
UC Irvine
ICS Technical Reports

Title
ADLscope : an automated specification-based unit testing tool

Permalink
https://escholarship.org/uc/item/8074g9vc

Authors
Chang, Juei
Richardson, Debra J.

Publication Date
1998-08-10

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8074g9vc
https://escholarship.org
http://www.cdlib.org/

Notice; This Material

may be protectecl
by Copyright Law
(Title 17 U.S.C.)

ADLscope: anAutomated Specification-based Unit Testing Tool

Juei Chang and Debra J. Richardson

Department of Information and Computer Science
University of California, Irvine, CA 92697

Technical Report 98-26

August 10, 1998

Abstract

Specification-based testing is important because it relates directly to what the program is
supposed todoand can detect certain errors that are often not detected bytraditional code-
based testing techniques such as branch coverage and statement coverage. We have devel
oped anautomated testing tool, called ADLscope, that utilizes the formal specification of
aprogram unit asthe basis for test coverage measurement. A tester uses ADLscope totest
Application Programmatic Interfaces (APIs) written inthe Cprogramming language. The
API must be formally specified in the Assertion Definition Language (ADL), a language
developed at Sun Microsystems Laboratories. The tester uses ADLscope to generate cov
erage conditions fi-om a program's ADL specifications. When the API is tested, ADL
scope automatically measures how many ofthe coverage conditions have been covered by
the tests. An uncovered condition usually means that certain aspects ofthe specification
have not been thoroughly exercised by the implementation. The tester uses this informa
tion to develop new test data that exercise the uncovered conditions. In this paper, we
focus on the following aspects of ADLscope: the design and implementation of ADL
scope and the specification-based coverage metrics used inADLscope.

1 Introduction

This paper describes atool called ADLscope that automates the process ofmeasuring aprogram's
test coverage with respect to its specification. We summarize ADLscope's contributions as fol
lows:

• ADLscope is a formal specification-based testing tool Specification-based testing relates
directly to what the program is supposed to do and can detect defects in the software that are
not detected by traditional code-based testing techniques. ADLscope guides the testing activ
ity based on an ADL specification ofthe units to be tested. ADL is a formal specification lan
guage developed at Sun Microsystems Laboratories to describe behavior of functions in the C
programming language.

• ADLscope is a test coverage tool. ADLscope measures coverage of program units with
respect to their ADL specifications. Measuring test coverage provides testers an estimate of
test adequacy. The advantage ofADLscope over other test coverage tools is that ADLscope
measures specification coverage as opposed tojust code coverage.

• ADLscope facilitates test selection. Any uncovered coverage condition reported to the tester
usually means that certain aspects ofthe specification have not been tested adequately. This
forces the tester to select additional test data tocover those aspects.

• ADLscopefacilitates unit testing. Although system testing is important, alone it is insufficient.
Moreover, in practice, it often involves just "poking-around." Unit testing is more rigorous
and isalso an essential in assuring quality ofreusable software packages.

• ADLscope facilitates API testing. ADLscope is most useful for conformance testing of an
API. Code-based coverage techniques are generally not applicable in conformance testing
since higher code coverage does not imply that an implementation actually conforms to its
specification. Moreover, many code-based coverage techniques require the source code,
which is often not available for conformance testing because of proprietary issues, whereas
ADLscope onlyrequires the object codeor compiled libraries.

In Section 2, we provide an overview of ADL and its companion tool, the ADL Translator
(ADLT). In Section 3, we describe the design and implementation ofADLscope. In Section 4, we
present the coverage metrics used in ADLscope. In Section 5, we discuss relatedwork in this area
of research. In Section 6, we summarize our contributions and discuss future work.

2 Overview of ADL and ADLT

2.1 ADL

In an ADL specification, a C function is accompanied by a set of assertions that describe the
intended behavior ofthe function. The assertions are based on first order predicate logic and use
the same type system as C. Sharing the same type system as Callows tools to easily map an entity
in the implementation domain to the specification domain, and vice versa.

Figure 1shows the CAPI ofa stack abstract data type. The API is provided through a Cheader
file. Figure 2 shows the ADL specification of the stack.

