
UCLA
UCLA Electronic Theses and Dissertations

Title
Problems in Epidemic Inference on Complex Networks

Permalink
https://escholarship.org/uc/item/8070z159

Author
Kazemitabar Amirkolaei, Seyed Jalil

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8070z159
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Problems in Epidemic Inference on Complex Networks

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Statistics

by

Seyed Jalil Kazemitabar Amirkolaei

2020



c© Copyright by

Seyed Jalil Kazemitabar Amirkolaei

2020



ABSTRACT OF THE DISSERTATION

Problems in Epidemic Inference on Complex Networks

by
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Professor Arash A. Amini, Chair

In this PhD dissertation, we study epidemics on networks of contacts through the lens of

statistical inference. The current work is an attempt to infer the propagation parameters

following the outset of an epidemic spread. My contributions rely on the progress on

mathematical modeling of infectious outbreak, information diffusion, and viral habit formation.

These achievements paved the path to forecast and contain the spread of infectious diseases

and to optimize viral marketing campaigns. What distinguishes this work is the forensics

view that aims to infer the network or the propagation parameters from the final stage

of an epidemic. We study here multiple problems of this kind including epidemic source

identification and epidemic network reconstruction. Such problems are NP-hard by nature

and previous contributions are ad-hoc and inconclusive for realistic networks, either in size or

in structure. This work proposes new methods that estimate the parameters of interest in

polynomial time with arbitrary accuracy. We provide theoretical error bound guarantees for

some of the solutions. We accompany the results with comparative simulations on popular

networks from social media, urban infrastructure, and disease pandemics.
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Introduction

The emergence of interest in complex relational systems has led to dramatic changes in many

fields of science. The availability of detailed contact network data provides unique oppor-

tunities to study social relations, urban mobilization, the evolution of species, institutional

politics, epidemiology, etc., at a finer level of details [EK10, BB04, JS08]. Working with

complex networks, however, raises certain challenges in methodology beyond those of classical

statistics. Measuring node centrality in large networks, the identification of cohesive groups

and patterns of information propagation are among these challenges. Advances in these areas

of network analysis can contribute simultaneously to many scientific fields.

We are interested in studying the network of links as a medium for propagation of

information, disease, social habits, pollution, etc. This topic which is often referred to as

“network diffusion” or “network epidemic” modeling has applications in a number of real-world

problems such as the study of viral marketing [KKT03], voter behavior [SR05], cascades of

financial bankruptcies [RBP13], and the containment of contagious diseases [LDP15].

In this PhD thesis, we present novel methodological contributions to the study of epidemic

inference problems. We cover a class of problems that aim to retrieve the hidden parameters

of the propagation dynamics given static snapshots of the epidemics. This type of inference

has been shown to have many real-world applications. Examples include inferring the strength

of ties in a social blogging network from the shared stories, inferring the important variables

that contribute to the propagation of Ebola in West Africa using the time-free data of the

epidemics [DCB17], and identifying the corrupt ingredient in a food distribution system after

noticing a list of contaminated items in retail stores [MKS14a]. In the course of this thesis,

we propose a unifying formulation for this class of problems and introduce efficient Monte

Carlo and variational inference solutions.

The algorithms developed here can be used to efficiently solve many types of epidemic

inference problems including: 1) retrieving the parameters of the epidemic, such as the rate,

the duration and the source of the spread, 2) assessing whether the spread is contagious or

random, and 3) reconstructing the epidemic network.
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Cautions should be made if one wants to apply our methods directly to the real-world

problems in epidemiology or social sciences. The computational break-throughs introduced

here build on modeling assumptions about the nature of the epidemic spread. Among the

myriad models of viral behavior we picked a version of Susceptible-infected dynamics for our

setup. To the extent practitioners believe this is a valid assumption to the application at

hand, they can enjoy the accuracy and performance of our methods.

Acknowledgment

We would like to thank Mason A. Porter for providing the Facebook-100 dataset.
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Epidemic Source Identification
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CHAPTER 1

Variational Inference

1.1 Introduction

Modern transportation networks have had profound effects on geographical spread of infectious

diseases [CH04, Coh00] giving rise to complicated epidemic evolutions [CBB06]. These

evolutions can be modeled as dynamic processes on transportation networks. The epidemic

spread on networks can take other forms, such as outbreaks of foodborne diseases [SAS98],

intercontinental cascade of failures among financial institutions [EGJ14, AOT15], computer

malware propagation on the internet and mobile networks [Kon08, FLJ07] spread of targeted

fake news [SCV17, SCV18] and rumors [FAE14] on social media, especially during presidential

elections [SJD17, JCG17, AG17]. In response to an adverse pandemics on a network, it

is critical to trace back sources to enable appropriate prevention and containment of the

spread [Org08]. Inferential methods have been developed to locate the source of foodborne

diseases [MKS14b, HF19] and influenza pandemics [SCW16, PJZ19]. In the context of online

social networks, the spread of misinformation can be limited by the identification of influential

users [PMA14, KGH10]. Source recovery can also be used to assess the power of diffusions in

generating anonymity in network protocols [BFV17].

The epidemic source identification problem has received considerable attention in the

past decade. Given a snapshot of the infected nodes in a network, the task is to discover

who has originated the epidemic. Since the seminal work of Shah and Zaman [SZ11a],

numerous attempts have been made to address the question and its extensions [FC12,

LMO14, ZY16a, LT12, NGM16a, PVF12]. By now, there are multiple methods that show

satisfactory results in limited experimental setups or have proven guarantees in restricted
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network topologies [JWY17]. However, identifying the source under general conditions still

remains a difficult task. The problem of optimal recovery appears to be NP-hard in infection

size [NGM16a, LTG10]. The theoretical guarantees for optimal and consistent recovery are

restricted to regular infinite trees [SZ11a, ZY16a], and as we show in this paper, the popular

and well-cited methods are quite unreliable in a wide range of real networks.

Source identification has remained largely unsolved and poorly understood for real complex

networks [JWY17]. As we will show through experiments in Section 1.5, in real networks,

even the optimal Bayes estimator applied to small infected sets has difficulty narrowing down

to the true source. It is thus important to recover as much information from the likelihood

of the model as possible. We develop techniques for computing the full likelihood of the

infection, as opposed to identifying the most likely sample-path [ZY16a]. Moreover, we fully

exploit the information from the boundary of the infection set, in addition to the structure

inside the infected subgraph. We develop all these ideas without restricting the structure of

the network to trees. Our framework also easily extends to the case where there are multiple

infecting sources (Appendix 4.1).

In this paper, we develop statistical algorithms that outperform the state-of-the-art in a

wide range of network topologies. Our contributions are distinct in several ways:

1. Our methods are parameter-free, meaning that they do not require knowing the duration

of the epidemic or how fast it grows [LMO14, ALS15].

2. We show that the exact maximum likelihood estimator (MLE) of the source—or equivalently

the Bayes optimal solution under uniform prior—can be written as a dynamic programming

(DP), with easily computable coefficients based on the adjacency matrix of the network.

3. We develop two schemes to approximate the DP: an efficient greedy elimination (GE), and

a novel mean-field approximation (MFA) of the likelihood, computed by solving a linear

system. MFA and GE both perform well in naturally occurring networks, extend directly

to heterogeneous infection probabilities, and are scalable, while competing methods fail to

succeed in general topology.

4. Our approximations are more disciplined than existing approaches. They do not impose
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restrictions on the topology of the network. Nor do they appeal to the partial likelihood of

the candidate infecting sets. This is in contrast to the use of spanning trees to deal with

general topologies [SZ11a, PLS18] or the path-based approaches that rely on the likelihood

of individual paths from potential sources to the infected set [ZY16a].

We will show that when applied to real networks, both approximation schemes (MFA and

GE) outperform various geometric and spectral approaches, most of which perform no better

than random guessing. We also show that even for basic models of real networks, e.g., models

with community structure, most existing methods dramatically fail. The improvement in

performance is most significant for the networks with many cycles, including social networks

that are known to have high transitivity. In terms of computational efficiency, both the

greedy and mean-field approximations are superior to the state-of-the-art likelihood-based and

spectral approaches and comparable to centrality-based methods. In addition, the mean-field

algorithm is easily parallelizable through standard linear algebraic routines and can be used

to tackle very large-scale epidemics on real networks.

Related work. Most of the existing literature on the source identification problem are

based on an SIR dynamic where the infection spreads with an exponential rate proportional

to the number of infected neighbors. All nodes are susceptible to the infection and once

infected may recover with a fixed exponential rate [KMS17]. Moreover, the spread of infection

through edges are mutually independent. Different variations of SIR may assume that no

recovery is possible (SI) or the recovered is not immune to iterated infections (SIS).

Shah and Zaman [SZ11a] considered the SI dynamics and proposed the Rumor Centrality

(RC), which counts the permitted permutations, a.k.a. infection paths, inside the infected

subgraph. Their linear time algorithm is an optimal estimator in regular trees and enjoys

strong theoretical properties in such idealized settings [KL17a]. Zhou and Ying [ZY16a]

consider SIR dynamics on a tree and show that the most likely infection path is rooted at

a Jordan center (JC) of the infected set O, that is, a node with minimal eccentricity (i.e.,

minimal maximum distance to other nodes). It has been shown [ZY16a, KL17a] that in

regular trees, eccentricity ranking generates, with high probability, a confidence set containing

6



the true source, whose size does not grow with the infection size.

The Dynamic Message Passing (DMP) was proposed in [LMO14] as an approximation of

the maximum likelihood estimator in discrete SIR epidemics, by approximating the probability

of an infected set, as the product of the marginal probabilities of infection for each node

(i.e., a form of pseudo-likelihood). Despite compelling performance, DMP is computationally

intensive and impractical for large networks with moderately dense structures, even for small

infection sets. A spectral algorithm, called Dynamical Age (DA) was introduced in [FC12],

based on how sensitive the maximum eigenvalue of the Laplacian matrix is to the elimination

of each node in the infection set. The algorithm was mainly developed to discover the initial

node in a growing preferential attachment model. Another spectral method for the discrete

SI model is proposed in [PVF12].

1.2 Source detection in SI epidemics

We consider a continuous-time heterogeneous susceptible-infected (SI) epidemic [KMS17]

with rate of infection β, on a static weighted (directed) network G(V,E) with known edge set

E and V = [n]. At time zero, all nodes but the source are in the susceptible state. Infection

is a terminal state and susceptible nodes are exposed to the infection at an exponential rate

proportional to the number of their infected neighbors. More precisely, given that nodes I

are infected at some time t, we run exponential clocks Tj ∼ Exp(β vol(I, j)) for all j ∈ Ic and

the first to expire determines the next infected node: If j∗ = argminj Tj, then the dynamics

move to the infected set I ∪{j∗} at time t+ Tj∗. It is clear that the contagion will eventually

spread through the entire graph.

The infection source or patient zero, denoted as i∗, is unknown. What we observe is a

snapshot of the contagion at some time t, meaning the entire set of infected nodes at that

time, which we denote by O. The objective is to find i∗ ∈ O or form a confidence set for i∗
with desired false exclusion probability. Our focus here will be on the single source setting,

but the analysis is extensible to the multi-source setting (cf. Section 4.1).

Notation. We write A ∈ [0, 1]n×n for the weighted (asymmetric) adjacency matrix of the
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network and vol(I, J) := ∑
i∈I,j∈J Aij for the volume of a cut in the network between subsets

I, J ⊂ [n] of nodes. For singleton subsets, we often drop the braces, e.g., vol(I, j) := vol(I, {j})

and O \ j = O \ {j}.

1.2.1 Time and rate invariant analysis

We start by examining the probability of observing a particular set of infected nodes given

a starting source. Let us introduce a parameter-free formulation of the problem (i.e. not

dependent on rate β and time t) that will be the foundation for our analysis of the continuous

SI dynamics.

Suppose that, at some point in time, the infection reaches I ⊂ [n]. Let O ⊂ [n] be some

superset of I. We are interested in computing ρI→O, the chance that all the nodes in O are

infected before any node outside. More precisely, let

ρI→O := P
(
O is infected before Oc | I is infected

)
. (1.1)

We refer to ρI→O as the transition probabilities. Note that these transition probabilities are

independent of the infection source. Given that in a snapshot of the contagion, nodes I

are infected, ρI→O determines how likely it is that in some future snapshot, O is the set of

infected nodes. The Markov property of (continuous-time) SI dynamics allows us to define

ρI→O without reference to the source, or the time of the first snapshot. We will also show

that these probabilities do not require the knowledge of the infection rate or the time of the

second snapshot.

1.2.2 Statistical Inference

Given the observed (random) infected set O, the function I 7→ ρI→O is the likelihood of

the model. Writing LO(I) := ρI→O for this likelihood, we observe that LO(I) = 0 for all I

not contained in O. So, we can restrict L(·) to all subsets of O. When dealing with the

single-source setup, we restrict the parameter space to I = {i} and with some abuse of

notation write ρi→O for ρ{i}→O, and LO(i) = ρi→O, i ∈ [n] for the likelihood.

