
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Scaling Spatial Overlay Operations and Flock Pattern Discovery

Permalink
https://escholarship.org/uc/item/8017d5mp

Author
Calderon, Andres Oswaldo

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, available at https://creativecommons.org/licenses/by-
nc-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8017d5mp
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Scaling Spatial Overlay Operations and Flock Pattern Discovery

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Andres Oswaldo Calderon Romero

December 2024

Dissertation Committee:

Dr. Vassilis Tsotras, Chairperson
Dr. Amr Magdy
Dr. Petko Bakalov
Dr. Ahmed Eldawy
Dr. Vagelis Hristidis

Copyright by
Andres Oswaldo Calderon Romero

2024

The Dissertation of Andres Oswaldo Calderon Romero is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

First and foremost, I would like to express my heartfelt gratitude to my advisor,

Prof. Vassilis Tsotras. His guidance, patience, and insightful feedback have been invaluable

throughout this journey. I feel privileged and honored to have worked under his supervision

and am deeply indebted to him. I aspire to one day become as exceptional an advisor as

he has been to me. Thank you.

In addition, I would like to extend my sincere gratitude to Petko Bakalov, Marcos

Vieira, Laila Abdelhafeez, and Amr Magdy for their invaluable support in the work I present

here. I am deeply grateful for your time, assistance, and encouragement.

And to my love, Nancy – you have been there for me whenever I needed you,

offering boundless support and encouragement. Through countless moments when I felt

like giving up, you continued to believe in me. Your presence has been extraordinary and

essential to my journey. I love you and our family.

iv

To Nancy, my beloved wife, and to our flock.

v

ABSTRACT OF THE DISSERTATION

Scaling Spatial Overlay Operations and Flock Pattern Discovery

by

Andres Oswaldo Calderon Romero

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2024

Dr. Vassilis Tsotras, Chairperson

This thesis proposes scalable solutions to two significant spatial problems: computing over-

lay operations and discovering flock patterns. Overlay operations are typically computed

among polygon layers using spatial data structures designed for complex geometric rela-

tionships. One such structure is the Doubly Connected Edge List (DCEL), an edge-list

format widely used in spatial applications for performing planar topological computations.

The overlay operation, which combines the DCELs of two input layers, enables efficient

spatial queries such as intersection, union, and difference between layers. However, existing

sequential methods for computing overlays struggle to scale and often fail to process large

datasets, such as the US Census tracts. In this thesis, we present a distributed, scalable

approach for computing the overlay operation and its associated queries. We address the

challenges inherent in distributing the overlay computation and introduce several optimiza-

tions that enhance performance, making these computations feasible for large-scale spatial

datasets.

vi

The second part of this thesis extends upon the above proposed approach by in-

troducing a novel spatial partitioner based on the kd-tree spatial index. This partitioner

optimizes DCEL partitioning and overlay operations by leveraging data distributions, result-

ing in significantly improved performance and more efficient space utilization. Additionally,

we adapt the optimization techniques developed for DCEL overlay operations to address a

new problem: the polygonization of dangling edges, cut edges, and polygons.

The final part of this thesis presents a scalable technique for detecting moving

flock patterns in large trajectory databases. A flock pattern represents a group of entities

moving closely together within a defined spatial radius over a specified time interval. Tra-

ditional sequential algorithms, though effective, struggle with high computational costs on

large, dense datasets. This thesis proposes a distributed framework that leverages spatial

partitioning and parallel processing to accelerate flock detection. By addressing challenges

in spatial and temporal joins across large datasets, introducing partition-based parallelism,

and implementing strategies to manage flock patterns spanning multiple partitions, this ap-

proach significantly reduces processing time. Experimental evaluations on synthetic datasets

demonstrate substantial improvements in scalability and efficiency over conventional meth-

ods.

vii

Contents

List of Figures x

List of Tables xiii

1 Background & Motivation 1
1.1 Background . 1
1.2 Motivation . 3

2 Scalable Overlay Operations over DCEL Polygon Layers 6
2.1 Introduction . 6
2.2 Related Work . 10
2.3 Preliminaries . 11
2.4 Scalable Overlay Construction . 16

2.4.1 Partition Strategy . 18
2.4.2 Labeling Orphan Cells and Holes . 24
2.4.3 Answering global overlay queries . 29

2.5 Overlay evaluation optimizations . 31
2.5.1 Optimizations for faces spanning multiple cells 31
2.5.2 Optimizing for unbalanced layers . 33

2.6 Experimental Evaluation . 34
2.6.1 Evaluation datasets . 35
2.6.2 Overlay face optimizations . 37
2.6.3 Unbalanced layers optimization . 39
2.6.4 Varying the number of cells . 41
2.6.5 Speed-up and Scale-up experiments 45
2.6.6 Kd-tree versus quadtree performance 47

3 Scaling DCEL Overlay Operations to Support Dangle and Cut Edges 52
3.1 Introduction . 52
3.2 Scalable Partitioning with Dangle and Cut Edges 54

3.2.1 Overlaying Polygons with Dangle and Cut Edges 54
3.3 Experimental Evaluation . 57

viii

3.3.1 Overlaying Polygons with Dangle and Cut Edges 57

4 Scalable Processing of Moving Flock Patterns 60
4.1 Introduction . 60
4.2 Related work . 62
4.3 Background . 64

4.3.1 The BFE sequential algorithm . 64
4.3.2 The PSI sequential algorithm . 69

4.4 Bottlenecks in the sequential approach and proposed solutions 71
4.4.1 Phase 1: Spatial finding of maximal disks. 71
4.4.2 Phase 2: Temporal join . 73

4.5 Experimental Evaluation . 81
4.5.1 Experimental Setup . 81
4.5.2 Optimizing the number of partitions for Phase 1. 82
4.5.3 Analyzing most costly partitions. 83
4.5.4 Can we reduce pruning time? . 87
4.5.5 Relative performance of BFE and PSI Phase 1 using synthetic datasets. 93
4.5.6 Evaluation of Phase 2: Temporal join. 95

5 Conclusions 100

Appendix 102
A Center computation. 102
B Disk pruning. 103
C Clique and MBC approach. 104

Bibliography 105

ix

List of Figures

2.1 Components of the DCEL structure. 7
2.2 Sequential computations of an overlay of two DCEL layers. 15
2.3 Examples of overlay operators supported by DCEL; results are shown in gray. 16
2.4 Partitioning example using input layers A and B over four cells. 21
2.5 Local overlay DCEL for cell 2. 22
2.6 Result of the local overlay DCEL computations. 23
2.7 (a) Empty cell and hole examples; (b)-(c)-(d) show three iterations of the

proposed solution. 26
2.8 Example of an overlay operator querying the distributed DCEL. 31
2.9 Overlay methods evaluation. 38
2.10 Evaluation of the unbalanced layers optimization. 40
2.11 SDCEL performance while varying the number of cells in the CCT dataset. 42
2.12 Performance with (a) MainUS and (b) GADM datasets. 43
2.13 Speed-up and Scale-up experiments for the MainUS dataset. 45
2.14 Speed-up and Scale-up experiments for the GADM dataset. 46
2.15 Construction time for the spatial data structure in the (a) MainUS and (b)

GADM datasets. 47
2.16 Number of cells created by each spatial data structure in the (a) MainUS

and (b) GADM datasets. 48
2.17 Data partitioning time using a spatial data structure (a) in the MainUS

dataset and (b) in the GADM dataset. 49
2.18 Execution time for the overlay operation using a spatial data structure in the

MainUS (a)and GADM (b) dataset. 50
2.19 (a)Speed Up and (b) Scale Up performance of the Kdtree partitioning using

the MainUS dataset. 50

3.1 Components of the DCEL structure with dangle and cut edges. 53

x

3.2 An example of four leaf nodes in a quadtree constructed for input spatial line
segments. Solid lines represent the line segments, while dashed lines indicate
the Minimum Bounding Rectangles (MBRs) of the partitions. (a) shows the
partitioned input spatial lines. (b) shows the DCEL vertices and half-edges.
(c) the resulting DCEL after dangle and cut edge removal. Finally, (d) shows
the final DCEL faces. (taken from [1]). 56

3.3 (a) Spatial partitioning of input layers A and B, (b) Re-Partitioning of poly-
gon A0 with edges it intersects with, and (c) the result of polygonization of
A0 with B0, B1, B2. 57

3.4 Overlaying State polygons with dangle and cut edges. 58

4.1 General steps in phase 1 of the sequential algorithm. 65
4.2 The grid-based structure proposed in [57]. 67
4.3 BFE Phase 1 example execution on a sample dataset. 67
4.4 Steps in BFE phase two. Combination, extension and reporting of flocks. . 68
4.5 BFE Phase 2 example explaining the stages along time instants and the initial

conditions. 69
4.6 An example of the two half squares used in PSI algorithm. 70
4.7 An example of partitioning and replication on a sample dataset. 73
4.8 Ensuring no loss of data in safe zone and expansion area. 74
4.9 Examples of CPFs that that start or end in the border area of a partition. . 75
4.10 CPFs cases moving along different partitions over time. 77
4.11 Master and By-Level alternatives. Different values of steps are illustrated

for the By-Level apprach, . 78
4.12 LCA alternative and how it resolves CPFs at the nearest shared ancestor of

the involved partial flocks. 79
4.13 An alternative division on the time dimension to partition the data into cubes. 80
4.14 Execution time testing different values for Capacity (c) and Epsilon (ε). . . 84
4.15 Comparing the performance of PSI and BFE for time consuming partitions. 85
4.16 Execution time for pairs/disks finding in the dense partition. 86
4.17 Processing time for the stages of Phase 1, in (a) standard BFE and (b)

standard PSI. 88
4.18 Execution time of the two variants of CMBC approach compared to standard

PSI in the partition 187 (ε = 20m). 90
4.19 Execution time of the CMBC approach compared to standard PSI for differ-

ent number of points and pair density. 91
4.20 Execution time of the two variants of CMBC approach compared to standard

PSI in the partition 187 with ≈2K points present (ε = 20m). 92
4.21 Performance in an uniform dataset analysing density and capacity with di-

verse values for epsilon. 94
4.22 Root and step alternative for temporal join using the Berlin dataset. 96
4.23 Interval optimization for the Cube-based alternative for temporal join using

the LA25K dataset. 96
4.24 Performance comparing parallel and sequential alternatives in the LA25K

dataset. 98

xi

4.25 Performance of the 4 parallel alternatives in the LA25K dataset. 98
4.26 Performance of the 4 parallel alternatives in the LA50K dataset. 99

C.1 Schematic description of the Clique and MBC approach. 104

xii

List of Tables

2.1 Vertex records. 12
2.2 Face records. 12
2.3 Half-edge records. 12
2.4 Evaluation Datasets . 36
2.5 Percentages of edges in incomplete faces for three states 39
2.6 Cell size statistics. 44
2.7 Orphan cells and orphan holes description 44

3.1 Overlaying Polygons with Dangle and Cut Edges Dataset 58

4.1 Description of datasets. 81
4.2 Number of partitions by capacity and number of points in synthetic uniform

datasets. 93

xiii

Chapter 1

Background & Motivation

1.1 Background

Spatial data structures, crucial in fields like Geographic Information Systems

(GIS), computational geometry, and spatial databases, enable efficient management and

querying of geospatial information. Among these structures, the Doubly Connected Edge

List (DCEL) stands out for its utility in topological computations on planar subdivisions.

The DCEL data structure is a prominent choice for spatial applications that need to repre-

sent complex geospatial information due to its capacity to capture the relationships between

vertices, edges, and faces. Its structure supports various geospatial operations, including

intersection, union, and difference, making it suitable for spatial overlays.

DCEL has been widely applied in both practical and theoretical domains. Its

applications span tasks in surveillance, such as the Art Gallery Problem, as well as in path

finding and collision avoidance in robotics. Moreover, DCEL-based overlay methods provide

an efficient means for integrating and analyzing thematic layers of geographic data, offering

1

valuable insights for environmental studies, urban planning, and other geospatial analyses.

Traditional implementations of DCEL-based overlays, however, operate sequentially and

struggle to handle large-scale datasets, as is common in today’s data-rich environments.

Parallel and distributed computing offer promising avenues for enhancing the scal-

ability of DCEL-based overlay operations, especially with frameworks like Apache Spark

that allow efficient partitioning and distributed processing. Leveraging these frameworks,

spatial data scientists can potentially apply DCEL overlays to massive datasets, such as

those derived from national census data or large ecological surveys, which may contain mil-

lions of polygons and edges. This scalability is crucial to ensure DCEL’s continued relevance

in increasingly data-intensive applications.

In a similar fashion, the last few decades have witnessed a transformative increase

in the collection of spatio-temporal data, driven largely by the widespread use of GPS-

enabled devices, smartphones, and the Internet of Things (IoT). This data proliferation

has enabled novel insights into movement patterns across various domains, such as ecology,

transportation, and urban planning. For instance, spatio-temporal data analysis is instru-

mental in identifying traffic congestion patterns in urban settings, monitoring migratory

behavior in wildlife, and tracking the progression of weather events like hurricanes. More

advanced analyses often focus on detecting not just isolated movement behaviors but group

behaviors, where multiple entities move in close proximity over time.

Such group movement patterns —referred to as moving flocks, swarms, convoys,

and clusters— capture complex collective behaviors. Detecting these patterns involves

identifying groups that stay within a predefined distance over a set period, yielding insights

2

into social dynamics, ecological phenomena, and urban mobility trends. The moving flock

pattern, in particular, has garnered significant interest for its relevance across a broad

spectrum of applications. From understanding migratory routes in animal populations to

studying crowd dynamics in public spaces, the ability to detect and analyze moving flock

patterns has proven invaluable. However, efficiently mining these patterns at scale remains

a challenge due to the computational intensity of analyzing large, dense spatio-temporal

datasets.

1.2 Motivation

The rise of big geospatial data demands scalable and efficient techniques to handle

the complex overlay operations required for analyses in ecology, economics, and urban

planning. Sequential implementations of DCEL-based overlays have proved inadequate

when confronted with large datasets, often leading to performance bottlenecks and memory

overflows. This limitation not only hampers the performance of geospatial analyses but also

restricts the scope of investigations possible with current data.

The need for scalability in DCEL overlays is further amplified by the availability of

spatial datasets that are inherently complex, such as road networks represented as individual

line segments or census tracts with intricate boundaries. Processing such datasets requires

more than just traditional polygon overlay techniques, as these often need preprocessing

steps like polygonization for line-based inputs. A distributed approach to DCEL overlays

that can handle both large polygon layers and scattered line segment data would significantly

expand the types of analyses available to spatial data scientists.

3

This research addresses these challenges by developing a distributed and scalable

approach to compute DCEL overlays, capable of supporting various overlay operations

and accommodating complex input data. By introducing novel partitioning strategies and

optimizations tailored for DCEL overlays, this study aims to extend the utility of DCEL in

spatial analysis, enabling rapid and scalable processing of large-scale geospatial datasets in

a parallel computing environment.

Similarly, traditional approaches to identifying moving flock patterns, such as the

Basic Flock Evaluation (BFE) algorithm, have established foundations for detecting group

movement but are limited in scalability. These methods typically involve exhaustive spatial

and temporal comparisons to track group cohesiveness, resulting in high computational

costs. With the continued growth of data and the increasing density of spatial datasets,

there is a pressing need for scalable, efficient solutions that can detect moving flocks in

large, complex datasets.

This research is motivated by the limitations of current algorithms in processing

large-scale dense datasets with high efficiency. Recognizing the potential of distributed

computing frameworks and advanced partitioning strategies, this work proposes a novel,

partition-based approach that enables scalable processing of moving flock patterns. By

leveraging partitioning, replication, and parallel processing, the proposed methodology

aims to overcome the bottlenecks of traditional methods. Additionally, integrating tem-

poral joining strategies —such as the Cube-based approach— ensures efficient tracking of

flock continuity across time while reducing computational overhead. The ultimate goal is

to create a system that can handle extensive spatio-temporal datasets while maintaining

4

accuracy in flock detection, enabling applications to extend to even larger and denser data

environments.