Here we will describe a few ADL constructs that will help the reader understand the stack specifi-

fifndaf STACK_B
fdefina SIACK_H

*dafine MAX_STACK_SIZE 100
*defin« STACK_UNDERFLCW 1
fdefine STACK_OVERFLCW 2

typadef struct ataclc {
int curr;

float buf[MAX_STACK_SIZE];
) ^stack;

extern int etac)e__arrno;

extern stack new_stack();
extarn int enpty(stack s);
extern float top(staok s);
extern void push(stack s, float f)
extern void pop(stack s);

Figure 1: stack.h: API of the stack ADT

cation. Refer to the ADL Language Reference Manual [Sun96] for more information.

• The auxiliary section contains entities that are not part of the API but are needed by the speci
fication. It usually contains declarations of temporary variables and utility functions. These
utility functions are also called auxiliaryfunctions.

• The return keyword refers to the return value of the function.

• The call-state operator "0" evaluates an expression before the function is called. All other
expressions in the specification are evaluated immediately after the function returns.

• A binding{name ;= expr) binds an expression to a name. A bindingis not an assignment. The
name is simply a shorthand used to avoid rewriting a long expression.

• normal and exception are Special bindings that the specifier can use to indicate whether an
assertion describes the normal behavior of the function or some exceptional behavior of the
function.

2.2 ADLT

ADLT, developed at Sun Microsystems Laboratories, is a tool that compiles an ADL specification
and a high-level description of test data into a test program. The generated test program embeds
an automated test oracle that reports to the tester whether an implementation conforms or violates
its ADL specifications for a given test case. We provide a brief description of ADLT here. Refer
to [SH94] for more information about ADLT.

ADLT is used in two stages: the compile stage and the run stage. In the compile stage, ADLT
takes a function's ADL specification and its Test Data Description as input. The Test Data
Description is a high-level specification of the test data. It allows the tester to specify the inten
tion, the data types, and the enumeration of test data without supplying the actual values for the
test data. The tester can provide the actual values for the test data in later stages of the testing pro
cess.ADLT generates Assertion Checking Functions as output. Assertion Checking Functions are
C functions that evaluate the ADL specificationto determine whether a test has conformed or vio
lated the specification; they serve the purpose of the test oracle. The Assertion Checking Func-

nodula ataak (

typadef ... stack; /* daolara stack as an opaque type */
const int MAX_STACK_8IZE;
const int STACK_UMDERFLrOH;
C(Mist int SIACK_OVERFLOir;
int stack_errnc;

auxiliary {
stack prev;
int sise(8tack s);

stack clone(stack s);

float elenentAt(stack s, int index);

stack new_stack(>
SMsantics { size(return)

boolean eapty(stack s)
semantics {

prev :« 8olone(e),
return <(6size(s) = 0)? true: false),
8ize(8) 0eize(s),

forall (int i: int_ranqe(0, esize(8) - 1)) {
elaDentAt(s, i) — eleaentAt(prev, i))

float tc^ (stack s)
sanantics (

exception 6upty(s),
normal lexception,
prev 0clone(s),

exception —> (stack_errna — STACK_UNDERFLOW)
8ize(8) " 6size(s),

forall (int i: int_range(0, e8ize(8) - 1)) {
elenentAt(8, i) eloMnt^t (prev, i) },

normally (
return ~~ eleBentAt(a, size(8) - 1) }

void push(stack s, float f)
semantics (

exception ;-e(8ize(8) — M)OC_STACK_SIZE),
normal :> lexception,
prev gclone(s),

exception —> (8tack_errno " STACK_OVERrLCiW),
exception —> (size(8) " 6size(s)),

forall (int i: int_range(0, 8si2e(s) - 1)) {
alaiBentAt(s, i) » elementAt(prev, i) },

normally {
8ize(s) —- esize(s) + 1,
elementAt(s, 8size(S}) » f)

void pop(stack s)
semantics (

exertion eaipty(8),
normal (exception,
prev :> 8olone(s),

exception —> (8tack_ermo STACK_UNDERFLOW)
exception —> (size(s) 88ize(8)),

forall (int i: int_range(0, 8siza(s) - 2)) {
elementAt(s, i) elementAt(prev, i)),

normally (
size(s) 88ize(s} - 1)

Figure 2: stack. adl\ ADL specification of the stack ADT

ADL

Specifications

Test Data

Descriptions

Legend:

Assertion

Checking
Functions

Functions

under Test

C Compiler
and Linker

Auxiliary
Functions

Figure 3: Dataflow of ADLT's compile stage

Test Program

ADLT Runtlm^
Library

Test

Results

Legend:

Test
Program

Components A i
and B are In the >

same process t

Figure 4: Dataflow of AJDLT's run stage

tions, the functions under test, and all their auxiliary functions are compiledand linked into a test
program. Figure 3 shows the dataflow of ADLT in the compile stage.

