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Abstract. More than ten years ago the first successful application of a
nonlinear oscillator model to high-quality speech signal processing was
reported (Kubin and Kleijn, 1994). Since then, numerous developments
have been initiated to turn nonlinear oscillators into a standard tool for
speech technology. The present contribution will review and compare
several of these attempts with a special emphasis on adaptive model
identification from data and the approaches to the associated machine
learning problems. This includes Bayesian methods for the regularization
of the parameter estimation problem (including the pruning of irrelevant
parameters) and Ansatz library (Lainscsek et al., 2001) based methods
(structure selection of the model). We conclude with the observation that
these advanced identification methods need to be combined with a thor-
ough background from speech science to succeed in practical modeling
tasks.

1 Introduction

The introduction of nonlinear system modeling – including the system theoretic
dimension up to chaos theory – has evolved as an interesting tool for speech
analysis and synthesis. With speech synthesis systems based on concatenation
of recorded speech segments currently yielding the highest quality at current,
but being inflexible and having high storage demands, and the alternative of
model based synthesis algorithms, which are more versatile, but often difficult
to control, parametric nonlinear models for the speech production process are
an auspicious option.

An introduction to nonlinear oscillator models and its application to speech
signals can be found in [1, 2]. Applications include time-scale modification [3],
adaptive-codebook pulse code modulation for speech coding [1], noise reduction
[4, 5], fundamental frequency analysis (pitch extraction) [6], determination of

? This chapter corresponds to talks given at the Cost 277 summerschool at IIASS in
Vietri sul Mare (IT), in Sept. 2004. We would sincerely like to thank Anna Esposito
for organizing the summerschool, and for her patience editing this publication.



instants of equal phase inside the glottis cycle (epoch marking) [7], as well as
new concepts for speech recognition [8].

The application to speech signal modeling and re-synthesis has been pre-
sented in a number of investigations [1, 2, 9–16], however, some common draw-
backs still to be addressed are the occasional lack of stability of the model, the
high number of parameters, and the missing relation to the physical process of
speech production. Furthermore, the oscillator model is often applied for voiced
speech signals only, or even only for vowels.

Here we present some attempts to improving model identification, general-
ization to mixed excitation speech sounds, to the reduction of model complexity,
and to the application of differential equations as a model for the underlying the
speech production process.

2 Bayesian Regularization for Nonlinear Oscillator

Identification

In this section we will describe a learning algorithm for modeling the oscillatory
part of stationary speech signals by an oscillator based on Takens’ time delay
embedding theorem. The Bayesian algorithm presented here was found to achieve
the highest percentage of successfully re-synthesized stationary speech signals in
our experiments, as compared to other methods. ‘Successful re-synthesis’ means
the generation of an output speech signal similar to the training signal in the
way that – for voiced or mixed-excitation speech signals used during training
– a stable oscillatory signal is generated without severe deviations from the
training signal in waveform shape, amplitude, and fundamental frequency. In
the last subsection we briefly present a method to re-generate also the noise-like
component of speech signals in addition to the oscillatory component.

2.1 Discrete-Time Oscillator Model

Nonlinear time-series prediction in discrete-time x̂(n+1) = f(x(n), x(n−1), x(n−
2), . . .) can be immediately used to build an oscillator by applying the prediction
function f(·) to a vector x(n) composed of past predicted samples:

x(n + 1) = f(x(n)) . (1)

According to Takens’ embedding theorem [17] the vector x(n) is commonly built
as a time delay embedding of dimension N ,

x(n) = [x(n), x(n − M), x(n − 2M), . . . , x(n − (N − 1)M)]T , (2)

realized as a tapped delay line fed by the predicted sample and with taps every
M samples. A schematic of the model is depicted in Fig. 1.

Issues for oscillator identification are the determination of the optimal em-
bedding parameters – embedding dimension N , and embedding delay M – as
well as the identification of the prediction function f(·) from the training signal.



f(x(n))

M M 1

x(n + 1)

Fig. 1. Oscillator model.

2.2 Embedding Parameters

Based on Takens’ theorem [17] the re-construction of dynamical properties of
the system of dimension D, that gave rise to a time-series x(n), is possible using
a time delay embedding of dimension N ≥ 2D + 1, regardless of the choice
of the embedding delay (Takens derivation is for continuous time signals; of
course the embedding delay must be M > 0). There exists a slightly refined
theorem that allows for phase space re-construction in N > 2Df , with Df being
the (possibly fractal) dimension of the attractor underlying the time-series [18].
However, both embedding theorems are sufficient, but not necessary conditions
for re-construction of the dynamical properties [19], so we might well find an
embedding of lower dimensionality than stated by the theorems with perfect (or
sufficiently good) re-construction. The dimensionality of the embedding is most
often related to the complexity of the prediction function f(·) in our oscillator.

The search for a reasonably low-dimensional embedding with good re-con-
struction properties is facilitated by first looking for an optimal embedding delay
M . To find a good predictor, i. e., to minimize the energy of the prediction error
signal e(n) = x̂(n+1)−x(n+1), the single components of the embedding vector
x(n), x(n−M), . . . shall each contribute as much information for the prediction
as possible. Hence, ideally the components should be mutually independent. For
a uniform embedding3 as in (2) the embedding delay could be chosen at the
first zero crossing of the auto-correlation function of the signal s(n), making two
neighboring components linearly independent (uncorrelated).

Minimizing linear dependence, however, might not be optimal for the em-
bedding of signals coming from nonlinear systems (cf. [21, App. B]). Thus, the
common approach is to minimize the statistical dependence between the com-
ponents in the embedding by looking at the mutual information (MI) between
delayed signal samples x(n) and x(n+L), and choosing the embedding delay as
the delay at the first minimum of MI(L). Examples for the function MI(L) for
some vowel signals are depicted in Fig. 2 (a). For vowel signals a first minimum
of MI(L) is commonly found in the range of 5 ≤ M ≤ 15 (for a signal sampling
rate of fs = 16 kHz). For mixed excitation signals, the first minimum of MI(L)
– as depicted in Fig. 2 (b) – tends to be at smaller delays, or MI(L) monoton-
ically decreases. A monotonically decreasing function MI(L) is also commonly

3 Non-uniform embeddings, as suggested in [20], are considered in section 3 below.



observed for unvoiced speech signals. This raises the question of how to choose
M for such signals.
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Fig. 2. Mutual information between signal samples as a function of delay L for (a) vowel
signals, and (b) mixed excitation speech signals. Signals are refered to using labels from
the machine-readable phonetic alphabet SAMPA. Signal sampling frequency is 16 kHz.

Still, there is another aspect of setting the embedding delay for the oscillator:
Besides finding an embedding delay that minimizes the error of the predictor,
another aim for the optimization of the embedding delay for the oscillator is to
‘unfold’ the signal trajectory in phase space, thus to prevent self-intersections
(cf. [18]). As an example the time signal and the two-dimensional embeddings
for two choices of the embedding delay for a mixed excitation speech signal are
shown in Fig. 3. For the small embedding delay M = 2, chosen according to the
first minimum in MI(L) (cf. Fig. 2 (b)), the trajectory of the signal in phase space
evolves mainly on the diagonal and due to the noise-like signal component we can
not identify the oscillatory component from the phase space plot in Fig. 3 (b). For
a larger embedding delay M = 13, Fig. 3 (c), the oscillatory component becomes
visible as a (still noisy) open loop of the trajectory. The identification of the signal
structure by the nonlinear function in the oscillator can be considered equally
difficult as the task of visually identifying the trajectory structure in the phase
space plots, hence an oscillator based on an embedding with small embedding
delay (and a reasonable low embedding dimension) will fail to re-produce the
oscillatory signal component in this case.

Embedding delay M and embedding dimension N thus cannot always be
chosen according to some fixed rule. Optimization of these parameters still may
require (manual) inspection of the resulting oscillator output signal.

Our choice for the embedding parameters used throughout this section is
motivated by the finding that for embeddings of stationary vowel signals a mini-
mum of false neighbors [22] for N ≥ 4 as well as a saturation of redundancy [23]
for N ≥ 3 is reached. Hence, an embedding dimension of N = 4 is used here.
The embedding delay was chosen M = 13 for all signals, which represents a com-
promise choice based on MI(L) for vowel signals (cf. Fig. 2 (a)), but also yields
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Fig. 3. Time-domain signal (a) of a mixed excitation speech sound /z/ and two-
dimensional trajectories with (b) embedding delay M = 2 (at the first minimum of
MI(L)), and (c) M = 13.

a sufficient unfolding of the trajectories of voiced speech signals (cf. Fig. 3). A
fixed embedding delay is prefered over one optimized for each individual speech
sound in our work to enable the synthesis of transitions (not described here).

2.3 Prediction Function

The prediction function f(·) in the oscillator is commonly realized as a trainable
nonlinear mapping function, e. g., an artificial neural network (ANN) – such
as a multilayer perceptron (MLP)[13], a radial basis function (RBF) network
[12, 24, 15, 25, 16], or support vector machine (SVM) [26] – or by other function
approximations such as multivariate adaptive regression splines (MARS) [27],
classification and regression trees (CART), or lookup tables [28, 3].