8



We can further consider a Bayesian setup by putting a uniform prior on the source (i.e.,

uniform over [n]). The Bayesian setup allows us to consider various notions of optimality

by changing the loss function. Letting i∗ be the random initial source, we have a joint

distribution on (i∗, O). Then the posterior probability that the source is i, given that we

observed infected nodes O is

pi := P(i∗ = i | O) = ρi→O∑
j∈O ρj→O

1{i ∈ O}.

Therefore, the maximum a posteriori (MAP) estimate of the source is i∗MAP = argmaxi ρi→O
which minimizes the probability of error. That is, i∗MAP minimizes P(̂i 6= i∗) for any

estimator î = î(O). In some applications, the graph geodesic distance (dG) to the source

determines the error of estimation. In that case, the Bayes optimal estimator is i∗dist =

argmini
∑
j∈O distG(i, j) ρj→O. It is not hard to see that i∗dist minimizes E[dG(̂i, i∗)] among all

possible estimators î.

A third choice is to output a ranking instead of a single source. In this case, an estimator

is formally a permutation σ̂ = σ̂O on [n], suppressing the dependence on O for simplicity.

We can then consider the rank loss `(σ̂, i∗) = σ̂(i∗), and we call the associated risk the

expected (source) rank = Eσ̂(i∗). The corresponding optimal Bayes estimator is obtained by

minimizing the posterior risk:

σ̂∗ := argmin
σ:[n]→[n]

E[σ(i∗) | O].

Noting that E[σ(i∗) | O] = ∑
i σ(i) pi, the optimal estimator in this case is the ranking that

sorts pi into descending order, i.e., σ̂∗(ji) = i where pj1 ≥ pj2 ≥ · · · ≥ pjn .

Remark 1. The distance loss might be suitable in some applications, but in general it is a

poor measure if the goal is to reveal the actual source. This is especially true in small world

networks, including most social networks, where the expected distance between any pair of

nodes is small. On the other extreme, in terms of the precision in recovering the source, is the

zero-one loss which is too stringent. The rank loss can be considered a more robust version

of the zero-one loss, and it will be our main evaluation measure.
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1.3 Exact likelihood computation

The Bayesian estimators introduced in Section 1.2.2 require us to evaluate the posterior

probabilities (pi), or equivalently the likelihood values ρj→O for all j ∈ O. The main difficulty

of the source identification problem is that computing the likelihood is itself challenging. We

now develop exact equations that allow us to recursively compute the likelihood values LO(I)

for all subsets I ⊂ O.

Dynamic programming. To begin, note that ρO→O = 1 for any O ⊂ [n]. In addition,

ρI→O = 1 whenever O corresponds to a connected component of G. We develop two dynamic

programming expressions for ρI→O for general I ⊂ O:

Proposition 1. For I ⊂ O ⊂ [n], the probabilities ρI→J defined in (1.1) satisfy the forward

program

ρI→O =
∑
j∈O\I

vol(I, j)
vol(I, Ic) ρI∪j→O (1.2)

and the backward program

ρI→O =
∑
j∈O\I

ρI→O\j
vol(O \ j, j)

vol(O \ j, (O \ j)c) . (1.3)

In the forward programming (1.2), j effectively iterates over the boundary of I in O,

as vol(I, j) = 0 if j is outside that boundary. Therefore, the running time of the forward

programming benefits from the sparsity of the network. Unlike the forward programming,

the iteration over j in (1.3) cannot be restricted to a smaller set. A corollary of Proposition 1

is that the transition probabilities ρI→J are not affected by the rate and the duration of the

infection.

Let us now observe some connection with the path-based analysis. A permitted permutation

or an infection path starting at a node i∗, refers to a permutation σ of nodes with σ1 = i∗,

and such that σk+1 is connected to at least one node in {σ1, . . . , σk}, for all k ∈ [|σ| − 1].

Notice that the probability of observing a given infection path is

P
(
path σ observed | σ1 = i∗

)
=
|σ|−1∏
k=1

vol(σ[k], σk+1)
vol(σ[k], σ

c
[k])

(1.4)
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where σI := (σi | i ∈ I). One can obtain the transition probability ρ{i∗}→O by summing (1.4)

over all infection paths σ such that σ1 = i∗ and {σ1, . . . , σk} = O. Our recursive representation

is novel, avoids these explicit summations, and will be key in deriving approximation schemes

for ρI→O in Section 1.4.

Path-based approaches such as Jordan center [ZY16a] forgo computing the complete

likelihood (i.e., avoid summing the odds of all infection paths) and instead find the most

probable path, that is, one that maximizes (1.4) in a spanning tree. In contrast, equations (1.2)

and (1.3) compute the complete likelihood of the infection set, which has the following

advantages over the path-based likelihood: It fully exploits the structure of the graph inside

the infection set, not just a spanning tree or a permitted permutation of nodes in the infected

subgraph. Moreover, it takes into account the boundary of the infected subgraph via vol(I, Ic).

Remark 2. Some previous papers, such as [LMO14, ALS15], considered the discrete-time

susceptible-infected dynamic. In that setup, the rate and time parameters are intertwined

with the transition probabilities in a way that it is hard or infeasible to disentangle them.

Therefore, the authors proposed to take β and t as inputs or estimate the probabilities for

multiple candidates for the infection time. In this sense, our approach studies a more realistic

model with less adverse consequences for estimation.

1.4 Approximations

We now provide two approximations to the likelihood function LO(I) based on the exact

dynamic programming developed in Proposition 1.

Greedy Elimination (GE). We can obtain a singleton source set I = {i} that maximizes

ρI→O with greedy elimination of elements in O. The algorithm we propose is based on

the backward recursion (1.3) and is detailed in Algorithm 1. We start with O0 := O and

consider all maximal proper subsets of O0 that induce a connected subgraph of G. Among

those, we choose the one that maximizes the transition probability to O0, i.e. ρO0\j→O0 =

vol(O0 \ j, j)/ vol(O0 \ j, (O0 \ j)c). Suppose that O1 := O0 \ j∗ is the maximizer. Next, we

11



Algorithm 1 Greedy Elimination
Input: Graph G([n], E) and O ⊂ [n].

Output: i∗GE ∈ O.

1: O0 := O

2: for i := 0 to |O| − 2 do

3: O′i := {j ∈ Oi : GOi\j remains connected}

4: j∗ := argmaxj∈O′i
vol(Oi \ j, j)

vol(Oi \ j, (Oi \ j)c)
.

5: Oi+1 := Oi \ j∗.

6: end for

7: i∗GE := the single element in O|O|−1.

iterate the same procedure for O1 and so forth, until we reach a singleton set I := O|O|−1.

The procedure has an O(k2m) runtime where k = |O|and m is the number of edges in the

infected subgraph, GO.

GE has a Bayesian justification. Let Õk be the random infected set after k steps. Suppose

that we want to find the MAP for Õk−1 given Õk. The Bayesian posterior probability is

P(Õk−1 = O \ j | Õk = O) ∝ ρO\j→O · P (Õk−1 = O \ j).

Whenever GO\j is connected, the prior is positive. GE finds a proxy for MAP through

maximizing the evidence and ensuring the prior is positive.

Algorithm 1 has similarities with finding the most likely path from a source to the observed

snapshot. Chang et. al. [CZC15a] propose a similar path-based search called GSBA. They

start from each node in O and approximate the most likely path and use it as a proxy to the

most likely source. Algorithm 1, however, does this greedy search in a backward fashion.

Mean-field Approximation (MFA). We now approximate ρI→O by the mean-field tech-

nique. The idea is to treat the set function I 7→ ρI→O as if it was a distribution (or measure)

on O and approximate it by the product of its marginals. Fix a subset O ⊂ [n]. For any

I ⊂ O, let xI = (xIj)j∈O be the binary representation of I, i.e. xIj = 1{j ∈ I} for any j ∈ O.

12



Algorithm 2 Mean-Field Approximation
Input: Graph G([n], E) and O ⊂ [n].

Output: i∗MFA ∈ O.

1: Compute S,z as defined in (1.7).

2: b̂ := S−1z.

3: i∗MFA := argmaxj∈O b̂j.

We find α0 and (bj)j∈O such that

ρ̂I→O = α0
∏
j∈O

b
xI

j−1
j (1.5)

is a good approximation to ρI→O for all I ⊂ O, in the sense of minimizing the quadratic

deviation from the solution of the recursion (1.2). First note that α0 = 1 since ρO→O = 1.

Next, we plug-in ρ̂I→O into the forward recursion, to get

vol(I, Ic) ρ̂I→O −
∑
j∈O\I

vol(I, j) ρ̂I∪{j}→O = 0.

Dividing both sides by ∏j∈O\I bj gives vol(I, Ic)−∑j∈O\I vol(I, j) bj = 0. These equations in

general cannot be satisfied exactly for all I ⊂ O. Instead, letting b = (bj)j∈O, we solve the

following least-squares problem:

b̂ ∈ argmin
b

∑
I: I⊂O

(
vol(I, Ic)−

∑
j∈O\I

vol(I, j) bj
)2

= argmin
b
‖Qb− r‖2

2 (1.6)

where Q ∈ R(2|O|−1)×|O| and r ∈ R(2|O|−1)×1 are defined as follows:

QI,j = 1{j 6∈ I} vol(I, j), ∀ I ⊂ O, j ∈ O, rI = vol(I, Ic), ∀ I ⊂ O.

The solution of (1.6) satisfies the normal equations QTQb̂ = QTr. The following proposition

shows that QTQ and QTr can be computed efficiently. Let A be the adjacency matrix of the

network.

Proposition 2. The solution b̂ of (1.6) satisfies the linear system Sb̂ = z with S and z

13



given by

S = Ξ
(
AOO � ATOO + ATOOAOO − AOO � (u1T )

− ATOO � (1uT ) + uuT
)
∈ R|O|×|O|,

z = (1Tu+ 21Tv)u− 2v � u+ 2AOO v + (u− uout)� u

+
(
(AOO + ATOO)� ATOO

)
1 + ATOO(uout − u)

(1.7)

where u := ATOO1, uout := AOO1, and v = AOOc1. Here � is the element-wise matrix

product, Ξ(·) is a matrix operator that returns the same matrix with double the diagonal

entries, and 1 is the vector of all ones.

See Appendix 4.2.2 for the proof. Proposition 2 shows that the mean-field approach

reduces to solving a linear system of equations in |O| variables, a task with much better

computational complexity than solving the original recursion. Both S and z can be computed

in at most O(k2) time, where k = |O|. In the cases where A is sparse (which often the case

for real networks), S will be a rank-one perturbation of a sparse matrix (both AOO and

ATOOAOO will be sparse), hence solving the resulting system is often much faster than the

worst-case, i.e., faster than O(k3).

Remark 3. MFA and GE utilize the forward and backward programs ((1.2),(1.3)), respec-

tively. We have tried to apply linearization to the backward program and greedy inclusion to

the forward program. However, the former does not go through as smoothly and the latter

leads to a sub-par method. Whether one can utilize both recursions simultaneously to achieve

a better performance is open.

1.5 Simulations

The methods proposed in this paper, the Greedy Elimination (GE) and the Mean Field

Approximation (MFA), show superior performance in source identification, compared to

popular procedures, while having comparable runtimes. In this section, we make a comparison

based on these two measures (source identification ability and runtime) on real and synthetic
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Table 1.1: Network statistics

Network Internet Power Wiki vote UCSC68 UC64 DC-SBM

n 10670 4941 7066 8979 6810 1962

Mean degree 4 3 29 50 46 66

Max. degree 2312 19 1065 454 660 897

Clust. coeff. 0.01 0.10 0.13 0.17 0.19 0.30

networks. As discussed in Section 1.2.2, we consider ranking estimators (i.e., those that

output a permutation of the nodes according to their likelihood of being the source) and

focus on the rank loss. If the method does not return a ranking, we tweak it to do so. We

evaluate the methods based on the expected rank, E[R], where R is the rank of the true source

among the list of candidates (cf. Section 1.2.2). The expectation is taken with respect to the

variation in choosing the true source, which is drawn at random from the entire network. We

normalize the expected rank to get a number in [0, 1], with zero corresponding to perfect

recovery, i.e., we use (E[R]− 1)/n.

We consider a variety of real and simulated networks. Our selection includes an Internet

Autonomous System [Ore, LKF05], US west-coast power grid [WS98], two Facebook-100 net-

works [TKM11, TMP12], called UC64 and UCSC68, and a Wikipedia voting network [LHK10].

In addition, we present our results on a number of synthetic networks that are well studied

in the literature, including regular trees, random trees, and degree-corrected stochastic block

models (DC-SBM) [KN11].

Table 1.1 summarizes the statistics on the largest connected component of these networks.

The regular tree is of degree 3 and depth 10. The random tree has 500 nodes. For the DC-SBM

network, we generate from a 3-community planted partition version, i.e., E[Aij] = θiθjPij

where Pij = 0.5 if nodes i and j are in the same community and Pij = 0.02 if they are

in different communities. The degree parameters θi are generated from a rescaled Pareto

distribution with α = 2 and threshold = 1.
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(a) Regular tree (b) Random tree

(c) Internet AS (d) US West Power Grid

Figure 1.1: Plots of the expected relative rank versus the infection size for low-transitivity

networks.