In the runstage, the userstarts the testprogram to test the intended software. Thetest program uti
lizes the functionality provided by the ADLT Runtime Library to check assertions and report
results to the tester. Figure 4 shows the dataflow in the run stage.

3 ADLscope Design and Implementation

We have developed specification-based coverage criteria for ADL. ADLscope is the collection of
components that we have integrated with ADLT to support specification coverage measurement.
This section describes the design and implementation ofADLscope^

3.1 Integration with ADLT

ADLscope is tightly integrated with ADLT. Figure 5 shows the dataflow of the integration of
ADLscope and ADLT.

In the compile stage, ADLscope generates a set of Coverage Checking Functions which are C
functions that evaluate coverage conditions in the run stage. The Coverage Checking Functions
are linked into the test program. ADLscope also generates a Static CoverageData file and stores
it in the ADLscope database. The Static Coverage Data files store information about each cover
age condition such as where it is derived in the source specification and to which function it
belongs. It also contains the name of the ADL specification, the compilation time, and thepath of

1. The ADLscope release (including ADLT) canbe downloaded from www.ics.uci.edu/-softtest/aclIscope.
The release contains the source files as well as executables for Solaris and Linux. The original ADLT sys
tem and documentation can be downloaded from ftp://flp.uu.net/vendor/adl.

ADL

SpeclficationB,

Test Data

Descriptions

ADLT

ADLscope

Assertion

Checking
Functions

Coverage
Checking
Functions

Functions

under Test

C Compiler
and Linker

Auxiliary
Functions

Test

Program

ADLscope DatatMse

Compile Stage
Static

Coverage Data

Run Stage
Dynamic

Courage Data

i

f ADLscope \
fcf Coverage J

V Browser J

Test Program

ADLT Runtime
Library

ADLscope
Runtime

Library

Test

Results

Figure 5: Dataflow of ADLscope

the ADL specification file. This information is later used by the ADLscope Coverage Browser or
a report generator to display coverage results to the tester.

In the run stage, thetestprogram calls the Coverage Checking Functions to determine which cov
erage conditions have been satisfied and utilizes the ADLscope Runtime Library to store this
information into a Dynamic Coverage Data file. Each Dynamic Coverage Data File contains a
count for each coverage condition. The count is the number of times a condition is covered. Each
Dynamic Coverage Data file also contains the run time and the name ofthe test.

ADLscope requires no additional work fi-om the user. The user needs only supply one additional
flag -cov on the ADLTcommand line to enable coverage measurement.

The bulk of ADLscope (with the exception of the database API and the Coverage Browser, which
are described in the following subsections) is developed in C and C++.

3.2 Database API

We have developed a Java API for reading both Static Coverage Data and Dynamic Coverage
Data from the ADLscope database. This API is used by the ADLscope Coverage Browser to dis
play coverage information through a graphical user interface. It can also be used by users tocreate
customized coverage reports.

3.3 Coverage Browser

The ADLscope Coverage Browser is a hyper-linked browser. By clicking ona fimction ora cov
eragecondition, the browser woulddisplay coverage information associated with that function or

^ADLscope Coverage Brdmef
;ille Mew Options

Module'Coverage Runs

_j asdatabase

_j stack

3 j| Non-auxiliary
♦ new_stack

, • empty

♦ top
♦ BBBB
♦ pop

® _J Auxiliary
± _J elevator

f I bank

logical

relational

all metrics

IConditlon 22 at line56 Is NOT covered

Condition 27 at line 57 Is NOT covered. I|false <-> (exception)

ifflTRUE <-> ((3tack errno == STACK

C;\adlscope\stack\stack.adl

void push(stack s, float f)
semantics (

exception 0(size(s) == HAX_STACK_S
nocmal := !exception^
prev := 8clone(s),

56; exception —> (stack etrno STACK
e>:ception --> (size(s) == Qsize(s)),

focall (int x; int__range(0, 0size(s)
elenentAc(s, i) == elementAt(prev,

}/

noEmaily {
size(3) =» 0size(3) 1,
elementAt(s, 0size(s)) == f

Figure 6: Screenshot of theADLscope Coverage Browser

coverage condition as well as its location in the specification. This allows the tester to quickly
focus on the partof thespecification that requires more testing.