5

Chapter 2

Scalable Overlay Operations over

DCEL Polygon Layers

2.1 Introduction

The use of spatial data structures is ubiquitous in many spatial applications, rang-

ing from spatial databases to computational geometry, robotics, and geographic information

systems [52]. Spatial data structures have been used to improve the efficiency of various spa-

tial queries, spatial joins, nearest neighbors, Voronoi diagrams, and robot motion planning.

Examples include grids [46], R-trees [28, 5], and quadtrees [20]. Edge-list structures are also

typically utilized in applications as topological computations in computational geometry [8].

The most commonly used data structure in the edge-list family is the Doubly

Connected Edge List (DCEL). A DCEL [45, 48] is a data structure that collects topological

information for the edges, vertices, and faces contained by a surface in the plane. The DCEL

6

a

b

c

d

e

f

twin(f⃗ e)
f⃗ e

ne
xt
(f⃗
e)

pr
ev
(f⃗
e)

incidentFace(f⃗ e)

f3 f2

f1

Figure 2.1: Components of the DCEL structure.

and its components represent a planar subdivision of that surface. In a DCEL, the faces

(polygons) represent non-overlapping areas of the subdivision; the edges are boundaries

that divide adjacent faces; and the vertices are the point endings between adjacent edges

(see Figure 2.1). In addition to providing geometric and topological information, a DCEL

can be enhanced to provide further information. For instance, a DCEL storing a thematic

map for vegetation can also store the type and height of the trees around the area [8].

The DCEL data structure has been used in various applications. For instance,

the use of connected edge lists is cardinal to support polygon triangulations and their

applications in surveillance (the Art Gallery Problem [16, 47]) and robot motion planning

([8, 15]). DCELs are also used to perform polygon unions (for example, on printed circuit

boards to support the simplification of connected components in an efficient manner [21]) as

7

well as the computation of silhouettes from polyhedra [21, 7] (applied frequently in computer

vision and 3D graphics modeling [9]).

Edge-list data structures have also been utilized to create thematic overlay maps.

In this problem, the input contains the DCELs of two polygonal layers, each capturing

geospatial information and attribute data for different phenomena, and the output is the

DCEL of an overlay structure that combines the two layers into one. In many application

areas, such as ecology, economics, and climate change, it is important to be able to join the

input layers and match their attributes in order to unveil patterns or anomalies in data that

can be highly impacted by location. Several operations can then be easily computed given

an overlay; for instance, the user may want to find the intersection between the input layers

(e.g., corresponding to soil types and evapotranspiration of plants), identify their difference

(or symmetric difference), or create their union.

Spatial databases use spatial indexes (R-tree [28, 5]) to store and query polygons.

Such methods use the filter and refine approach where a complex polygon is abstracted by

its Minimum Bounding Rectangle (MBR); this MBR is then inserted in the R-tree index.

Finding the intersection between two polygon layers, each indexed by a separate R-tree, is

then reduced to finding the pairs of MBRs from the two indexes that intersect (filter part).

This is followed by the refine part, which, given two MBRs that intersect, needs to compute

the actual intersections between all the polygons these two MBRs contain. While MBR in-

tersection is simple, computing the intersection between a pair of complex real-life polygons

is a rather expensive operation (a typical 2020 US census tract is a polygon with hundreds

of edges). Moreover, using DCELs for overlay operations offers the additional advantage

8

that the result is also a DCEL, which can be directly used for subsequent operations. For

example, one may want to create an overlay between the intersection of two layers with

another layer, and so on.

Even though the DCEL has important advantages for implementing overlay oper-

ations, current approaches are sequential in nature. This is problematic, considering layers

with thousands of polygons. For example, the layer representing the 2020 US census tracts

contains around 72K polygons; the execution for computing the overlay over such a large

file crashed on a stock laptop. To the best of our knowledge, there is no scalable solution

for computing overlays over DCEL layers.

This chapter describes the design and implementation of a scalable and distributed

approach to compute the overlay between two DCEL layers. We first present a partitioning

strategy that guarantees that each partition collects the required data from each layer

DCEL to work independently, thus minimizing duplication and transmission costs over 2D

polygons. In addition, we present a merging procedure that collects all partition results

and consolidates them in the final combined DCEL.

Implementing a distributed overlay DCEL creates novel problems. First, there are

potential challenges that are not present in the sequential DCEL execution. For example, the

implementation should consider holes, which could lay on different partitions, and they need

to be connected with their components residing in other partitions so as not to compromise

the combined DCEL’s correctness.

Secondly, once a distributed overlay DCEL has been built, it must support a set of

binary overlay operators (namely union, intersection, difference and symmetric difference)

9

in a transparent manner. That is, such operators should take advantage of the scalability of

the overlay DCEL and be able to run also in a parallel fashion. Additionally, users should

be able to apply the various operators multiple times without rebuilding the overlay DCEL

data structure.

The rest of this chapter is organized as follows. Section 2.2 presents related work,

while Section 2.3 discusses the basics of DCEL and the sequential algorithm. In Section

2.4, we present the partitioning schemes that enable parallel implementation of the overlay

computation among DCEL layers; we also discuss the challenges presented in the DCEL

computations by distributing the data and how to solve them efficiently. Two important

optimizations are introduced in Section 2.5. Finally, an extensive experimental evaluation

appears in Section 2.6.

2.2 Related Work

The fundamentals of the DCEL data structure were introduced in the seminal

paper by Muller and Preparata [45]. The advantages of DCELs are highlighted in [48, 8].

Examples of using DCELs for diverse applications appear in [4, 10, 24].

Once the overlay DCEL is created by combining two layers, overlay operators like

union, difference, etc., can be computed in linear time to the number of faces in their overlay

[24]. Currently, few sequential implementations are available: LEDA [43], Holmes3D [31]

and CGAL [21]. Among them, CGAL is an open-source project widely used for computa-

tional geometry research. To the best of our knowledge, there is no scalable implementation

for the computation of DCEL overlay.

10

While there is a lot of work on using spatial access methods to support spatial

joins, intersections, unions etc. in a parallel way (using clusters, multicores or GPUs),

[14, 51, 40, 23, 42, 50, 49] these approaches are different in two ways: (i) after the index

filtering, they need a time-consuming refine phase where the operator (union, intersection

etc.) has to be applied on each pair of (typically) complex spatial objects; (ii) if the operator

changes, we need to run the filter/refine phases from scratch (in contrast, the same overlay

DCEL can be used to run all operators.)

2.3 Preliminaries

The DCEL [45] structure is used to represent an embedding of a planar subdivision

in the plane. It provides efficient manipulation of the geometric and topological features

of spatial objects (polygons, lines, and points) using faces, edges, and vertices, respectively.

A DCEL uses three tables (relations) to store records for the faces, edges, and vertices,

respectively.

An important characteristic is that all these records are defined using edges as

the main component (thus termed an edge-based structure). Examples appear in Tables

2.1-2.3, with the subdivision depicted in Figure 2.1.

An edge corresponds to a straight line segment shared by two adjacent faces (poly-

gons). Each of these two faces will use this edge in its description; to distinguish, each

edge has two half-edges, one for each orientation (direction). It is important to note that

half-edges are oriented counter-clockwise inside each face (Figure 2.1). A half-edge is thus

11

Table 2.1: Vertex records.

vertex coordinates incident edge

a (0,2) b⃗a

b (2,0) d⃗b

c (2,4) d⃗c

...
...

...

Table 2.2: Face records.

boundary hole

face edge list

f1 a⃗b nil

f2 f⃗ e nil

f3 nil nil

Table 2.3: Half-edge records.

half-edge origin face twin next prev

f⃗ e f f2 e⃗f e⃗c d⃗f

c⃗a c f1 a⃗c a⃗b d⃗c

d⃗b d f3 b⃗d b⃗a f⃗d

...
...

...
...

...
...

12

defined by its two vertices, one called the origin vertex and the other the target vertex,

clearly specifying the half-edge’s orientation (origin to target). Each half-edge record con-

tains references to its origin vertex, its face, its twin half-edge, as well as the next and

previous half-edges (using the orientation of its face); see Table 2.3. These references are

used as keys to the tables that contain the referred attributes.

Figure 2.1 shows half-edge
−→
fe, its twin(

−→
fe) (which is half-edge

−→
ef), the next(

−→
fe)

(half-edge −→ec) and the prev(
−→
fe) (half-edge

−→
df). Note the counter-clockwise direction used

by the half-edges comprising face f2. The incidentFace of a half-edge corresponds to the

face that this edge belongs to (for example, incidentFace(
−→
fe) is face f2).

Each vertex corresponds to a record in the vertex table (see Table 2.1) that contains

its coordinates as well as one of its incident half-edges. An incident half-edge is one whose

target is this vertex. Any of the incident edges can be used; the rest of a vertex’s incident

half-edges can be found easily following the next and twin half-edges.

Finally, each record in the faces table contains one of the face’s half edges to

describe the polygon’s outer boundary (following this face’s orientation); see Table 2.2. All

other half-edges for this face’s boundary can be easily retrieved following the next half-

edges in orientation order. In addition to regular faces, there is one face that covers the

area outside all faces; it is called the unbounded face (face f3 in Figure 2.1). Since f3 has

no boundary, its boundary edge is set to nil in Table 2.2.

Note that polygons can contain one or more holes (a hole is an area inside the

polygon that does not belong to it). Each such hole is described by one of its half-edges;

this information is stored as a list attribute (hole list) in the faces table where each element

13

of the list is the half-edge’s id which describes the hole. Note that in Table 2.2, this list is

empty as there are no holes in any of the faces in the example of Figure 2.1.

An important advantage of the DCEL structure is that a user can combine two

DCELs from different layers over the same area (e.g., the census tracts from two different

years) and compute their overlay, which is a DCEL structure that combines the two layers

into one. Other operators, like the intersection, difference, etc., can then be computed

from the overlay very efficiently. Given two DCEL layers S1 and S2, a face f appears in

their overlay OV L(S1, S2) if and only if there are faces f1 in S1 and f2 in S2 such that

f is a maximal connected subset of f1 ∩ f2 [8]. This property implies that the overlay

OV L(S1, S2) can be constructed using the half-edges from S1 and S2.

The sequential algorithm [21] to construct the overlay between two DCELs first

extracts the half-edge segments from the half-edge tables and then finds intersection points

between half-edges from the two layers (using a sweep line approach) [8]. The intersection

points found will become new vertices of the resulting overlay. If an existing half-edge

contains an intersection point, it is split into two new half-edges. Using the list of outgoing

and incoming half-edges for the newly added vertices (intersection points), the algorithm

can compute the attributes for the records of the new half-edges. For example, the list

of outgoing and incoming half-edges at each new vertex will be used to update the next,

previous, and twin pointers. Finally, the records of the faces and the vertices tables are

updated with the new information.

Figure 2.2 illustrates an example of computing the overlay between two DCEL

layers with one face each (A1 and B1 respectively) overlapping the same area. First, in-

14

a1 a2

a3a4

b1 b2

b3b4

A1

B1

c1

c2

A1

B1

a1 a2

a3a4

b1 b2

b3b4

c1

c2

A1

B1

A1B1

Figure 2.2: Sequential computations of an overlay of two DCEL layers.

tersection points are identified, and new vertices are created in the overlay (red vertices c1

and c2). Then, new half-edges are created around these new vertices. As a result, face A1

is modified (to an L-shaped boundary), as does face B1, while a new face A1B1 is created.

Since this new face is the intersection of the boundaries of A1 and B1, its label

contains the concatenation of both face labels. By convention [8], even though A1 changes

its shape, it does not change its label since its new shape is created by its intersection with

the unbounded face of B1; similarly, the new shape of B1 maintains its original label. These

labels are crucial for creating the overlay (and the operators it supports) as they are used

to identify which polygons overlap an existing face.

Once the overlay structure of two DCELs is computed, queries like their intersec-

tion, union, difference, etc. (Figure 2.3) can be performed in linear time to the number

of faces in the overlay. The space requirement for the overlay structure remains linear to

the number of vertices, edges, and faces. Since an overlay is itself a DCEL, it can support

15

A1

B2

B3

B1

A1B1

A2B1

A2 A2B2

A2B3

A ∪B

A1

B2

B3

B1

A1B1

A2B1

A2 A2B2

A2B3

A ∩B

A1

B2

B3

B1

A1B1

A2B1

A2 A2B2

A2B3

A \B

A1

B2

B3

B1

A1B1

A2B1

A2 A2B2

A2B3

B \ A

A1

B2

B3

B1

A1B1

A2B1

A2 A2B2

A2B3

A△B

Figure 2.3: Examples of overlay operators supported by DCEL; results are shown in gray.

the traditional DCEL operations (e.g., find the boundary of a face, access a face from an

adjacent one, visit all the edges around a vertex, etc).

2.4 Scalable Overlay Construction

This section presents the construction of overlay DCELs, assuming 2D polygons

as input. The overlay computation depends on the size of the input DCELs and the size

16

of the resulting overlay. The DCEL of a planar subdivision S1 has size O(n1) where n1 =

Σ(vertices1 + edges1 + faces1). The sequential algorithm constructing the overlay of S1

and S2 takes O(n log n+ k log n) time, where n = n1 + n2 and k is the size of their overlay.

Note that k depends on how many intersections occur between the input DCELs, which

can be very large [8].

While the sequential algorithm is efficient with small DCEL layers, it suffers when

the input layers are large and have many intersections. For example, creating the overlay

between the DCELs of two census tracts (from years 2000 and 2010) from California (each

with 7K-8K polygons and 2.7M-2.9M edges) took about 800sec on an Intel Xeon CPU at

1.70GHz with 2GB of memory (see Section 2.6). With DCELs corresponding to the whole

US, the algorithm crashed.

Nevertheless, the overlay computation can take advantage of partitioning (and

thus parallelism) by observing that the edges in a given area of one input layer can only

intersect with edges from the same area in the other input layer. One can thus spatially

partition the two input DCELs and then compute the overlay within each cell; such com-

putations are independent and can be performed in parallel. While this is a high-level view

of our scalable approach, there are various challenges, including how to deal with edges

that cross cells, how to manage the extra complexity introduced by orphan holes (i.e., when

holes and their polygons are in different cells), how and where to combine partition overlays

into a global overlay, as well as how to balance the computation if one layer is much larger

than the other.

17

2.4.1 Partition Strategy

While a simple grid could be used to divide the spatial area, our early experiments

demonstrated that this approach leads to unbalanced cells, with some containing signifi-

cantly more edges than others, negatively impacting overall performance. Therefore, an

advanced partitioning strategy is better since it adapts to skewed spatial distributions and

helps assign a similar number of edges to each cell. In particular, we used two partition-

ing strategies, one based on the quadtree (i.e. space-oriented) and one on the kd-tree (i.e.

data-oriented) indexes.

Note that such tree-based data partitioning involves shuffling all edges; this how-

ever, happens only once. Our experimental evaluation (see Section 2.6.6) shows that the

data-oriented approach leads to better performance. Nevertheless, in describing the vari-

ous challenges (orphan cells and holes, overlay evaluation, and optimizations) we use the

quadtree-based partition since its well-defined space-oriented partitioning makes the pre-

sentation easier.

Quadtree Partition Strategy

The main idea of the quadtree partition strategy is to split the area covered by the

input layers into non-overlapping cells, which can then be processed independently. While

a simple grid could be used to divide the spatial area, our early experiments demonstrated

that this approach leads to unbalanced cells, with some containing significantly more edges

than others, negatively impacting overall performance. In the rest we assume that the

18

partitioning is performed using a quadtree index wich adapts to skewed spatial distributions

and helps to assign a similiar number of edges to each cell.

The overall approach can be summarized in the following steps: (i) Partition the

input layers into the index cells and build local DCEL representations of them at each

cell, and (ii) Compute the overlay of the DCELs at each cell. Overlay operators and other

functions can be run over the local overlays, and local results are collected to generate the

final answer.

Note that each input layer is given as a sequence of polygon edges, where each edge

record contains the coordinates of the edge’s vertices (origin and target vertex) as well as

the polygon id and a hole id in the case that an edge belongs to a hole inside of a polygon.

We assume there are no overlapping or stacked polygons in the dataset.

To quickly build the partitioning quadtree structure, we build a quadtree from a

sample taken from the edges of each layer (1% of the total number of edges in that layer).

