edge data structure as seen from the 
bold half-edge.
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The solution of Eq. 4 requires assembling the 
global mass and stiffness matrices and solving the 
coupled system of equations using a direct matrix 
inverse operation or an iterative solver. The global 
stiffness matrix, K, includes the sub-matrix repre-
senting deformability of blocks and contacts, with 
contact matrices as off-diagonal terms.

In the original DDA code (Shi, 1993) the global 
equations are solved iteratively by repeatedly add-
ing and removing contact springs (penalty values) 
until each of the contacts converges to a constant 
state at each time step. This procedure of adding and 
removing contact springs (penalty values) is known 
as open-close iterations in the DDA literature 
(Doolin and Sitar, 2004). If  contact convergence is 
not achieved typically within six iterations, the time 
step is reduced and the analysis is repeated with the 
reduced time step. The incremental displacement is 
restricted also by user-specified displacement limit 
to enforce infinitesimal displacements. If  the incre-
mental displacement is greater than the threshold, 
∆t is divided by three and the analysis is repeated. 
Large values of ∆t may cause large penetrations at 
contact points; which results in more iterations to 
satisfy the penetration threshold. Also, large pen-
etrations result in large contact matrices which can 
reduce the diagonal dominance of the global stiff-
ness matrix leading to poorly conditioned system 
of equations.

In the explicit solution procedure presented 
herein the discrete blocks are integrated explicitly 
by the central difference method, which gives

u u t ui i i i+ + += +1 1 1∆  	 (5)

  u u t t ui i i i i+ − += +1 2 1 2 1
1
2/ / ( )+ ∆ ∆ 	 (6)

where i, i + 1/2 and i, i − 1/2 refer to the increment 
number and mid-increment numbers

u M F Ii i i= −−1( ) 	 (7)

where M is mass matrix, F the applied load vector 
and I is the internal force vector. The equations relat-
ing these values to each other are solved locally for 
each time-step. Moreover, since there is no need to 
solve a complete system of equations, the incremen-
tal calculations for each degree of freedom are done 
independently at the local level. This uncoupling of 
the equations of motion is one of the major advan-
tages of explicit integration schemes. In contrast 
to the implicit time integration scheme, the explicit 
solution scheme eliminates the need for assembly of 
global mass or stiffness matrices and inversion of the 
global matrix. However, computations are condi-
tionally stable, i.e., the time-step size must be smaller 
than a certain critical value (critical time step, ∆tc) for 

numerical errors not to grow unbounded. The time 
increments must satisfy the well-known criterion

∆t ≤ 2
ω max

	 (8)

where ωmax is the element maximum eigenvalue.

6  Numerical modeling of water 
flow

6.1  Navier-Stokes equations

The dynamic behaviour of a viscous fluid, like 
water, is completely described by the so-called 
Navier-Stokes equations (NSEs). The equations 
for incompressible fluids are the mass conservation 
equation and the momentum conservation equa-
tion. Many forms of the NSEs appear in the litera-
ture. Equations (9) and (10) represent a simplified 
version for incompressible fluids.

∇ ⋅ =u 0 	 (9)

δ
δ ρ

u
t

u u p v u f+ + +( . )∇ = ∇ ∇1 2 	 (10)

where ρ, u, P, ν, g are density, velocity, pressure, 
dynamic viscosity coefficient of the fluid and grav-
itational acceleration, respectively. The first equa-
tion is the incompressibility condition. The second 
equation is called momentum equation which 
describes how fluid moves due to the forces.

6.2  Smoothed Particle Hydrodynamics (SPH) 
equations

The SPH is an interpolation method for fluid 
motion simulation. SPH uses field quantities 
defined only at discrete particle locations and can 
be evaluated anywhere in space. SPH distributes 
quantities in a local neighborhood of the discrete 
locations using radial symmetrical smoothing 
kernels. A scalar value A is interpolated at loca-
tion r by a weighted sum of contributions from the 
particles: In SPH, a physical value at position x is 
calculated as a weighted sum of physical values ϕj 
of  neighbouring particles j

A X m W X Xs j j
j

j( ) ( )= −Σ
ϕ
ρ

j 	 (11)

where mj, ρj, Xj are the mass, density and posi-
tion of particle j, respectively and W is a weight 
function.

The use of particles instead of a stationary grid 
simplifies these two equations substantially. First, 
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because the number of particles is constant and each 
particle has a constant mass, mass conservation is 
guaranteed and (9) can be omitted completely. Sec-
ond, the expression δ

δ
u
t u u+ ⋅∇( )  on the left hand side 

of (10) can be replaced by the substantial derivative 
δ
δ

u
t  Since the particles move with the fluid, the sub-

stantial derivative of the velocity field is simply the 
time derivative of the velocity of the particles mean-
ing that the convective term u•∇.u is not needed for 
particle systems. We regard NSEs as the governing 
equations, and calculate density, pressure and viscos-
ity force separately using SPH numerical methods. 
The density of fluid is calculated with Eq. 12 as

ρ j j j i jm W r r h= −Σ ( , ) 	 (12)

Accuracy of the algorithm highly depends on 
the smoothing kernels. For our implementation we 
used the following kernel:

W r h
h

h r r h
r h

( , )
( ) ( )

( )
=

− ≤ ≤
>





315
64

0
09

2 2 3

π
	 (13)