The ADLscope Coverage Browser is implemented in Java. Most of the GUI components are
based on Java Foundation Classes. Figure 6 shows a screenshot of the ADLscope Coverage
Browser.

4 Specification-based Coverage Metrics

This section describes the specification-based coverage metrics used by ADLscope. These cover
age metrics are based on the expressions in the ADL language. Some of our metrics are based on
existing test selection strategies. The multiple condition strategy [Mye79] is used on logical
expressions, and we apply weak mutation testing [How82] to relational expressions. We have also
developed strategies for constructs that are specific to ADL.

The strategies used in ADLscope are all linear techniques, that is, the number ofrequired cover
age conditions grows linearly with the sizeof the specification.

Inthe rest ofthis section, we describe the coverage conditions for ADL specifications. In Subsec-

tion 4.1, we first describe a technique that we use to remove some ofthe logically impossible cov
erage conditions. From Subsection 4.2 to Subsection 4.10, we present the coverage conditions
required for each type of ADL expressions.

4.1 Constraint Propagation

Consider the following scenario: in specifying the push function, we may want to say that ifthe
size of the stack has not changed, then there must have been a stack overflow error:

stack_errno — <(size(s) = @size(s))? STACK_OVERFLOW: 0)

Here itmakes sense to require two cases: (1) the size ofthe stack changes after the push is called,
and (2) the size of the stack does not change.

Now consider another example, in the stack ADL specification, the function top contains the fol
lowing assertion:

size(s) — @size(s)

This assertion states that the size of the stack should not change. Itwould certainly make sense to
require the case where the size ofthe stack indeed does not change. As a matter offact, any cor
rect implementation of top would certainly not change the size of the stack. However, it does not
make sense to require a test case where the size does change since no correct implementation
would ever satisfy this requirement.

When determining coverage conditions, ADLscope takes into account whether an expression's
value isconstrained totrue or false by the enclosing assertion, and generates coverage conditions
that are logically consistent with the constraint. The constraint also is propagated to each expres
sion's sub-expressions so that the coverage conditions derived from sub-expressions are also log
ically consistentwith the specification.

4.2 Logical Expressions

ADL has two kinds of logical expressions:^

a && b

a \ \ b

where a and b are sub-expressions. "&&" is the short-circuit AND operator. For each uncon
strained short-circuit AND expression, ADLscope requires the following coverage conditions:

(1){a == true, b == true)
(2) {a = false}
(3) (a == true, b == false}.

Ifa short-circuit AND expression is constrained to true, only (1) is required. Ifan AND expres
sion is constrained to false, only (2) and (3) are required.

" 11" is the short-circuit OR operator. For each unconstrained short-circuit OR expression, ADL-

2. There are no non-short-circuit AND and OR operators in ADL.

scope requires three conditions:

(1) {(3 = true}
(2) {a = false, b = true}
(3){a == false, b = false}.

If a short-circuit OR expression is constrained to true, only (I) and (2) are required. If it is con
strained to false, only (3) is required.

4.3 Conditional Expressions

There are two kinds of conditional expressions in ADL. The first kind is similar to conditional
expressions in C and has the form:

a ? b : c.

For this kind ofconditional expressions, ADLscope requires a to betrue for some test and a tobe
false for some other test, regardless of the constraint onthe expression:

(1){a = true}
(2) {a == false}.

The second kind ofconditional expressions has the following form:

if {a) a'

else if (ij) bi'
else if (&2) ^2*

else if (6ii)
else C'.