We then use the leaves of that quadtree as the cells (partitions) of the partitioning scheme.

These cells will be used to assign the edges of each input layer. Populated cells are then

distributed to the available nodes for processing the overlay operations.

To support the creation of the quadtree we use the sampling functionalities pro-

vided in the Apache Sedona, an extension available on the Apache Spark platform. It allows

the user to provide a parameter for the number of quadtree leaves; using this parameter

as an approximation, it builds a quadtree; it should be noted that the actual number of

leaves created is typically larger than the parameter provided by the user. The number of

user-requested leaves and the size of the sample are used to compute the maximum number

19

of entries per node (capacity) during the construction of the tree. If the node capacity is

exceeded, the node is divided into four child nodes with an equal spatial area, and its data

is distributed among the four child nodes. If any child node has exceeded its capacity, it

is further divided into four nodes recursively and so on, until each node holds at most its

computed capacity.

After creating the quadtree from the sample, we use its leaf nodes as the partition-

ing cells for each layer. Each input layer file is then read from the disk, and all its edges are

inserted into the appropriate cells of the partitioning structure. Note that the partitioning

structure created from the sample is now fixed; no more cells are created when the layer

edges are assigned to cells. In the rest, we use the term cell and partition interchangeably.

For this approach to work, it is important that each cell can compute its two

DCELs independently. An edge can be fully contained in a cell, or it can intersect the cell’s

boundary. In the second case, we copy this edge to all cells where it intersects, but within

each cell, we use the part of the edge that lies fully inside the cell. Figure 2.4 shows an

example where four cells and two edges of the upper polygon from layer A cross the cell

borders. Such edges are clipped at the cell borders, introducing new edges (e.g., edges α′

and α′′ in the Figure 2.4). Similarly, a polygon that crosses over a cell is clipped to the cell

by introducing artificial edges on the cell’s border (see face A2 in cell 3 of Figure 2.4).

Such artificial edges are shown in red in the figure. This allows for the creation of a smaller

polygon that is contained within each cell.

For example, polygon A2 is clipped into four smaller polygons as it overlaps all

four cells. The clipping of edges and polygons ensures that each cell has all the needed

20

Input Layer A

A
α

=⇒

1 2

3 4

Clipped Edges A

A1

A2 A2

A2 A2

α′
α′′

=⇒

1 2

3 4

Partitioned DCEL for A

A1

A2 A2

A2 A2

Input Layer B

B
=⇒

1 2

3 4

Clipped Edges B

B1

B2

B3

B1

B2

B3

=⇒

1 2

3 4

Partitioned DCEL for B

B1

B2

B3

B1

B2

B3

Figure 2.4: Partitioning example using input layers A and B over four cells.

information to complete its DCEL computations. As such computations can be performed

independently, they are sent to different worker nodes to be processed in parallel. The

assignment is delegated to the distributed framework (i.e., Apache Spark).

Once a cell is assigned to a worker node, the sequential algorithm is used to create

a DCEL for each layer (using the cell edges from that layer and any artificial edges, vertices,

and faces created by the clipping procedures above) and then compute the corresponding

(local) overlay for this cell. Using the example from Figure 2.4, Figure 2.5 depicts an

overview of the process for creating a local overlay DCEL inside cell 2. Similarly, Figure

2.6 shows all local overlay DCELs computed at each cell (artificial edges are shown in red).

21

2

A2 B2

B3

2

A2

2

B2

B3

2

A2B3

A2B2

B2

B3

Figure 2.5: Local overlay DCEL for cell 2.

Nevertheless, the partitioning creates two problems (not present in the sequential

environment) that need to be addressed. The first is the case where a cell is empty; it does

not intersect with (or contain) any regular edge from either layer. A regular edge is not

part of a hole. This empty cell does not contain any label, and thus, we do not know which

face it may belong to. We term this as the orphan cell problem. An example is shown in

Figure 2.7, which depicts a face (from one of the input layers) whose boundary goes over

many quadtree cells; orphan cells are shown in grey.

Note that an orphan cell may contain a hole (see Figure 2.7). In this case, the

original label of the face where the hole belongs (and reported in the hole’s edges) may have

changed during the overlay computation (because it overlapped with a face from the other

layer). However, this new label has not been propagated to the hole edges. We term this

22

A1

B2

B2

B3 B3

B1

B1

A2

A2

A
1B

1

A2B1 A2B1

A2B2

A2B2

A2B3 A2B3

1 2

3 4

Figure 2.6: Result of the local overlay DCEL computations.

23

as the orphan hole problem. For simplicity, we focus on the case where a hole is within

one orphan cell, but in the general case, a hole can split among many such cells.

The issue with both ‘orphan’ problems is the missing labels. In section 2.4.2, we

propose an algorithm that correctly labels an orphan cell. If this cell contains a hole, the

new label is also used to update the hole edges.

Kd-tree Partition Strategy

The kd-tree based partitioning is a data-oriented approach because it sorts and

picks the middle point inside a cell to locate the split of the future children. 1% of the input

data is used to build a kd-tree and extract the tree’s structure. The leaves of this structure

are the partition’s cells. We feed the input data into the generated kd-tree structure to assign

each edge to the leaf cell that has the edge within its boundaries. After the partitioning

is done, the construction of the local DCELs for each layer and the overlay operation is

performed in each local cell in the same fashion as described in section 2.4.1.

2.4.2 Labeling Orphan Cells and Holes

Assuming a quadtree-based partitioning, to find the label of an orphan cell, we

propose an algorithm that recursively searches the space around the orphan cell until it

identifies a nearby cell that contains an edge(s) of the face that includes the orphan cell

and thus acquire the appropriate label information. The quadtree index accommodates this

search. Two observations are in order: (1) each cell is a leaf of the quadtree index (by

construction), and (2) each cell has a unique id created by the way this cell was created;

this id effectively provides the lineage (unique path) from the quadtree root to this leaf.

24

Recall that the root has four possible children (typically numbered as 0,1,2,3 cor-

responding to the four children NW, NE, SW, and SE). The lineage is the sequence of these

numbers in the path to the leaf. For example, the lineage for the shaded orphan cell in

Figure 2.7(a) is 03. Further, note that the quadtree is an unbalanced structure, having more

deep leaves where there are more edges. Thus, higher leaves correspond to larger areas, and

deeper leaves correspond to smaller areas (since a cell split is created when a cell has more

edges than a threshold).

After identifying an orphan cell, the question is where to search for a cell containing

an edge. The following Lemma applies:

Lemma 1 Given an orphan cell, one of its siblings at the same quadtree level must contain

a regular edge (directly or in its subtree).

This lemma arises from the simple observation that if all three siblings of an orphan

cell are empty, then there is no reason for the quadtree to make this split and create these

four siblings. Based on the lemma, we know that at least one of the three siblings of the

orphan cell can lead us to a cell with an edge. However, these siblings may not be cells

(leaves). Instead of searching each one of them in the quadtree until we reach their leaves,

we want a way to quickly reach their leaves. To do so, we pick the centroid point of the

orphan cell’s parent (which is also one of the corners of the orphan cell).

For example, the parent centroid for the orphan cell 03 is the green point in Figure

2.7(b). We then query the quadtree to identify which cells (leaves, one from each sibling)

contain this point. We check whether these cells contain an edge; if we find such a cell, we

stop (and use the label in that cell). If all three cells are orphans, we need to continue the

25

(a) (b)

(c) (d)

Figure 2.7: (a) Empty cell and hole examples; (b)-(c)-(d) show three iterations of the
proposed solution.

26

search. An example appears in Figure 2.7(b), where all three cells (green in the figure) are

also orphans.

We first check if any of these orphan cells is a sibling (has the same parent) of the

original cell. In this case that sibling is also a leaf (i.e. it does not have a subtree) and

does need to be explored. The remaining orphans are therefore at a lower level than the

original orphan cell, which means they come from a sibling that has been split because of

some edge. The algorithm picks any of the remaining orphan cells to continue. In Figure

2.7(b) all three leaves (green orphan cells) are at a lower level than the original orphan cell.

One can use different heuristics to pick which of the remaining leaves to use. Below,

we consider the case where we use the deepest cell (i.e., the one with the longest lineage)

among the leaves. This is because we expect this to lead us to the denser areas of the

quadtree index, where there is more chance to find cells with edges. Figure 2.7 shows a

three-iteration run of the algorithm.

During the search process, we keep any orphan cells we discover; after a cell with

an edge (non-orphan cell) is found, the algorithm stops and labels the original orphan cell

and any other orphan cells retrieved in the search with the label found in the non-orphan

cell. Note that if the non-orphan cell contains many labels (because different faces pass

through it), we assign the label of the face that contains the original centroid.

The pseudo-code of the search process can be seen in Algorithms 1 and 2. Another

heuristic we used that is not described here is to follow the highest among the three orphan

cells; i.e. the one with the shorter lineage since this has a larger area and will thus help us

cover more empty space and possibly reach the border of the face faster.

27

Algorithm 1 getNextCellWithEdges algorithm

Require: a quadtree Q and a list of cellsM.
1: function getNextCellWithEdges (Q,M)
2: C ← orphan cells inM
3: for each orphanCell in C do
4: initialize cellList with orphanCell
5: nextCellWithEdges← nil
6: referenceCorner ← nil
7: done← false
8: while ¬done do
9: c← last cell in cellList

10: cells, corner ← getCellsAtCorner(Q, c)
11: for each cell in cells do
12: nedges← get edge count of cell inM
13: if nedges > 0 then
14: nextCellWithEdges← cell
15: referenceCorner ← corner
16: done← true
17: else
18: if cell.level < orphanCell.level then
19: add cell to cellList
20: end if
21: end if
22: end for
23: end while
24: for each cell in cellList do
25: output(cell,
26: nextCellWithEdges, referenceCorner)
27: remove cell from C
28: end for
29: end for
30: end function

28

Algorithm 2 getCellsAtCorner algorithm

Require: a quadtree Q and a cell c.
function getCellsAtCorner (Q, c)

region← quadrant region of c in c.parent
switch region do

case ‘SW’
corner ← left bottom corner of c.envelope

case ‘SE’
corner ← right bottom corner of c.envelope

case ‘NW’
corner ← left upper corner of c.envelope

case ‘NE’
corner ← right upper corner of c.envelope

cells← cells which intersect corner in Q
cells← cells− c
cells← sort cells on basis of their depth
return (cells, corner)

end function

To determine the worst-case performance of the search algorithm, consider that

for an orphan cell, the algorithm performs three point quadtree queries to find the sibling

leaves containing the centroid. It then selects one of these leaves and repeats the process,

querying three points for a new centroid within the siblings of the selected leaf. This causes

the algorithm to explore progressively deeper into the quadtree. In the worst case, the

longest path in the quadtree could result in a time complexity of O(N). However, in the

average case, when the quadtree is balanced, the complexity is logarithmic.

2.4.3 Answering global overlay queries

Using the local overlay DCELs, we can easily compute the global overlay DCEL; for

that, we need a reduce phase, described below, to remove artificial edges, and concatenate

split edges from all the faces. Using the local overlay DCELs, we can also compute in a

29

scalable way global operators like intersection, difference, symmetric difference, etc. For

these operators, there is first a map phase that computes the specific operator on each local

DCEL, followed by a reduce phase to remove artificial edges/added vertices. Figure 2.8

shows how the intersection overlay operator (A ∩ B) is computed, starting with the local

DCELs for four cells in Figure 2.8(a). First, each cell computes the intersection using its

local overlay DCEL as shown in Figure 2.8(b). This is a map operation to identify overlay

faces that contain both labels from layer A and layer B. Each cell can then report every

such face that does not include any artificial edges, like face A1B1 in Figure 2.8(b); note

that these faces are fully included in the cell.

Using a reduce phase, the remaining faces are sent to a master node; in our im-

plementation, it would be the driver node of the spark application that will (i) remove the

artificial edges, shown in red in the figure and (ii) concatenate edges that were split because

they were crossing cell borders. This is done by pairing faces with the same label and

concatenating their geometries by removing the artificial edges and vertices added during

the partition stage, for example, the two faces with label A2B1 from two different cells in

Figure 2.8(b) were combined into one face in Figure 2.8(c). While the extra vertex was

also removed. In section 2.5.1, we discuss techniques to optimize the reduce process of

combining faces.

For symmetric difference, A△B, the map phase filters faces whose label is a single

layer (A or B). For the difference, A \ B, it filters faces with label A. For union A ∪ B, all

faces in the overlay structure are retrieved.

30

Distributed Overlay

A1

B2

B2

B3 B3

B1

B1

A2

A2

A
1B

1

A2B1 A2B1

A2B2

A2B2

A2B3 A2B3

=⇒

Overlay operator (A ∩B)

A
1B

1

A2B1 A2B1

A2B2

A2B2

A2B3 A2B3

=⇒

Reduce stage (A ∩B)

A
1B

1

A2B1

A2B2

A2B3

(a) (b) (c)

Figure 2.8: Example of an overlay operator querying the distributed DCEL.

2.5 Overlay evaluation optimizations

We now focus on the different optimization aspects regarding the best approach

to compute the boundaries of faces that span over different cells and how to mitigate the

issues of layers with an unbalanced number of edges.

2.5.1 Optimizations for faces spanning multiple cells

The naive reduce phase described above has the potential for a bottleneck since all

faces, which can be a very large number, are sent to one worker node. From a distributed

perspective, this process follows a typical MapReduce pattern. In the map phase, each

worker node identifies and reports faces that are fully contained within its boundaries, as

well as segments of faces that may need to be concatenated with segments reported by

other nodes. These face segments are then sent to a master node, incurring communication

costs as the master must wait for all nodes to report their segments. In the reduce phase,

31

the master node groups the segments by face ID, sorts them, and concatenates the parts

to form complete, closed faces. One observation is that faces from different concatenated

cells are in contiguous cells. This implies that faces from a particular cell will be combined

with faces from neighboring cells. We will use this spatial proximity property to reduce the

overhead in the central node.

We thus propose an alternative where an intermediate reduce processing step is

introduced. In particular, the user can specify a level in the quadtree structure, measured

as the depth from the root, that can be used to combine cells together. While it may be

challenging to predetermine an optimal level, it can be estimated based on the input size

or the number of partitions. Moreover, Section 2.6.2 offers recommendations for suitable

values and alternative approaches. Given level i, the quadtree nodes in that level (at most

4i) will serve as intermediate reducers, collecting the faces from all the cells below that

node. Note: level 0 corresponds to the root, which is the naive method where all the cells

are sent to one node.

By introducing this intermediate step, it is expected that much of the reduce work

can be distributed in a larger number of worker nodes. Nevertheless, there may be faces

that cannot be completed by these intermediate reducers because they span the borders

of the level i nodes. Such faces still have to be evaluated in a master/root node. From a

Map-Reduce standpoint, this alternative functions similarly to the previous approach but

introduces additional reduce operations at an intermediate level. However, this also intro-

duces new synchronization points, as each intermediate reducer must wait for its workers

32

to report potential face segments before processing them. The reducer then either reports

completed faces or sends incomplete segments to the driver for further processing.

Clearly, picking the appropriate level is important. Choosing a level i, i.e., going

to nodes lower in the quadtree structure, implies a larger number of intermediate reducers

and, thus, higher parallelism. However, simultaneously, it increases the number of faces

that would need to be evaluated by the master/root node. On the other hand, lowering i

reduces parallelism, but fewer faces will need to go to the master/root node.

We also examine another approach to deal with the bottleneck in the naive reduce

phase. This approach re-partitions the faces using the label as the key. Such partitions

represent small independent amounts of work since they only combine faces with the same

label that are typically few. Partitions are then shuffled among the available nodes. The

second approach effectively avoids the reduce phase; it has to account for the cost of the

re-partitioning; however, as we will show in the experimental section, this cost is negligible.

From a distributed computing perspective, this alternative introduces a shuffle stage at the

beginning, eliminating the need for a reduce operation. The shuffle ensures that all segments

with the same face ID are placed in the same worker, allowing them to be processed and

reported directly.

2.5.2 Optimizing for unbalanced layers

During the overlay computation, finding the intersections between the half-edges

is the most critical task. In many cases, the number of half-edges from each layer within a

cell can be unbalanced; that is, one of the layers has many more half-edges than the other.