All these function models have to be trained on input-output examples

(x(n), x(n + 1)) , IRN × IR , (3)

derived from the original speech signal x(n) according to a chosen embedding.
For many of the nonlinear function approximations listed above some kind

of regularization has to be applied to avoid over-fitting – at least by controlling
the complexity (number of parameters) of the function model – and to come up
eventually with a stable oscillator for stationary speech signals. The exceptions
are function realizations by lookup tables and CART, which produce a bounded
output according to the range covered by the training signal. Oscillators based on
lookup tables for stationary speech signals moreover entail an implicit modeling



of the noise-like signal part and have been found very appropriate, e. g., for
time-scale modification [3]4.

MLPs with a nonlinear output layer may as well be confined to a bounded
output. In our experiments, however, we found that even with a bounded out-
put function MLP based oscillators often display no successful synthesis behavior
that cannot be generally mitigated by reduction of model complexity or regular-
ization methods such as early stopping or cross-validation. Nevertheless, more
elaborate MLP structures and training algorithms (e. g., as described in [13])
may possibly yield better performance than our simple attempts.

Here, we shall focus on the realization of the nonlinear function by RBF
based models, and present some methods for regularization that showed the
highest number of ‘successfully re-synthesized’ stationary speech signals in our
experiments. Particularly, we will limit the scope of our elaborations to RBF
networks with a priori fixed Gaussian basis functions, i. e., RBF networks with
center positions and widths of the Gaussian basis functions set to fixed values
before network training. This restriction reduces the parameters of the RBF
network that are optimized in the training process to the network output weights
– and the training process for minimizing the squared prediction error to a
problem which is linear in these parameters.

2.4 RBF Networks with Fixed Basis Functions

In an RBF network at each unit the distance of the input vector from a center (in
input space) is computed and used as input for the according basis function. The
network output is computed as the weighted sum of the basis function output
values:

fRBF(x) =

Nc∑

i=1

wi ϕi(‖x − ci‖) , IRN → IR . (4)

In this equation x is the N -dimensional input vector, ci are the center positions,
ϕi(·) are the basis functions, and wi the weighting coefficients. Nc is the number
of basis functions and weights5. An RBF network has – as opposed to other
kernel based function approximations – radially invariant basis functions. The
basis functions used here are Gaussian functions,

ϕi(‖x − ci‖) = exp

(

−
‖x − ci‖

2

2σ2
i

)

, (5)

centered at positions ci in input space, and with variance σ2
i . ‖x−ci‖ is the Eu-

clidean vector distance between x and ci, making the basis function rotationally
invariant.

4 Interactive demo at http://www.nt.tuwien.ac.at/dspgroup/tsm.
5 For other applications RBF networks often comprise an additional bias term, incor-

porated in the network function by using a constant ‘basis function’ ϕ0(x) = 1 and
an according weight w0. Since our speech signals are ensured to have zero mean, we
do not make use of this bias term.



If the basis functions ϕi(x) are fixed, i. e., if the center positions ci and the
variances σ2

i are set to a priori chosen values, the network parameters that have
to be optimized in the training process are the weights wi only. The training
process becomes a linear problem: Applying the network equation (4) to all
pairs of training input-output examples (xk, tk), k = 1, 2, . . . , P results in the
following vector-matrix equation:

t = Φw , (6)

with the training output examples (‘targets’) collected in vector t = [t1, t2, . . . , tP ]T ,
the weights in vector w = [w1, w2, . . . , wNc

]T , and the response of the basis func-
tions to the training input examples in matrix

Φ =






ϕ1(x1) · · · ϕNc
(x1)

...
. . .

...
ϕ1(xP ) · · · ϕNc

(xP )




 .

Assuming that there are more training examples than basis functions P > Nc,
training of the RBF network relates to solving (6) for the weight vector w, which
is done in a minimum mean squared error (MMSE) sense using the pseudo inverse
Φ† = (ΦT Φ)−1 ΦT of Φ,

ŵMMSE = (ΦT Φ)−1 ΦT t . (7)

Using the weights ŵMMSE in the RBF network (4) yields the lowest possible
squared prediction error for prediction of the training data. In the case when
the number of network centers is equal to the number of training examples6,
Nc = P , the training output examples might even be perfectly predicted by the
RBF network.

Notwithstanding the optimal prediction on the training data, an RBF net-
work with weights ŵMMSE often displays bad generalization, i. e., bad prediction
on unseen test data. Due to the aim of optimal prediction of the training data
the network output function may take arbitrary output values in regions of in-
put space between (and outside) the training data samples. In the application
of modeling speech signals with the oscillator model this commonly results in
the occurrence of large amplitude intermittent spikes in the oscillator generated
signal, as depicted in Fig. 4. Several investigations on using RBF networks in the
oscillator model indicate the necessity of using regularization for RBF network
training [12, 24, 15].

2.5 Regularized RBF Networks

Regularization refers to trading prediction accuracy on the training data (lead-
ing to over-fitting, and to large amplitude spikes in the oscillator output) for

6 For example if the network centers are chosen equal to the training input vectors:
ci = xi, i = 1, 2, . . . , P .
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Fig. 4. Original speech signal s(n), and oscillator output signal x(n) using non-
regularized RBF network training according to (7). Note the different scaling of the
y-axes.

some other desired property of the prediction function. In our case this desired
property is smoothness of the RBF network output function. Two ways of mod-
ifying the weight estimation (7) of an RBF network that impose smoothness on
the network function are stated in the following.

The first is regularization of matrix inversion in (7), i. e., the regularization
of the linear weight estimation task without taking the nonlinear nature of the
basis functions into account. The modified training equation is [29]

ŵreg = (ΦT Φ + λI)−1 ΦT t , (8)

with λ being the regularization parameter, and I the Nc × Nc identity matrix.

A method considering the nonlinear background, the Generalized Radial Ba-
sis Function (GRBF) expansion thoroughly derived in [30], arrives at a very
similar equation for the RBF network weights

ŵGRBF = (ΦT Φ + λΦ0)
−1 ΦT t , (9)

again with λ being the regularization parameter, but the place of the identity
matrix is taken by the Nc × Nc matrix Φ0. This matrix is composed of the
response of the basis functions to input vectors equal to the center positions:

Φ0 =






ϕ1(c1) · · · ϕNc
(c1)

...
. . .

...
ϕ1(cNc

) · · · ϕNc
(cNc

)




 .



For uni-modal basis functions (like Gaussians) Φ0 has all ones on the diagonal,
and smaller off-diagonal values.

Determining an optimal value for the regularization parameter λ is often
based on cross-validation: The prediction error of a network is computed for an
unseen validation data set for networks trained using a number of λ values of
interest. The λ value yielding the minimum mean squared error on the validation
set is chosen. k-fold cross-validation [31] makes best use of a small data set by
partitioning the data and doing several cross-validation runs on the k partitions.

2.6 Bayesian Regularization and Pruning

The concept of Bayesian choice and training of function models has been pre-
sented in a series of papers [32–34] and refers to an iterative determination
of function models (i. e., model structure and parameters) and regularization
method and parameter(s) in the manner of the expectation-maximization (EM)
algorithm [35]. We will here present the algorithm for Bayesian regularization
for the RBF network with given fixed basis functions7.

Bayesian Regularization of RBF Networks. In the Bayesian approach the
RBF network weights w are considered random variables, with a prior prob-
ability density function (pdf) p(w|α), parameterized by one parameter α. In-
corporating regularization is done by stating a preference for smoother network
functions by choosing the prior for the weights as a zero mean Gaussian distri-
bution with variance α−1:

p(w|α) =
( α

2π

)−
Nc

2

exp
(

−
α

2
‖w‖2

)

. (10)

Furthermore, it is assumed that the training output samples tk are produced
by an additive noise model

tk = fRBF(xk) + εk , p(ε) = N (0, σ2
n) , (11)

with the function fRBF(·) from (4) and additive zero-mean Gaussian noise sam-
ples εk with variance σ2

n. The noise variance σ2
n is the second additional param-

eter (besides α) introduced by this Bayesian formulation. As in the scope of the
expectation-maximization algorithm these additional parameters are called hid-

den or hyper-parameters. Like the weights the hyper-parameters are unknown
parameters, and have to be characterized by an a priori chosen pdf, too. Since
both additional parameters are scaling parameters, proper prior distributions
are, e. g., uniform distributions on a logarithmic scale.

7 That means, we shall ignore the possibility of a Bayesian choice of hypothesis H
(network complexity) and set of basis functions A considered in [32]. Furthermore
we will restrict the derivation of the training algorithm to one specific choice of
regularizer R.



The aim in Bayesian network training is to find the most probable values for
the weights and the hyper-parameters given the training data (let X represent
the collected training input vectors), i. e., to maximize p(w, α, σ2

n|X, t):

(w, α, σ2
n)bay = arg max(p(w, α, σ2

n|X, t)) . (12)

Since this maximization cannot be accomplished analytically, the task is divided
in two steps, maximizing the probability of the weights values for given training
data and hyper-parameters, and updating the hyper-parameters, corresponding
to a decomposition p(w, α, σ2

n|X, t) = p(w|X, t, α, σ2
n) p(α, σ2

n|X, t).