The results are illustrated in Figures 3.2, 1.2. The methods we consider besides the

optimal Bayes solution (BO), the MFA, and the GE are the Rumor Centrality (RC), the

Degree Centrality (DC), the Jordan Center (JC) and the Dynamical Age (DA). Our selection

of the methods loosely follows the methods surveyed in [JWY17]. Each curve shows the

performance of one method for different values of the infection size, 2 ≤ |O| ≤ 300. Each point

is an average over 500 infection paths rooted at random sources. To avoid an unreasonable

computation time, we skip the BO for the infected sets of size greater than 10. The BO curve

serves as the benchmark for the best achievable performance. Note that even the optimal

solution needs to output a large set to catch the source, signifying the inherent difficulty of
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(a) UCSC68 (b) UC64

(c) Wiki vote (d) DC-SBM

Figure 1.2: Plots of the expected relative rank versus the infection size for high-transitivity

networks.

the problem.

Rumor and Jordan centralities perform optimally on regular trees in Figure 1.1a, as

predicted by the theory [SZ11a, ZY16a], although the network here is not exactly an infinite

tree. Notice that RC, JC, and BO overlap for infection sizes not exceeding the depth of the

tree. Degree centrality also turns out to be a close competitor in this figure. Moving to other

networks, however, these popular methods do not perform better than random guessing. For

all the three, the expected relative rank is close to 0.5, even in a random tree. The plots

in this section show that, despite their popularity, the RC and JC are quite unreliable for

source recovery.
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Figure 1.3: Runtime in seconds.

DA tends to perform well only when the infection size is sufficiently large. In some of the

networks, i.e., in Figures 1.2b, 1.2c, and 1.2d, it is a close competitor to GE and MFA, while

still behind them with a margin. DA also performs close to GE in the “Internet AS” network

(Figure 1.1c).

Among our proposed methods, MFA outperforms RC, JC, DC, and DA in Figures 1.2a,

1.2b, 1.2c, 1.2d. MFA ranks the true source, on average, in the top 30%. The networks

with superior MFA performance have the highest transitivity (a.k.a. clustering coefficient)

in Table 1.1, that is, many triangles among triples of nodes. Transitivity has been studied

extensively and distinguishes human social networks from random trees and less cyclical

networks, such as the water distribution systems and traffic networks. In this sense, MFA is

suitable for rumor source detection in social networks.

GE is the global winner, except in regular trees (Figure 1.1a). We were surprised that

a greedy algorithm had such a widespread success. GE not only performs well in highly

transitive networks, but also outperforms RC, JC, DC, and DA on random trees (Figure 1.1b)

and less transitive networks (Figures 1.1c, 1.1d).

Figure 1.3 illustrates the runtimes (on the log scale) for a single run on the UC64 network.

Degree centrality is the fastest, followed by RC, MFA, GE, JC, and DA. The first three have

comparable speed and scale quite well. In contrast, although the runtime for JC starts as low
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as that of RC, it accelerates past GE as the infection size grows. DA and JC do not scale

well and GE follows them by a margin. It is worth noting that [LTL14] gives a linear-time

implementation of JC on trees that we have not tested here. BO is removed from this plot

since its runtime grows exponentially with the infection size.

Based on these results, we advocate for the use of GE as the main tool for identifying

sources of epidemics, regardless of the network topology or the nature of the epidemics (rumor

propagation, disease contagion, etc.). MFA should be applied with caution. It is superior in

social (transitive) networks, and attractive for its simplicity, scalability, and the potential for

parallelism.
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CHAPTER 2

Monte Carlo Estimation

2.1 Introduction

In this chapter, we study a class of epidemic inference problems that aim to estimate the

parameters of the propagation dynamics from data, and more specifically from a static

snapshot of the epidemics. We propose a unifying formulation for this class of problems and

introduce an efficient Importance Sampling (IS) solution that can be applied in general.

The IS approach can be used to efficiently solve many types of epidemic inference problems

including: 1) retrieving the parameters of the epidemic, such as the rate, the duration and

the source of the spread, 2) assessing whether the spread is contagious or random, and 3)

reconstructing the epidemic network. To keep this chapter focused, however, we narrow down

our attention to one of the applications, namely, the epidemic source recovery problem. With

the observation of the full infected set of nodes in a network, the task is to identify the source,

also known as patient zero. This problem has been studied extensively but the solutions so far

have not been satisfactory [JWY16]. The main shortcoming in this literature is that the current

solutions do not perform well under real world complex networks [SZ11b, FCP14, ZY16b]

or turn out to be prohibitively slow as the infection size grows [LMO14, CZC15b, ABD14].

We offer a fast method, with strong theoretical guarantees and show that it performs well in

practice on real complex networks. Here is a summary of the contributions of this paper:

• We propose a novel importance sampling method, for computing the probability of the

infection set under a continuous heterogeneous susceptible-infected dynamics and show

it provides an efficient solution to the source recovery problem.
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• We provide an error bound for the quality of approximation obtained by this method

and show that a satisfactory precision can be achieved in polynomial-time.

• We compare our approach, under extensive simulations, with peer methods including

previous Monte Carlo approaches. The conclusion is that the proposed importance

sampling is much more efficient (i.e., requires much less samples to achieve a given

accuracy).

In what follows, we define the setup, including the continuous heterogeneous susceptible-

infected dynamics and argue for its generality. Then, the Bayes optimal solution to the source

recovery problem is formalized. We present our importance sampling method afterwards,

following a discussion of the previous Monte Carlo approaches. We then develop a theoretical

bound on the relative mean-square error of the method. The paper concludes with a

presentation of simulation results illustrating the performance of our method applied to

multiple real and synthetic networks.

The Epidemic Model

Numerous attempts at explaining network epidemics has led to four main categories of infor-

mation spread models: Susceptible-infected (SI) type models, the Information Cascade (IC)

model, the Linear Threshold Model (LTM), and the Game Theoretic Model (GTM) [LWG17].

Among these, the SI dynamics and its variants have been used extensively in studying

epidemics [KMS17] and have gained significant popularity. The model originates from popu-

lation ODEs that describe the evolution of the infected population size [KM27]. It has been

extended to Markov processes on networks that rule the spread of a disease (or social habit,

information, etc.) from infected nodes to susceptible neighbors.

Some variations of the SI model include extra states in addition to being susceptible or

infected. The most widely used are the Susceptible-Infected-Recovered (SIR) model, which

allows for a recovery state after the infection, the Susceptible-Infected-Susceptible (SIS) model,

where an infected node will recover without immunization, the SEIR (E stands for exposed),
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which adds a state of being infected but not infectious. Graph-coupled Hidden Markov

Model (GCHMM) [DPH12] is another recent example, which follows a SIS (with external

noise) model but takes the contagious infection as a hidden state. Some extensions introduce

variations in the rate of the spread between neighboring nodes. The FSIR model [FHL15],

for instance, assumes the rate of information spread is conversely proportional to the degree

of a node, so that hubs become less prone to notice and retweet a message from a friend (due

to limited attention). The ESIS model [WLJ15], on the other hand, introduces weights to

the information spread according the emotional ties between friends and the sentiment of the

message. See [LWG17, KMS17] for additional variations and extensions of the SI model.

2.1.1 The CH-SI dynamic

In this paper, we assume that the epidemic is governed by a continuous heterogeneous

susceptible-infected (CH-SI) dynamic. Let G(V,E) be a connected, directed, and weighted

graph defined by the set of vertices V = [n] and the set of edges E, with adjacency matrix

A = (aij)ij representing the edge weights. Each node at continuous time t can be in an

infected, xi(t) = 1, or susceptible state, xi(t) = 0. A susceptible node i ∈ V is in risk of

getting infected at the exponential rate λ∑j∈V Ajixj(t), independent of other nodes. Here,

λ > 0 determines the rate of spread. Infection is an absorbing state for all nodes

At time t = 0, a node s is picked at random, according to distribution p(·), to have

xs(0) = 1. All others remain susceptible. As the infection grows, it finally covers the entire

network. Let σ̃ ∈ Sym(V ) denote the permutation of the nodes in the order they get infected.

We refer to σ̃ as the infection path. Here, Sym(V ) refers to the set of permutations of V .

We use σ̃i to denote the i-th infected node and σ̃[i] to denote the infection path truncated

at its i-th element. The infection path does not reveal any information about the timing of

infection. We write

σ̃ ∼ CH-SIP(G, s) (2.1)

to denote the probability distribution for σ̃, given σ̃1 = s, that is, the source of infection is

s ∈ V . CH-SIP stands for continuous (heterogeneous) susceptible-infected path. In the next
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section, we will characterize CH-SIP and show that it is independent of λ.

Let Õi be the set of the first i infected nodes and call it the infection set or snapshot of

size i. In other words,

Õi = {σ̃j : 1 ≤ j ≤ i} (2.2)

The event that {Õi = O} implies that all j ∈ O are infected prior to any j ∈ V \O. The

infection set hides the information about the order in which nodes are infected. We define

a cascade of snapshots as a series of snapshots (Õi1 , . . . , Õim) where 1 ≤ i1 < · · · < im ≤ n.

Obviously, for a cascade, we have Õi1 ⊂ · · · ⊂ Õim . The event that (O1, . . . , Om) is a cascade

of infection sets implies that the nodes in Oi are infected before the nodes in Oi+1 for all

i ∈ [m− 1] and the nodes in Om are infected prior to the rest of the nodes in V .

In a network which is not instantaneously monitored, what we can observe from an

epidemic is a single (or a cascade of) snapshot(s). In the next section, we will discuss the

maximum likelihood approach to inferring parameters of an epidemic and/or the underlying

network G from a single or a cascade of snapshots.

2.1.2 Flexibility of the model

Before proceeding to the details of the methods, let us pause for a moment to discuss

the generality of the continuous heterogeneous susceptible infected dynamic. CH-SI is a

flexible extension of the SI dynamic that captures the variety in the rate at which the

information/disease is transmitted from one neighbor to another. Examples of various factors

that cause this distinction across the edges of the network are: the distances between cities,

the length of water pipes or electric wires, the strength of emotional ties between friends, the

limited attention span due to the abundance of friends, different levels of immunity to an

infection among citizens, and so on. In this respect, CH-SI generalizes the FSI and ESI, i.e.,

the FSIR and ESIR without the recovery state, and allows one to incorporate node and edge

attributes in characterizing the diffusion. We will not discuss how these attributes are linked

to the speed of the information transmission. Instead, will assume that the transmission

rates are factored into the edge weights up to a scalar.
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We abide by the continuous nature of the original SI dynamic in this paper. Many prior

works mentioned in the introduction adopt a discrete version of SI. In this respect, we solve

the epidemic inference problem in a more general and realistic setup. As we will see in the

next section, arguing in infinitesimal time steps, the solution can be relaxed to one degree

of freedom, since the time parameter, i.e., when we happen to observe the snapshot, will

disappear from the equations and is no longer required to be known a priori (or otherwise

estimated).

A drawback of CH-SI is the absence of recovery state. In many real situations, it is

natural to think of individuals as developing immunization to a disease, abandoning a habit,

or removing a tweet from their account. While it is beneficial to add the recovery state,

it is conceivable that in a short period after the outbreak, no one develops immunization

or abandons propagating the information. We hope in future we can extend the methods

developed here to an epidemics with recovery state.

2.2 Epidemic Inference from Complete Snapshots

We now formulate a class of epidemic inference problems that can be efficiently solved by our

sampling approach. Suppose that an epidemic outbreak starts from node s ∈ V , in network

G, and propagates according to a CH-SI dynamic, with a rate controlled by λ and A, the

weighted (asymmetric) adjacency of G. At some point, we observe the full snapshot of the

infected nodes to be O ⊂ V (or we observe a cascade of snapshots at different points in time).

We would like to exploit this knowledge to infer either of the following unknowns:

1. Epidemic source identification: Given access to the links and their strength, E or

equivalently A, which node is more likely to be the source, s [SZ11b]?

2. Testing hypotheses about the epidemic network: given two candidates for the contact

network, G1(V,E1) and G2(V,E2), which one is more likely to be the underlying

network [MCM15, KL17b]?

3. Epidemic network reconstruction: given a set of node and edge attributes associated
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with G and a parametric association rule between these attributes and the weight matrix

A, what are the most likely weights for the infection graph [GLK12, KL18, AAR10]?

These problems have been studied extensively under various epidemic models and different

network topologies. Their uniting feature is that their solutions rely on the efficient computa-

tion of the likelihood of a single snapshot or a cascade of them. As shown in this section

(although not proved here), the likelihood is a partition function with exponential number of

terms and the exact solution is not feasible. See [NGM16b] for the complexity lower bound

in a particular version of the source recovery problem. The earlier approaches appealed to

heuristics [ZY16b, FCP14, CZC15b], variational methods [LMO14, ABD14, KA19, ABD14],

and Monte Carlo techniques [ALS15] to approximate the likelihood. For the rest of this

paper, we restrict our attention to epidemic source recovery problem (problem 1 in the list

above). The analysis is more or less applicable to other problems.

We begin by defining the probability of the event that O ⊂ V is a snapshot of the epidemic.