33

In our initial implementation, the input sets of half-edges within each cell were

combined into a single dataset, initially ordered by the x-origin of each half-edge. Then, a

sweep-line algorithm is performed, scanning the half-edges from left to right (in the x-axis).

This scanning takes time proportional to the total number of half-edges. However, if one

layer has much fewer half-edges, the running time will still be affected by the cardinality of

the larger dataset.

An alternative approach is to scan the larger dataset only for the x-intervals where

we know that there are half-edges in the smaller dataset. To do so, we order the two input

sets separately. We scan the smaller dataset in x-order and identify x-intervals occupied by

at least one half-edge. For each x-interval, we then scan the larger dataset using the sweep-

line algorithm. This focused approach avoids unnecessary scanning of the large dataset, for

example, areas with no half-edges from the smaller dataset.

2.6 Experimental Evaluation

For our experimental evaluation, we used a 12-node Linux cluster (kernel 3.10)

and Apache Spark 2.4. Each node has 9 cores (each core is an Intel Xeon CPU at 1.70GHz)

and 2G memory.

The scalable approach was implemented over the Apache Spark framework. From

a Map-Reduce point of view the stages described in Section 2.4 were implemented using

several transformations and actions supported by Apache Spark. For example, the parti-

tioning and load balancing described in Section 2.4.1 was implemented using a quadtree,

where its leaves were used to map and balance the number of edges that have to be sent to

34

the worker nodes. Mostly, map operations were used to process and locate the edges in the

corresponding leaf to exploit proximity among them while at the same time dividing the

amount of work among worker nodes.

Similarly, the edges at each partition were processed using chains of transforma-

tions at local level (see Section 2.4) followed by reducer actions to post-process incomplete

faces which could span over multiples partitions and have to be combined or re-distributed to

obtain the final answer. In addition, the reduce actions were further optimized as described

in Section 2.5.

2.6.1 Evaluation datasets

The details of the real datasets of polygons that we use are summarized in Table

2.4. The first dataset (MainUS) contains the complete Census Tracts for all the states on

the US mainland for the years 2000 (layer A) and 2010 (layer B). It was collected from the

official website of the United States Census Bureau [56]. The data was clipped to select

just the states inside the continent. Something to note with this dataset is that the two

layers present a spatial gap (which was due to improvements in the precision introduced for

2010). As a result, there are considerably more intersections between the two layers, thus

creating many new faces for the DCEL.

The second dataset, GADM - taken from Global Administration Areas [25], collects

the geographical boundaries of the countries and their administrative divisions around the

globe. For our experiments, one layer selects the States (administrative level 2), and the

35

Table 2.4: Evaluation Datasets

Dataset Layer Number Number

of polygons of edges

MainUS Polygons for 2000 64983 35417146

Polygons for 2010 72521 36764043

GADM Polygons for Level 2 160241 64598411

Polygons for Level 3 223490 68779746

CCT Polygons for 2000 7028 2711639

Polygons for 2010 8047 2917450

other has Counties (administrative level 3). Since GADM may contain multi-polygons, we

split them into their individual polygons.

Since these two datasets are too large, a third, smaller dataset was created for

comparisons with the sequential algorithm. This dataset is the California Census Tracts

(CCT), a subset from MainUS for the state of California; layer A corresponds to the CA

census tracts from the year 2000, while layer B corresponds to 2010. Below, we also use other

states to create datasets with different numbers of faces. To test the scalable approach, a

sequential algorithm for DCEL creation was implemented based on the pseudo-code outlined

in [8].

36

2.6.2 Overlay face optimizations

We first examine the optimizations in Section 2.5.1. To consider different distri-

butions of faces, for these experiments, we used 8 states from the MainUS dataset with

different numbers of tracts (faces). In particular, we used, in decreasing order of number

of tracts, CA, TX, NC, TN, GA, VA, PA, and FL. For each state, we computed the dis-

tributed overlay between two layers (2000 and 2010). For each computation, we compared

the baseline; master at the root node, with intermediate reducers at different levels: i varied

from 4 to 10.

Figure 2.9 shows the results for the distributed overlay computation stage; after the

local DCELs were computed at each cell. Note that for each state experiment, we tested

different numbers of cells for the quadtree and reported the configuration with the best

performance. To determine this, we sampled 1% of the edges for each state and evaluated

the best number of cells ranging from 200 to 2000. In most cases, the best number of cells

was around 3000. As expected, there is a trade-off between parallelism and how much work

is left to the final reduce job. For different states, the optimal i varied between levels 4

and 6. The figure also shows the optimization that re-partitions the faces by label id. This

approach has actually the best performance. This is because few faces with the same label

can be combined independently. This results in smaller jobs better distributed among the

cluster nodes, and no reduce phase is needed. As a result, we use the label re-partition

approach for the rest of the experiments to implement the overlay computation stage.

Finally we note that the overlay face optimizations involve shuffling of the incom-

plete faces. Table 2.5 shows the percentage of incomplete faces for three states, assuming

37

GA VA PA FL

CA TX NC TN

B
y

La
be

l

M
as

te
r

Le
ve

l [
4]

Le
ve

l [
5]

Le
ve

l [
6]

Le
ve

l [
7]

Le
ve

l [
8]

Le
ve

l [
9]

Le
ve

l [
10

]

B
y

La
be

l

M
as

te
r

Le
ve

l [
4]

Le
ve

l [
5]

Le
ve

l [
6]

Le
ve

l [
7]

Le
ve

l [
8]

Le
ve

l [
9]

Le
ve

l [
10

]

B
y

La
be

l

M
as

te
r

Le
ve

l [
4]

Le
ve

l [
5]

Le
ve

l [
6]

Le
ve

l [
7]

Le
ve

l [
8]

Le
ve

l [
9]

Le
ve

l [
10

]

B
y

La
be

l

M
as

te
r

Le
ve

l [
4]

Le
ve

l [
5]

Le
ve

l [
6]

Le
ve

l [
7]

Le
ve

l [
8]

Le
ve

l [
9]

Le
ve

l [
10

]

0

25

50

75

100

125

0

25

50

75

100

125

Method of overlay

T
im

e
[s

]

Figure 2.9: Overlay methods evaluation.

38

Table 2.5: Percentages of edges in incomplete faces for three states

Number of Edges in

Dataset edges incomplete faces Percentage

CA 47834 6339 13.25%

TX 41227 4436 10.75%

FL 24152 3547 14.68%

3000 cells. As it can be seen, the incomplete faces is small (in average 12.89%) and moreover,

for the By-Label approach, this shuffling is parallelized.

2.6.3 Unbalanced layers optimization

For these experiments, we compared the traditional sweep approach with the

‘filtered-sweep’ approach that considers only the areas where the smaller layer has edges

(Section 2.5.2). To create the smaller cell layer, we picked a reference point in the state of

Pennsylvania, from the MainUS dataset, and added 2000 census tracts until the number of

edges reached 3K. We then varied the size of the larger cell layer in a controlled way: using

the same reference point but using data from the 2010 census, and we started adding tracts

to create a layer that had around 2x, 3x, ..., 7x the number of edges of the smaller dataset.

Since this optimization occurs per cell, we used a single node to perform the over-

lay computation within that cell. Figure 2.10(a) shows the behavior of the two methods

(filtered-sweep vs. traditional sweep) under the above-described data for the overlay com-

39

Method Filter by sweep Traditional

0.0

0.2

0.4

0.6

2x 3x 4x 5x 6x 7x
Dataset Size

T
im

e
[s

]

(a)

0.0

0.1

0.2

0.3

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Percentage difference between datasets

T
im

e
[s

]

(b)

Figure 2.10: Evaluation of the unbalanced layers optimization.

putation stage. Clearly, as the data from one layer grows much larger than the other layer,

the filtered-sweep approach overcomes the traditional one.

We also performed an experiment where the difference in size between the two

layers varies between 10% and 70%. For this experiment, we first identified cells from the

GADM dataset where the smaller layer had around 3K edges. Among these cells, we then

identified those where the larger layer had 10%, 20%, ... up to 70% more edges. In each

category, we picked 10 representative cells and computed the overlay for the cells in that

category.

Figure 2.10(b) shows the results; in each category, we show the average time to

compute the overlay among the 10 cells in that category. The filtered-sweep approach

shows better performance as the percentage difference between layers increases. Based on

40

these results, one could apply the optimization on those cells where the layer difference

is significant (more than 50%). We anticipate that this optimization will be particularly

beneficial for datasets where the two input layers contain many cells with significantly

different edge counts.

2.6.4 Varying the number of cells

The quadtree configuration allows for performance tuning by setting the maximum

capacity of a cell. The quadtree continues splitting until this capacity is reached. There is

an inverse relationship between the capacity and the number of leaf cells: a lower capacity

results in more cells, while a higher capacity leads to fewer leaf cells. In skewed datasets,

the quadtree may become unbalanced, with some branches splitting more frequently. As a

result, the final number of partitions is not necessarily a multiple of four. In the figures, we

round the number of leaf cells to the nearest thousand.

The number of cells affects the performance of our scalable overlay implementation,

termed as SDCEL, since it relates to the average cell capacity given by the number of edges it

could contain. As it was said before, a fewer number of cells implies larger cell capacity and

thus more edges to process within each cell. Complementary, creating more cells increases

the number of jobs to be executed.

Figure 2.11(a) shows the SDCEL performance using the two layers of the CCT

dataset while varying the number of cells from 100 to 15K (by multiple of 1000). Each bar

corresponds to the time taken to create the DCEL for each layer and then combine them to

create the distributed overlay. Clearly, there is a trade-off: as the number of cells increases,

the SDCEL performance improves until a point where the larger number of cells adds an

41

CGAL

0

200

400

600

800

SDCEL

0.1 0.2 0.5 1 2 4 7 10 12.5 15

0

200

400

600

800

Number of cells (x1000)

T
im

e
[s

]

0

20

40

2 4 7 10 12.5 15
Number of cells (x1000)

T
im

e
[s

]

(a) (b)

Figure 2.11: SDCEL performance while varying the number of cells in the CCT dataset.

overhead. Figure 2.11(b) focuses on that area; the best SDCEL performance was around

7K cells.

In addition, Figure 2.11(a) shows the performance of the sequential solution (CGAL

library) for computing the overlay of the two layers in the CCT dataset using one of the

cluster nodes. Clearly, the scalable approach is much more efficient as it takes advantage of

parallelism. Note that the CGAL library would crash when processing the larger datasets

(MainUS and GADM).

Figure 2.12 shows the results when using the larger MainUS and GADM datasets,

while again varying the number of cells parameter from 8K to 18K and from 16K to 34K,

respectively. In this figure, we also show the time taken by each stage of the overlay

computation. This is, the time to create the DCEL for layer A, for layer B, and for their

combination to create their distributed overlay. We can see a similar trade-off in each of

the stages. The best performance is given when setting the number of cells parameter to

42

Stages Layer A Layer B Overlay

0

100

200

8K 9K 10
K

11
K

12
K

13
K

14
K

15
K

16
K

17
K

18
K

Number of cells

T
im

e
[s

]

(a)

0

500

1000

1500

16
K

18
K

20
K

22
K

24
K

26
K

28
K

30
K

32
K

34
K

Number of cells

T
im

e
[s

]

(b)

Figure 2.12: Performance with (a) MainUS and (b) GADM datasets.

12K for the MainUS and 22K for the GADM dataset. Note that in the MainUS dataset,

the two layers have a similar number of edges; as can be seen, their DCEL computations

are similar.

Interestingly, the overlay computation is expensive since as mentioned earlier there

are many intersections between the two layers. An interesting observation from the GADM

plots is that layer B takes more time than layer A; this is because there are more edges

in the counties than in the states. Moreover, county polygons are included in the (larger)

state polygons. When the size of cells is small (i.e., a larger number of cells like in the

case of 34K cells), these cells mainly contain counties from layer B. As a result, there are

not many intersections between the layers in each cell, and the overlay computation is thus

faster. On the other hand, with large cell sizes (smaller number of cells), the area covered

43

Table 2.6: Cell size statistics.

Dataset Min 1st Qu. Median Mean 3rd Qu. Max

GADM 0 0 2768 3141 5052 16978

MainUS 0 1538 2582 2853 3970 10944

CCT 0 122 324 390 546 1230

Table 2.7: Orphan cells and orphan holes description

Number Number Number of orphans

Dataset of cells of holes (cell/holes)

GADM 21970 1999 4310

MainUS 12343 850 1069

CCT 7124 40 215

by the cell is larger, containing more edges from states and thus increasing the number of

intersections, resulting in higher overlay computation.

Additionally, Table 2.6 provides statistics on the cells. It shows that in larger

datasets, an average cell size of approximately 3000 edges produces the best results. This

cell size ensures a relatively small amount of data to transmit, which minimizes the impact

on data shuffling and processing. Table 2.7 presents the number of cells, original holes, and

the orphan cells and holes generated after partitioning.

44

Layer A Layer B Overlay

3 6 12 3 6 12 3 6 12

0

100

200

300

400

Number of nodes

T
im

e
[s

]

(a)

Layer A Layer B Overlay

8M 16M 32M 8M 16M 32M 8M 16M 32M

0

50

100

Size [number of edges]

T
im

e
[s

]

(b)

Figure 2.13: Speed-up and Scale-up experiments for the MainUS dataset.

2.6.5 Speed-up and Scale-up experiments

The speed-up behavior of SDCEL appears in Figure 2.13(a) (for the MainUS

dataset) and in Figure 2.14(a) (for the GADM dataset); in both cases, we show the per-

formance for each stage. For these experiments, we varied the number of nodes to 3, 6,

and 12 while keeping the input layers the same. Clearly, as the number of nodes increases,

the performance improves. SDCEL shows good speed-up characteristics: as the number of

nodes doubles from 3 to 6 and then from 6 to 12, the performance improves by almost half.

To examine the scale-up behavior, we created smaller datasets out of the MainUS

and similarly out of the GADM so that we could control the number of edges. To create

such a dataset, we picked a centroid and started increasing the area covered by this dataset

45

Layer A Layer B Overlay

3 6 12 3 6 12 3 6 12

0

500

1000

1500

Number of nodes

T
im

e
[s

]

(a)

Layer A Layer B Overlay

8M 16M 32M 8M 16M 32M 8M 16M 32M

0

100

200

300

400

Size [number of edges]

T
im

e
[s

]

(b)

Figure 2.14: Speed-up and Scale-up experiments for the GADM dataset.

until the number of edges was closed to a specific number. For example, from the MainUS,

we created datasets of sizes 8M, 16M, and 32M edges for each layer. We then used two

layers of the same size as input to a different number of nodes while keeping the input-to-

node ratio fixed. That is, the layers of size 8M were processed using 3 nodes, the layers

of size 16M using 6 nodes, and the 32M using 12 nodes. We used the same process for

the scale-up experiments with the GADM dataset. The results appear in Figure 2.13(b)

and Figure 2.14(b). Overall, SDCEL shows good scale-up performance; it remains almost

constant as the work per node is similar (there are slight variations because we could not

control perfectly the number of edges and their intersection).

46

Tree Kdtree Quadtree

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of requested partitions (x1000)

C
on

st
ru

ct
io

n
Tr

ee
 T

im
e(

s)

(a)

10

20

30

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Number of requested partitions (x1000)

C
re

at
io

n
Tr

ee
 T

im
e(

s)

(b)

Figure 2.15: Construction time for the spatial data structure in the (a) MainUS and (b)
GADM datasets.

2.6.6 Kd-tree versus quadtree performance

To compare the quadtree and kd-tree partition strategies, we analyze their perfor-

mance across several stages: constructing the spatial data structure to define the partition

cells based on the sample, the cost of partitioning, populating the cells with the full datasets,

and the overall time required to complete each phase of the overlay operation using each

partitioning approach. We use the MainUS and GADM datasets, as described in Table 4.1.