The first part of this decomposition can be evaluated analytically: For given
hyper-parameters the resulting pdf for the weights p(w|X, t, α, σ2

n) is a product
of Gaussian pdfs, and thus a multivariate Gaussian distribution itself,

p(w|X, t, α, σ2
n) = (2π)−

Nc

2 |Σ|−
1
2 exp

(

−
1

2
(w − µ)T Σ−1(w − µ)

)

, (13)

with covariance and means, respectively:

Σ = ( 1
σ2

n

ΦT Φ + αI)−1 ,

µ = 1
σ2

n

ΣΦT t . (14)

Maximization of (13) consists of setting the weights w equal to the mean values
µ:

ŵbay = µ = (ΦT Φ + α σ2
n

︸︷︷︸

λbay

I)−1ΦT t . (15)

Note, that – relating to regularization by matrix inversion (8) – the product of
the hyper-parameters takes the role of the regularization parameter, λbay = α σ2

n.

The second part in the above decomposition is again split by p(α, σ2
n|X, t) ∝

p(t|X, α, σ2
n) p(α) p(σ2

n) (where we skip the normalization by p(t) = const. and
assume no conditioning of the hyper-parameters on the input training data
p(α|X) = p(α), p(σ2

n|X) = p(σ2
n)). Maximization of the right hand side terms

depends on assumptions for the prior distributions of the hyper-parameters p(α)
and p(σ2

n), and is treated for uniform distributions on logarithmic scale and for
Gamma distributions in [32, 36]. For uniform prior distributions on a logarith-
mic scale the resulting update equations8 for the hyper-parameters to maximize

8 Deviating from the exact Bayesian approach the following approximations are
made: As already noted, the derivation of the weights from (13)-(15) assumes the
hyper-parameters to be known, which corresponds to taking a delta-distribution for
p(α, σ2

n|t). On the other hand in the update of the hyper-parameters (16) the param-
eters of the posterior pdf for the weights are assumed to be known. Furthermore, the
update of the hyper-parameters (16) is not exactly a maximization step, since the
calculation of γ involves the old value for α on the right-hand side of the equation.
Hence, the Bayesian learning can only be accomplished in an iterative procedure.



p(α, σ2
n|X, t) are

αnew =
γ

‖µ‖2 ,

(
1

σ2
n

)new

=
‖t − Φµ‖2

P − γ ,

γ = Nc − α Trace(Σ) . (16)

Bayesian optimization of weights and hyper-parameters (and thus of regular-
ization) comprises iterating (14) and (16), in the manner of the EM algorithm:

Σ(i) = ( 1
σ2

n

(i) Φ
T Φ + α(i)I)−1 ,

µ(i) = 1
σ2

n

(i) Σ
(i)ΦT t ,

γ(i) = Nc − α(i) Trace(Σ(i)) ,

α(i+1) =
γ(i)

‖µ(i)‖2 ,

1

σ2
n

(i+1)
=

‖t − Φµ(i)‖
2

P − γ(i) . (17)

Here, i = 1, 2, . . . is the iteration index.
For the application in the oscillator model the iteration in (17) was found to

converge in the generic case9. Starting with an initialization with σ2
n

(1)
= 10−4,

α(1) = 10−4, the mean number of iterations for less than 1% variation in the
hyper-parameters γ and σ2

n was 19.3 for signals from a database of sustained
vowels and nasals, and even smaller for voiced and unvoiced fricatives. This
means that the computational complexity of the Bayesian algorithm for deter-
mining the regularization factor is comparable to the computational complexity
of cross-validation over a range of, e. g., λ ∈ [10−12, 102] with one λ value per
decade and one validation set, and smaller by a factor of k as compared to k-fold
cross-validation.

The value of the regularization parameter λbay from Bayesian training for
vowel signals is, on average, four orders of magnitude higher than the value de-
termined by cross-validation. A closer look at the error function on the validation
set in the cross-validation procedure reveals that, for many vowel signals, this
function displays a flat minimum with very small variation over several orders of
magnitude, as in Fig. 5, due to the high signal to noise ratio (SNR) of the train-
ing signal. As a consequence, an arbitrary λ value within this large range can be
chosen to yield approximately the same small prediction error on the validation
set. The actual position of the minimum in the validation error highly depends
on training parameters, like choice of validation set, training length, etc., as ex-
emplified in Fig. 6. For the application in a predictor the actual choice of λxv

does not make a big difference. However, for the oscillator a minimum λ value is

9 A ‘non-generic’ case encountered was the oscillator training on a strictly periodic
signal, where the Bayesian algorithm did not converge.



necessary to yield stable oscillation (as indicated in Figs. 5 and 6). The Bayesian
algorithm, on the other hand, always chooses a λ value at the higher end of a flat
validation error function (resulting in a possibly slightly larger squared error),
as shown in Figs. 5 and 6, and thus results in a significantly larger number of
stably re-synthesized vowel signals.
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The difference between the value of the regularization parameter found by
cross-validation and by the Bayesian algorithm is less stringent for voiced and
unvoiced fricatives, which do not display a flat minimum of the validation error
function.

Testing the Bayesian algorithm on artificial speech source signals according to
the Liljencrants-Fant model [37] with additive noise, and artificially introduced



variations in fundamental period length (jitter) and amplitude of individual fun-
damental cycles (shimmer), a very robust behavior is found. In Fig. 7 it can be
seen that regularization is increased with increasing noise level, and, regardless
of the amount of jitter and shimmer, the Bayesian algorithm yields a robust
estimate of the actual noise level. A similar robust behavior has been found for
the modeling of chaotic signals from the Lorenz system with the oscillator model
and Bayesian regularization [16].

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 5 10 15 20 25 30 35 40

λ 
= 

α 
σ n

2

SNR (dB)

jitter=0%, shimmer=0%
jitter=1%, shimmer=0%
jitter=5%, shimmer=0%
jitter=0%, shimmer=1%
jitter=1%, shimmer=1%
jitter=5%, shimmer=1%
jitter=0%, shimmer=5%
jitter=1%, shimmer=5%
jitter=5%, shimmer=5%

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40
 0 5 10 15 20 25 30 35 40

S
N

R
ba

y 
(d

B
)

SNR (dB)

jitter=0%, shimmer=0%
jitter=1%, shimmer=0%
jitter=5%, shimmer=0%
jitter=0%, shimmer=1%
jitter=1%, shimmer=1%
jitter=5%, shimmer=1%
jitter=0%, shimmer=5%
jitter=1%, shimmer=5%
jitter=5%, shimmer=5%

Fig. 7. Regularization factor λbay and noise variance σ2
n (displayed as SNRbay) found

by the Bayesian training as a function of training signal SNR for artificial speech source
signals.

Pruning of Basis Functions. An extension of the Bayesian learning algorithm
for kernel based function approximation, like RBF networks, is the relevance
vector machine (RVM) as described in [36]. As opposed to the above approach
where regularization is introduced by the choice of a Gaussian prior pdf for
the norm of the weights vector (10), in the RVM the prior pdf for the network
weights is a product of individual Gaussians for each weight:

p(w|α) =
Nc∏

i=1

p(wi|αi) ,

p(wi|αi) =
(

αi

2π

)− 1
2 exp

(
−αi

2 w2
i

)
. (18)

Instead of the hyper-parameter α, a number of Nc hyper-parameters αi, i =
1 . . . Nc are introduced by this model.

Again a decomposition of the pdf for the unknown parameters similar as for
(12) and an iterative training algorithm can be applied (for details see [36]).
During RVM learning, however, some of the hyper-parameters αi attain large
values. This means that the pdf for the according weight wi is concentrated
around zero, and that the weight value almost certainly is close to zero. Hence,
the basis function ϕi does not contribute a relevant part to the output, and can
be pruned.



When pruning basis functions for αi > 106, and stopping iterations when
the number of network centers is not reduced within the last ten iterations, the
mean number of iterations is 60.2 for our vowel database. The number of initial
basis functions used (Nc = 625) is, however, significantly reduced during the
RVM training iterations10, as depicted in Fig. 8.
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Fig. 8. Reduction of the number of basis functions Nc during iterations of RVM training
for some example vowel signals.

Using the RVM for prediction yields a prediction error not more than 1 dB
higher than for Bayesian trained RBF networks without pruning. Also the oscil-
lator model with an RVM yields stable re-synthesis of almost the same number
of vowel signals than without pruning. One possible reason that some signals
could be re-synthesized without pruning, and cannot with the RVM, seems to
be the fact that, since less basis functions are used in the RVM, the weights for
these basis functions may again take larger values than without pruning.

Concerning the almost equal prediction gain and number of stably re-synthe-
sized vowel signals the RVM can be considered a valuable tool for reducing the
complexity of kernel based function models like RBF networks in applications
like speech signal prediction and the oscillator model. Other applications of the
RVM algorithm comprise, for example, the determination of relevant weights in
adaptive filters, where the complexity of the adaptive filters is also considerably
reduced without impairing performance [38].

2.7 Inverse Filtering and Oscillator Model

The application of regularization for nonlinear function learning increases the
number of signals that can be stably re-synthesized with the oscillator model.
However, for modeling the full speech signal this number is still fairly low (only
18% for our vowel database and a fixed embedding with N = 4 and M = 13).

10 Note, that – in spite of the higher number of iterations – the total computational
complexity may be less than in the Bayesian training without pruning: The main
effort is the inversion of an Nc × Nc matrix, which is of order O(Nc

3). Since Nc is
reduced during the iterations, computational effort is also shrinking considerably.