For this, ADLscope requires (n+2) coverage conditions:

(1) {a == true}
(2) {a == false, bi — true}
(3) la = false, ^>1 == false, ^2 true}

(l+l) [a — false, = false, ^>2 false,
(rt+2) {a = false, = false, 62 == false,

4.4 Implication Expressions

ADL has four kinds of implication expressions:

a —> 6,
a <— 6,
a <-> 6,

a <:> b.

== true}

bn = false}.

is the standard logical implication operator. For each unconstrained implication expression,

ADLscope requires:

(1) {a ~ false, b = false}
(2) {a =~ false, b ~ true}
(3){a true, b == true}
(4) {a == true, b = false}.

If an implication expression is constrained to true, ADLscope requires (1), (2), and (3). If it is
constrained to false, ADLscope requires only (4).

<-- is the reverse implication operator. For each unconstrained reverse implication expression,
ADLscope requires:

(1) {a = false, b = false}
(2) {a = true, b == false}
(3){a = true, b = true}
(4) {a == false, b ~ true}.

Ifareverse implication expression is constrained to true, ADLscope requires (1), (2), and (3). Ifit
is constrained to false, ADLscope requires only(4).

is the logical equivalence operator. For each unconstrained equivalence expression, ADL
scope requires:

(1){a = false, b = false}
(2) {a = true, b == true}
(3){a == false, b == true}
(4){a = true, b == false}.

If an equivalence expression is constrained to true, only (1) and (2) are required. If it is con
strained to false, only (3) and (4) are required.

"<:>" is called the exception operator isused todescribe anexceptional outcome ofthe function,
a <: > ^ is equivalent to

{a —> exception) && ((exception && b) —> a).

For each unconstrained exception expression, ADLscope requires the following conditions:

(1) {a == false, b == false, exception == false}
(2) {a == false, b —— falsa, exception == true}
(3) [a = false, b —— true, exception = false}
(4) {a == true, b == true, exception = true}
(5) {a — false, b ~ true, exception = true}
(6) {a ~ true, b = false, exception = false}
(7) {a = true, b == false, exception == true}
(8) {a — true, b == true, exception == false}.

Ifan exception expression is constrained to true, ADLscope requires (1), (2), (3), and (4). If it is
constrained to false, ADLscope requires (5), (6), (7), and (8).

4.5 Relational Expressions

ADL has the following relational expressions:

a > b,
a < by
a by

and

a <= b.

For each unconstrained GT (">") expression, ADLscope requires the following conditions (the
conditions listed inparentheses below are for boundary testing ofinteger operands):

(1) [a > b} (or {a = A + i))
(2) {a <= b} (or {a == b)).

Ifa GT expression is constrained to true, only (1) is required. Ifit is constrained to false, only (2)
is required.

For each unconstrained LT ("<") expression, ADLscope requires

(1) {a < b) (or {a = b - 1>)
(2) {a >= b) (or {a = b)).

Ifan LT expression is constrained to true, only (1) is required. Ifit is constrained to false, only (2)
is required.

Foreach unconstrained GE (">=") expression, ADLscope requires

(1) {a >= b) (or {a = b))
(2) {a < b) (or {a b - i}).

Ifa GE expression is constrained to true, only (1) is required. Ifitis constrained to false, only (2)
is required.

For each unconstrained LE ("<=") expression, ADLscope requires

(1) {a <= b) (or {a = b})
(2) {a > b} (or {a == 6 + i)}.

Ifan LE expression is constrained to true, only (1) is required. Ifit is constrained to false, only (2)
is required.

4.6 Equality Expressions

ADL has two kinds ofequality expressions:

a b

a ?= b.

For each unconstrained EQ ("=") expression, ADLscope requires

(1)(a =« b)
(2) {a b).

Ifan EQ expression isconstrained totrue, only (1) isrequired. If it isconstrained to false, only (2)
is required.

Foreach unconstrained NE (" \=") expression, ADLscope requires

(1)ia = b}
(2) {a != b}.

Ifan NE expression is constrained totrue, only (2) isrequired. If it is constrained to false, only (1)
is required.

4.7 Normally Expressions

Normally expressions have the form

normally e

which is equivalent to

normal? €: true.

Foreachnormally expression, ADLscope requires two coverage conditions:

(1){normal « true}
(2) {normal == false}.

4.8 Group Expressions

Group expressions have the following form:

iei, 62. e^}.

A group expression is true if all subexpressions ej, €2,evaluate to true.