Figure 2.15 illustrates the construction time for sampling the input layers and

generating partitioning cells with varying numbers of divisions. The kd-tree requires more

time, primarily due to the sorting involved at each split to organize the data and locate the

midpoint. On average, the quadtree takes only 23.13% of the time needed to create the kd-

tree (21.55% for MainUS and 24.72% for GADM). However, kd-tree creation accounts for

47

Tree Kdtree Quadtree

0

10000

20000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of requested partitions (x1000)

S
pa

ce
 (

nu
m

be
r

of
 n

od
es

)

(a)

10000

20000

30000

40000

50000

60000

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Number of requested partitions (x1000)

S
pa

ce
 (

nu
m

be
r

of
 n

od
es

)

(b)

Figure 2.16: Number of cells created by each spatial data structure in the (a) MainUS and
(b) GADM datasets.

only 5.86% of the total time required for complete DCEL construction (6.88% for MainUS

and 4.87% for GADM).

An important characteristic of each partitioning scheme is the number of cells

(partitions) generated by each sample data structure. Figure 2.16 shows the number of

cells created by each spatial data structure. Since the quadtree follows a space-oriented

technique, it creates more nodes (four at each split), resulting in a larger number of leaf

cells, many of which are likely to be empty compared to those generated by the kd-tree.

Figure 2.17 presents the cost of partitioning the full content of both layers. Based

on the sample tree data structure, each edge is assigned to a cell (partition) according

to the leaf in which it is located; edges are assigned (or duplicated) to all leaves they

48

Tree Kdtree Quadtree

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of requested partitions (x1000)

P
ar

tit
io

ni
ng

 T
im

e(
s)

(a)

100

200

300

400

500

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Number of requested partitions (x1000)

P
ar

tit
io

ni
ng

 T
im

e(
s)

(b)

Figure 2.17: Data partitioning time using a spatial data structure (a) in the MainUS dataset
and (b) in the GADM dataset.

intersect. A shuffle operation is then performed to move the data to the corresponding node

responsible for handling each cell (partition). The figure shows that quadtree partitioning

takes more time, primarily due to the larger number of leaves generated by the sample tree

and the higher number of edges overlapping multiple partitions, which is expected with the

quadtree’s use of smaller, more numerous cells.

Once the data is assigned to their respective partitions, the overlay operation can

be executed. Figure 2.18 illustrates the overlay performance for each partitioning strategy

with varying numbers of cells. The kd-tree approach performs better, as the quadtree’s

tendency to generate a higher number of empty cells negatively impacts its performance.

49

Tree Kdtree Quadtree

120

150

180

210

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of requested partitions (x1000)

O
ve

rla
y

T
im

e(
s)

(a)

400

450

500

550

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Number of requested partitions (x1000)

O
ve

rla
y

T
im

e(
s)

(b)

Figure 2.18: Execution time for the overlay operation using a spatial data structure in the
MainUS (a)and GADM (b) dataset.

Layer A Layer B Overlay

3 6 12 3 6 12 3 6 12

0

100

200

300

Nodes

T
im

e
[s

]

Layer A Layer B Overlay

8M 16M 32M 8M 16M 32M 8M 16M 32M

0

25

50

75

100

Edges

T
im

e
[s

]

Figure 2.19: (a)Speed Up and (b) Scale Up performance of the Kdtree partitioning using
the MainUS dataset.

50

Finally, we evaluate the speed-up and scale-up performance of the kd-tree par-

titioning. Figure 2.19(a) presents the speed-up performance for the MainUS dataset (36

million edges) as the number of nodes varies (3, 6, and 12 nodes). Similar to the quadtree

partitioning strategy, the kd-tree partitioning demonstrates strong speed-up performance.

Doubling the resources nearly halves the execution time, indicating effective scalability.

Figure 2.19(b) illustrates the scale-up performance of the kd-tree partitioning ap-

proach. Following the procedure outlined in Section 2.6.5, we generated datasets with 8M,

16M, and 32M edges from the MainUS dataset and applied the kd-tree partitioning strat-

egy using 3, 6, and 12 nodes, respectively. The kd-tree partitioning demonstrates strong

scale-up performance, maintaining consistent speed-up as the load per node remains nearly

equal.

51

Chapter 3

Scaling DCEL Overlay Operations

to Support Dangle and Cut Edges

3.1 Introduction

This chapter extends the previous work in [13]. In many applications, there is a

need to support overlay DCEL operations when the input contains complete polygon data

(as is the case in the previous chapter) with polygons that may contain two new types of

edges, namely, “dangle” and “cut” edges. Here, we extend the overlay DCEL approach

to accept scattered and noisy line segments as input, rather than being restricted to clean

polygon data. This enhancement builds on the scalable polygonization methods presented

in [1], enabling the overlay of real-world datasets composed of vast sets of line segments

—datasets that existing techniques are unable to process effectively. The proposed solution

is an extension of the approach we used in Chapter 2.4, for handling polygons with holes.

52

a

b

c

d

e

f

g

h

i

jtwin(f⃗ e)
f⃗ e

ne
xt
(f⃗
e)

pr
ev
(f⃗
e)

f3 f2

f1

f4

dangle edge

cut edge

Figure 3.1: Components of the DCEL structure with dangle and cut edges.

Figure 3.1 illustrates the fundamental components of a DCEL including the two

new types of special half-edges. Dangles are half-edges with one or both endpoints not

incident on another half-edge endpoint; both half-edge
−→
fj and its twin are considered dangle

edges. Cut-edges are half-edges connected at both ends that do not form part of any polygon.

The half-edge
−→
dg and its twin are classified as cut-edges.

The remainder of this chapter is organized as follows. Section 3.2 describes the

polygon extraction process for adapting line segment inputs, which extends the overlay

method to support dangle and cut edges. In Section 3.3, we present additional experiments

to quantify and assess the performance of the proposed polygonization on datasets with

large volumes of line segments.

53

3.2 Scalable Partitioning with Dangle and Cut Edges

3.2.1 Overlaying Polygons with Dangle and Cut Edges

Beyond scalability challenges, many modern applications receive spatial polygon

datasets as scattered line segments—for example, road segments that form city blocks.

Such datasets can be extremely large and are common in fields like urban planning, geo-

targeted advertising, economic and demographic studies, and more. However, existing

polygon overlay techniques are not equipped to process them directly at scale. In this

section, we extend the overlay method presented in Section 2.4 to support polygonal input by

integrating a scalable, distributed polygon extraction approach. This enhancement enables

the merging of polygons with dangle and cut edges.

We built on in the scalable polygonization procedure presented in [1]. The result

of that polygonization procedure generates two outputs: first, a set of closed polygons

formed by the input planar line segments, and second, any edges that are not a part of any

polygon (i.e., dangle or cut edges). Overlaying the polygons generated with any polygon

layer follows the approaches discussed in sections 2.4 and 2.5. However, we need to modify

the algorithms provided in these previous sections to overlay an input polygon layer A with

the dangle and cut edges (layer B). In particular, we modify the reduce phase.

We build upon the scalable polygonization procedure presented in [1] (see Figure

3.2), which produces two outputs: (1) a set of closed polygons formed from the input planar

line segments, and (2) any edges that are not part of any polygon (i.e., dangle or cut edges).

Overlaying these generated polygons with any polygon layer follows the methods discussed

in Sections 2.4 and 2.5. However, to overlay an input polygon layer A with the dangle and

54

cut edges (layer B), we modify the algorithms from these sections, particularly adjusting

the reduce phase.

Figure 3.3(a) illustrates the spatial partitioning of two input layers, A and B.

Layer A contains two input polygons, A0 and A1, while Layer B includes of three dangle

edges, B0, B1, and B2.

Each edge in layer B is assigned a unique label and provided as input to the overlay

module. The local overlay processs indentifies intersections between the input polygon layer

A and layer B within each data partition. If a polygon with id = i from layer A intersects

with edges labeled id = a, id = b and id = c from layer B in a given partition, a composite

label AiBaBbBc is generated to represent these intersections.

During the reduce phase, we re-partition the data based on the first label, con-

solidating all edges that intersect with it. For instance, if two data partitions generate the

labels AiBaBbBc and AiBxBy, we reassign the data so that Ai is grouped within a single

partition along with all intersecting edges, specifically Ba, Bb, Bc, Bx, By. In Figure 3.3(b),

polygon A0 is re-partitioned with the edges it intersects, namely B0, B1, and B2.

After re-partitioning, all intersecting edges from both layers are consolidated within

the same partition. The next step is to identify the polygons formed by these intersections.

Since there is no guarantee that only one polygon will be generated, we replace the polygon

concatenation method proposed in Section 2.5.1 with a polygonization procedure within

each partition. This polygonization process ensures that all possible new polygons are

generated.

55

P0 P1

P2 P3

P0 P1

P2 P3

(a) (b)

P0 P1

P2 P3

P0 P1

P2 P3

(c) (d)

Figure 3.2: An example of four leaf nodes in a quadtree constructed for input spatial line
segments. Solid lines represent the line segments, while dashed lines indicate the Minimum
Bounding Rectangles (MBRs) of the partitions. (a) shows the partitioned input spatial
lines. (b) shows the DCEL vertices and half-edges. (c) the resulting DCEL after dangle
and cut edge removal. Finally, (d) shows the final DCEL faces. (taken from [1]).

56

1 2

3 4

A1

A0 B0

B1

B2

(a)

A0

A0B0

A0B1

(b)

A01

A02

(c)

Figure 3.3: (a) Spatial partitioning of input layers A and B, (b) Re-Partitioning of polygon
A0 with edges it intersects with, and (c) the result of polygonization of A0 with B0, B1, B2.

The polygonization procedure follows the algorithm outlined in [1]. It begins by

generating new vertices and half-edges, marking the current dangle and cut edges, setting

the next pointers, and finally constructing the partition polygons. Figure 3.3(c) illustrates

the result of polygonizing the edges from polygonA0 and B0, B1, and B2, yielding two

polygons,A01 and A02. The polygons generated from all partitions together form the overlay

between polygon layer A and layer B.

3.3 Experimental Evaluation

3.3.1 Overlaying Polygons with Dangle and Cut Edges

In this section, we examine the performance of overlaying polygons with dangle

and cut edges resulting from the polygonization process, as detailed in 3.2.1. Table 3.1

presents the number of polygons per state for the first overlay layer, the number of dangle

57

Table 3.1: Overlaying Polygons with Dangle and Cut Edges Dataset

Dataset Number Layer A of Polygons Number of Layer B Edges Result Polygons

TN 1,272 3,380,780 41,761

GA 1,633 4,647,171 49,125

NC 1,272 7,212,604 22,413

TX 4,399 8,682,950 98,635

VA 1,554 8,977,361 38,941

CA 7,038 9,103,610 96,916

0

200

400

CA GA NC TN TX VA
State

T
im

e
[s

]

Figure 3.4: Overlaying State polygons with dangle and cut edges.

58

and cut edges per state for the second overlay layer, and the number of resulting polygons

per state.

From Figure 3.4shows that the running time is influenced by both the number of

dangle and cut edges and the number of intersections between the two layers (indicated by

the number of generated polygons). TN and GA have relatively fewer dangle and cut edges,

leading to lower execution times compared to VA, TX, and CA. However, because NC has

significantly fewer intersections than TN and GA, it exhibits the lowest execution time

overall. While TX, VA, and CA have a comparable number of edges, VA’s lower number of

intersections results in a shorter execution time compared to TX and CA.

59

Chapter 4

Scalable Processing of Moving

Flock Patterns

4.1 Introduction

Technological advances in the past few decades have triggered an explosion in the

collection of spatio-temporal data. The increasing popularity of GPS devices and smart-

phones, along with the emergence of new disciplines such as the Internet of Things (IoT)

and high-resolution Satellite/UAS imagery, has made it possible to collect vast amounts of

data with spatial and temporal components.

In tandem, interest in extracting valuable information from such large databases

has also grown. Spatio-temporal queries about popular places or frequent events remain

useful, but there has been growing interest in more complex patterns. In particular, patterns

that describe the group behavior of moving objects over significant periods. Moving cluster

60

[36], convoys [35], flocks [27] and swarm patterns [41] reveal how entities move together over

a minimum time interval.

Applications for this type of information are both diverse and intriguing, partic-

ularly when dealing with trajectory datasets [34, 32]. Case studies span various domains,

including transportation system management and urban planning [17], as well as ecology

[38]. For example, [55] explores the identification of complex motion patterns to discover

similarities in tropical cyclone paths. Similarly, [2] investigates eye movement trajectories

to understand the strategies people use during visual searches. Additionally, [30] tracks

the behavior of tiger sharks along the coasts of Hawaii to gain insight into their migration

patterns.

One particular pattern of interest is the moving flock pattern, which captures

how objects move within close proximity for a given time period. Closeness is defined by

a disk of a specified radius within which the entities must remain. Since this disk can

be positioned anywhere, detecting such patterns is a non-trivial problem. In fact, [27]

highlights that finding flock patterns where the same entities stay together over time is an

NP-hard problem. To address this, [57] proposed the BFE algorithm, the first approach

capable of detecting flock patterns in polynomial time.

Despite the increasing availability of data, current state-of-the-art techniques for

mining complex movement patterns still struggle with the performance demands of large-

scale spatial data. This work introduces a scalable approach designed to detect moving flock

patterns in very large trajectory databases. By leveraging emerging trends in distributed

61

frameworks for spatial operations we aim to significantly improve the speed and efficiency

of detecting these patterns.

4.2 Related work

The recent increased use of location-aware devices (such as GPS, smartphones, and

RFID tags) has enabled the collection of vast amounts of data with spatial and temporal

components. Several studies have focused on discovering and analyzing these types of

datasets [39, 44]. In this area, trajectory datasets have emerged as an interesting field where

diverse kind of patterns can be identified [62, 58]. For instance, researchers have proposed

techniques to discover spatial motion patterns such as moving clusters [36], convoys [35]

and flocks [6, 27]. Specifically, [57] introduced BFE (Basic Flock Evaluation), an innovative

algorithm designed to efficiently identify moving flock patterns in polynomial time across

large spatio-temporal datasets.

A flock pattern is defined as a group of entities that move together over a specified

time period [6]. The applications of such patterns are broad and diverse. For instance, [12]

identifies moving flock patterns in iceberg trajectories to analyze their movement behavior

and their relationship with changes in ocean currents.

The BFE algorithm provides an initial approach for detecting flock patterns. It

begins by identifying disks with a predefined diameter (ε) where moving entities are suffi-

ciently close at specific time instants. This operation is computationally expensive due to

the large number of points and time instances to be analyzed, with a complexity of O(2n2)

62

per time. Although the algorithm leverages a grid-based index and a stencil to accelerate

this process, the overall complexity remains high.

Both [12] and [55] adopt a frequent pattern mining approach to enhance perfor-

mance when combining disks across time instants. Similarly, [53] utilize plane sweeping

techniques, binary signatures, and inverted indexes to further accelerate this process. How-

ever, these methods retain the core strategy of BFE for detecting disks at each time instant.

In contrast, [3] and [26] employ depth-first algorithms to analyze the time intervals

of individual trajectories and report maximal duration flocks. However, these methods are

less effective for dense datasets or those that involve large numbers of entities per time step,

as they struggle to scale efficiently in such conditions.

Given the high computational demands of flock pattern detection, it is not sur-

prising that parallelism has been employed to improve performance. For example, [22] use

extreme and intersection sets to report maximal, longest, and largest flocks on GPUs, albeit

with limitations imposed by the GPU’s memory model.

Despite the increasing adoption of cluster computing frameworks, particularly

those with spatial data capabilities [18, 61, 33, 60], significant advancements in this area

remain limited. To the best of our knowledge, this work is the first to explore the detection

of moving flock patterns in a scalable approach.

63

4.3 Background

Before discussing the details of our contributions, we first provide an overview of

the current state-of-the-art. This will help highlighting their challenges and limitations in

handling large spatio-temporal datasets, as described in the next Section.

4.3.1 The BFE sequential algorithm

The alternative approach we will discuss closely follows the steps outlined in [57].

In that work, the authors introduced the Basic Flock Evaluation (BFE) algorithm, designed

to identify flock patterns in trajectory databases. While the full details of the algorithm can

be found in the source, we will provide a general overview of the key aspects. It is important

to note that the BFE algorithm operates in two phases: first, it identifies maximal disks

at the current time step; second, it extends and reports previous flocks by combining them

with the newly discovered disks.