Inspection of the structure of the signal trajectories in phase space reveals, that
vowels with a simple trajectory structure, like /o/ or /u/ can be stably re-
synthesized more likely than vowels with a more complicated structure, like /a/,
/e/, and /i/. To gain a generally simple structure of the signals that are to be
modeled by the oscillator, inverse filtering in combination with the oscillator
model can be applied [13, 16]. Inverse filtering refers to the identification and
compensation of the influence of the vocal tract on a glottis source signal. Here we
utilize a simple inverse filtering process, since we do not aim at the identification
of the source signal, but want to arrive at a simple trajectory structure only.

The inverse filtering process used for the examples here consists of identifi-
cation and application of a signal dependent linear prediction (LP) inverse filter
with transfer function A(z) = 1 + a1z

−1 + . . . + aNLP
z−NLP , and subsequent

low-pass filtering. First-order pre-emphasis filtering with a zero at zn = 0.75 is
used for LP analysis (but not in the signal path). For the low-pass filter H(z) a
first order recursive filter with a pole at zp = 0.95 is applied. This low-pass filter
can be stably inverted for synthesis.

Oscillator model identification is now done for the output signal xg(n) of the
low-pass filter. For re-synthesis, the oscillator generated signal yg(n) is filtered by
1/H(z) and the LP synthesis filter 1/A(z) to gain the synthetic full speech signal
y(n). To exemplify the benefit of inverse filtering, time signals and phase space
trajectories for the vowel /a/ from a female speaker are depicted in Fig. 9. This
signal could not be re-synthesized in the full speech signal domain. By inverse
filtering, however, the highly intermingled trajectory of the full speech signal
x(n) is converted to an open loop trajectory of xg(n). This simpler structure
can be identified and stably re-synthesized by the oscillator model with Bayesian
regularization (without pruning, in this example).

By means of inverse filtering the percentage of stably re-synthesized vowel
signals from our database for an embedding with N = 4 and M = 13 is increased
from 18% to 56%. Also the spectral reproduction of speech signals is improved
as compared to full speech signal modeling. However, perceptually many re-
generated vowel signals still are not satisfactory, and in particular for mixed
excitation speech signals, like voiced fricatives, the oscillator fails to adequately
reproduce the signal quality. We attribute this to the missing modeling of high-

dimensional or stochastic speech signal components by the low-dimensional and
deterministic oscillator model, and present a model that accounts for a stochastic
noise-like signal component in speech signals in the following.

2.8 Oscillator-plus-Noise Model

For purely unvoiced speech signals a satisfactory synthesis system is the auto-
recursive stochastic model (i. e., noise excited LP) [39]. Concerning the gener-
ation of mixed excitation speech signals it is known that a modulation of the
noise-like signal component synchronized in phase with the oscillatory signal
component is requisite [40–46]. To achieve this synchronized modulation for os-
cillator model generated speech signals we propose to use an amplitude predic-
tion for the noise-like signal component by a second nonlinear function fn(·)
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Fig. 9. Time signals (top row), phase space trajectories (bottom row) of the original
full speech signal x(n), the signal after inverse filtering xg(n), as well as the oscillator
generated signal yg(n) and the resulting synthetic full speech signal y(n) for vowel /a/
from a female speaker.

from the state of the oscillator model:

ã(n + 1) = fn(x(n)) , (19)

and to add a modulated noise signal to the oscillator model output signal.
Based on the assumption, that the predictor used in the oscillator model is

able to capture the low-dimensional oscillatory component of speech signals, but
not the high-dimensional noise-like component, the prediction function for the
noise-like signal component’s amplitude fn(·) in (19) is trained to predict the
amplitude of the prediction error signal e(n) = x̂(n) − x(n) of the nonlinear
signal predictor (1).

For modeling general mixed excitation speech sounds we found [47] that it
is also necessary to use a second LP analysis path for the noise-like signal part
to achieve the spectral shaping of this signal component independent from the
spectral properties of the oscillatory signal component.

A schematic of the analysis and synthesis process of the resulting oscillator-

plus-noise model is given in Fig. 10. The upper signal path – from input signal
x(n) to oscillatory output component yosc(n) represents the model comprising
inverse filtering as described in the last subsection. All additional processing is
based on the above assumption that the prediction error of the nonlinear function
f() (in the oscillator) is related to the noise-like signal component. Hence, the
predicted signal x̂g(n) is considered to be the oscillatory part of the training
signal. To arrive at the noise-like signal component, x̂g(n) is filtered by the
synthesis filters 1/H(z) and 1/A(z) and subtracted from the training signal to
yield an estimate for the noise-like signal component x̂noi(n). Synthesis filtering



on x̂g(n) is done to provide the means for an individual spectral shaping of
the noise-like component independent from the oscillatory component by the
LP filter Anoi(z). From the according residual signal xr noi(n) the amplitude
trajectory is extracted by rectification and moving average filtering. The function
fn(·) in (19) is trained to predict this amplitude trajectory ânoi(n) based on the
trajectory of the state of the predictor xg(n − 1).

At the bond between analysis and synthesis the speech signal is represented
by parameters only, namely the coefficients for the nonlinear functions in the
oscillator and the noise amplitude predictor, and the coefficients for the LP
filters.

In the synthesis stage the oscillatory speech signal component is generated
by autonomous synthesis as in the previous models. In addition the amplitude
trajectory ãnoi(n) of the synthetic signal’s noise-like component is predicted from
the oscillator state yg(n−1) by the function fn(·). A white Gaussian noise source
is modulated in amplitude by ãnoi(n) and fed to the LP synthesis filter 1/Anoi(z)
to yield the noise-like signal component in the full speech signal domain ynoi(n),
which is added to the oscillatory component yosc(n), yielding the output signal
y(n).

As depicted for an example signal in Fig. 11, the oscillator-plus-noise gen-
erated signals display a spreading of the signal trajectory in phase space and
a spectral noise floor, resembling the behavior of the natural signals’ trajectory
and spectrum, in contrary to the signals generated by the oscillator alone – which
have a concentrated trajectory and a line spectrum.

Examples for the noise amplitude modulation achieved by the oscillator-plus-
noise model are given in Fig. 12. For both the vowel /o/ and the voiced fricative
/v/ the model achieves a pitch-synchronous modulation of the amplitude ã(n)
for the noise-like signal component similar to the amplitude modulation â(n)
of the prediction error signal. However, the two example signals display a very
distinct form of the noise amplitude trajectory over the pitch cycle: Whereas the
vowel signal has triangular maxima of the noise amplitude at the minima of the
signal yg(n) – which is a typical behavior for vowels and often modeled using
a parametric envelope [45, 48] – the noise amplitude for the voiced fricative has
minima synchronized with the minima of yg(n).

In the oscillator-plus-noise model the envelope for the noise modulation is,
for any individual training signal, identified by the prediction function fn(·),
in a similar manner as the oscillatory waveform is identified by the nonlinear
function f(·) in the oscillator model.

3 ODE and DDE Models from Delay- and

Differential-Embeddings

Recovery of nonlinear dynamical processes from single scalar time series obser-
vations is extremely difficult when no information on the functional form of the
underlying process is available. In this section we present the reconstruction of
a dynamical process from a differential embedding using ordinary differential
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Hem(z)

Fig. 10. Oscillator-plus-noise model.
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Fig. 11. Time signals (top row), phase space trajectories (middle row), and DFT spec-
tra (bottom row) of the original full speech signal x(n), the oscillator generated syn-
thetic full speech signal yosc(n), and the oscillator-plus-noise generated synthetic full
speech signal y(n) for female /a/.
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â
(n

)
x

g
(n

)

500 600 700 800 900 1000 1100 1200 1300 1400 1500
−1

0

1

500 600 700 800 900 1000 1100 1200 1300 1400 1500
0

2

4

x 10−3

n

S
y
n
th

es
is

ã
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equations (ODEs) from an “Ansatz library”, the optimization of delay differen-
tial equations (DDEs) using a genetic algorithm (GA), and some analysis results
for speech characterization that can be read from the parameter values of GA
optimized DDEs.

Many time series analysis methods for modeling, prediction, and classification
of experimental observations rest upon nonlinear dynamical systems theory. An
important analysis tool in nonlinear system theory is reconstructing phase space
topological properties of a dynamical system from a single scalar time series. The
embedding theorems of Takens [17], and Sauer [18] assure us that an embedding
constructed from a single variable time series preserves the topological properties
of the underlying dynamical system and, therefore, lays out the foundations for
such reconstruction methods.

original
dynamical system

Ansatz
Library

ODE
(differential model)

Ansatz
Library

unknown

global modeling

delay map

DDE
ODE

GA
GA

Takens

x = f(xτi
)

t

ẋ = f(x)

ẋ = f(x)
ẋ = f(xτi

)

x(t)

xτi

x x

ẋ

X(n) = F (X, Ẋ, . . . , X(n−1))

Fig. 13. Framework for global modeling from a single time series via delay- or
differential- embedding: typically only a restricted set of measurements, here a sin-
gle time series, is available. The underlying dynamical system is unknown. To recover
information about the underlying system, following the theorems of Takens [17], either
a delay- or a differential-embedding can be constructed in order to reconstruct a global
model. The model form reconstructed from a delay embedding can be a delay map, a
set of ODEs, or a DDE and, from a differential embedding, a set of ODEs.