Suppose k = |O|, and consider a “candidate s” for the source. Let us write

Ps(·) ≡ P( · | σ̃1 = s)

to denote the distribution (2.1) of a path started at s. Then,

ρ(s→ O) := Ps(Õk = O) =
∑

σ∈Sym(O)
Ps(σ̃[k] = σ) (2.3)

is the probability of transition from s to O. The sum on the RHS potentially contains

Θ(|Sym(O)|) nonzero terms. Even if GO is a tree, the complexity of computing this formula

can be non-polynomial in k. The difficulty of solving epidemic inference problems listed

earlier is due to the complexity of evaluating this sum for a general network topology.

Let us introduce some notation: Let vol(U,W ) := ∑
u∈U,w∈W Auw be the the weight of the

cut between nodes U and W in the network. We also write

∂vol(U,W ) := vol(U,W \ U).

For singleton sets {i}, we often drop the braces and write i.
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As was previously shown [CZC15b, KA19, KL17b], the odds of a certain infection path

governed by the SI dynamic has a time and rate-free form and can be computed in linear

time. The same applies to the CH-SIP p.m.f.,

Ps(σ̃[k] = σ[k]) =
k−1∏
i=0
Ps(σ̃i+1 = σi+1 | σ̃[i] = σ[i])

= 1{σ1=s}

k−1∏
i=1

∂vol(σ[i], σ[i+1])
∂vol(σ[i], [n]) (2.4)

for all k ∈ [n], with the convention [0] = ∅. Note that ∂vol(σ[i], σ[i+1]) = vol(σ[i], σi+1). This

equation follows easily using the Markov property of the dynamics and a classic property

regarding the minimum of independent exponential random variables [Ros14]. Note that (2.4)

does not depend on either the rate λ or the time of observation.

With the complete snapshot Õk = O as the observation, the maximum likelihood estimator

for the epidemic source follows:

ŝML(O) := argmin
s

`(s→ O). (2.5)

where

ew`(s→ O) = − log ρ(s→ O) = − logPs(Õk = O) (2.6)

is the negative log-likelihood. This estimator also coincides with the Bayes optimal estimator

for the “zero-one” or “rank” loss and a uniform prior on the source. In the case of the rank

loss, the estimator is the entire ranking obtained by sorting s 7→ `(s→ O) to get an increasing

sequence.

2.2.1 Evaluation

We consider estimators for the source recovery problem that generate a ranking on the

candidates. Consider an epidemic source estimator that ranks the elements of O according to

permutation π̂ : O → [k], where π̂−1(1) is the most likely candidate for the source, π̂−1(2)

the second most likely candidate and so on.

We measure the performance of π̂ by how it ranks the optimal Bayes source estimate

(assuming a uniform prior). Consider the normalized rank of the optimal Bayes estimate,
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ŝML(O), in π̂, that is,

RB(π̂) := 1
k

∑
s∈O

1{π̂(ŝML) > π̂(s)}.

We refer to RB as the Bayes rank which is a measure of how close a ranking is to the Bayes

optimal estimator. (Note that Bayes rank is a loss defined between a ranking and a candidate

source, not between two rankings. The loss does not penalize disagreements with Bayes

optimal ranking below its top element. This makes it a more appropriate measure for the

source recovery problem.) Instead of working with RB, we introduce a more natural metric

that we call weighted Bayes rank,

RB(π̂) := 1
k

∑
s∈O

[
1− `(ŝML → O)

`(s→ O)

]
1
{
π̂(ŝML) > π̂(s)

}
. (2.7)

This measure is less sensitive to the disagreements between pairs with similar posterior

probabilities. This variation to the Bayes rank is inspired by the weighted version of the

Kemeny distance (also known as Kendall’s τ) introduced in [NOS12] for the pairwise ranking

problem.

2.3 Monte Carlo Estimation

We now derive Monte Carlo estimates for Ps(Õk = O) for any O ⊂ V and any s ∈ O. The first

two methods we introduce here are the Direct Monte Carlo (DMC) and Soft-Margin Monte

Carlo (SMC), which are developed by [ALS15], for discrete susceptible-infected dynamics.

We redefine them for the continuous case and provide a faster implementation using the

parameter-free formula for CH-SIP, developed in (2.4). Additionally, we will provide lower

bounds for the sampling error of DMC to demonstrate the inefficiency of this method in large

graphs. In the simulations, the performance of SMC will be assessed empirically. We end the

section with our main contribution in this paper, the Importance Sampling (IS), and will

prove a guarantee for its fast convergence to the likelihood.
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2.3.1 Direct Monte Carlo sampling

Let us draw N infection paths from CH-SIP rooted at s:

σ̃t ∼ CH-SIP(G, s), t = 1, . . . , N. (2.8)

The direct Monte Carlo estimate is then

ρ̂MC(s→ O) = 1
N

N∑
t=1

1{σ̃t[k] ⊂ O}. (2.9)

We sample the infection path incrementally according to (2.4), i.e., we draw the (i + 1)th

infected point according to

Ps(σ̃i+1 = v | σ̃[i]) = vol(σ[i], v)
∂vol(σ[i], [n]) , v ∈ ∂σ̃[i] (2.10)

where ∂U := {u ∈ V | Aiu > 0 ∃i ∈ U}. We may stop the progress at step k, the size of

the observed infection set, when we reach σ̃[k]. However, since we can evaluate the event

1{σ̃t[k] ⊂ O} at the first time a node outside O is infected, we will employ early stopping

which can dramatically improve the simulation speed.

Let us now argue why controlling the error of Direct MC may require a non-polynomial

number of draws. First, note that DMC is an unbiased estimator, since

Es1{σ̃t[k] ⊂ O} = Ps(Õk = O). (2.11)

To investigate the typical behavior of DMC, we consider the following random graph model

Definition 1. We say that G is an inhomogeneous (directed) Erdös-Rényi graph with edge

probability matrix P = (Pij) ∈ [0, 1]n×n, denoted as G ∼ ER(n, P ), if Aij ∼ Ber(Pij)

independently for all 1 ≤ i, j ≤ n.

We have the following lower-bound on the performance of the DMC sampling:

Theorem 1. Let G ∼ ER(n, P ) as in Definition 1, and that n ≥ 16. Assume that 0 < pmin ≤

Pij ≤ pmax for all 1 ≤ i, j ≤ n, and let β = p2
min/(pmin + 2pmax)2. Let O be a subset of nodes

of size k satisfying 23/p2
min ≤ k ≤

√
n. Take s ∈ O and let ρ(s) := ρ(s→ O). Then,

P
(
ρ(s) ≤ (βn)−k/4

)
≥ 1

2 . (2.12)
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Moreover, let ρ̂(N)
MC be the DMC estimate of ρ(s) based on N draws as in (2.9). Then, for any

N ≤ (βn)k/4,

P
(
ρ̂

(N)
MC = 0

)
≥ 1

4 . (2.13)

Theorem 1 shows that the number of runs necessary to bound the error of DMC is

exponential in the infection size k and grows with the network size n.

It is interesting to note that in order to establish (2.12), showing that the snapshot

probabilities are exponentially small, we will use the unbiasedness of the importance sampler

introduced later (see Lemma 1). In other words, the importance sampling idea also provides

a theoretical device in understanding the asymptotic behavior of transition probabilities.

2.3.2 Soft-Margin Monte Carlo sampling

Another approach, proposed by [ALS15], is to replace the Bernoulli measure 1{σ̃t[k] ⊂ O}

with a smooth version. Let

ρ̂SMC(s→ O) = 1
N

N∑
t=1

h ◦ ϕ(σ̃t[k], O) (2.14)

where ϕ(U,W ) = |U ∩W |/|U ∪W | is the Jaccard distance between sets U and W , h(t) =

exp(−(t − 1)2/a2) and a > 0 is a fixed scalar. In [ALS15], the authors did not argue why

this smoother version may improve the performance and if the so, to what extent. However,

our simulations reconfirm that the smoothing does improve the performance over direct MC

sampling in real networks.

2.3.3 Importance sampling

Since ρ(s→ O) is quite small for large k, it is very unlikely that a path generated from the

dynamic on the whole network lies entirely within O. This means that directly sampling

from the target distribution generates zero terms in (2.9) in the majority of runs, requiring

(exponentially) many runs to get an accurate estimate, as formalized by Theorem 1. To avoid

this, the idea of importance sampling [Gew89] is to tweak the proposal distribution to avoid
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these zero contributions. The scheme we propose is to constrain the dynamics to GO and

draw infection paths accordingly. These paths are by design guaranteed to always hit O,

as opposed to those generated by the DMC. As we will show, sampling in this way greatly

reduces the number of runs required for accurate estimation.

More specifically, we draw samples {σ̃t} from the CH-SIP dynamic restricted to the

subgraph of G on O, denoted as GO. That is, we draw

σ̃t ∼ CH-SIP(GO, s), t = 1, . . . , N, (2.15)

independently and consider the estimator

Ŷunb = 1
N

N∑
t=1

Y (σ̃t), Y (σ̃t) :=
k−1∏
i=1

∂vol(σ̃t[i], O)
∂vol(σ̃t[i], [n]) . (2.16)

Let σ̃ ∼ CH-SIP(GO, s) be a generic sample from the restricted dynamic. We denote the

distribution of σ̃ as PGO
s to emphasize that it is a dynamic restricted to GO. We have

PGO
s (σ̃k = σk) =

k−1∏
i=1

∂vol(σ[i], σ[i+1])
∂vol(σ[i], O) , (2.17)

where the indicator is dropped since s ∈ O. The following shows that Ŷunb is an unbiased

estimator of ρ(s→ O):

Lemma 1. For any s ∈ O ⊂ [n], we have

E[Ŷunb] = E[Y (σ̃)] = ρ(s→ O). (2.18)

where σ̃ ∼ CH-SIP(GO, s).

Our proposed estimator is a modification of Ŷunb, namely,

̂̀
IS(s→ O) := 1

N

N∑
i=1
− log Y (σ̃t), (2.19)

which is an estimator of `(s→ O). That is, instead of estimating the probabilities directly,

we estimate their log. This estimator is no longer unbiased. However, it has the advantage of

having a much lower variance, hence requires much smaller Monte Carlo sample size (N) to

achieve a given accuracy. This is formalized in Theorem 2 below.
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2.4 Consistency

We now provide theoretical guarantees for the importance sampling estimator in (2.19) and

the associated source estimator. Our main result establishes an upper bound on the relative

error of (2.19) for estimating `(s), for a wide class of networks. Our results go substantially

beyond existing theoretical guarantees in the epidemic source recovery literature which are

all confined to (regular) trees [JWY16].

We make the following two assumptions on the underlying network:

(R1) We say that O ⊂ [n] has a regular boundary (in network G) if there is constant c1 > 0

such that for all U ⊂ O with |U | ≥ |O|/2 + 1,

vol(U,Oc) ≥ c1|U |dave (2.20)

where dave is the average degree of O in Oc, that is, dave = 1
|O|
∑
i∈O

∑
j∈Oc Aij =

vol(O,Oc)/|O|.

(R2) We say that O is uniformly connected if there is a constant c2 > 0 such that for any

U ′ ⊂ O,

∂vol(U ′, O) ≥ c2. (2.21)

For a random variable X, we write X ∼ subG(σ2) if X is sub-Gaussian, with squared

sub-Gaussian parameter σ2, that is, E[eλ(X−EX)] ≤ eλ
2σ2/2 for all λ ∈ R. We refer to ? for

the background on sub-Gaussian variables. Recall that for such a variable, var(X) . σ2.

Theorem 2. Fix O ⊂ [n] satisfying (R1) and (R2) and let k = |O|. Take σ̃t, t = 1, . . . , N to

be a random sample of paths from the CH-SIP dynamic restricted to O, as in (2.15). Let

Z(s→ O) :=
̂̀
IS(s→ O)

E
[̂̀

IS(s→ O)
] − 1

be the relative distance of ̂̀IS(s→ O) from its mean. Then, for any s ∈ O,

Z(s→ O) ∼ subG
( log2(kdmax/c2)

α2N

)
(2.22)

where α = log(1 + c1dave/dmax). Here, dave is as defined in (R1) and dmax is the maximum

degree of the entire network G.
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The inequality in (2.22) indirectly bounds the variance of ̂̀IS(s→ O). Theorem 2 thus

shows that the number of iterations N necessary to achieve a given accuracy grows at most

poly-logarithmically in the infection size k.

As a corollary to Theorem 2, the ranking generated by the IS estimate of the negative

log-likelihood, ̂̀IS(· → O), closely follows that of its mean.

Corollary 1. Let π̂IS be the ranking generated by ̂̀
IS. Suppose that E ̂̀IS and ` generate

identical rankings. Under the assumptions of Theorem 2 and using the same notation, with

probability at least 1− δ,

RB(π̂IS) ≤
√

2 log2(kdmax/c2) log(1/δ)
α2N

.

A consequence of Corollary 1 is that for any given ε > 0, taking N & log2(kdmax/c2)/(α2ε2)

is enough to guarantee RB(π̂IS) ≤ ε with high probability.

2.4.1 Regularity assumptions

Both regularity assumptions (R2) and (R1) are quite mild and expected to hold in practice.