Foreachunconstrained group expression, ADLscope requires:

(1) {gj = true, 62 = true, ..., == true}
(2){gj = false}

(3){62 = false}

(«+l) {g^ == false}.

If a group expression is constrained totrue, only (1) is required. If it is constrained to false, ADL
scope requires (2), (3) («+!)•

4.9 Unchanged Expression

Unchanged expressions have the following form

unchanged (gj, 62,

which is equivalent to the following group expression:

{gj == Qei, €2 == 062, fin == 06n}.

For eachunconstrained unchanged expression, ADLscope requires

(1) {6i = 0^1, 62 == 062, 6^ = ee^}
(2) {6i != eej}
(3) {62 != 062}

(rt+1) {6^ != 0e„}.

If an unchanged expression isconstrained totrue, only (1) isrequired. If it isconstrained to false,
ADLscope requires (2), (3),and (k+1).

4.10 Quantified Expressions

ADL has both universally quantified expressions andexistentially quantified expressions:

foraii {domain) (gj, 62, 6^}

exists {domain) {6j, 62, 6^}.

domain is a function that returns an enumeration ofvalues that the target expressions should hold.
For each unconstrained universally quantified expression, ADLscope requires

(1){true= (foraii {domain) {e^}), true = (forali {domain) {6ii>)}
(2) {false = (foraii {domain) {6j})>
(3) {false = (foraii {domain) {62})}

(«+l) {false = (foraii {domain) (en))).

If the universally quantified expression is constrained to true, ADLscope requires only (1). If it is
constrainedto false, ADLscope requires (2), (3),(«+l).

For each unconstrained existentially quantified expressions, ADLscope requires

(1) {true == (exists {domain) {61}), true = (exists {domain) {6n})}
(2) {false = (exists {domain) {ej})}
(3) {false = (exists {domain) {62})}

(«+l) {false == (exists {domain) {6n}>}.

Ifthe existentially quantified expression isconstrained totrue, ADLscope requires only (1). If itis
constrained to false, ADLscope requires (2), (3),..., (n+1).

4.11 Stack Example

Table 1shows the coverage conditions that are required to achieve 100% specification coverage

for the push function of the ADL stack specification in Figure 2.

(false exception, falsa = (stac]c_ermo STACK_OVERFLCW)}

(false exception, true (stack ermo STACK_OVERFI,OW))

(true ™ exception, true = (stack_ermo STACK OVERFLOW)}

(stack ermo STACK OVERFLOW)

{8tack_ermo !- STACK_OVERFLOW)

(false = exception, false = (sisels) Ssize(s))}

(false = exception, true = (8iza(s) e (size(s)))

(true « exception, true (Bize(8) => 6size(8))}

(size(s) @size(s)}

{size(s) !- 0size(8})

(true ™ forallCint i: int__ranga(0, esize(8) - 1)){elementAt(8, i) = elementAt(prev, !)))

(forall(int i: int_range(0, 08ize(8) - 1))(elementAt(a, i) == elementAt(prev, i)})

(true = normal}

(false = normal)

(size(8) 0 (size (8) 1)), true (elementAt{s, @8ize(8))

(8ize(s) isize(s) -f 1}

(elamentAt(s, 0siza(s))

Table 1: Coverage Conditions for the push function

5 Related Work

The coverage metrics used in ADL are partially based on several existing, well-known test selec
tion strategies. The multiple condition strategies [Mye79] is intended to exercise logical expres
sions in programs. We use the multiple condition strategy on ADL's short-circuit AND and OR
expressions. The meaningful impact strategy [Fos84][Tai90][WGS94] is another strategy for
selecting test cases from logical expressions. It is not currently used by ADLscope, and we are
considering adapting this strategy for ADL and implementing it in ADLscope. For relational
expressions, ADLscope uses weak mutation testing [How82].

Several papers have focused on formal specification-based test selection. Richardson and Clarke
[RC85] propose using symbolic executiontechniques to derive test cases from the specification.
Richardson, O'Malley, and Tittle [ROT89] discuss several general approaches to specification-
based test selection. ADLscope can be classified as a Specification/Error-based Testing technique
under their categorization. Stocks and Carrington [SC93] advocate the use ofa formal framework
and a formal specification language Z for selecting tests. The framework itself, however, does not
provide any automated techniques. Chang, Richardson, and Sankar [CRS96] focus on automated
test selection based on ADL. We have realized that automated test selection requires more work
from the tester and is more difficult to use and to implement. The coverage metrics used in ADL
scope are more intuitive and easier to use than an automated test selection tool.