Thus, it is possible to model a multi-dimensional nonlinear process directly
from the scalar data without any prior knowledge of the physical processes, such



that these models reproduce the data with the original dynamical properties.
Two types of models have been used. The first encompasses local models of the
dynamics which allow to predict, step by step, the evolution of the system. The
most common model of this type is the auto-regressive moving average (ARMA)
model. The second type consists of global models that attempt to characterize
the global underlying dynamics of a given process. Ideally, global models can
generate long time series with the same dynamical properties as the original
ones.

In the simple case of noise-free observations of all original dynamical vari-
ables of a physical system, the global model can be exactly estimated if we know
the precise model order, that is if we know the exact underlying structure of
the original system for which we estimate the parameters. In reality, one typi-
cally does not know the proper dimensionality or functional model form of the
underlying dynamical process, especially when only a scalar observation of the
process is available. If this is the case, estimation of a global model can be very
difficult. Any error in the assumptions made about the model dimension or its
functional form may critically effect the model quality.

Here we address the problem of finding a global dynamical model in the
form of a set of coupled ordinary differential equations (ODEs) from a single
time series. We introduce an Ansatz library [49, 50] based method (see Fig. 13) in
Sect. 3.1 and a Genetic Algorithm (GA) based method in Sect. 3.2 to find such a
system of ODEs which models the entire underlying nonlinear dynamical process.
In these two methods we construct from the time series either a differential
embedding (Ansatz library based method) or a delay embedding (GA based
method) using a non-uniform embedding [51, 20] which assumes that the given
time series can have different time scales. In Sect. 3.3 we estimate DDE (delay
differential equation) models from the time series. This method is here not used
to find a model for synthesis of speech, but can be used to characterize certain
features of the time series, e. g., for segmentation of a speech signal.

3.1 Differential Embedding: Ansatz Library Based Method

Ansatz Library. The framework of reconstructing an ODE model via an
Ansatz library [49, 50] based method is illustrated in Fig. 14.

To obtain the general form of an ODE model in the differential embedding
space, IR3(X,Y, Z), where X = s(t) is the measured time series, Y = Ẋ, and
Z = Ẏ are the successive derivatives, first consider a continuous-time system in
IR3(x1, x2, x3)

ẋ = f(x) , that is
ẋ1 = f1(x)
ẋ2 = f2(x)
ẋ3 = f3(x)

, (20)

with x = [x1, x2, x3], and let s = h(x) be an observed scalar signal, where
h : IR3 → IR is a smooth function. The Lie derivative Lfh(x) of the function



Fig. 14. Framework for reconstructing an ODE model via an Ansatz library:
The original physical system is unknown and only a scalar time series (here a vowel
speech signal) can be measured. From this time series a multidimensional object, an
embedding, is constructed. The embedding theorems of Takens [17] and Sauer [18] as-
sure us that such an embedding constructed from one single time series preserves the
topological properties of the underlying dynamical system. The embedding used here
is a differential embedding, where the time series itself and successive derivatives are
used.
To find the right model form of the differential model X (n) = F (X, Ẋ, Ẍ, . . . , X(n−1))
we make assumptions about the model form of the original dynamical system ẋ = f(x)
in the original phase space and then choose the model form of the differential model
accordingly. This is done as follows: We make assumptions about the model form, the
dimension of the original dynamical system, and the order of nonlinearities. All models
ẋ = f(x) with such a model form that can be transformed to a differential model
X(n) = F (X, Ẋ, Ẍ, . . . , X(n−1)) are collected in the so-called Ansatz library [49, 50].
To use the inverse Φ−1 (see Fig. 13) of the transformation between the original dynam-
ical model and the differential model, we further require that the map Φ is one-to-one.
The concatenation of all possible differential models is then used as Ansatz for estimat-
ing the model from the time series. If the model falls into the class of models that were
considered in the original phase space, the model can be re-transformed to an Ansatz
model ẋ = fa(x) that is topologically equivalent to the original dynamical system and
typically of ‘simpler’ model form than the differential model (see [50]).



h(x) with respect to f(x) is defined as

Lfh(x) =

3∑

k=1

fk(x)
∂h(x)

∂xk

(21)

and recursively for the higher-order derivatives Lj
fh(x) = Lf

(

Lj−1
f h(x)

)

. Using

successive Lie derivatives we can build a model from the scalar signal s as follows

X = s = h(x) ,

Y = Lfh(x) ,

Z = L2
fh(x) .

(22)

The phase portrait can thus be reconstructed in the differential space IR3(X,Y, Z).
With these coordinates, a model can be obtained from the recorded scalar signal
via a global modeling procedure. A general form for a differential model D is
given by

Ẋ = Y ,

Ẏ = Z ,

Ż = F (X,Y, Z, αn) =

Nα∑

n=1

αnPn ,

(23)

where αn are the coefficients of the model function F to be estimated and Pn

are the monomials X iY jZk [52]. The indices (i, j, k) for monomials may also be
negative, yielding a model with rational monomials. System (23) is called the
differential model [52], and its parameters can be obtained using a least square
procedure, such as singular value decomposition (SVD) [53].

Here we do not choose the set of monomials Pn in (23) as truncated Tay-
lor series expansion. Instead we use the Ansatz library approach introduced in
[49, 50] where only monomials are considered that correspond to an underly-
ing dynamical system in a three dimensional phase space IR3(x1, x2, x3), where
x1 = s(t) is the observable and x2 = x2(t) and x3 = x3(t) are unobserved state
space variables.

The first library made of six Ansatz systems Al (with indices l = 1, 2, 3, 18, 19, 21,
cf. Table 1) for defining the structure of 3D differential models was presented
in [49]. An extended Ansatz Library of systems of ODEs in a three dimensional
phase space was derived in [54] for the case when the right hand sides can be
written as polynomials containing up to second order non-linearities. We briefly
detail how this library was built.

A three dimensional system of ODEs with the right hand sides containing
polynomials with up to second order non-linearities can be written in a general
form as

ẋ1 =
9∑

i=0

ai Qi , ẋ2 =
9∑

i=0

bi Qi , ẋ3 =
9∑

i=0

ci Qi , with

Q = {1, x1, x2, x3, x
2
1, x1x2, x1 x3, x

2
2, x2 x3, x

2
3} .

(24)



To derive the Ansatz library in [54] we restrict the terms of the differential
model to the set of all monomials of the form X iY jZk, where i, j and k are
integers, positive or negative. Given that the order of the differential equations
is interchangeable, we fix the x1-variable as the observable in all cases, i.e. x1 = s,
to obtain a set of non-redundant libraries. We then find which model structures
allow us to invert the maps Φl to express the coefficients αn of the differential
models Dl in (23), in terms of the coefficients ai, bj , ck of the second order system
equation (24). Through this process, we find which coefficients ai, bj , ck in (24)
must be zero for the individual differential model structures. In the end we obtain
a set of ODEs containing a limited number of terms for which the coefficients
ai, bj , ck are non-zero. Note that we do not use data to build the library.

The library for the case of second order non-linearities consists of 26 such
model structures listed in Table 1. In Table 2, the monomials involved in the
differential models Dl corresponding to the 26 Ansatz Al reported in Table 1
are listed. The models in Tables 1 and 2 are general forms. Systems with some
of the coefficients ai, bj , ck equal to zero can yield the same differential model,
where some of the coefficients αn can also be zero. To be more explicit, let us
explain an example (see also [50]). The systems

ẋ1 = a0 + a1x1 + a5x1x2 ,
ẋ2 = b0 + b1x1 + b2x2 + b6x1x3 ,
ẋ3 = c0 + c2x2 + c3x3 ,

(25)

and 13 sub-systems with some of the coefficients ai, bj , ck of (25) equal to zero,
as well as the following system

ẋ1 = a0 + a1x1 + a5x1x2 ,
ẋ2 = b0 + b1x1 + b2x2 + b3x3 ,
ẋ3 = c0 + c1x1 + c2x2 + c3x3 + c5x1x2 ,

(26)

and 155 sub-systems with some of the coefficients ai, bj , ck of (26) equal to zero
yield exactly the same differential model

Ẋ = Y ,

Ẏ = Z ,

Ż = α1 + α6X + α7X
2 + α21Y + α25

Y
X + α26XY + α35

Y 2

X2

+α36
Y 2

X + α44
Y 3

X2 + α52Z + α55
Z
X + α67

Y Z
X .

(27)

This means, that 170 possible systems with up to second order nonlinearities
correspond to one and the same form of differential model (27) and therefore
could have the same embedding. Only those systems of the 170 possible systems
that correspond to a differential model (27) with exactly the same set and values
of the coefficients αi have the same embedding. All such systems generate the
same time series and are therefore topologically equivalent. All non-equivalent
systems have at least one different coefficient αi.



Table 1. Ansatz library for systems of ODEs with up to quadratic non-linearities. Each
line represents one general system of ODEs which can be represented as a differential
model in the form of (23). An ‘?’ in the table indicates that the corresponding coefficient
(ai, bj , ck) from the general system (24) is present in the Ansatz-model. The coefficients
with blank entries are zero.

Ansatz a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

A1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

A2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

A3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

A4 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

A5 ? ? ? ? ? ? ? ? ? ? ? ?

A6 ? ? ? ? ? ? ? ? ? ? ? ?

A7 ? ? ? ? ? ? ? ? ? ? ? ?