The uniform connectivity assumption (R2) guarantees that it is possible to transit from any

node in the infection set O to the final snapshot, i.e., ρ(s → O) > 0 for all s ∈ O. If this

assumption fails to hold for some nodes U , i.e., ρ(s→ O) = 0 for s ∈ U , we may restrict the

estimation to the rest of nodes and the consistency holds for ̂̀IS(s→ O) for s ∈ O \U . When

the network is unweighted, i.e., Aij ∈ {0, 1}, one can take c2 = 1 in (2.21) and (R2) just

guarantees that O is connected. The general form of (R2) allows for arbitrarily small weights.

2.4.1.1 Connection to Szemerédi regularity

Condition (R1) is related to the notion of regularity introduced by Szemerédi. For some

ε > 0, assume that O and Oc form an ε-regular partition in the sense of Szemerédi regularity

lemma [KS]. Then, for any U ⊂ O with |U | ≥ ε|O|, we have

vol(U,Oc) ≥
(vol(O,Oc)

|O|
− ε|Oc|

)
|U |.
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Let dave = vol(O,Oc)/|O| and q = dave/|Oc|, the average degree of O in Oc and the the

density of the cut, respectively. Then, taking ε = q/2, we have

vol(U,Oc) ≥ 1
2 |U |dave

for all |U | ≥ (q/2)|O|, which implies (2.20) with c1 = 1/2 since q ≤ 1. Szemerédi regularity

generally holds for random graphs. In fact, this type of regularity is often used to argue

quasi-randomness in any large deterministic network, which is one interpretation of Szemerédi

lemma.

2.4.2 A note about the unbiased importance sampler

As shown in Lemma 1, Ŷunb is an unbiased estimator of the likelihood. Therefore, − log(Ŷunb)

may be a more natural estimator of `. It has a nice asymptotic behavior, including consistency

for any infection size. Despite its appeal, it is more challenging to achieve a theoretical

bound for the small sample variance of − log(Ŷunb). As a result, it is ambiguous whether

the unbiased estimator outperforms ̂̀IS. To fill this gap, we provide empirical comparison

between two estimators in the simulations section. The comparison shows that − log(Ŷunb)

performs inferior to our proposed estimator, ̂̀IS, in recovering the source node.

2.5 Simulations

The proposed Importance Sampling (IS) has a reasonable runtime compared to previous

Monte Carlo solutions and shows a superior performance in source identification. In this

section, we make a comparison based on these two measures on real and synthetic networks.

We consider the rank loss to evaluate the performance. Each method in our simulation

outputs a permutation, ranking the nodes according to their likelihood of being the source.

We evaluate the methods based on the expected rank R, the expectation of the rank of the

actual source among the list of candidates. We normalize to get a number in [0,1], with zero

corresponding to perfect recovery, i.e., we use (R− 1)/n. As a measure of performance, rank

is more appropriate than “distance to source”, esp. in networks with the small-world effect

33



(i.e., most of the network being within a small distance of any node.)
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Figure 2.1: Plots of the expected relative rank versus the infection size for various networks:

(left) DC-SBM, (right) Internet AS (bottom) US West Power Grid.
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Figure 2.2: Plots of the expected relative rank versus the infection size (continued): (left)

Wiki vote (right) UC64.

We consider a variety of real and simulated networks. Our selection includes an In-

ternet Autonomous System [LKF05], US west-coast power grid [WS98], a Facebook-100
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Table 2.1: Network statistics

Network n mean deg. max deg. clust. coeff.

Internet 10670 4.0 2312 0.01

Power 4941 3.0 19 0.1

Wiki vote 7066 29.0 1065 0.13

UC64 6810 46.0 660 0.19

DC-SBM 1962 66.0 897 0.3

networks [TKM11, TMP12], called UC64, and a Wikipedia voting network [LHK10]. In

addition, we present our results on a synthetic network that is well-studied in the literature,

namely, degree-correlated stochastic block model (DC-SBM) [KN11].

Table 2.1 summarizes the statistics on the largest connected component of these networks.

For the DC-SBM network, we generate from a 3-community planted partition version, i.e.,

E[Aij] = θiθjPij where Pij = 0.5 if nodes i and j are in the same community and Pij = 0.02

if they are in different communities. The degree parameters θi are generated from a rescaled

Pareto distribution with α = 2 and threshold = 1.

The results are illustrated in Figures 2.1 and 2.2. The methods we consider besides

the Bayes Optimal solution (BO) and Importance Sampling (IS) are Direct Monte Carlo

(DMC) and Soft Monte Carlo (SMC). We implement all the Monte Carlo methods using

N = 50 draws. Each curve shows the performance of one method for different values of the

infection size, in the range 2 ≤ |O| ≤ 300. Each point is an average over 500 infection paths

rooted at random sources (resulting in 500 random infection sets). To avoid an unreasonable

computation time, we skip the BO for the infected sets of size greater than 10. The BO curve

serves as the benchmark for the best achievable performance. Note that even the optimal

solution needs to output a large set to catch the source, signifying the inherent difficulty of

the problem.

The plots show that DMC is almost equivalent to random guessing for infection sizes
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≥ 10. In contrast, SMC performs quite well for moderate infection sizes, but often starts to

deteriorate quickly as the infection size grows.

Internet AS and power grid networks are the exceptions. These networks are less transitive

(have lower clustering coefficient as shown in Table 2.1) and therefore the source recovery

problem becomes simpler.

Importance Sampling is the global winner. Indeed, it virtually mimics the performance

of the Bayes optimal estimator in all the plots. The results confirm Theorem 2 that IS

accurately approximates the likelihood and therefore generates an efficient estimator of the

source.

The behavior of the Bayes optimal estimator (or equivalently the ML estimator) was

unknown for medium to large infection sizes. With the aid of the IS, we are capable of

extrapolating the BO curve. One interesting finding about optimal source recovery in

Figures 2.1 and 2.2 is that as the epidemics grows we capture more useful information about

the actual source (relative to the size of snapshot). This counter-intuitive observation runs

contrary to the perception that the source would conceal itself as the infection propagates

throughout the network. If this finding turns out to be consistently true in highly transitive

networks, it could revolutionize network forensics.

Figure 2.3 (left plot) illustrates the average runtimes for the infection size 100. The DMC

is the fastest (due to the early stopping), followed by Importance sampling and SMC. In

Figure 2.3 (right plot), we illustrate how IS, SMC, and DMC converge as a function of Monte

Carlo sample size. We run 200 experiments on UC64 and fix the infection size at |O| = 50

and present the average rank. IS initiate with lower rank loss and converges faster. In the

contrary, DMC never converges to the true likelihood, and SMC converges quite slowly. In

Figure 2.3 (bottom plot), we plot the sampling variation of IS for a single epidemics of size

30 in UC64 network. Nodes are sorted in the order they are infected. The box plot over

node i demonstrates the distribution of IS approximation for the log likelihood if i is the

source. The sampling distribution is derived using 100 iterations of the IS algorithm. For this

epidemics, The source node achieves the second highest IS value in median (after node 9).
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Figure 2.3: (Left) Average runtimes in seconds for infection size 100. (Right) Convergence

rates for the expected relative rank as a function of the Monte Carlo sample size. (Bottom)

Sampling variation of IS for a single epidemics of size 30.
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Furthermore, the inter-quartile range is uniformly low, confirming the previous observation

that IS converges with only 50 draws.

Based on these results, we advocate for the use of IS as the main tool for identifying

sources of epidemics, regardless of the network topology or the nature of the epidemics (rumor

propagation, disease contagion, etc.). It is fast and reliable, as supported by theory and

simulations.

2.5.1 Comparison to the unbiased estimator

As described previously, − log(Ŷunb) is an alternative estimator to the negative log-likelihood

of the source. We demonstrate empirically that it underperforms ̂̀IS, our proposed estimator,

in terms of rank loss.

Under similar empirical set-up explained earlier, we evaluate the unbiased IS. The results

are illustrated in Figure 2.4. The infection size is limited to range below 100. As shown in

the figure, IS globally generates lower rank loss than the unbiased IS.

In order to diagnose the reason behind the poor performance of the unbiased IS over

IS, we compute its sampling variation for a single epidemics in UC64 network, identical to

Figure 2.3. Figure 2.5 illustrates the comparison between two importance sampling methods.

It shows the unbiased importance sampler generates noisy estimates of the log-likelihood as

opposed to IS. We conclude that the bias-variance trade-off works in favor of IS in the source

identification task.
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Figure 2.4: Evaluating the unbiased estimator. Plots of the expected relative rank versus the

infection size for various networks: (top left) DC-SBM, (top right) Internet AS, (bottom left)

US West Power Grid, (bottom right) Wiki vote (bottom center) UC64.
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Figure 2.5: Sampling variation of IS and unbiased IS for a single epidemics of size 30.
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Part II

Epidemic Network Reconstruction
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CHAPTER 3

Monte Carlo Estimation

3.1 Introduction

The compartmental models have been utilized to explain how diseases spread across a

population. The simple transition rules between compartments qualitatively describe the

rise and fall of infection and the possibility of an outbreak. The model can provide numeric

prediction of the compartment sizes as well, if accompanied with an estimation of the

spread parameters. In well-mixed setup, where the nodes are assumed to be homogeneously

connected, this estimation amounts to calibrating the final stage. In certain domains, such as

influenza epidemics, numerous attempt led to accurate estimation of spread and recovery

rates [AAM92].

In network epidemics, however, specially those with heterogeneous rates of spread, there

are two challenges in estimating the model parameters. First, a high resolution data is

hardly available. In absence of mega surveillance infrastructure (e.g. as in water distribution

systems [OUS08]) or natural tools to trace back the propagation path (e.g. phylogenetic

analysis of DNA evolutionary tree [DCB17]), we are deprived of the timestamp for individual

infections and even the order of contamination in the network. Therefore, it is very common

that the post-incidence observation is restricted to a snapshot of infected individuals. The

most recent tools for the inference of epidemic rates on networks, however, require the

full information about the propagation, including the individual links that transmitted the

infection to the next victim. [KL18, GSD16]

Second challenge of inferring the epidemic parameters is the computational complexity of

the inverse problem. Under various epidemic models and different observation granularities,
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it has been shown that maximum likelihood estimation of the epidemic parameters is #P-

complete [PV18, LTG10], unless the full transmission path is observed [KL18]. Filtering

the epidemic output for static snapshots of the infection, introduces many hidden (masked)

variables equal to the size of the problem. Such an inference problem with numerous hidden

variables is inevitably treated with approximate inference methods such as EM, variational

inference, or Monte Carlo methods [WJ08, BKM17, Sni02].

One of the imperative parameters of an epidemic is the underlying network through which

the information is transmitted in varying spread rates. The task of discovering the spread

rate in a pandemic may boil down to recovering the sparse topology of the epidemic network.

An example is when one tries to recover the relevant social network from a microblogging

news outbreak [AAR10]. Inferring the propagation rates in some other domains means to

recover the link weights of the (potentially observed) epidemic network, such as to find the

relevant cultro-geographic characteristics that facilitates the spread of a deadly disease across

adjacent municipalities [LRB14].

Epidemic network reconstruction also reveals whether a viral adoption of an information,

habit or disease is a result of contagious spread [KL17b], as opposed to the existence of an

external “contaminating” source. This problem, whether a sparse network of contacts carries

out the contagion or it is propagated independent of homophilic relations, has a close cousin.

Given two possible epidemic networks which one is responsible for the viral spread [KL17b].

In this paper, we consider a version of the epidemic network reconstruction problem and

propose a Monte Carlo estimation that addresses all challenges motioned above. In our

setup, an infection propagates according to a continuous susceptible-infected dynamics with

heterogeneous spread rates over a network of contacts. We assume, from a single realization

of this epidemics, the set of infected nodes is observed at several points in time . Our Monte

Carlo estimator then recovers the epidemic network. In case the network is known the method

recovers its link weights, i.e. transmission rates.

This is the first time the epidemic network reconstruction is considered with such low

level of observation granularity. Earlier contributions assume the luxury of observing the
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entire timestamped infection sequence [GLK12] or the full transmission route, i.e. that who

infected whom [KL18]. We should also note a line of literature that propose to recover the

network from a set of connectivity constraints [AAR10]. However, those works ignore the

dynamics of an epidemic and therefore stay away from the complexity of likelihood estimation

in otherwise complicated settings.

We would like to enumerate the novelties in this chapter:

1. We propose a flexible compartmental model that allows inhomogeneous spread rates

and external contamination.

2. We develop an importance sampling estimator that reconstruct the epidemic parameters

from sparse cascade of snapshots, without knowledge of the infection times.

3. In a parametric setting, our estimator finds how much edge attributes matter for the

flux of an infection.

4. Simulations demonstrate satisfactory estimation of the epidemic rates in a water

distribution system.

The result of this paper can be applied to understand outbreaks and to develop strategies

to prevent and contain hazardous epidemics. In many domains in public health, such as

detecting constituents in water distribution system, multiple epidemics may occur on a single

network. Hence, knowing the epidemic parameters guides us to plan for future outbreaks.