The input for the BFE algorithm consists of a set of points, a minimum distance

ε (which defines the diameter of the disks where the moving entities must lie), a minimum

number of entities µ per disk, and a minimum duration δ, representing the required time

units that entities must remain together to be considered a flock. Based on this input,

Figure 4.1 illustrates the workflow of the process in four general steps. The primary goal

of this phase is to identify a set of disks at each time step, enabling the combination with

future disks to form flocks.

The main steps in phase 1 follow:

64

Find pairspoints, ε, µ

Compute centers

Find disks

Prune duplicate
and subset disks

maximal disks

• Query: points p1 ▷◁ε points p2
• Filter: p1.id < p2.id

• Query: points ▷◁ ε
2
centers

• Filter: disk.size ≥ µ

Figure 4.1: General steps in phase 1 of the sequential algorithm.

1. Pair finding: The algorithm uses the parameter ε to identify pairs of points that are

within a maximum distance of ε units from each other. This is achieved through a

distance self-join operation on the set of points, using ε as the distance threshold.

To avoid redundancy, duplicate pairs are eliminated; for example, the pair (p1, p2) is

considered identical to the pair (p2, p1), so only one instance is retained. Point IDs

are used to filter out these duplicates efficiently.

2. Center computation: From the set of pairs obtained, each pair is used to compute the

centers of two circles, each with a radius of ε
2 , whose circumferences pass through the

two points in the pair. The pseudo-code for this procedure is provided in Appendix

3.

65

3. Disk finding: Once the centers have been identified, a query is executed to gather

the points within a distance of ε units from each center. This is accomplished by

performing a distance join between the set of points and the set of centers, using ε
2

as the distance parameter. As a result, each disk is defined by its center and the IDs

of the surrounding points. At this stage, a filter is applied to discard any disks that

contain fewer than µ entities.

4. Disk pruning: It is possible for a disk to contain the same set, or a subset, of points as

another disk. In such cases, the algorithm reports only that one disk which contains

the other(s), referred to as the maximal disk. The procedure for identifying maximal

disks is explained in Appendix 4.

It is important to note that BFE also employs a grid structure in this phase to

optimize spatial operations. The algorithm divides the space into a grid, where each cell

has a side length of ε (see Figure 4.2 from [57]). This structure allows BFE to limit its

processing to each grid cell and its eight neighboring cells. There is no need to query cells

beyond this neighborhood, as points in more distant cells are too far away to influence the

results. Figure 4.3 shows an example of the Phase 1 steps using a sample dataset.

Figure 4.4 explains schematically phase 2. This phase performs a recursion using

the set of disks found at time i and the set of partial flocks computed at the previous time

instant i − 1. As we do not know where and how far a group of points can move in the

next time instant, this step performs a (temporal) join between both sets (partial flocks

computed at time i− 1 and maximal disks found in time i). When a join is performed, we

66

gx−2 gx−1 gx gx+1 gx+2

g y
−
2

g y
−
1

g y
g y

+
1

g y
+
2

p1

c1

c2ε

ε

ε

Figure 4.2: The grid-based structure proposed in [57].

Points

Finding pairs
Computing

centers
Finding disks Pruning disks

Points

Pairs Centers Disks

Figure 4.3: BFE Phase 1 example execution on a sample dataset.

67

Combine current disks
with previous flocks

Dt, Ft−1, µ, δ

Extend duration
of matched flocks

Flock
duration
equal
to δ?

Report flocks

Ft

• Query: disks Dt × flocks Ft−1

• Filter: Dt.items
⋂Ft−1.items ≥ µ

• See listing A.1

yes

no

Figure 4.4: Steps in BFE phase two. Combination, extension and reporting of flocks.

check that the number of common points remains greater than µ, in which case the partial

flock extends in time. A flock is reported in the answer if its duration has reached the

minimum duration δ; otherwise, it remains as partial flock and it will be further evaluated

during the next iteration at the next time instant.

Similarly, Figure 4.5 illustrates the recursive process and how the set of partial

flocks from previous time instants feeds into the next iteration. The example assumes a δ

value of 3, meaning flocks start being reported from time instant t2. Note that time instants

t0 and t1 are considered the initial conditions. At the start of the algorithm, maximal disks

are identified at t0, which are immediately transformed into partial flocks with a duration

of 1 and then passed on to the next time instant. At t1, a new set of maximal disks D1 is

68

F1

t0

a

b

c

t1

d

b

D2

t2

a

c

d

e

Joining
t0

a

b

c

t1

d

b

t2

a

c

d

e

Extending
t0

a

c

t1

d

t2

a

c

d

e

D3

t3

a

c

d

e

F2

t1

a

c

d

t2

eReporting:
a from t0 to t2
c from t0 to t2

· · ·

Figure 4.5: BFE Phase 2 example explaining the stages along time instants and the initial
conditions.

found and joined with the partial flocks from t0, denoted as F0. The information for each

partial flock is updated accordingly, including its duration and the points it contains. From

this point onward, subsequent time instants follow the exact steps outlined in Figure 4.4.

4.3.2 The PSI sequential algorithm

The PSI algorithm, proposed by [53], follows a similar process to the BFE algo-

rithm. However, instead of using a grid structure to index points within the area, PSI

employs a sweep-line approach that processes points in order of their x-coordinates. For

each visited point p, the algorithm considers a square of side length 2ε centered at p. It

69

ε

ε

Pr

Figure 4.6: An example of the two half squares used in PSI algorithm.

only examines the points to the right of p that lie within two half-squares of side length ε,

as illustrated by the shaded regions in Figure 4.6.

While BFE processes points inside a grid cell of side length ε along with its eight

neighboring cells, PSI focuses on the points in these two half-squares. As a result, PSI more

efficiently identifies the points relevant for detecting candidate pairs, centers, and disks.

This indexing method has been shown to outperform BFE in most cases, with BFE offering

similar or better performance only when ε values are relatively small. In such cases, the

number of points to consider is smaller, and PSI still requires sorting the points for the

sweep-line approach. Therefore, both approaches are considered in the following sections.

70

4.4 Bottlenecks in the sequential approach and proposed so-

lutions

Since both sequential approaches follow the same steps (as shown in Figures 4.1

and 4.4), we will focus on discussing their bottlenecks using the BFE as an example. Certain

stages in the BFE process are notably impacted when handling very large datasets, which

can significantly affect performance.

4.4.1 Phase 1: Spatial finding of maximal disks.

First, we focus on Phase 1. As illustrated in Figure 4.3, this phase’s steps are

demonstrated using a sample dataset. It is important to note that the final set of maximal

disks is significantly smaller than the initial number of candidate disks found. Specifically,

the number of candidate centers to evaluate is 2|τ |2, where τ represents the number of

trajectories [57]. Our experiments reveal that this issue becomes more pronounced not only

in very large datasets but also in those containing areas with a high density of moving

entities.

To address this issue, we propose a partition-based strategy that divides the study

area into smaller subareas, allowing for independent and parallel evaluation. The strategy

consists of three key steps: first, the partition and replication stage, followed by the local

flock discovery within each partition, and finally, the filtering stage, where we consolidate

and unify the results. Each of these steps is detailed below.

• Partition and Replication: Figure 4.7 provides a brief example of the partition and

replication stage. Different types of spatial indexes, such as grids, R-trees, or quadtrees,

71

can be used to create spatial partitions of the input dataset. In the example shown

in Figure 4.7.b, we use a quadtree, which generates seven partitions. To ensure each

partition can locally identify flocks, it must have access to all relevant data. This is

achieved by replicating points that are within a distance of ε from the border of each

partition, an area referred to as the expansion zone, into adjacent partitions. Figure

4.7.c illustrates each partition, surrounded by a dotted line representing the expansion

zone, which includes the points that need to be replicated from neighboring partitions.

• Local flock discovery: At this stage, each partition can be processed independently

and in parallel, with partitions assigned to different processing nodes. Within each

partition, we can execute the steps of Phase 1 of the BFE algorithm locally, as outlined

in Figure 4.1.

• Filtering: While partitioning and replication facilitate parallelism, they can also lead

to result duplication, as different nodes may report the same maximal disk. Specifi-

cally, if a disk’s center lies within a partition, it will be reported only once by the node

processing that partition. However, disks with centers located in an expansion zone

will be reported by all partitions that share that zone. To address this, we propose a

reporting approach that effectively prevents such duplication, which we detail below.

Disks with centers in an expansion zone are created by points that exist in both

partitions due to replication. We assert that each partition should only report disks gen-

erated within its own area and not those originating in its expansion zone. Figure 4.8

illustrates the possible scenarios. Assume partitions 1 and 2 in the figure are contiguous,

72

Input

(a)

Partitioning
1 2

3 4

5 6 7

(b)

Replication

1 2

3 4

5 6

7

(c)

Figure 4.7: An example of partitioning and replication on a sample dataset.

sharing edge AB. Consider the disks a′ and a′′ (each with a diameter of ε), which are gener-

ated by two points (shown in green) located in the expansion zone of partition 1 but inside

partition 2. In this case, both a′ and a′′ will be reported by partition 2. Similarly, both c′

and c′′ will be reported by partition 1. However, b′ will be reported by partition 1, while b′′

will be reported by partition 2.

4.4.2 Phase 2: Temporal join

At the end of Phase 1, we have computed a set of maximal disks for a given time

instant. In Phase 2, we proceed by combining these disks over time instants to form flocks.

However, since Phase 1 involved partitioning the spatial domain for parallelism, Phase

2 becomes more complex as flocks can move across spatial partitions over time. Once the

maximal disks are identified for a time instant i, a temporal join occurs within each partition

to link these disks with partial flocks from the previous time instant (i − 1). However, we

73

ε

A

B

A

B

1 2

a′ a′′ a′ a′′

b′′b′ b′′b′

c′′c′ c′′c′

ε

Figure 4.8: Ensuring no loss of data in safe zone and expansion area.

must account for partial flocks that may appear near the partition borders and potentially

move into adjacent partitions.

To address this issue, we introduce an additional parameter, maxdist, which repre-

sents the maximum distance a moving object can travel between consecutive time instants

(see Figure 4.9). We define the safe area of a partition as the internal region that is at least

maxdist away from the partition’s border (illustrated in grey in Figure 4.9). Any partial or

full flocks discovered within a partition’s safe area can be directly reported as results. How-

ever, flocks that start or end outside the safe area must be collected for post-processing to

determine if they correspond with partial flocks from neighboring partitions. These cases,

where flocks cross between partitions, are referred to as crossing partial flocks (CPFs).

In Figure 4.10 we can see an example of the possible cases. It shows flocks a and

d which happen inside of the safe area of the orange partition, both of them are ready to

74

maxdist

Figure 4.9: Examples of CPFs that that start or end in the border area of a partition.

be reported. However, flocks a and c travel along different partitions. Flock a starts in t0

in partition blue and move to partition orange in t2. It will create 2 CPFs: a′ from t0 to

t1 reported by the orange partition and a′′ from t2 to t4 reported by the blue partition.

Similarly, flock c starts in t0 in partition blue and move to partition orange in t2, then it

come back to partition blue in t3. It will create 3 CPFs: c′ from t0 to t1 reported by the

blue partition, c′′ in t2 reported by the orange partition, and c′′′ from t3 to t4 reported by

the blue partition.

In Figure 4.10, we observe an example illustrating the possible cases. The figure

shows flocks a and d, which occur within the safe area of the orange partition; both of these

flocks are ready to be reported. However, flocks a and c move across different partitions.

Flock a begins in partition blue at t0 and moves to partition orange at t2. This

movement results in two CPFs: a′, from t0 to t1, reported by the orange partition, and a′′,

from t2 to t4, reported by the blue partition.

75

Similarly, flock c starts in partition blue at t0, moves to partition orange at t2, and

returns to partition blue at t3. This creates three CPFs: c′, from t0 to t1, reported by the

blue partition; c′′, at t2, reported by the orange partition; and c′′′, from t3 to t4, reported

by the blue partition.

In the post-processing stage, we evaluate four alternatives for collecting and check-

ing crossing partial flocks (CPFs). The simplest approach is to gather all CPFs and process

them sequentially on a single node (the master node). However, due to the large number

of partitions and the maxdist parameter, the volume of CPFs requiring post-processing can

become substantial, leading to a bottleneck that negatively impacts overall performance.

We also evaluate an intermediate approach where the CPFs from a given partition

are sent to a middle-level node for processing, based on the quadtree structure used to create

the partitions. The choice of which middle-level node to send the CPFs to is determined

by a user-defined parameter called step. A value of step = 1 corresponds to sending CPFs

to the immediate parent, step = 2 to the grandparent, and so on, until the root is reached.

For example, with step=1, all CPFs from a partition are first sent to its parent node in the

quadtree. The parent node processes its CPFs, but some flocks may still cross outside the

parent’s safe area. These leftover CPFs are then passed to the next parent (since step = 1),

and this process continues until all CPFs are processed, potentially reaching the root node.

This approach allows for parallelism in post-processing, as moving to a parent node increases

the partition’s area and improves the likelihood that CPFs can be resolved at that level. In

the experimental section, we test different values of the step parameter, such as step = 2,

76

*a,b,c and d are flocks moving along time.

a
b

c

t0

t1 Width depends on
maxdist parame-
ter.

d

t2

t3

a

b

c

d

t4

Figure 4.10: CPFs cases moving along different partitions over time.

77

Dept
h = 5

Dept
h = 4

Dept
h = 3

Dept
h = 2

step = 3

Dept
h = 1

step = 2

Ro
ot

step = 1

Master

Figure 4.11: Master and By-Level alternatives. Different values of steps are illustrated for
the By-Level apprach,

where CPFs are sent to the grandparent at each stage. Figure 4.11 illustrates the Master

and By-Level alternatives.

Unlike the previous two approaches, which assign all CPFs from a given parti-

tion in the same way (partition-based), the third alternative assigns each CPF individually

(CPF-based). For a given CPF f , we extend its most recent disk by a ring with a size of

maxdist, identifying all overlapping partitions for this extended disk —essentially determin-

ing which neighboring partitions the objects in f could move to in the next time instant.

For each overlapping partition, we retrieve the Least Common Ancestor (LCA) between

that partition and f ’s original partition. CPF f is then sent to the node(s) corresponding

to these LCAs. The benefit of this approach is that the LCA can efficiently complete the

78

CP
Fs

Dept
h = 2

Dept
h = 1

Ro
ot

Figure 4.12: LCA alternative and how it resolves CPFs at the nearest shared ancestor of
the involved partial flocks.

processing for f , as it exploits proximity using mindist (see Figure 4.12). However, the

downside is the increased copying overhead, as f may need to be sent to multiple nodes.

A limitation of the previous alternatives is that each spatial partition is processed

by a single node, which incrementally evaluates all time instances for that partition. The

fourth alternative introduces fixed divisions in the temporal domain, based on a user-defined

parameter (number of divisions), as illustrated in Figure 4.13. In this approach, the spatio-

temporal space is divided into temporal ‘cubes,’ each of which can be processed by different

nodes. For simplicity, we assume that each division spans the same length of time. However,

an additional validation step is required to ensure continuity of flocks across temporal

divisions.

79

t0

*a,b,c and d are flocks moving along time.

t1
t2
t3

a

b

c

d

t4

t5
t6
t7
t8 ab

c

d

t9

t10
t11
t12
t13

a

b

c

dt14

Figure 4.13: An alternative division on the time dimension to partition the data into cubes.

80

Table 4.1: Description of datasets.

Dataset Number of Trajectories Total number of points Maximum Duration (min)

Berlin10K 10000 97526 10

LA25K 25000 1495637 30

LA50K 50000 2993517 60

4.5 Experimental Evaluation

4.5.1 Experimental Setup

For our experiments, we utilized a 12-node cluster, each running Linux (kernel

version 3.10) and Apache Spark 2.4. Each node was equipped with 8 cores, providing a

total of 96 cores across the cluster. Each core operated with an Intel Xeon CPU at 1.70

GHz, and each node had 4 GB of main memory.