A8 ? ? ? ? ? ? ? ? ? ?

A9 ? ? ? ? ? ? ? ? ? ?

A10 ? ? ? ? ? ? ? ? ?

A11 ? ? ? ? ? ? ? ? ?

A12 ? ? ? ? ? ? ? ? ?

A13 ? ? ? ? ? ? ? ? ?

A14 ? ? ? ? ? ? ? ?

A15 ? ? ? ? ? ? ? ?

A16 ? ? ? ? ? ? ? ?

A17 ? ? ? ? ? ?

A18 ? ? ? ? ? ?

A19 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

A20 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

A21 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

A22 ? ? ? ? ? ? ? ? ? ? ? ?

A23 ? ? ? ? ? ? ? ? ? ? ? ?

A24 ? ? ? ? ? ? ? ? ? ? ? ?

A25 ? ? ? ? ? ? ? ? ? ? ? ?

A26 ? ? ? ? ? ? ? ? ? ? ? ?



Table 2. Monomials of the differential models corresponding to the 26 Ansatz reported
in Table 1. A ‘?’ indicates that the monomial is present in the differential model.

Ansatz

monomial
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 1 ? ? ? ? ? ? ? ? ? ? ? ? ?

2
1

X4 ?

3
1

X3 ? ?

4
1

X2 ? ?

5
1
X

? ? ?

6 X ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

7 X2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

8 X3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

9 X4 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

10 X5 ? ? ?

11 X6 ? ?

12 X7 ? ?

13 X8 ?

14
1
Y

?

15
X
Y

?

16
X2

Y
? ?

17
X3

Y
? ?

18
X4

Y
? ?

19
X5

Y
?

20
X6

Y
?

21 Y ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

22
Y

X4 ?

23
Y

X3 ? ?

24
Y

X2 ? ?

25
Y
X

? ? ? ? ? ? ? ? ? ? ? ? ?

26 X Y ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

27 X2 Y ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

28 X3 Y ? ? ?

29 X4 Y ? ?

30 X5 Y ? ?

31 X6 Y ?

32 Y 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

33
Y 2

X4 ?

34
Y 2

X3 ? ?

35
Y 2

X2 ? ? ? ? ? ?

36
Y 2

X
? ? ? ? ? ? ? ? ? ? ? ? ? ?

37 X Y 2 ? ? ? ?

38 X2 Y 2 ? ?

39 X3 Y 2 ? ?

40 X4 Y 2 ?



Table 2. continued

Ansatz

monomial
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

41 Y 3 ? ? ?

42
Y 3

X4 ?

43
Y 3

X3 ? ?

44
Y 3

X2 ? ? ? ? ? ? ?

45
Y 3

X
? ?

46 X Y 3 ? ?

47 X2 Y 3 ?

48 Y 4 ?

49
Y 4

X4 ?

50
Y 4

X3 ?

51
Y 4

X
?

52 Z ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

53
Z

X3 ?

54
Z

X2 ? ?

55
Z

X
? ? ? ? ? ? ?

56 X Z ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

57 X2 Z ? ? ?

58 X3 Z ? ?

59 X4 Z ?

60
Z
Y

? ? ?

61
X Z

Y
? ? ? ?

62
X2 Z

Y
? ? ? ?

63
X3 Z

Y
? ? ?

64 Y Z ? ? ? ?

65
Y Z

X3 ?

66
Y Z

X2 ? ?

67
Y Z

X
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

68 X Y Z ? ?

69 X2 Y Z ?

70 Y 2 Z ?

71
Y 2 Z

X3 ?

72
Y 2 Z

X2 ?

73
Y 2 Z

X
?

74 Z2 ?

75
Z2

X2 ?

76
Z2

X
? ?

77
Z2

Y
? ? ? ? ? ?



Note that the equations in this library are also referred to as “jerky dynamics”
in the literature. Attempts to build a complete jerky dynamics library were
presented in [55], but that library was able to capture only a part of our list.

Our objective is to select the differential model Dl that best captures the
dynamics under investigation. In order to do this, we start with the structure
resulting from the concatenation of the 26 differential models {Dl}

26
l=1 which

reads as follows:

Ẋ = Y ,

Ẏ = Z ,

Ż = α1 + α2
1

X4 + α3
1

X3 + α4
1

X2 + α5
1
X

+ α6 X + α7 X2 + α8 X3+
α9 X4 + α10 X5 + α11 X6 + α12 X7 + α13 X8 + α14

1
Y

+ α15
X
Y

+

α16
X2

Y
+ α17

X3

Y
+ α18

X4

Y
+ α19

X5

Y
+ α20

X6

Y
+ α21 Y + α22

Y
X4 +

α23
Y
X3 + α24

Y
X2 + α25

Y
X

+ α26 X Y + α27 X2 Y + α28 X3 Y +

α29 X4 Y + α30 X5 Y + α31 X6 Y + α32 Y 2 + α33
Y 2

X4 + α34
Y 2

X3 +

α35
Y 2

X2 + α36
Y 2

X
+ α37 X Y 2 + α38 X2 Y 2 + α39 X3 Y 2+

α40 X4 Y 2 + α41 Y 3 + α42
Y 3

X4 + α43
Y 3

X3 + α44
Y 3

X2 + α45
Y 3

X
+

α46 X Y 3 + α47 X2 Y 3 + α48 Y 4 + α49
Y 4

X4 + α50
Y 4

X3 + α51
Y 4

X
+

α52 Z + α53
Z

X3 + α54
Z

X2 + α55
Z
X

+ α56 X Z + α57 X2 Z+

α58 X3 Z + α59 X4 Z + α60
Z
Y

+ α61
X Z
Y

+ α62
X2 Z

Y
+ α63

X3 Z
Y

+
α64 Y Z + α65

Y Z
X3 + α66

Y Z
X2 + α67

Y Z
X

+ α68 X Y Z+

α69 X2 Y Z + α70 Y 2 Z + α71
Y 2 Z
X3 + α72

Y 2 Z
X2 + α73

Y 2 Z
X

+

α74 Z2 + α75
Z2

X2 + α76
Z2

X
+ α77

Z2

Y
.

(28)

Because this differential model only contains terms leading to a 3D Ansatz with
up to quadratic nonlinearities, the presence of spurious terms in this model
structure is already greatly reduced. Note, that the Ansatz library approach
does not require the knowledge of the order of the non-linearity in the system
investigated. Given that our procedure can eliminate spurious model terms that
we might obtain, if the order is not known, one can use a library built with an
order of non-linearities higher than the one expected for the system. A library for
the case of polynomials containing up to third order non-linearities was derived
in [54], and libraries for 4th and higher order non-linearities can be derived
analogously. Here we use the simplest case of the library obtained for the second
order non-linearities. The extension to libraries that capture higher order non-
linearities is postponed to future work.

Note, that involving a higher order of nonlinearities would increase the num-
ber of candidate terms considerably when the concatenation of all possible mod-
els is used as detailed here. For higher dimensions, the numerical estimation of
the derivatives may also become problematic. A more favorable approach is to
use candidate models Dl separately to reduce the number of involved terms as
done in [49]. Nevertheless, since the terms used here are fractional, the number of
situations which can be captured for a given order of nonlinearity is significantly
increased as compared to the polynomial expansion used in [52].



Modeling of Vowels. To estimate a global model, the differential embedding
from the time series s(n) of the recording of the vowel /o/ (see Fig. 15a) is
constructed as shown in Fig. 15b. The derivative ṡ(n) of the time series s(n) is
estimated according to

ṡ(n) =
1

12 δt
( 8 (s(n + 1) − s(n − 1)) − (s(n + 2) − s(n − 2))) . (29)

The second and third derivatives are then computed from the first and second
derivatives, respectively. Then the model of the form (28) is estimated using
a least square algorithm, which here is SVD. For our present task, we set the
coefficients αi, that correspond to monomials ?

Y
to zero, because such terms

make numerical integration very unstable and represent only a highly restricted
class of original dynamical systems. For the modeling of the vowel /o/ this yields
the following differential model

Ẋ = Y ,

Ẏ = Z ,

Ż = −127.7 + 0.0034
X4 − 1.35585

X2 − 19.4471
X

− 477.915X − 1100.65X2−
1597.75X3 − 1436.2X4 − 734.386X5 − 154.263X6 + 20.1431X7+
10.8221X8 − 2304.92Y − 0.26133 Y

X4 − 7.45016 Y
X3 − 89.0811 Y

X2 −
583.536 Y

X
− 5723.88X Y − 9077.48X2 Y − 9134.39X3 Y −

5627.95X4 Y − 1935.58X5 Y − 285.133X6 Y + 2044.41Y 2+
3.06178 Y 2

X4 + 52.5805 Y 2

X3 + 339.683 Y 2

X2 + 1100.29 Y 2

X
+ 2386.52X Y 2+

1852.23X2 Y 2 + 893.248X3 Y 2 + 191.93X4 Y 2 + 6084.05Y 3+
28.7058 Y 3

X4 + 390.125 Y 3

X3 + 1951.32 Y 3

X2 + 4750.06 Y 3

X
+ 3962.2X Y 3+

1042.75X2 Y 3 + 434.01Y 4 − 24.9278 Y 4

X4 − 113.943 Y 4

X3 + 541.889 Y 4

X
+

613.845Z + 1.24638 Z
X3 + 23.2783 Z

X2 + 168.273 Z
X

+ 1252.69X Z+
1452.6X2 Z + 887.493X3 Z + 218.578X4 Z + 1148.8Y Z+
3.82964 Y Z

X3 + 70.656 Y Z
X2 + 445.685 Y Z

X
+ 1234.68X Y Z+

455.848X2 Y Z + 1434.85Y 2 Z + 135.137 Y 2 Z
X3 + 1035.42 Y 2 Z

X2 +
2253.09 Y 2 Z

X
+ 55.0741Z2 + 3.1996 Z2

X2 + 26.5625 Z2

X
.