In what follows, we define the setup, including the continuous heterogeneous susceptible-

infected epidemics with external contamination and argue for its generality. Then, the

Bayes optimal solution to the network reconstruction problem is formalized. We present

our importance sampling method afterwards. The paper concludes with a presentation of

simulation results illustrating the performance of our method applied to water distribution

system.
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3.2 The Epidemic Model

Numerous attempts at explaining network epidemics has led to four main categories of infor-

mation dynamics models: The Susceptible-infected (SI) model, the Information Cascade (IC)

model, the Linear Threshold Model (LTM), and the Game Theoretic Model (GTM) [LWG17].

Among these, the SI dynamics and its variants have been used extensively in studying

epidemics [KMS17] and have gained significant popularity. The model originates from popu-

lation ODEs that describe the evolution of the infected population size [KM27]. It has been

extended to Markov processes on networks that rule the spread of a disease (or social habit,

information, etc.) from infected nodes to susceptible neighbors.

Some variations of the SI model include extra states in addition to being susceptible or

infected. The most widely used are the Susceptible-Infected-Recovered (SIR) model, which

allows for a recovery state after the infection, the Susceptible-Infected-Susceptible (SIS) model,

where an infected node will recover without immunization, the SEIR (E stands for exposed),

which adds a state of being infected but not infectious. Graph-coupled Hidden Markov

Model (GCHMM) [DPH12] is another recent example, which follows a SIS (with external

noise) model but takes the contagious infection as a hidden state. Some extensions introduce

variations in the rate of the spread between neighboring nodes. The FSIR model [FHL15],

for instance, assumes the rate of information spread is conversely proportional to the degree

of a node, so that hubs become less prone to notice and retweet a message from a friend (due

to limited attention). The ESIS model [WLJ15], on the other hand, introduces weights to

the information spread according the emotional ties between friends and the sentiment of the

message. See [LWG17, KMS17] for additional variations and extensions of the SI model.

In this paper, we assume that the epidemic is governed by a continuous heterogeneous

contaminated susceptible-infected (CHCSI) dynamic. Let G(V,E) be a connected, directed,

and weighted graph defined by the set of vertices V = [n] and the set of edges E, with

adjacency matrix A = (aij)ij representing the edge weights. Each node at continuous time t

can be in an infected, qi(t) = 1, or susceptible state, qi(t) = 0. Infection propagates through

two sources, via neighboring infected nodes and via an external contamination. The external
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contamination uniformly exposes all susceptible nodes. As we model it, a susceptible node

i ∈ V is in risk of getting infected at the exponential rate λ (bi(t) + β), independent of

other nodes. Here, bi(t) = ∑
j∈V ajiqj(t)) denotes the (weighted) number of infected nodes

neighbor to i at time t, β > 0 calibrates the strength of the external contamination and λ > 0

determines the rate of spread. Infection is an absorbing state for all nodes.

At time t = 0, all nodes are susceptible and the first infection is generated by the external

contamination. As the infection grows, it finally covers the entire network. Let σ̃ ∈ Sym(V )

denote the permutation of the nodes in the order they get infected. We refer to σ̃ as the

infection path. Here, Sym(V ) refers to the set of permutations of V . The infection path does

not reveal any information about the timing of infection. We write

σ̃ ∼ CHC-SIP(G, β) (3.1)

to denote the probability distribution for σ̃. CHC-SIP stands for continuous (heterogeneous

contaminated) susceptible-infected path. In the next section, we will characterize CHC-SIP

and show that it is independent of λ.

We use σ̃i to denote the i-th infected node and σ̃[i] to denote the infection path truncated

at its i-th element, with the convention that σ̃[0] = ∅. Also let σ̃[i,j] refer to the subpath

that starts from the (i + 1)th and ends at the j-th element of σ̃. In extreme cases, we

set the convention that σ̃[0,i] = σ̃[i] and σ̃[i,i] = ∅. For any sequence V1 ⊂ · · · ⊂ Vm, and

ki = |Vi|, i ∈ [m], we use Sym((Vi)mi=1) to denote the permutations σ of Vm that conform to

all Vi’s, i.e. σ[ki] ∈ Sym(Vi), i ∈ [m].

Let Õi be the set of the first i infected nodes and call it the infection set or snapshot of

size i. In other words,

Õi = {σ̃j : 1 ≤ j ≤ i} (3.2)

The event that {Õi = O} implies that all j ∈ O are infected prior to any j ∈ V \O. The

infection set hides the information about the order in which nodes are infected. We define

a cascade of snapshots as a series of snapshots (Õi1 , . . . , Õim) where 1 ≤ i1 < · · · < im ≤ n.

Obviously, for a cascade, we have Õi1 ⊂ · · · ⊂ Õim . The event that (O1, . . . , Om) is a cascade
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of infection sets implies that the nodes in Oi are infected before the nodes in Oi+1 for all

i ∈ [m− 1] and the nodes in Om are infected prior to the rest of the nodes in V .

In a network which is not instantaneously monitored, what we can observe from an

epidemic is a single (or a cascade of) snapshot(s). In the next section, we will discuss the

maximum likelihood approach to inferring parameters of an epidemic and the underlying

network G from a single or a cascade of snapshots.

Before proceeding to the details of the methods, let us pause for a moment to discuss

the generality of the continuous heterogeneous contaminated susceptible infected dynamic.

CHCSI is a flexible extension of the SI dynamic that captures the variety in the rate at

which the information/disease is transmitted from one neighbor to another. Examples of

various factors that cause this distinction across the edges of the network are: the distances

between cities, the length of water pipes or electric wires, the strength of emotional ties

between friends, the limited attention span due to the abundance of friends, different levels of

immunity to an infection among citizens, and so on. In this respect CH-SI generalizes the FSI

and ESI, i.e., the FSIR and ESIR without the recovery state, and allows one to incorporate

node and edge attributes in characterizing the epidemics. We will discuss, in the next section,

how these attributes are linked to the speed of the information transmission.

We abide by the continuous nature of the original SI dynamic in this paper. Many prior

works mentioned in the introduction adopt a discrete version of SI. In this respect, we solve

the epidemic inference problem in a more general and realistic setup. As we will see in the

next section, arguing in infinitesimal time steps, the solution can be relaxed to one degree

of freedom, since the time parameter, i.e., when we happen to observe the snapshot, will

disappear from the equations and is no longer required to be known a priori as in [GLK12]

(or otherwise estimated as in [LMO14]).

We have incorporated external contamination to explain hidden nodes in the contact

network (unobserved influencers). As a consequence, CHCSI is more robust to missing

data than a simple SI dynamics. The independent external contaminator generates distinct

patterns in the infection spread compared to a "real" epidemics. For example, the ordering
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of infected nodes may not follow that of a epidemics and the infection set may become

disconnected at different points of the epidemics. It worth noting that the building blocks

of CHCSI has been proposed in early papers ([KL17b] for contamination and [JS08] for

continuous heterogenous SI), but no other paper that we know of has assembled them into

one model.

A drawback of CHCSI is the absence of recovery state. In many real situations, it is

natural to think of individuals as developing immunization to a disease, abandoning a habit,

or removing a tweet from their account. While it is beneficial to add the recovery state,

it is conceivable that in a short period after the outbreak, no one develops immunization

or abandons propagating the information. We hope in future we can extend the methods

developed here to an epidemics with recovery state.

3.3 Epidemic Inference from Cascade of Snapshots

We now formulate the network recovery problem that can be efficiently solved by our sampling

approach. Suppose that an epidemic outbreak starts in network G, and propagates according

to a CHCSI dynamic, with a rate controlled by β, λ, and A, the weighted (asymmetric)

adjacency of G. Assume every node tuple (i, j) is attributed with a vector τij ∈ Rre . These

attributes are observable but the adjacency is only known to follow:

aij = ϕθ(τij), θ ∈ Θ (3.3)

for some θ = θ∗. We use G = G(θ) to denote a graph with its edges following (3.3). At different

points in time, we observe the full snapshots of the infected nodes to be O1 ⊂ · · · ⊂ Om ⊂ V .

The task is to infer θ∗ and the ensuing network G(θ).

We begin by defining the probability of the event thatO = (Oi)mi=0 is a cascade of snapshots

of the epidemic, knowing that ∅ = O0  O1  · · ·  Om ⊂ V . Suppose ki = |Oi|, 0 ≤ i ≤ m,

and consider a “candidate θ” in (3.3). Let us write Pθ,β(·) to denote the distribution (3.1) of
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a β-contaminated infection path in G = G(θ). Then,

ρ→O(θ, β) := Pθ,β(Õki
= Oi, 0 ≤ i ≤ m)

=
∑

σ∈Sym(O)
Pθ,β(σ̃[km] = σ) (3.4)

is the probability of transition from O0 to O1, from O1 to O2, and etc. The sum on the

RHS potentially contains Θ(∏m−1
i=0 |Sym(Oi+1 \ Oi)|) nonzero terms. Even if GOm is a tree,

the complexity of computing this formula can be non-polynomial in km −m. The difficulty

of solving epidemic network recovery is due to the complexity of evaluating this sum for a

general network topology.

Let us introduce some notation: Let volG(U,W ) = ∑
u∈U,w∈W auw be the the weight of the

cut between nodes U and W in the network G. We also write ∂volG(U,W ) = volG(U,W \U).

For singleton sets {i}, we often drop the braces and write i.

As was previously shown [CZC15b, KA19, KL17b], the odds of a certain infection path

governed by the SI dynamic has a time and rate-free form and can be computed in linear

time. The same applies to CHC-SIP pmf. For a σ ∈ Sym(O),

Pθ,β(σ̃[km] = σ) =
km−1∏
i=0

Pθ,β(σ̃i+1 = σi+1 | σ̃[i] = σ[i])

=
km−1∏
i=0

∂volG(θ)(σ[i], σ[i+1]) + β

∂volG(θ)(σ[i], [n]) + (n− i)β (3.5)

Note that ∂vol(σ[i], σ[i+1]) = vol(σ[i], σi+1). This equation follows easily using the Markov

property of the dynamics and a classic property regarding the minimum of independent

exponential random variables [Ros14]. Note that (3.5) does not depend on either the rate λ

or the time of observation.

With the cascade O = (Oi)mi=1 as the observation, the maximum likelihood estimator for

the θ∗ follows:

(̂θ, β)ML(O) := argmax
θ,β

logPθ,β(Õki
= Oi, 1 ≤ i ≤ m). (3.6)

In the next section, we discuss Monte Carlo solutions for approximating the likelihood of a

cascade of complete snapshots.
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3.4 Monte Carlo Estimation

We now derive Monte Carlo estimates for Pθ,β(Õki
= Oi, 1 ≤ i ≤ m) for any cascade of

snapshots O = (Oi)mi=1. We describe our main contribution in this paper, the Importance

Sampling (IS), and will prove a guarantee for its fast convergence to the likelihood.

3.4.1 Importance sampling

Since ρ→O is quite small for large k, directly sampling from the target distribution generates

zero term in Naive Monte Carlo sampling in the majority of iterations. That is, is it very

unlikely that a path generated from the dynamic on the whole network conforms entirely

to O. The idea which falls under the umbrella of importance sampling [Gew89] is to tweak

the proposal distribution to avoid these zero contributions. The scheme we propose is to

constrain the epidemic spread to GO1 , . . . , GOm and draw infection paths accordingly. These

paths are by design guaranteed to always hit O, as opposed to those generated by the Naive

Monte Carlo.

More specifically, let θ0 ∈ Θ be another parametrization for the adjacency in (3.3) and

β0 > 0 be an arbitrary contamination parameter. We draw samples {σ̃t} from the β0-

contaminated CHC-SIP dynamic restricted to the subgraphs of G(θ0) on Oi’s, denoted as

GOi
(θ0), i ∈ [m]. That is, we draw

σ̃t ∼ CHC-SIP((GOi
(θ0))mi=0, β), t = 1, . . . , N, (3.7)

independently. The distribution in (3.7) dictates that σ̃t[ki,ki+1] grows according to CHCSIP

in GOi+1 . We consider the estimator

Ŷunb = 1
N

N∑
t=1

Y θ,β
θ0,β0(σ̃t),

Y θ,β
θ0,β0(σ̃t) :=

m−1∏
i=0

ki+1−1∏
j=ki

∂volG(θ0)(σ̃t[j], Oi+1) + (ki+1 − j)β0

∂volG(θ)(σ̃t[j], [n]) + (n− j)β ·
∂volG(θ)(σ̃[j], σ̃[j+1]) + β

∂volG(θ0)(σ̃[j], σ̃[j+1]) + β0
. (3.8)

Let σ̃ ∼ CHC-SIP((GOi
(θ0))mi=0, β) be a generic sample from the restricted dynamic. We

denote the distribution of σ̃ as PGO(θ0)
β0 to emphasize that it is a β0-contaminated dynamic
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restricted to (GOi
(θ0))mi=0. We have

PGO(θ0)
β0 (σ̃ = σ) =

m−1∏
i=0

ki+1−1∏
j=ki

∂volG(θ0)(σ[j], σ[j+1]) + β0

∂volG(θ0)(σ[j], Oi+1) + (ki+1 − j)β0

Then,

E[Ŷunb] = E[Y θ,β
θ0,β0(σ̃)]

=
∑

σ∈Sym(O)
PGO(θ0)
β0 (σ̃ = σ)Y θ,β

θ0,β0(σ)

=
∑

σ∈Sym(O)

m−1∏
i=0

ki+1−1∏
j=ki

[
∂volG(θ0)(σ[j], σ[j+1]) + β0

∂volG(θ0)(σ[j], Oi+1) + (ki+1 − j)β0

·
∂volG(θ0)(σ̃t[j], Oi+1) + (ki+1 − j)β0

∂volG(θ)(σ̃t[j], [n]) + (n− j)β

·
∂volG(θ)(σ[j], σ[j+1]) + β

∂volG(θ0)(σ[j], σ[j+1]) + β0

]

=
∑

σ∈Sym(O)

m−1∏
i=0

ki+1−1∏
j=ki

∂volG(θ)(σ[j], σ[j+1]) + β

∂volG(θ)(σ̃t[j], [n]) + (n− j)β

=
∑

σ∈Sym(O)
Pθ,β(σ̃ = σ) = ρ→O(θ, β).

showing that Ŷunb is an unbiased estimator of ρ→O(θ, β).