To evaluate the different approaches, we generated three synthetic datasets with

varying characteristics, as detailed in Table 4.1. These datasets were created using the

SUMO simulator [37], by importing traffic networks of Berlin and Los Angeles from Open-

StreetMap [29]. We configured SUMO for pedestrian traffic and generated datasets of 10K,

25K, and 50K pedestrian trajectories. The total duration of the trajectories was set to

10, 30, and 60 minutes, respectively, with positions of pedestrians recorded at one-minute

intervals.

For the partitioning phase, we employed a quadtree structure, though other index-

ing methods could also be used. The advantage of using a quadtree is its ability to create

nodes that tend to have a similar number of objects. The input to this phase is a set of

81

points in the format (traj-id, x, y, t). To construct the quadtree, we begin by sampling 1%

of the input data and inserting this subset into an initially empty quadtree.

A key parameter for the quadtree is the node capacity, denoted as c. When the

number of points in a node exceeds this capacity, the node splits. After all the sampled

points are inserted, we use the Minimum Bounding Rectangles (MBRs) of the leaf nodes

as the partitions for our approach. The remaining points are then inserted into these fixed

partitions, with no further splits occurring. Each partition is assigned to a different cluster

node, where a sequential version of either BFE or PSI is executed locally on the points

within that partition.

4.5.2 Optimizing the number of partitions for Phase 1.

The capacity parameter c directly influences the number of partitions in the

quadtree. A smaller value of c results in a higher number of partitions, which leads to

many smaller tasks that can be distributed across the cluster. However, this can increase

the overhead associated with data transmission and, potentially, replication, which may

become a bottleneck. Conversely, a larger value of c reduces the number of partitions, re-

sulting in fewer but larger tasks. This increases the workload of the sequential algorithm

within each partition, potentially extending the response time for individual jobs.

Figure 4.14 presents the execution time (in seconds) for computing maximal disks

(Phase 1) at a specific time instant, using different values of c and ε. The experiments

were conducted using the LA25K dataset. For the case where ε = 20m, we observe that

there is an optimal value of c that minimizes the execution time for finding maximal disks,

which occurs at c = 100 (corresponding to approximately 1300 partitions). Additionally,

82

the optimal value of c varies based on the value of ε. For instance, with a smaller ε = 2m,

the execution time is minimized at a larger capacity c = 500 (around 250 partitions). When

ε is large, more pairs of points need to be processed, resulting in a higher number of maximal

disks to compute. In such cases, using a smaller value of c creates more partitions within

the same spatial area, thereby distributing the workload more evenly across partitions and

reducing the amount of work per partition.

After determining the optimal value of c for a given ε, we further analyzed the

behavior of BFE and PSI on the most ‘demanding’ partitions, those that required the longest

time to complete Phase 1. Since the partitions are processed in parallel across different

cores, these demanding partitions have the greatest impact on the overall performance. By

focusing on these partitions, we can better understand potential bottlenecks and further

optimize the system’s efficiency.

4.5.3 Analyzing most costly partitions.

We began by identifying the top 10 partitions that required the most time to

execute the BFE algorithm with ε = 20 meters. For these specific partitions, we ran both

BFE and PSI while varying ε from 10 to 20 meters. The Phase 1 execution times are shown

in Figure 4.15, where it is evident that PSI consistently outperformed BFE across all values

of ε.

We further investigated the reasons behind some partitions taking longer to com-

pute. Figure 4.16 shows the Phase 1 execution times per partition while varying ε from 10m

to 20m, with partitions ordered by the number of pairs they contain. One key observation

83

0

3

6

9

10 20 50 100 250 500 750
Capacity

T
im

e(
s)

Epsilon= 2

0

3

6

9

10 20 50 100 250 500 750
Capacity

T
im

e(
s)

Epsilon= 5

0

3

6

9

10 20 50 100 250 500 750
Capacity

T
im

e(
s)

Epsilon= 10

0.0

2.5

5.0

7.5

10.0

12.5

10 20 50 100 250 500 750
Capacity

T
im

e(
s)

Epsilon= 15

0

5

10

15

10 20 50 100 250 500 750
Capacity

T
im

e(
s)

Epsilon= 20

Figure 4.14: Execution time testing different values for Capacity (c) and Epsilon (ε).

84

part166 part173 part174 part178 part179 part182 part184 part187 part188 part191

10 12 14 16 18 20 10 12 14 16 18 20 10 12 14 16 18 20 10 12 14 16 18 20 10 12 14 16 18 20 10 12 14 16 18 20 10 12 14 16 18 20 10 12 14 16 18 20 10 12 14 16 18 20 10 12 14 16 18 20

0

2

4

6

ε(m)

T
im

e(
s)

Method BFE PSI

Figure 4.15: Comparing the performance of PSI and BFE for time consuming partitions.

85

16 18 20

10 12 14

0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

0

2

4

6

0

2

4

6

Pairs per partition

T
im

e(
s)

Method BFE PSI

Figure 4.16: Execution time for pairs/disks finding in the dense partition.

is that as ε increases, the number of pairs also increases, since a larger ε allows for more

maximal disks. For instance, with ε = 10m, the maximum number of pairs in a partition is

around 1800, whereas for ε = 20m, some partitions contain nearly 4000 pairs.

Another notable observation is that BFE is more sensitive to the density of pairs

within a partition than PSI, a difference that becomes more pronounced at higher values

of ε (e.g., 18m or 20m). As mentioned earlier, the flexible bounding boxes used by PSI

(illustrated in Figure 4.6) more effectively isolate the relevant points for computing pairs,

whereas BFE relies on a fixed grid cell, which makes it less efficient in denser partitions.

86

A final observation is that a few partitions take significantly more time than others,

particularly those with a higher density of pairs. This is directly related to the number of

maximal disks that need to be computed and subsequently pruned. For example, the

partition that takes the longest time when ε = 20m is the one with the highest number of

pairs, which corresponds to partition 187 in Figure 4.15.

We further analyzed how Phase 1 processing is distributed within the most de-

manding partition. Figure 4.17.a (for BFE) and Figure 4.17.b (for PSI) display the time

taken by each Phase 1 stage (refer to Figure 4.3) for partition 187. The most resource-

intensive stage in both cases is the final step of filtering the disks, where disks whose points

are contained within others are removed—this stage identifies the maximal disks (labeled

as ‘Maximals’ in the figure).

This stage is particularly costly because both BFE and PSI must scan a large set

of candidate disks, identifying and removing those that are redundant. As ε increases, this

processing becomes even more time-consuming, as the number of pairs and candidate disks

grows along with ε.

4.5.4 Can we reduce pruning time?

Dense areas pose challenges for pruning, as they are highly sensitive to increases

in the value of ε, leading to an exponential growth in the number of pairs. To address this,

we explored alternative strategies that could enable more effective grouping of points. It

is important to note that density-based spatial clustering methods, such as DBSCAN [19],

are not suitable for this problem. In very dense regions, these approaches often produce a

87

0

2

4

6

10 12 14 16 18 20

ε(m)

T
im

e(
s)

(a)

0.0

0.2

0.4

0.6

10 12 14 16 18 20

ε(m)

T
im

e(
s)

(b)

Stage Candidates Centers Maximals Pairs Total

Figure 4.17: Processing time for the stages of Phase 1, in (a) standard BFE and (b) standard
PSI.

single large cluster, which does not resolve the issue. Additionally, clustering algorithms do

not enforce the strict relationships required for a flock, where all points must be within a

distance of ε from each other.

Instead, we explored graph-oriented clustering, focusing on the concept of maximal

cliques. In an undirected graph, a maximal clique is a subset of vertices where each vertex is

directly connected to every other vertex in the subset. Additionally, the clique is maximal

in the sense that it cannot be extended by adding more vertices [54, 11].

In this context, the points within a partition can be treated as the vertices of an

undirected graph, where edges are created between pairs of points that are within a distance

of ε. By finding the set of maximal cliques in this graph, we identify subsets of points where

each point is connected to all others in the subset. This means that all points in the clique

88

are at most ε apart, and no additional points can be added to the subset. However, not

every maximal clique qualifies as a maximal disk. A maximal clique becomes a maximal

disk only if it contains at least µ points and can be enclosed by a disk with a radius of ε
2 .

To verify whether a maximal clique qualifies as a maximal disk, we introduce the

concept of the Minimum Bounding Circle (MBC) [59]. Given a set of points in Euclidean

space, the MBC is the smallest circle that can enclose all the points. For each maximal

clique identified within a partition, we can quickly check if all points in the clique fit within

an MBC with a diameter of ε. If they do, we can immediately report the set of points and

their MBC as a maximal disk. However, cliques that do not satisfy this condition must be

evaluated using the traditional method. This involves computing the potential disk centers,

identifying candidate disks, and pruning them, as outlined in Figure 4.1. Figure C in the

Appendix illustrates the steps described above. We have termed this approach as CMBC.

To evaluate CMBC and cliques that do not meet the above condition, we im-

plemented two variants. The first variant, termed COLLECT, gathers the points from all

cliques that are not reported as maximal disks, removes duplicates (since points may appear

in multiple cliques), and then applies the traditional pruning method to the entire set. In

the second variant, EACH, we apply the pruning procedure independently for each clique

that does not qualify as a maximal disk.

Figure 4.18 compares the performance of the two CMBC variants with the time

taken by PSI for the same stage. Interestingly, neither variant achieves a reduction in

execution time. Upon closer examination, it becomes evident that while identifying the

cliques and their MBCs is relatively fast, only a small fraction of the cliques qualify as

89

0.00

0.25

0.50

0.75

1.00

COLLECT EACH PSI
Variant

T
im

e(
s)

Stage

Collect

Each

MBC

Cliques

Maximals

Candidates

Centers

Pairs

Figure 4.18: Execution time of the two variants of CMBC approach compared to standard
PSI in the partition 187 (ε = 20m).

maximal disks. Consequently, the overhead associated with processing the remaining cliques

outweighs the benefits, making the original PSI approach more efficient.

We next increased the density of points within the same partition to determine

whether a higher number of cliques would qualify as maximal disks and thus affect the

performance. The number of points in the partition was incrementally increased from

500 (the initial number) to 1K, 2K, 4K, and 6K so as to test varying densities. For each

simulation, we recorded the execution time required to identify maximal disks, increasing the

value of ε from 10 to 20 meters. Additionally, we tracked the number of pairs generated for

each value of ε as a measure of candidate disk density. Figure 4.19 presents the performance

90

0.2

0.4

0.6

0.8

1.0

1263 1618 1953 2396 3119 3709
Number of pairs

T
im

e(
s)

(a) 500

0.4

0.8

1.2

1.6

1558 1949 2431 2922 3431 4017
Number of pairs

T
im

e(
s)

(b) 1K

5

10

15

7185 9016 11036 12979 14994 17356
Number of pairs

T
im

e(
s)

(c) 2K

10

20

30

40

50

60

14279 18104 21977 25859 29937 34701
Number of pairs

T
im

e(
s)

(d) 4K

50

100

150

25926 32580 39340 46385 54143 63001
Number of pairs

T
im

e(
s)

(e) 6K

Method CMBC PSI

Figure 4.19: Execution time of the CMBC approach compared to standard PSI for different
number of points and pair density.

91

0

5

10

15

COLLECT EACH PSI
Variant

T
im

e(
s)

Stage

Collect

Each

MBC

Cliques

Maximals

Candidates

Centers

Pairs

Figure 4.20: Execution time of the two variants of CMBC approach compared to standard
PSI in the partition 187 with ≈2K points present (ε = 20m).

of CMBC (using the COLLECT variant) compared to PSI as the number of points and pair

density increased.

We observed that the performance of the CMBC approach surpasses that of PSI

when the partition contains more than 2K points and the pair density increases. To further

investigate, we evaluated the behavior of both CMBC variants for a partition with 2K points,

as shown in Figure 4.20. The results demonstrate that the COLLECT variant outperforms

PSI in this scenario. The higher density led to a greater number of cliques being identified

early as maximal disks. This early identification significantly reduced the number of pairs

and candidates that needed evaluation through the traditional pruning approach, thereby

improving overall efficiency.

92

Table 4.2: Number of partitions by capacity and number of points in synthetic uniform
datasets.

25K 50K 75K 100K

c=100 544 1024 1024 2185

c=200 256 514 1024 1024

c=300 256 514 481 1024

4.5.5 Relative performance of BFE and PSI Phase 1 using synthetic

datasets.

To further examine the relative performance of the scalable BFE and PSI ap-

proaches for Phase 1, we also conducted experiments using a synthetic dataset where we

could control the values of c, ε, and point density. We used a fixed square area of 1000m x

1000m, within which we uniformly distributed 25K, 50K, 75K, and 100K points.

We experimented with different quadtree capacities (c values of 100, 200, and 300),

which resulted in varying numbers of partitions (as shown in Table 4.2). Both BFE and

PSI were tested for phase 1, where maximal disks are identified, using ε values ranging from

1m to 5m. The results are presented in Figure 4.21.

Overall, PSI demonstrated better performance than BFE, though there were cases

(particularly with smaller ε values) where BFE outperformed PSI. In these cases, the smaller

ε generates fewer pairs, and the additional ordering step required by PSI becomes an over-

head. However, in the subsequent experiments focusing on temporal joins (phase 2, flock

creation), we concentrate on the scalable performance of PSI.

93

25K 50K 75K 100K

c =
 100

c =
 200

c =
 300

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

ε(m)

T
im

e(
s)

Method

BFE

PSI

Figure 4.21: Performance in an uniform dataset analysing density and capacity with diverse
values for epsilon.

94

4.5.6 Evaluation of Phase 2: Temporal join.

Phase 2 focuses on joining maximal disks across time instants to form flocks. In

Section 4.4.2, we discussed four alternatives: Master, By-Level, LCA, and Cube-based. For

these experiments, we used the scalable PSI approach due to its robust performance. First,

we compared the Master and By-Level alternatives while varying ε from 20m to 40m using

the Berlin10K dataset (see Figure 4.22). For the By-Level approach, we tested different

step values ranging from 1 to 6. The Master approach proved to be the slowest, due to the

overhead of sending all CPFs to the root node. The performance of the By-Level approach

depends on the step size. A smaller step value (e.g., step 1) introduces overhead because

CPFs may need to be evaluated at more intermediate nodes before completion. On the

other hand, a larger step value reduces parallelism by sending more CPFs to intermediate

nodes. Based on these experiments, we determined that Step=3 offers the best balance.

We also evaluated the optimal value for the interval parameter in the Cube-based

approach. Using the LA25K dataset with ε = 30m, we tested various interval values,

ranging from 2 to 12 time instants. This dataset contains 30 time instants in total. The

results, shown in Figure 4.23, illustrate the trade-offs involved. Lower interval values result

in higher parallelism, as more cubes can be processed independently. However, this also

increases the number of cube crossings for CPFs that need to be checked, which adds to the

execution time. Conversely, larger interval values reduce parallelism but also decrease the

number of CPF crossings. Based on these findings, we selected interval = 6 as the optimal

value for the Cube-based approach.

95

0

25

50

75

100

20 30 40

ε(m)

T
im

e
(s

)
Master

By−Level
Step

1

2

3

4

5

6

Figure 4.22: Root and step alternative for temporal join using the Berlin dataset.

0

10

20

2 3 4 5 6 8 10 12
Interval

T
im

e
(s

)

Figure 4.23: Interval optimization for the Cube-based alternative for temporal join using
the LA25K dataset.

96

Finally, we compared the optimized versions of the By-Level and Cube-based ap-

proaches with the Master and LCA methods. Figure 4.24 shows the results, including the

sequential PSI algorithm as a reference. This experiment was conducted using the LA25K

dataset with ε values ranging from 5m to 30m. Clearly, all parallel approaches offer signif-

icant improvements over the sequential PSI.

To further analyze the relative performance of the scalable approaches, Figure 4.25

focuses on the parallel algorithms for the same experiment. Interestingly, for very small ε

values, the Master approach performs best —primarily because the limited number of flocks

makes sending the CPFs to a single node fast and efficient. However, as ε increases, the

Cube-based approach becomes the most effective, leveraging greater parallelism. By-Level

also improves over the Master approach as ε grows, as explained in Figure 4.22. Similarly, for

larger ε values, the LCA approach outperforms By-Level because it more quickly identifies

the node that can complete the CPF operations.