(30)

The original time signal and the signal generated by integrating this model are
shown in Fig. 16 (a), the according magnitude spectra are depicted in Fig. 16 (b),
and the embedding of the generated signal is shown in Fig. 16 (c).

When comparing the time series of the original recording of the vowel /o/
and the integrated model in Fig. 16(a) we see a similar structure. The generated
signal of the vowel /o/ sounds very unnatural, though. When looking at the
power spectra in Fig. 16(b) we see, that the low frequency parts are similar,
but the high frequency parts are completely missing. Also the embedding in
Fig. 16(c) has only a similar structure when compared to the embedding of the
original recording in Fig. 15. The embedding of the generated sound is periodic,
while the original sound is not strictly periodic. A non-periodic, or even chaotic
behavior of the model could be achieved by changing some of the coefficients
slightly. Such a change would have to be done very carefully since this model is
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Fig. 15. (a) Time series and (b) differential embedding of the recorded signal for the
vowel /o/.

very sensitive to tiny changes and gets easily numerically unstable and, therefore,
such investigations are postponed for future work. One way to reduce the model
complexity and to enhance the quality would be to use model (30) as basis for
some pruning procedure. We currently develop a Genetic Algorithm that fulfills
such a task.

3.2 Delay Embedding: Genetic Algorithm based Method

Genetic Algorithm. A genetic algorithm (GA) [56, 57] is a search algorithm
that is based on natural genetics. A given problem is encoded as an array (pop-
ulation) of artificial strings (chromosomes). In the cases considered here, where
an optimization problem has to be solved, the guesses for possible solutions are
encoded. The GA is split into two parts: the first one is devoted to estimation
of the time delay set and the second part is used for estimating the ODE model.
In the model-selection part, different guesses for models are encoded, while in
the delay-selection part, possible delay-combinations are encoded into binary
strings. These chromosomes can be strings of 1’s and 0’s. The GA will then
manipulate this representation of the solution, but not the solution itself. A GA
also must have a criterion for discriminating good from bad solutions according
to the fitness measure of these solutions. This criterion is used to guide the evo-
lution towards future generations. In the case considered here, we use a complex
criterion composed of different objectives that include stability of the model,
topology, and, of course, similarity of the original and the generated time series.

After encoding the problem in a chromosomal manner and finding a discrim-
ination strategy for good solutions, an initial population of encoded solutions is
created. This is done by using a random number generator without any prior
knowledge of possibly good solutions. For the model-selection part, it is a set
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Fig. 16. Time series (a) and DFT spectra (b) of the original vowel signal (top bar)
and the signal generated by the estimated differential model in (30) (bottom bar), and
(c) embedding of the signal generated by the estimated differential model.



of different ODE models and for the delay-selection part, it is a set of possible
delay-combinations.

The evolution of this initial population towards later generations is done by
applying genetic operators in an iterative process. The most common genetic op-
erators are (a) selection, (b) recombination, and (c) mutation [56, 57]. Selection
allocates greater survival to better individuals. Better solutions are preferred to
worse ones. Additional new, possibly better, individuals not present in the origi-
nal population have to be created. This is done via recombination and mutation.
Recombination combines bits of parental solutions to form a better offspring. It
combines parental traits in a novel manner. Mutation, on the other hand, mod-
ifies a single individual. It is a random walk in the neighborhood of a particular
solution.

The GA proposed here is implemented in two parts to solve the given opti-
mization problem. The algorithm is initialized by selecting a first set of delays. If
no a priori information on the delays is available, a first set of delays can be ob-
tained by visually inspecting the embedded attractors. The algorithm then uses
the model-selection-GA to optimize a system of ODEs while the delays are kept
fixed. Once the modeling error is minimized for the given delay set, the found
model is fixed and the second, delay-selection-GA, is used to optimize over the
delays. The process is repeated until the selected model and the delays do not
change over a given number of iterations.

The flexibility of GAs allows us to design a strict and, at the same time,
complex fitness criterion composed of four different objectives. The modeling
error in our algorithm is defined as the least squares error weighed differentially
over time to penalize later observations. The penalty for later observations is
included because nonlinear systems can only be predicted within the Lyapunov
time limit. Since we are working with a single time series, which is also noisy,
we typically can only make predictions within the time range which are con-
siderably less then the Lyapunov limit. We further take into account that the
dynamics can be different for selected data segments. Our algorithm computes
the modeling error from randomly selected data segments and the corresponding
segments are integrated. A good model should also be stable when numerically
integrated over long time intervals. The algorithm, therefore, automatically dis-
cards all models that do not fulfil a long-term stability criterion. Yet, the fourth
optimization constraint used is the topological equivalence of the model to the
original embedded data. This is implemented by comparing the topology, which
we define as the density of the embedded input data with the corresponding
integrated data in a two dimensional projection. The nonlinear series generated
by the resulting global models not only produce the smallest point-to-point error
to the original process, but also recover the topological properties of the embed-
ded data. The GA approach allows us to implement this complex optimization
criteria in a straightforward fashion.



GA for Modeling Vowel Signals. The aim here is to find the optimal ODE
model for a given time series s(n) and a time delay embedding, with simultaneous
optimization of the embedding lags, using a GA for model selection.

We allow models with quadratic order of nonlinearity, leading to a system of
three equations with a maximum of 10 coefficients in each equation:

ẋ1 =
9∑

i=0

ai Qi , ẋ2 =
9∑

i=0

bi Qi , ẋ3 =
9∑

i=0

ci Qi , with

Q = {1, x1, x2, x3, x
2
1, x1x2, x1 x3, x

2
2, x2 x3, x

2
3} .

(31)

where x1(n) = s(n − M1), x2(n) = s(n − M2), x3(n) = s(n − M3) are delayed
versions of the original input-data, and ai, bj , ck are the coefficients, estimated
with SVD [53]. Note, that the GA prefers models with as many coefficients
ai, bj , ck as possible to be equal to zero. The minimal delay is set to 0 and the
maximal one is 120.

To initialize the GA an initial set of delays M1 = 0,M2 = 12,M3 = 20 is
chosen. The initial population size was set to 100. Our GA increases the pop-
ulation size, if for 2 generations no better individual was found and decreases
the population size, if evolution was successful, but never below 100 individu-
als. Since the number of possible models, together with the number of possible
delay combinations is huge, no absolute convergence in reasonable time can be
expected. To find a reasonable model, we start the GA a couple of times and
then compare the resulting models. All these models are then fed into a new
GA. The best model found by the GA for the vowel signal /o/ is

ẋ1 = 0.006 − 0.1x2 + 0.06x2
1 + 0.05x1x2 − 0.15x1x3 − 0.22x2x3 − 0.16x2

3 ,
ẋ2 = −0.011 + 0.08x1 − 0.06x3 + 0.05x2

1 + 0.12x1x3 + 0.2x2
3 ,

ẋ3 = 0.01 + 0.15x2 − 0.06x3 − 0.05x2
1 − 0.05x2

2 .
(32)

This model was numerically integrated and the resulting signals for x1, x2 and
x3 as well as the magnitude spectra are depicted in Fig. 17, the differential
embeddings are given in Fig. 18. During numerical integration the number of
used digits was fixed to 6. A nonlinear dynamical system is very sensitive to
small changes in the initial conditions. Trajectories with slightly different initial
conditions can exponentially diverge after a few cycles. Fixing the number of used
digits during numerical integration adds a random component to the system.

The reconstructed time-series as shown in Fig. 17 (a) on the lower three
plots of x1(n), x2(n), and x3(n) look somehow similar to the time-series of the
original recording in the upper plot. When looking at the magnitude spectra in
Fig. 17 (b) missing parts in the higher frequency ranges in the lower three plots of
the reconstructed signal-components can immediately be seen. The embeddings
in Fig. 18 look very similar to the embedding of the original signal. To improve
this model, a more general Ansatz in (31) could be used or the GA could be
restricted to only models that are also part of the Ansatz library.
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Fig. 17. Time series (a) and DFT spectra (b) of the original vowel signal s(n), and the
state variables x1(n), x2(n), and x3(n) of the ODE model found by the GA.

3.3 DDE Models

We also can use a GA to estimate a model of a given signal in form of a DDE,

ẋ = F (x1, x2, . . .) , (33)

where xi = x(n − Mi) and Mi ∈ IN0. The discrimination strategy for better
models are obtained by minimizing the error of the model, i.e.,

f ≡

〈
[ẋ − F (x1, x2, . . .)]

2
〉

σ2
ẋ

, (34)

where σ2
ẋ is the variance of the time series ẋ. The coefficients of the models

are numerically estimated by a least square algorithm, which is in our case a
singular value decomposition (SVD) [53]. The principal idea of minimizing a
function using a GA can be found in [56].