Our proposed estimator is a modification of Ŷunb, namely,

̂̀
IS(θ, β; θ0, β0) := 1

N

N∑
i=1
− log Y θ,β

θ0,β0(σ̃t), (3.9)

which is an estimator of the negative log-likelihood `O(θ) := − log ρ→O(θ). That is, instead

of estimating the probabilities directly, we estimate their log. This estimator is no longer

unbiased. However, it has the advantage of having a much lower variance, hence requires

much smaller Monte Carlo sample size (N) to achieve a given accuracy.

3.4.2 Approximate inference

A natural next step to estimate epidemic parameters, θ∗, β∗, is to minimize the importance

sampling approximation for the negative log-likelihood defined in (3.9). Starting from initial
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candidates θ0, β0,

(̂θ, β)IS := argmin
θ,β

̂̀
IS(θ, β; θ0, β0) (3.10)

is our proposed approximate MLE solution. Its accuracy depends on the Monte Carlo sample

size and how close were our initial parameters to the final estimate. To make (̂θ, β)IS a better

approximation of (̂θ, β)ML, one could either increase N or iteratively update θ0, β0 to (̂θ, β)IS,

resample and solve (3.10). We leave it to future works to investigate the efficacy of these

approaches.

Problem (3.10) is not a convex optimization. Upon a convenient choice for ϕθ, the

objective becomes a difference of convex functions as shown below:

(̂θ, β)IS = argmin
θ,β

m−1∑
i=0

ki+1−1∑
j=ki

log
(
∂volG(θ)(σ̃t[j], [n]) + (n− j)β

)
− log

(
∂volG(θ)(σ̃[j], σ̃[j+1]) + β

)
(3.11)

One candidate for the parametric family is

aij = ϕθ(τij) = exp(θT τij)

If we also replace β with eβ, (3.11) becomes a DC problem in (θ, β).

3.5 Simulations

In the last section we have developed an estimator (3.10) for transmission weights in an

epidemic network with edge attributes. In this section, we assess its performance on real and

synthetic networks. We use quadratic loss, i.e. bias squared plus variance, to evaluate our

estimator.

We consider the water distribution network used as an example in EPANET tuto-

rial [Ros00]. The subgraph we use consists of 92 nodes and 113 edges, illustrated in Figure 3.1.

We consider the length of pipes as the only edge attribute determining the rate of spread

between end points. Once normalized to fall within [1, 2], let τij denote the (i, j) edge

attribute. The transmission (spread) rate is defined to be aij = eθτij . We take θ = 8 to
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Figure 3.1: EPANET [Ros00] water distribution network

introduce sufficient amount of variation in likelihood necessary for accurate estimation. The

contamination parameter is β = 1.

We test the performance of θ̂IS for different infection sizes 10 ≤ km ≤ 80 and multiple

cascade sizes, m (the number of snapshots observed). We set m = km/c, for c = 1, 2, 5. For

each combination of infection and cascade sizes we generate 30 random epidemics to compute

the sampling bias and the standard error of the importance sampler estimator. The estimator

is set to take km −m Monte Carlo samples.

Figures 3.2a, 3.2b, 3.2c illustrate the performance of θ̂IS on EPANET WDS. Each one

shows the bias and standard error for a range of infection sizes. In Figure 3.2a, the cascade

size is equal to infection size for each point on the curves. In other terms, the entire infection

path is observed. In Figures 3.2b and 3.2c the infection set is observed less often, particularly

after every 2 or 5 infections, respectively.

As expected before, the method is not asymptotically consistent, meaning the quadratic

loss does not converge to zero as km → 0. However, the estimator becomes less volatile and

the bias remains in a satisfactory limit. Unfortunately, β̂IS is not performing well, hence we

have decided not to display its results.
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Figure 3.2: Plots of the bias and standard error on Epanet WDS
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CHAPTER 4

Variational Source Identification

4.1 Multi-source Extension

The inference problem discussed in Section 1.2.2 immediately extends to the multi-source

situations. Consider the case were more than one independent source, denoted by I∗, initiate

the infection dynamics. Due to the Markovian nature of the dynamics, the infection path

that leads to some set I does not influence the value of ρI→O. Hence, Proposition 1 also

describes the likelihood of the transition from the source set I∗ to a snapshot O.

If we know that there are s original sources, e.g. |I∗| = s, with a uniform prior on the

patient zeros, the Bayesian solution would be characterized by the optimization

I∗MAP = argmax
I⊂O, |I|=s

ρI→O (4.1)

To compute this MAP estimate, we can still use the DP solution in Proposition 1, but we do

not need to compute ρI→O for |I| < s. Thus, the multi-source problem is in a sense “easier”,

especially when s ≈ |O|, since one can terminate the recursion earlier (i.e., the case s = 1 is

the hardest).

4.2 Proofs

4.2.1 Proof of Proposition 1

Let us first recall a known fact about the exponential distribution:
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Lemma 2. Let Ti ∼ Exp(βi) be a collection of independent exponential variables. Then,

P
(
Ti < min

j 6=i
Tj

)
= βi∑

j βj
.

For a proof of Lemma 2, see [Ros14]. The forward programming (1.2) is an application of

the law of total probability in the following sense: The event that nodes in O \ I are infected

before any other node in Ic splits into sub-events that each node in O \ I is infected before

those in Oc and we have

ρI→O =
∑
j∈O\I

ρI→I∪j · ρI∪j→O

where we have also used the Markov property of SI dynamics to split the probabilities on

the RHS into the products. The ratio in (1.2) corresponds to the transition probability

from I to I ∪ j, that is ρI→I∪j. Indeed, given that I is infected, we run exponential clocks

Tj ∼ Exp(β vol(I, j)) and the first to expire determines the next infected node. By Fact 2,

this happens for any node j ∈ Ic with probability probability ∝j β vol(I, j). Thus,

ρI→I∪j = β vol(I, j)∑
j′ β vol(I, j′) = vol(I, j)

vol(I, Ic) .

This proves the forward programming. The backward programming, on the other hand,

connects ρI→O to ρI→O\j and is proved similarly. Basically, the event of visiting O can be

divided into sub-events based on the last node in O that is infected.

4.2.2 Proof of Proposition 2

We prove the following alternative expressions for S = (Sjj′)|O|×|O| and z = (zj)|O|,

Sjj′ :=


dinO\j′(j)dinO\j(j′) +∑

i∈O AijAij′ j 6= j′

2
[
dinO (j)2 +∑

i∈O A
2
ij

]
j = j′

zj :=
[

vol(O\j) + 2 vol(O\ j, (O\ j)c)
]
dinO (j)

+
∑
i∈O

(doutO\j
(i)− dinO\j (i))Aij + 2

∑
i∈O

dout(O\ j)c(i)Aij.
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Here, doutO (i) := ∑
j∈O Aij is the out-degree of node i in O, dinO (i) := ∑

j∈O Aji is the in-degree

of node i in O, and vol(2)(i, j) := ∑
r∈O AirArj is the number of paths of length 2 between

nodes i and j that pass through O. It is not hard to verify that these expressions are

equivalent to the matrix form presented in (2).

Recall that vol(I, Ic) = ∑
i,k Aik1{i ∈ I, k /∈ I} and similarity vol(I, j) = ∑

r Arj1{r ∈ I}.

Here, the indices, i, k and r run over all nodes in the network, i.e. i, k, r ∈ [n]. We have

(QTr)j =
∑
I⊂O

1{j 6∈ I} vol(I, j) · vol(I, Ic)

=
∑

I⊂O\{j}
vol(I, Ic) · vol(I, j)

=
∑

I⊂O\{j}

∑
i,k,r

AikArj 1{i ∈ I, k /∈ I, r ∈ I}

=
∑
i,k,r

AikArjγikr

where the last equality follows by interchanging the order of summations and defining

γikr :=
∑

I⊂O\{j}
1{i ∈ I, k /∈ I, r ∈ I}

If i or r do not belong to O \ {j}, or k ∈ {i, r}, then γikr = 0. Thus, it what follows assume

that i, r ∈ O\ j := O \ {j} and k /∈ {i, r}. Then,

γikr = 0



2|O|−4 i 6= r, k ∈ O\ j

2|O|−3 i = r, k ∈ O\ j

2|O|−3 i 6= r, k /∈ O\ j

2|O|−2 i = r, k /∈ O\ j

To see the second equality, note that we are counting subsets of the set O \ {j} (of

cardinality |O| − 1) that contain or exclude certain elements. For example, when k, i, r are

pairwise distinct, and k ∈ O \ {j}, looking at the binary representation of I, we have two

ones in the positions i and r and a zero in position k, and the rest of |O| − 1− 3 positions

are free to be zero or one.
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In what follows, i and r range over O \ {j} (otherwise γikr = 0). Also, condition k /∈ {i, r}

can be replaced with k 6= r, since the k 6= i is implicitly enforced by Aik = 0 if k = i (no

self-loops). We have

(QTr)j =
∑
i,r

∑
k 6=r

AikArj
[
2|O|−4(1 + 1{i = r})1{k ∈ O\ j}

+ 2|O|−3(1 + 1{i = r})1{k /∈ O\ j}
]

= 2|O|−4∑
i,r

doutO\{j,r}(i)Arj(1 + 1{i = r})

+ 2|O|−3∑
i,r

dout(O\ j)c(i)Arj(1 + 1{i = r})

where in the second term, we used the fact that if k /∈ O\ j then we automatically have k 6= r

since r ranges over O\ j. We have

∑
r

doutO\{j,r}(i)Arj =
∑
r

(doutO\j
(i)− Air)Arj

= doutO\j
(i)dinO\j (j)− vol(2)

O\j
(i, j)

where vol(2)
O\j

(i, j) := ∑
r∈O\j AirArj is the number of paths of length two between i and j in

O\j. Note that vol(2)
O\j

(i, j) = vol(2)
O (i, j) and similarly dO\j (j) = dO(j) since Ajj = 0. Thus,

∑
i,r

doutO\{j,r}(i)Arj
(
1 + 1{i = r}

)
=
∑
i

[
doutO\j

(i)dinO (j)− vol(2)
O (i, j) + doutO\j

(i)Aij
]

=
∑
i

doutO\j
(i)dinO (j) + (doutO\j

(i)− dinO\j (i))Aij

= vol(O\j)dinO (j) +
∑
i

(doutO\j
(i)− dinO\j (i))Aij

where vol(O\j) = vol(O\j, O\j) and the third equality follows since we have

∑
i∈A

vol(2)
A (i, j) =

∑
i∈A

∑
r∈A

AirArj =
∑
r∈A

dinA (r)Arj

which was used with A = O\j. Similarly, we have

∑
i,r

dout(O\ j)c(i)Arj(1 + 1{i = r}) =
∑
i

dout(O\ j)c(i)
(
dinO\j(j) + Aij

)
= vol(O\ j, (O\ j)c) dinO (j)

+
∑
i

dout(O\ j)c(i)Aij
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It follows that

(QTr)j = 2|O|−4
[

vol(O\j)dinO (j) +
∑
i

(doutO\j
(i)− dinO\j (i))Aij

+ 2 vol(O\ j, (O\ j)c) dinO (j) + 2
∑
i

dout(O\ j)c(i)Aij
]
.

Calculating QTQ Let us first take j 6= j′. Then, similar to the previous argument,

(QTQ)jj′ =
∑

I⊂O\{j,j′}
vol(I, j) vol(I, j′)

=
∑

I⊂O\{j,j′}

∑
i,r

Aij Arj′1{i ∈ I, r ∈ I}

=
∑
i,r

Aij Arj′βir

where we have defined

βir :=
∑

I⊂O\{j,j′}
1{i ∈ I, r ∈ I}

= 2|O|−41{i 6= r}+ 2|O|−31{i = r}

= 2|O|−4
(
1 + 1{i = r}

)
assuming i, r ∈ O \ {j, j′}, otherwise βir = 0. Thus, restricting summations over indices

i, r ∈ O \ {j, j′}

(QTQ)jj′ = 2|O|−4
[∑
i,r

Aij Arj′ +
∑
i

AijAij′
]

= 2|O|−4
[
dinO\j′(j)dinO\j(j′) +

∑
i

AijAij′
]
.