6 Conclusion and Future Work

Wehave developed a fully automated specification-basedcoverage tool called ADLscope for test
ing APIs. In the past two decades, many papers have focused on selecting test cases from axiom
atic specifications. However, we are not aware of any automated axiomatic specification-based

test selection tools. The main reasons that we identify for the lack of such tools are that:

• It is non-trivial to map entities from the specification domain to the implementation domain,
and vice versa. This step usually cannot be automated and requires the user to manually main
tain a list of mappings.

• Many test selection techniques require complex symbolic evaluation techniques that are diffi
cult to implement and use.

We solve the first problem by using a specification language that shares the same type system as
the implementation language and embedding ADLscope within an existing test execution tool.
ADLscope requires no additional input from the user and changes the user's current process only
slightly.

We address the second problem by using a simple and intuitive set of specification-based cover
age metrics. Comparing ADLscope to symbolic evaluation techniques is analogous to comparing
branch coverage with path coverage. While path coverage provides more thorough testing, it is
computationally expensive and often not achievable in practice because of resource constraints.
On the other hand, even though branch coverage is not as effective, it is usually more than ade
quate for most applications. Branch coverage, in general, is easy to learn and use.

We are about to embark on an empirical study to determine the effectiveness of ADLscope. The
two questions that we intend to address are:

• Do ADLscope's specification-based coverage metrics provide a good estimate of the quality
of the test data? As opposed to test selection tools where the objective is to detect errors, the
main objective of any test coverage tool is to provide an estimate of the thoroughness of the
test data.

• Can ADLscope detect errors? ADLscope does not detect errors directly. It detects errors indi
rectly by forcing the tester to cover the specification.

We plan to design experiments to address these questions.

Bibliography

[CRS96] J. Chang, D. J. Richardson, and S. Sankar. Structural specification-based testing with
ADL. In Proceedings of the 1996 International Symposium on Software Testing and
Analysis (ISSTA '96), pp. 62-70, San Diego, California, January 1996. ACM Press.

[Fos84] K. A. Foster. Sensitive test data for logic expressions. ACMSIGSOFT Software Engi
neering Notes, vol. 9, no. 2, pp. 120-126, April 1984.

[How82] W. E. Howden. Weak mutation testing and completeness of test sets. IEEE Transac
tions on Software Engineering, SE-8(4):371-379, July 1982.

[Mye79] G. J. Myers. The art ofsoftware testing. New York: John Wiley and Sons, 1979.

[RC85] D. J. Richardson and L. A. Clarke. Partition analysis: a method combining testing and
verification. IEEE Transactions on Software Engineering, SE-11(12):1477-1490,
December 1985.

[ROT89] D. J. Richardson, O. O'Malley, and C. Tittle. Approaches to specification-based test-

ing. In Proceedings ofthe ACMSIGSOFT '89 Third Symposium on Software Testing,
Analysis, and Verification (TAV3), pp. 86-96, Key West, Florida, December 1989.

[SH94] S. Sankar and R. Hayes. Specifying and testing software components using ADL.
Techmcal Report SMLI TR-94-23, Sun Microsystems Laboratories, Inc., Mountain
View, California, April 1994.

[SC93] P. Stocks and D. Carrington. Test template framework: a specification-based testing
case study. In Proceedings ofthe 1993 International Symposium on Software Testing
andAnalysis (ISSTA '93), pp. 11-18, Cambridge, Massachusetts, June 1993.

[Sun96] Sun Microsystems Inc., ADL Language Reference Manual, Release l.L December
1996.

[Tai90] K. C. Tai. Condition-based software testing strategies. In Proceedings of the Nth
Annual International Computer Software andApplications Conference, 1990.

[WGS94] E. Weyuker, T. Goradia, and A. Singh. Automatically generating test data from a bool
ean specification. IEEE Transactions on Software Engineering, SE-20(5)-353-363
May 1994.