The weight functions used by Muller et al. are 
also used in this literature (Muller et al., 2003). 
Instead of an equation described by the SPH rule a 
modified solution is used for pressure force because 
it guarantees the symmetry of forces:

f m
p p

W r r hi
pressure

j j
i j

j
spiky i j= − ∑

−
∇ −

2ρ
( , ) 	 (14)

For pressure computations we use Debrun’s 
spiky kernel (1996):

∇ =

−





≤ ≤ =

>







W r h

h

h r
r

h r r h r r

r h

spiky ( , )

( , | |)

( )

45 2 0

0
6

2 2

π

+
	 (15)

The pressure at particle locations has to be cal-
culated first, which can be computed via the ideal 
gas equation:

p kr= 	 (16)

where k is a gas constant that depends on the 
temperature. A modified version—which we used 
in our implementation—makes the simulation 
numerically more stable:

p k= −( )ρ ρ0 	 (17)

where ρ0 is the at-rest density. Applying the SPH rule 
to the viscosity term also yields to asymmetric forces 

because the velocity field varies. The idea of sym-
metrizing the expression is using velocity differences:

f m
v v

W r r hi
viscosity

j j
i j

j
viscosity i j= ∑

−
∇ −( )µ

ρ
2 , 	 (18)

In (Muller et al. 2003), Muller designed a kernel 
for the computation of viscosity forces:

∇ =
− ≤ ≤ =

>




2

6

45 0
0

W r h

h
h r r h r r

r h

vis itycos ( , )
( ) ( , | |)

( )π

	 (19)

Finally, for the acceleration ai of  a particle i we 
have

a f f fi
i

i
pressure

i
vis ity

i
external= + +( )1

ρ
cos 	 (20)

where fi
external  are external body forces such 

as gravity forces. We have used a simple Euler 
integrator in our simulations, which is first order 
accurate in position and velocity, and can be 
written as,

v t t v t t a t
x t t x t tv t t

i i i

i i i

+( ) = +
+ = + +

∆ ∆
∆ ∆ ∆

( ) ( )
( ) ( ) ( ) 	 (21)

where ∆t is the time step.

7  Coupling between SPH and DDA

The coupling algorithm used here is parallel; fluid 
(SPH) and solid block (DDA) evolutions are calcu-
lated explicitly at the same time. In order to couple 
the SPH and DDA the interaction force between 
fluid particles and solid blocks needs to be esti-
mated. We choose to employ a fairly standardized 
“repulsion” force to prevent a particle from pen-
etrating the boundaries. This method was chosen 
for the ease with which multiple types of bound-
aries can be implemented. The repulsion force is 
fairly easily implemented for both “wall bounda-
ries” as well as “solid blocks”. The no-penetration 
condition states that the fluid cannot penetrate the 
boundary surface. To repel the fluid particles from 
the boundary we use a penalty-force method:

f K d v n K ni
boundary

S D= − ⋅ ⋅( ( ) ) 	 (22)

where KS is the penalty force stiffness and KD is 
the damping coefficient for the velocity v of  an 
approaching fluid particle d is the penetrated dis-
tance measured normal to the boundary, and n 
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is the unit-length surface normal. It can be seen 
from Equation (22) that the penalty force method 
behaves as a spring-based model, because the more 
a particle penetrates the boundary the more it is 
pushed away from the surface.

8  Simulations

Three examples are presented to demonstrate the 
newly developed 3-D DDA algorithm. The scenes 
in the following examples have been rendered with 
POV-ray, a free code ray tracing rendering program 
(POV-Ray, 2004).

8.1  Example 1: Wave maker

This simulation involves a wave maker in the form of 
an oscillating piston on the one end of the model, a 
straight line beach with a slope of 4% and a horizon-
tal section 70 m long between the wave maker and the 
beach. The SPH simulation used almost 65000 par-
ticles and the boundaries as well as wavemaker itself  
have been simulated using as rigid blocks. Figure 4 
shows the propagating waves onto the beach.

8.2  Example 2: Sliding block

In this example we simulate waves generated by 
a rigid wedge sliding into water along an inclined 

Figure 4.  Particles and rigid block configuration for the wavemaker.
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Figure 5.  Particles and rigid blocks configuration for the rigid wedge sliding down a plane inclined 25°on the horizontal 
at different time steps.
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plane. In this simulation water waves were gener-
ated by allowing a wedge shape block to freely slide 
down a plane inclined 25° on the horizontal. The 
density of the wedge assumed to be 2500 kg/m3. 
The SPH simulation used almost 25000 particles 
and the boundaries as well as sliding block have 
been simulated as rigid blocks. Particles configura-
tion due to sliding of the rigid wedge is presented 
at different times in Figure 5.

9  Conclusions and Future Work

We introduce a three dimensional numerical model 
coupling the SPH method and 3D-DDA for mode-
ling fluid-discrete solid body interaction problems. 
The coupling algorithm is very efficient when deal-
ing with fluid-structure interaction problems in the 
presence of a free-surface and is relatively simple 
to implement. The ability of SPH to fragment and 
reconnect interfaces presents a great opportunity 
when modeling impacts of solids on fluids, and 
vice versa. The result of the example computations 
show that coupled SPH and DDA can be used to 
simulate dynamic fluid discrete block interactions 
in a variety of settings. Future developments need 
to concentrate on developing highly computation-
ally efficient and optimized algorithms in order 
to tackle the full scope of complex problems of 
interest. We intend to further accelerate the simu-
lation by using GPU based methods, using faster 
neighbor search algorithm as well as using predic-
tive corrective incompressible method proposed by 
Solenthaler et al. (2009).
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