Now consider the case j = j′. Then,

(QTQ)jj =
∑

I⊂O\{j}
vol(I, j)2

=
∑

I⊂O\{j}

∑
i,r

Aij Arj1{i ∈ I, r ∈ I}

=
∑
i,r

Aij Arj 2|O|−3
(
1 + 1{i = r}

)
,
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assuming i, r ∈ O \ j. It follows that

(QTQ)jj = 2|O|−3
[∑
i,r

Aij Arj +
∑
i

A2
ij

]

= 2|O|−3
[
dinO (j)2 +

∑
i

A2
ij

]
.

61



CHAPTER 5

Monte Carlo Source Identification

5.1 Proofs

Here, we provide proofs of the results in the paper. For integers m ≤ n, we write [[m,n]] for

the integer interval starting at m and ending at n, that is, {m,m+ 1, . . . , n− 1, n}.

5.1.1 Proof of Lemma 1

We have

E[Ŷunb] = E[Y (σ̃)]

=
∑

σ∈Sym(O)
PGO
s (σ̃k = σk)Y (σ)

=
∑

σ∈Sym(O)

k−1∏
i=1

[
∂vol(σ[i], σ[i+1])
∂vol(σ[i], O) ·

∂vol(σ[i], O)
∂vol(σ[i], [n])

]

=
∑

σ∈Sym(O)

k−1∏
i=1

∂vol(σ[i], σ[i+1])
∂vol(σ[i], [n])

=
∑

σ∈Sym(O)
Ps(σ̃k = σk) = ρ(s→ O),

which is the desired result.

5.1.2 Proof of Theorem 1

Fix s and O and let us write ρ(s) := ρ(s→ O). We first show that under the ER model for

G, the transition probabilities are likely to be exponentially small,

P
(
ρ(s) ≤ (βn)−k/4

)
≥ 1

2 , (5.1)
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where the probability is taken w.r.t. G ∼ ER(n, P ).

In order to show (5.1), we use the restricted dynamic as a device. Let σ̃ | G ∼

CH-SIP(GO, s), that is, conditioned on the network being G, σ̃ follows the path dynamic

restricted to GO. By Lemma 1, we have E[Y (σ̃) | G] = ρ(s), where Y (σ̃) is defined

in (2.16). For any σ ∈ Sym(O), let q(σ) := P(σ̃ = σ | G) as given by (2.17). Note

that ρ(s) = ∑
σ∈Sym(O) q(σ)Y (σ). It is then enough to show that Y (σ) ≤ (βn)−k/4 for all

σ ∈ Sym(O), with probability at least 1/2.

Fix U ⊂ O with |U | = i ∈ [[k/4, 3k/4]]. By the Hoeffding inequality,

P
(
∂vol(U,O)
|U | · |O \ U |

≥ pmax + ε
)
≤ exp

(
−2i(k − i)ε2

)
≤ exp

(
−3k2ε2/8

)
we have i(k − i) ≥ 3k2/16 so the constant is 3/8 not 1/8 and

P
(vol(U,Oc)
|U | · |Oc|

≤ pmin − ε
)
≤ exp

(
−2i(n− k)ε2

)
≤ exp

(
−k(n− k)ε2/2

)
≤ exp(−k2ε2/4)

where the last line uses k ≤
√
n ≤ n/2. It follows that with probability at least 1 −

2 exp(−k2ε2/4), we have

vol(U,Oc)
∂vol(U,O) ≥

pmin − ε
pmax + ε

· n− k
k − i

.

We also have

n− k
k − i

≥ 4
3

(
n

k
− 1

)
≥
√
n

using i ≥ k/4, k ≤
√
n and n ≥ 16. Take ε = pmin/2, and recall the definition of β =

p2
min/(pmin + 2pmax)2. Then, taking a union bound, we have with probability at least 1− 2 ·

2k exp(−k2p2
min/16),

vol(U,Oc)
∂vol(U,O) ≥

√
βn
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for all U ⊂ O with |U | ∈ [[k/4, 3k/4]]. Now, since the vol operator is invariant to the ordering

of the element of U , we can apply this inequality with U being the unordered set of elements

of σ[i] for i in the stated interval. That is, with probability at least 1− 2k+1 exp(−k2p2
min/16),

we have

vol(σ[i], O
c)

∂vol(σ[i], O) ≥
√
βn

for all σ ∈ Sym(O) and i ∈ [[k/4, 3k/4]]. On this event, we have, for all σ ∈ Sym(O),

Y (σ) ≤
3k/4∏
i=k/4

∂vol(σ[i], O)
∂vol(σ[i], [n])

=
3k/4∏
i=k/4

(
1 + vol(σ[i], O

c)
∂vol(σ[i], O)

)−1

≤
3k/4∏
i=k/4

(
1 +

√
βn
)−1
≤ (βn)−k/4.

This establishes (5.1) with the desired probability when (k+ 2) log 2 ≤ k2p2
min/16 which holds

by assumption (since k ≥ 2).

Next, we recall that, given G, ρ̂(N)
MC is the average of N independent Bernoulli variables

with probability ρ(s). We thus have

P
(
ρ̂

(N)
MC = 0 | ρ(s) ≤ (βn)−k/4

)
≥
(
1− (βn)−k/4

)N
≥ 1−N(βn)−k/4 ≥ 1/2

using N ≤ (βn)k/4/2. Combining with (5.1) finishes the proof.

5.1.3 Proof of Theorem 2

To simplify the notation, let `(s) := `(s → O) and Z(s) := Z(s → O). Recall that

`(s) = − log ρ(s→ O) and note that `(s) = − logE[Y (σ̃)]. We also have

∂vol(U,W ) ≤ min
{
|U |dmax, (|W | − |U |)|U |, |W |dmax

}
where dmax is the maximum degree of the underlying graph.
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Let us write g(U,W ) = log ∂vol(U,W ). Then,

g(σ̃[i], [n]) ≤ log(idmax), g(σ̃[i], O) ≥ log(c2),

since ∂vol(σ̃[i], O) ≥ c2 by (2.21). We obtain

− log Y (σ̃) =
k−1∑
i=1

[
g(σ̃[i], [n])− g(σ̃[i], O)]

≤
k−1∑
i=1

[log(idmax)− log(c2)] ≤ k log
(
k
dmax

c2

)
.

Next, we obtain a lower bound on − log Y (σ̃). We have

∂vol(σ̃[i], [n]) = vol(σ̃[i], [n] \ σ̃[i])

= vol(σ̃[i], O \ σ̃[i]) + vol(σ̃[i], [n] \O).

Then, for any i ≥ k/2 + 1,

∂vol(σ̃[i], [n])
∂vol(σ̃[i], O) = 1 + vol(σ̃[i], [n] \O)

∂vol(σ̃[i], O)

≥ 1 + c1
idave

i(dmax ∧ k) ≥ 1 + c1
dave

dmax
= eα,

using vol(σ̃[i], [n] \O) ≥ c1i dave by (2.20). Hence,

Y (σ̃) ≤
k∏

i=1+k/2
e−α = e−(k/2)α

where the first inequality is by dropping the first k/2 terms. We obtain − log Y (σ̃) ≥ (k/2)α

and `(s) = − logEY (σ̃) ≥ (k/2)α. Combining the upper bound on Y (σ̃) with the lower

bound on `(s), we have

X(σ̃) := − log Y (σ̃)
`(s) ≤ 2

α
log(kdmax/c2)

Since Y (σ̃) ≤ 1, we also have Xt(σ̃) ≥ 0. Recall that a random variable that takes

values in [a, b], almost surely, is sub-Gaussian with squared sub-Gaussian parameter (b −

a)2/4. Each X(σ̃t) is then sub-Gaussian with squared parameter bounded above by σ2
1 :=

log2(kdmax/c2)/α2. It follows that

Z(s→ O) =
( 1
N

N∑
i=1

X(σ̃t)− 1
)
∼ subG

(
σ2

1
N

)
(5.2)
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by the independence of X(σ̃t), t = 1, . . . , N and since the sub-Gaussian parameter is invariant

to a constant shift of the variable.

It remains to bound the bias. By Jensen’s inequality and a simple lemma

0 < logE[Y (σ̃)]− E
[

log Y (σ̃)
]
<

1
2 var

(
Y (σ̃)

)
. (5.3)

Since 0 ≤ Y (σ̃) ≤ 1, we have E[Y (σ̃)]2 ≤ E[Y (σ̃)], hence

var(Y (σ̃)) ≤ E[Y (σ̃)] = e−`(s)

Using the variance in equality in (5.3), dividing by `(s) and noting E[Z(s)]+1 = E[− log Y (σ̃)]/`(s),

we obtain

0 < EZ(s→ O) < 1
h(`(s)) .

Since `(s) is bounded from below by (k/2)α, the proof is complete.

5.1.4 Proof of Corollary 1

We begin by writing the weighted Bayes rank loss for ̂̀IS. Let us abbreviate ̂̀IS(s → O),

`(s→ O) and Z(s→ O) as ̂̀IS(s), `(s) and Z(s) respectively. Letting s∗ = ŝML(O), we have

RB(π̂IS) = 1
k

∑
s∈O\{s∗}

`(s)− `(s∗)
`(s) 1{ ̂̀IS(s∗) > ̂̀

IS(s)}.

For any s for which ̂̀
IS(s∗) > ̂̀

IS(s), we have

`(s)− `(s∗) ≤ `(s)− ̂̀
IS(s) + ̂̀

IS(s∗)− `(s∗).

Recalling that Z(s) = ̂̀
IS(s)/`(s)− 1, we get, for any such s,

`(s)− `(s∗)
`(s) ≤ `(s∗)

`(s) Z(s∗)− Z(s).

We therefore have

RB(π̂IS) ≤ Z := 1
k

(
βZ(s∗)−

∑
s∈O\s∗

Z(s)
)
, where

β :=
∑

s∈O\s∗

`(s∗)
`(s)

(5.4)
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Note that 0 < β ≤ k − 1 since `(s∗) ≤ `(s).

The estimates ̂̀IS(s) are based on independent Monte Carlo samples for different s. It

follows that {Z(s)}s∈O are independent sub-Gaussian variables, each with parameter

σ2 := σ2
1/N = log2(kdmax/c2)/(α2N)

as established in (5.2). Then, Z is also sub-Gaussian and

Z ∼ subG
( 1
k2

(
β2σ2 + (k − 1)σ2

))
∼ subG(σ2).

Furthermore,

E[Z] = β

k
E[Z(s∗)]− 1

k

∑
s∈O\s∗

E[Z(s)]

≤ E[Z(s∗)] ≤ 1
h(kα/2)

using β ≤ k − 1 and EZ(s) > 0, for all s, to obtain the first inequality.

Putting the pieces together and using sub-Gaussian concentration, we get

P
(
RB(π̂IS) > σt+ 1

h(αk/2)

)
≤ P

(
Z > σt+ E[Z]

)
≤ exp(−t2/2)

Taking t =
√

2 log(1/δ) finishes the proof.

5.1.5 Auxiliary lemmas

Lemma 3. Assume that Y is a random variable such that −A ≤ log Y ≤ 0 almost surely.

Then,

1
2 var(Y ) ≤ log(EY )− E[log Y ] ≤ 1

2e
2A var(Y ).

Proof. Let f(x) = log x and µ = EY . By Taylor expansion,

f(Y ) = f(µ) + f ′(µ)(Y − µ) + 1
2f
′′(µ̃)(Y − µ)2.
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where µ̃ is between Y and µ. Taking expectation and rearranging

f(µ)− E[f(Y )] = 1
2E[−f ′′(µ̃)(Y − µ)2].

We have µ̃ ∈ [e−A, 1], hence −f ′′(µ̃) = 1/µ̃2 ∈ [1, e2A]. The result follows.

Lemma 4. Let Z be a bounded random variable whose third central moment is negative. Let

v = EZ. Then,

−v + logE[eZ ] ≤ 1
2 var(Z).

Proof. By the Taylor expansion,

eZ = ev + ev(Z − v) + ev

2 (Z − v)2 + eṽ

3! (Z − v)3

where ṽ is between Z and v. Assuming that |Z| ≤ b, then |v − ṽ| ≤ b and

e−vE[eZ ] = 1 + 1
2 var(Z) + 1

3!E[eṽ−v(Z − v)3]

≤ 1 + 1
2 var(Z) + 1

3!e
bE[(Z − v)3]

≤ 1 + 1
2 var(Z)

where the last line is by negative skewness. Taking log of both sides and using log(1 +x) ≤ x,

gives the result.

We can apply the lemma to Z = log Y (σ̃). Note that −A ≤ Z ≤ −B where A =

k log(kdmax/c2) and B = (k/2)α. Then since logE[eZ ] = −`(s), we have

−v
`(s) − 1 ≤ 1

2
var(Z)
`(s) .

σ2
1

(k/2)α .
log2(kdmax/c2)

kα3

which is o(1) as k → 0.
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