We repeated the same experiment with the LA50K dataset, varying ε from 4m

to 20m. The results, shown in Figure 4.26, once again demonstrate that the Cube-based

approach offers the best performance as ε increases.

97

0

250

500

750

1000

1250

5 10 15 20 25 30

ε(m)

T
im

e(
s)

Method

By−Level

Cube−based

LCA

Master

PSI

Figure 4.24: Performance comparing parallel and sequential alternatives in the LA25K
dataset.

0

10

20

30

40

50

5 10 15 20 25 30

ε(m)

T
im

e(
s)

Method

By−Level

Cube−based

LCA

Master

Figure 4.25: Performance of the 4 parallel alternatives in the LA25K dataset.

98

0

100

200

4 8 12 16 20

ε(m)

T
im

e(
s)

Method

By−Level

Cube−based

LCA

Master

Figure 4.26: Performance of the 4 parallel alternatives in the LA50K dataset.

99

Chapter 5

Conclusions

We introduced SDCEL, a scalable approach to compute the overlay operation

among two layers that represent polygons from a planar subdivision of a surface. Both

input layers use the DCEL edge-list data structure to store their polygons. We first consider

inputs with regular polygons. Existing sequential DCEL overlay implementations fail for

large datasets. We first presented two partition strategies that guarantee that each partition

collects the required data from each layer to work independently. We also proposed several

optimizations to improve performance. Our experimental evaluation using real datasets

shows that SDCEL has very good scale-up and speed-up performance and can compute

the overlay over very large layers (up to 37M edges) in a few seconds. We also considered

inputs with polygons that may contain scattered line segments also known as dangle and

cut edges. For this case we presented a scalable polygonization method.

We also presented a novel, scalable approach for discovering moving flock pat-

terns in large trajectory databases. By leveraging distributed frameworks, the proposed

100

method overcomes the limitations of sequential algorithms that struggle with large-scale

spatio-temporal datasets. Through partitioning and replication, as well as improvements in

pruning and temporal joins, this approach efficiently handles dense data, offering significant

performance improvements over traditional methods. The evaluation results demonstrate

the scalability and effectiveness of the approach, making it a valuable contribution for an-

alyzing complex movement patterns.

101

Appendix

A Center computation.

Algorithm 3 Find the centers of given radius which circumference laid on the two input
points.

Require: Radius ε
2 and points p1 and p2.

Ensure: Centers c1 and c2.
1: function FindCenters(p1, p2,

ε
2)

2: r2 ← (ε2)
2

3: X ← p1.x− p2.x
4: Y ← p1.y − p2.y
5: d2 ← X2 + Y 2

6: R←
√
|4× r2

d2
− 1|

7: c1.x← X + Y×R
2 + p2.x

8: c1.y ← Y − X×R
2 + p2.y

9: c2.x← X − Y×R
2 + p2.x

10: c2.y ← Y + X×R
2 + p2.y

11: return c1 and c2
12: end function

102

B Disk pruning.

Algorithm 4 Prune disks which are duplicate or subset of others.

Require: Set of disks D.
Ensure: Set of disks D′ without duplicate or subsets.
1: function PruneDisks(D)
2: E ← ∅
3: for all disk di in D do
4: N ← di ∩D
5: for all disk nj in N do
6: if di contains all the elements of nj then
7: E ← E ∪ nj

8: end if
9: end for

10: end for
11: D′ ← D \ E
12: return D′

13: end function

103

C Clique and MBC approach.

Compute
cliques

Points, ε, µ

Remove
cliques < µ

Filter by
MBC.r < ε

2

found
disks

Apply pruning
procedure
on cliques

not enclosed

Maximals disks

yes

no

add

Figure C.1: Schematic description of the Clique and MBC approach.

104

Bibliography

[1] Laila Abdelhafeez, Amr Magdy, and Vassilis Tsotras. DDCEL: Efficient Distributed
Doubly Connected Edge List for Large Spatial Networks. In 2023 24th IEEE Interna-
tional Conference on Mobile Data Management (MDM), pages 122–131, 2023.

[2] T. Amor, S. Reis, D. Campos, H. Herrmann, and J. Andrade. Persistence in Eye
Movement during Visual Search. Scientific Reports, 6:20815, 2016.

[3] H. Arimura, T. Takagi, X. Geng, and T. Uno. Finding All Maximal Duration Flock
Patterns in High-Dimensional Trajectories. 2014.

[4] G. Barequet. DCEL - A Polyhedral Database and Programming Environment. Ijcga,
08(05n06):619–636, 1998.

[5] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-Tree: An Efficient
and Robust Access Method for Points and Rectangles. In Acm Sigmod Pods, pages
322–331, New York, NY, USA, 1990. Association for Computing Machinery.

[6] M. Benkert, J. Gudmundsson, F. Hübner, and T. Wolle. Reporting Flock Patterns.
Computational Geometry, 41(3):111–125, 2008.

[7] E. Berberich, E. Fogel, D. Halperin, M. Kerber, and O. Setter. Arrangements on
Parametric Surfaces. Mathematics in Computer Science, 4(1):67–91, 2010.

[8] M. Berg, O. Cheong, M. Kreveld, and M. Overmars. Computational Geometry: Algo-
rithms and Applications. Springer, TU Eindhoven, P.O. Box 513, 2008.

[9] P. Boguslawski, C. Gold, and H. Ledoux. Modelling and analysing 3D buildings with
a primal/dual data structure. Isprs, 66(2):188–197, 2011.

[10] D. Boltcheva, J. Basselin, C. Poull, H. Barthélemy, and D. Sokolov. Topological-based
roof modeling from 3D point clouds. In Wscg, volume 28, pages 137–146, CZ 301 00
Plzen, 2020. Union Agency, Science Press.

[11] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph.
Communications of the ACM, 16(9):575–577, 1973.

105

[12] A. Calderon. Mining Moving Flock Patterns in Large Spatio-Temporal Datasets Using
a Frequent Pattern Mining Approach. Master’s thesis, University of Twente, 2011.

[13] Andres Calderon, Vassilis Tsotras, and Amr Magdy. Scalable Overlay Operations over
DCEL Polygon Layers. In Proceedings of the 18th International Symposium on Spatial
and Temporal Data, SSTD ’23, pages 85–95, New York, NY, USA, 2023. Association
for Computing Machinery.

[14] J. Challa, P. Goyal, S. Nikhil, A. Mangla, S. Balasubramaniam, and N. Goyal. DD-
Rtree: A dynamic distributed data structure for efficient data distribution among
cluster nodes for spatial data mining algorithms. In IEEE Big Data, pages 27–36, 222
Rosewood Drive, Danvers, MA 01923., 2016. Ieee.

[15] L. Chew and K. Kedem. A convex polygon among polygonal obstacles. Computational
Geometry, 3(2):59–89, 1993.

[16] V. Chvátal. A combinatorial theorem in plane geometry. Combinatorial Theory,
18(1):39–41, 1975.

[17] G. Di Lorenzo, M. Sbodio, F. Calabrese, M. Berlingerio, F. Pinelli, and R. Nair. Al-
lAboard: Visual Exploration of Cellphone Mobility Data to Optimise Public Transport.
Ieee Tvcg, 22(2):1036–1050, 2016.

[18] A. Eldawy. SpatialHadoop: Towards Flexible and Scalable Spatial Processing Using
Mapreduce. In SIGMOD PhD Symposium, pages 46–50, 2014.

[19] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Proceedings
of the Second International Conference on Knowledge Discovery and Data Mining,
KDD’96, page 226–231. AAAI Press, 1996.

[20] Raphael Finkel and Jon Bentley. Quadtrees: A Data Structure for Retrieval on Com-
posite Keys. Acta Inf., 4:1–9, March 1974.

[21] E. Fogel, D. Halperin, and R. Wein. CGAL Arrangements and Their Applications.
Springer Berlin, Heidelberg, 2012.

[22] M. Fort, J. Antoni, and N. Valladares. A Parallel GPU-Based Approach for Reporting
Flock Patterns. Ijgis, 28(9):1877–1903, 2014.

[23] W. Franklin, S. Magalhães, and M. Andrade. Data Structures for Parallel Spatial
Algorithms on Large Datasets. In ACM BigSpatial, pages 16–19, Seattle, WA, USA,
2018. Acm.

[24] W. Freiseisen. Colored DCEL for boolean operations in 2D, 1998.

[25] GADM maps and data. https://gadm.org/.

[26] X. Geng, T. Takagi, H. Arimura, and T. Uno. Enumeration of Complete Set of Flock
Patterns in Trajectories. In Iwgs, pages 53–61, 2014.

106

[27] J. Gudmundsson and M. van Kreveld. Computing Longest Duration Flocks in Trajec-
tory Data. In Acm Sigspatial, pages 35–42, 2006.

[28] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In Acm
Sigmod Icmd, pages 47–57, New York, NY, United States, 1984. Association for Com-
puting Machinery.

[29] Mordechai Haklay and Patrick Weber. Openstreetmap: User-generated street maps.
IEEE Pervasive computing, 7(4):12–18, 2008.

[30] K. Holland, B. Wetherbee, C. Lowe, and C. Meyer. Movements of Tiger Sharks (Ga-
leocerdo Cuvier) in Coastal Hawaiian Waters. Marine Biology, 134(4):665–673, 1999.

[31] R. Holmes. The DCEL Data Structure for 3D Graphics, 2021.

[32] P. Huang and B. Yuan. Mining Massive-Scale Spatiotemporal Trajectories in Parallel:
A Survey. In Takddm, volume 9441. Springer, 2015.

[33] J. Hughes, A. Annex, C. Eichelberger, A. Fox, A. Hulbert, and M. Ronquest. Ge-
omesa: a distributed architecture for spatio-temporal fusion. In Defense + Security
Symposium, 2015.

[34] H. Jeung, M. Yiu, and C. Jensen. Trajectory Pattern Mining. In Computing with
Spatial Trajectories, pages 143–177. Springer, 2011.

[35] H. Jeung, M. Yiu, X. Zhou, C. Jensen, and H. Shen. Discovery of Convoys in Trajectory
Databases. Vldb, 1(1):1068–1080, 2008.

[36] P. Kalnis, N. Mamoulis, and S. Bakiras. On Discovering Moving Clusters in Spatio-
Temporal Data. In Astd, pages 364–381. Springer, 2005.

[37] Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and Laura Bieker. Recent De-
velopment and Applications of SUMO - Simulation of Urban MObility. International
Journal On Advances in Systems and Measurements, 5(3&4):128–138, December 2012.

[38] F. La Sorte, D. Fink, W. Hochachka, and S. Kelling. Convergence of Broad-Scale Migra-
tion Strategies in Terrestrial Birds. Royal Society: Biological Sciences, 283(1823):2588,
2016.

[39] Y. Leung. Knowledge Discovery in Spatial Data. Springer, 2010.

[40] Y. Li, A. Eldawy, J. Xue, N. Knorozova, M. Mokbel, and R. Janardan. Scalable
computational geometry in Map-Reduce. VLDB, 28(1):523–548, 2019.

[41] Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal moving object
clusters. Vldb, 3(1-2):723–734, 2010.

[42] S. Magalhães, M. Andrade, W. Franklin, and W. Li. Fast exact parallel map overlay
using a two-level uniform grid. In ACM BigSpatial, pages 45–54, New York, NY, USA,
2015. Association for Computing Machinery.

107

[43] K. Mehlhorn and S. Näher. LEDA: a platform for combinatorial and geometric com-
puting. Communications of the ACM, 38(1):96–102, 1995.

[44] H. Miller and J. Han. Geographic Data Mining and Knowledge Discovery. Taylor &
Francis, Inc., 2001.

[45] D. Muller and F. Preparata. Finding the intersection of two convex polyhedra. Theo-
retical Computer Science, 7(2):217–236, 1978.

[46] J. Nievergelt, H. Hinterberger, and K. Sevcik. The Grid File: An Adaptable, Symmetric
Multikey File Structure. ACM Trans. Database Syst., 9(1):38–71, 1984.

[47] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, United
States, 1987.

[48] F. Preparata and M. Shamos. Computational Geometry: An Introduction. Springer,
New York, NY, 1985.

[49] S. Puri, D. Agarwal, X. He, and S. Prasad. MapReduce Algorithms for GIS Polygonal
Overlay Processing. In Ieee Ipdps, pages 1009–1016, Cambridge, MA, USA, 2013. Ieee.

[50] S. Puri and S. Prasad. Efficient Parallel and Distributed Algorithms for GIS Polygonal
Overlay Processing. In Ieee Ipdps, pages 2238–2241, Usa, 2013. IEEE Computer Society.

[51] I. Sabek and M. Mokbel. On Spatial Joins in MapReduce. In Acm Sigspatial, pages
1–10, New York, NY, USA, 2017. Association for Computing Machinery.

[52] H. Samet. The Design and Analysis of Spatial Data Structures. Wesley, 75 Arlington
Street, Suite 300 Boston, MA, United States, 1990.

[53] P. Tanaka, M.. Vieira, and D. Kaster. An Improved Base Algorithm for Online Dis-
covery of Flock Patterns in Trajectories. Jidm, 7(1), 2016.

[54] Etsuji Tomita, Yoichi Sutani, Takanori Higashi, and Mitsuo Wakatsuki. A Simple and
Faster Branch-and-Bound Algorithm for Finding a Maximum Clique with Computa-
tional Experiments. IEICE Transactions on Information and Systems, E96.D(6):1286–
1298, 2013.

[55] U. Turdukulov, A. Calderon, O. Huisman, and V. Retsios. Visual Mining of Moving
Flock Patterns in Large Spatio-Temporal Data Sets Using a Frequent Pattern Ap-
proach. Ijgis, 28(10):2013–2029, 2014.

[56] United States Census Data. https://www2.census.gov/geo/tiger/TIGER2010/TRACT/.

[57] M. Vieira, P. Bakalov, and V. Tsotras. On-Line Discovery of Flock Patterns in Spatio-
Temporal Data. In Acm Sigspatial, pages 286–295, 2009.

[58] M. Vieira and V. Tsotras. Spatio-Temporal Databases: Complex Motion Pattern
Queries. Springer, 2013.

108

[59] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In New Results and New
Trends in Computer Science, pages 359–370. Springer, 1991.

[60] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo. Simba: Efficient In-Memory Spatial
Analytics. In Icmd, pages 1071–1085, 2016.

[61] J. Yu, J. Wu, and M. Sarwat. A Demonstration of GeoSpark: A Cluster Computing
Framework for Processing Big Spatial Data. In Icde, pages 1410–1413, 2016.

[62] Y. Zheng and X. Zhou. Computing with Spatial Trajectories. Springer, 2011.

109

	List of Figures
	List of Tables
	Background & Motivation
	Background
	Motivation

	Scalable Overlay Operations over DCEL Polygon Layers
	Introduction
	Related Work
	Preliminaries
	Scalable Overlay Construction
	Partition Strategy
	Labeling Orphan Cells and Holes
	Answering global overlay queries

	Overlay evaluation optimizations
	Optimizations for faces spanning multiple cells
	Optimizing for unbalanced layers

	Experimental Evaluation
	Evaluation datasets
	Overlay face optimizations
	Unbalanced layers optimization
	Varying the number of cells
	Speed-up and Scale-up experiments
	Kd-tree versus quadtree performance

	Scaling DCEL Overlay Operations to Support Dangle and Cut Edges
	Introduction
	Scalable Partitioning with Dangle and Cut Edges
	Overlaying Polygons with Dangle and Cut Edges

	Experimental Evaluation
	Overlaying Polygons with Dangle and Cut Edges

	Scalable Processing of Moving Flock Patterns
	Introduction
	Related work
	Background
	The BFE sequential algorithm
	The PSI sequential algorithm

	Bottlenecks in the sequential approach and proposed solutions
	Phase 1: Spatial finding of maximal disks.
	Phase 2: Temporal join

	Experimental Evaluation
	Experimental Setup
	Optimizing the number of partitions for Phase 1.
	Analyzing most costly partitions.
	Can we reduce pruning time?
	Relative performance of BFE and PSI Phase 1 using synthetic datasets.
	Evaluation of Phase 2: Temporal join.

	Conclusions
	Appendix
	Center computation.
	Disk pruning.
	Clique and MBC approach.

	Bibliography