The GA works in two steps, the delay-selection and the model-selection part,
which can be described as follows: The GA depends on four modeling parameters,
(i) the number of delays, nτ , (ii) the maximal number of coefficients in the
models, Nc, (iii) the order of nonlinearity, m, and (iv) the initial population
size, Np. Then a first set of delay(s) and the initial population of models are
generated with a random number generator. The model-selection GA is applied
and is stopped when the modeling error does not change for 5 iteration steps.
The best model is selected and, starting from the initial population of delays,
the delay-selection GA is applied and is stopped when the modeling error does
not change for 5 iteration steps. Then the model-selection GA is applied again
starting from the best models of former runs. When the modeling error does not
change for 5 iteration steps again, the delay-selection GA is applied once, and



Fig. 18. Differential embeddings of the signals in Fig. 17.

so on. This alternative run of the two codes is stopped, when the modeling error
remains constant for both parts of the GAs.

The choice of the population-size is a critical point for a fast convergence to
the global minimum of the solution space and should be related to the number
of possible combinations of solutions. After some runs of our code, we found
empirically that 0.1% of all possible combinations of solutions is a good choice for
the population size. Furthermore, we do not keep the population size constant,
but change it dynamically during a run. For instance, when the new generation
has a better winner which is the same as in the former generation, the population
size can be reduced. This could mean that the solution is possibly trapped in
a local minimum. With a larger population size the escape from local minima
towards the global one is accelerated.

To find a good DDE model to characterize speech signals we first run this GA
on a set of 1000 randomly chosen speech signal segments of 1200 data points each.
Here we do not aim to find a model that can be used for synthesis of speech, but
for characterizing different features of the data. We therefore restrict our search
to models with up to five terms and up to three delays where smaller models are
preferred in the algorithm.

Our finding is that three-delay models have on average about the same mod-
eling error as two-delay models and therefore we choose to use only two delays
for our analysis. Furthermore a three-term model seems to characterize as many
features as more term models. Therefore we use the three-term model that is the
statistical winner of this run. Note that this model was good for all different kinds
of sounds and sound combinations since the signals for this run were randomly
chosen from a set of speech signals from different speakers and sentences.



For our further analysis we use the DDE model with two delays,

ẋ = a1x1 + a2x2 + a3x1x2 . (35)

The delays are adjusted by a global search procedure, a GA (genetic algo-
rithm) for windows of LW points in the signal such that the least square error
of (35) is minimal. The choice of LW tunes if we want to look at more or less
global effects. For example emotional expressions in speech can be better seen if
LW is larger and on the other hand the segmentations into phonemes requires
a smaller LW . For the optimal delays of each window the coefficients a1,2,3 are
computed directly using SVD (singular value decomposition). Our set of features
for classification will then be the delays M1,2, the coefficients a1,2,3, and the error
ρ.

In Fig. 19 the sentences “My dog and my neighbor’s cat are hiding under the
chair. They are extremely good friends.” were analyzed by such a procedure. The
window length LW was 1200 points which corresponds to about 6 characteristic
cycles.
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Fig. 19. Time series of the sentences “My dog and my neighbor’s cat are hiding under
the chair. They are extremely good friends”, optimized delays M1,2, coefficients a1,2,3,
and the least square error ρ of (35).



Several things can be seen immediately:

– delays M1,2:
The bigger one of the two delays, M2 has regions where it is somehow con-
stant for some time. The mean value and its deviation of these regions is
characteristic for the speaker. Female speakers have a lower mean value
than male speakers. The variance around the mean is characteristic for the
speaker. It expresses the melody of speech. There is a direct connection to
the fundamental frequency F0.
The smaller one of the two delays, M1 can sometimes jump up to the second
delay. This is a characteristics for emotions.

– coefficients a1,2,3:
For harmonic parts of the signal the two linear coefficients have symmetric
values, a1 ≈ −a2 and the nonlinear coefficient is a3 ≈ 0. This is the case for
vowels, nasals and approximants.
In some regions of the signal one of the coefficients, a1 has significantly
smaller values, the second linear coefficient, a2 is not correlated to a2, and
the nonlinear coefficient a3 has nonzero values. This is the characteristics for
fricatives and affricates.

– error ρ:
The error is small for voiced sounds with a harmonic structure – such as vow-
els, nasals, and approximants – and large for unvoiced sounds, like fricatives
and affricates.

Figure 19 shows the speech signal, the delays, the coefficients a1,2,3, and the
least square error. In the signal plot (top bar) of Fig. 19 the segments high-
lighted in darker grayshading denote plosives or unvoiced fricatives. They are
characterized by a coefficient a1 < −0.3 and an error ρ > 0.005. Harmonic
sounds are characterized by a low error (ρ < 0.005), symmetric linear coeffi-
cients (a1 ≈ −a2), and delays that are around the characteristic value for the
speaker.

Figure 20 shows the part of Fig. 19 where the word “extremely” is spoken.
The previously discussed characteristics are very clear in these plots.

This technique can also be used to segment speech signals into phonemes.
For our modeling techniques different samples of certain vowels could be selected
by such a DDE model and then fed into our modeling algorithms of Secs. 3.1
and 3.2. This could yield more realistic models than starting from recordings of
sustained speech sounds.

4 Summary and Conclusion

The identification of a nonlinear oscillator based on a Takens embedding for
the re-generation of stationary speech signals requires – besides an adequate
choice of embedding parameters – a careful modeling of the nonlinear function
characterizing the dynamics of the signal trajectories in embedding phase space.



270 275 280 285 290 295 300
−1

0
1
2

270 275 280 285 290 295 300
0

500

M
i

270 275 280 285 290 295 300
−1

−0.5

0

0.5

a i

270 275 280 285 290 295 300

10
−2

ρ

time (frame number)

/k/ /s/ /_/ /t/ /r/ /i:/ /m/ /l/ /I/

Fig. 20. Part of Fig. 19 where the word “extremely” is spoken.



For the oscillator model based on a time delay embedding some form of regu-
larization of the nonlinear function model used in the oscillator has to be applied.
We found that the Bayesian approach to determining weights and regularization
parameter of an RBF network is a computationally equivalent and more robust
alternative to cross-validation. Besides the automatic determination of adequate
regularization the Bayesian approach also gives an accurate estimate for the
power of an additive noise-like signal component. An extension of the Bayesian
algorithm, the relevance vector machine, additionally allows for pruning of RBF
basis functions, thus reducing the complexity of the nonlinear function model at
only minimal impairment of prediction accuracy or oscillator stability.

The number of vowel signals that can be stably re-synthesized with the oscil-
lator model is substantially increased when the model is complemented by inverse
filtering. Up to now, vowels with a complicated trajectory structure of the full
speech signal often could only be stably re-synthesized using a high embedding
dimension, a specific set of embedding parameters, or a specific structure of the
nonlinear function model. With a simple inverse filtering approach using lin-
ear prediction and low-pass filtering and a Bayesian trained RBF network more
than half of the vowel signals in our database can be stably re-synthesized using
one and the same low-dimensional embedding, since an open loop trajectory is
attained for all vowels.

For the additional regeneration of the noise-like component in speech signals
we propose the oscillator-plus-noise model, which is able to generate a pitch-
synchronous modulation and individual spectral shaping of the noise-like signal
component, with the modulation envelope and spectral characteristics automat-
ically learned from the training speech signal.

The parameterization by an RBF model (and all other nonlinear function
models referenced in Sect. 2) is, however, not directly related to physical param-
eters of the speech production process, nor to higher level speech parameters
such as fundamental frequency. This fact hinders the use of the oscillator model
in a speech synthesizer, since the robust control of fundamental frequency, for
example, is still an unsolved problem. Models more closely related to the physi-
cal process of speech production are lumped mass-spring-damper models like the
two-mass model by Ishizaka and Flanagan [58] and its descendants, which are,
however, more difficult to control in terms of higher level speech parameters.

Another step towards a parameterization of the nonlinear oscillator in a phys-
ically sensible way is the system modeling by differential equations based on a
differential embedding. Here the selection of polynomial terms from an Ansatz
library provides the means for a computationally traceable and robust modeling.
A three-dimensional differential model for a stationary vowel signal, as given by
(30), for example, captures the signal dynamics with a number of 64 parameters.

A further reduction of system complexity is achieved by the application of
a genetic algorithm for model structure selection. For modeling a vowel signal
the GA with fitness criteria including long-term stability and topological equiv-
alence may choose a model with only 18 parameters, as given by (32), from all
possible models based on a certain three dimensional embedding. The GA can



also be used for optimizing low complexity nonlinear models for speech analysis,
where, in the example given, the distinction of voiced and unvoiced speech, and
the identification of an optimal embedding delay for prediction related to the
fundamental frequency is demonstrated.

The benefit due to including inverse filtering, the proper re-generation of the
noise-like signal part with an additional non-deterministic system, as well as
the identification of different optimal model structures for voiced and unvoiced
phonemes and of an optimal embedding delay related to the fundamental period
point at the fact that for the application of oscillator models to general purpose
speech synthesis – besides robust and elaborate nonlinear function identification
methods – a broad spectrum of knowledge from phonetics and speech science
is necessary. Based on such knowledge the further development of nonlinear
oscillator models for speech analysis and synthesis is on a promising path to
being employed as a standard tool for speech technology.
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