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The goal of contact tracing is to reduce the likelihood of transmission, particularly to individuals who are at greatest risk for
developing complications of infection, as well as identifying individuals who are in need ofmedical treatment of other interventions.
In this paper, we develop a simplemathematical model of contact investigations among a small group of individuals and apply game
theory to explore conflicts of interest that may arise in the context of perceived costs of disclosure. Using analytic Kolmogorov
equations, we determine whether or not it is possible for individual incentives to drive noncooperation, even though cooperation
would yield a better group outcome.We found that if all individuals have a cost of disclosure, then the optimal individual decision is
to simply not disclose each other.With further analysis of (1) completely offsetting the costs of disclosure and (2) partially offsetting
the costs of disclosure, we found that all individuals disclose all contacts, resulting in a smaller basic reproductive number and an
alignment of individual and group optimality. More data are needed to understand decisionmaking during outbreak investigations
and what the real and perceived costs are.

1. Introduction

Contact investigation (contact tracing) is the identification of
individuals who have come into contact with an infectious
case and may be infected. The goals of contact tracing arise
to reduce the likelihood of transmission (particularly to
those individuals who are at greatest risk for developing
complications of infection) and to identify individuals who
are in need of medical treatment or other interventions
[1]. Contact tracing has been used in the control of many
diseases, including tuberculosis [2], smallpox [3], sexually
transmitted diseases [4–6], influenza A (H7N2) [7], and
severe acute respiratory syndrome (SARS) [8–12]. With the
recent emergence of avian influenza A (H7N9) virus in
humans in China [13, 14] and a novel coronavirus in the
United Kingdom in connection with travel to the Middle
East [15], contact tracing continues to play an important
role in epidemiological investigations of emerging infectious

diseases. As a result, contact tracing is a core component of
epidemiological investigations, one of fifteen public health
emergency preparedness and response capabilities of health
departments (Capability 13: Public Health Surveillance and
Epidemiological Investigation) [16].

Mathematical models have been used previously to eval-
uate the impact of contact investigations on the spread of
infectious disease generally [17–25]. Others have focused
on specific diseases including SARS [12], tuberculosis [26,
27], influenza [28], measles [29, 30], HIV [31, 32], gonor-
rhea [17, 33–36], chlamydia [36], and smallpox [21, 37–41].
The effectiveness, however, of contact tracing depends on
the completeness of cooperation with contact elicitation. A
previous qualitative study showed that miscommunication,
misconceptions, and lack of trust in contact investigation
staff can hinder the success of contact disclosure despite
an individual’s willingness to identify contacts [42]. In
addition, individuals involved in illegal and/or illicit social
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connections, including drug use [43], gambling [44], and
extramarital affairs [45], may fear loss of anonymity andmay,
for this reason, fail to cooperate in naming contacts.

Individuals face costs—real or perceived—of contact
disclosure. Real costs include time spent in interviews and in
the effort spent recalling contacts. While contact investiga-
tions are and must be conducted in a manner that protects
confidentiality, interviewees may perceive disclosure as a
privacy risk, which may create a perceived cost. While the
perceived and real costs of disclosure and their impacts
on early contact investigation have been documented, the
effects have not been explored thoroughly. If the disclosure
of contacts provides a public benefit for disease control,
but individuals perceive a cost for disclosing contacts, then
there may be a conflict between real or perceived individual
interests and the public good.

Mathematical models of contact tracing and ring
vaccination—which requires contact tracing—have explored
the effect of success rates of contact tracing that are less than
unity and thus incorporate less than complete cooperation
with contact elicitation [12, 20, 21, 40]. They have not,
however, explored strategic nondisclosure of contacts or the
role of perceived costs in that strategic behavior. Game theory
has been used in other investigations of disease transmission
[46–52], especially for vaccines [49, 53–58], treatment
decisions [59], and the use of social distancing during an
epidemic [60]. The impact of strategic behavior has been
explored in the context of ring vaccination, which requires
contact investigation [61–63]. These analyses, however,
examine vaccination choice and do not explore disclosure
choice. In this paper, we develop a simple mathematical
model of contact investigations among a small group of
individuals and apply game theory to explore conflicts of
interest that may arise in the context of perceived costs of
disclosure. We determine whether or not it is possible for
individual incentives to fa-vor noncooperation, even though
cooperation would yield a better group outcome.

2. Methods

2.1. Overview. Our analysis is based on a stochastic,
continuous-time process taking place in a small social group;
we formulate the model in general terms and restrict our
analysis to a group of size 3. Such a model of a small group
may, for instance, describe small groups within a model
featuring more transmission between members of the same
group, but allowing between-group transmission for any two
individuals in the population [64, 65]. We will use this model
to derive the expected reduction in infection risk for an
individual and expected costs.

2.2. Transmission Model in the Absence of Contact Investiga-
tion. We assume a standard SEIR model for the untreated
natural history of the disease [66]. The specific disease is
left unspecified for this paper. In particular, we assume that
infected individuals are latently infected for a period prior to
the onset of symptoms and, for simplicity, that only symp-
tomatic individuals are infectious. Infectious individuals are

then assumed to recover with full immunity. Susceptible
individuals become newly infected at a rate which depends
on the number of infected individuals with whom they come
into contact.

Infectious individuals are always assumed to be diag-
nosed and isolated or treated, and we assume that such
individuals are no longer causing new infections in the
population. Such individuals may be undergoing treatment
which reduces or eliminates infectivity or may be isolating
themselves from others during the time of infectiousness.
In the absence of contact investigation, the process may be
described by the following states: 𝑆 (susceptible), 𝐸 (exposed
or latent), 𝐼 (untreated, infectious), and 𝑅 (removed).
Exposed individuals in state 𝐸 progress to infectiousness 𝐼
at rate 𝛾 and infectious cases 𝐼 are diagnosed and removed
at rate 𝜌 due to symptoms. Individuals in the small group
experience a force of infection from both within and from
outside the group, though we will ignore infection from
outside the group. The force of infection from within the
group will be given by 𝜆(𝑡) = 𝛽𝑌(𝑡)/(𝑁 − 1), where 𝑌 is
the number of infectives in the group. Our analysis concerns
transmission events following the introduction of a single
case in a small group (of size 3). Similar models have been
analyzed by many other authors.

The following equations describe a single group in the
absence of contact investigation. Let 𝑋

𝑖
be the state of

individual 𝑖 in the small group (here,𝑋
𝑖
must be either 𝑆,𝐸, 𝐼,

or𝑅).Then let 𝑞
𝑋
1
,𝑋
2
,𝑋
3
,...,𝑋
𝑁

be the probability that individual
1 is in state 𝑋

1
, individual 2 is in state 𝑋

2
, and so on; for

example, for the case 𝑁 = 3, 𝑞
𝐼,𝑆,𝑆

is the probability that
person 1 is infectious, and persons 2 and 3 are susceptible.
We assume that the transition rates for all the individuals in
the population are conditionally independent of each other
given the current state, so that the total rate of departure
from the current state is the sum of the rates with which each
individual leaves the current state he or she is in.

For the case 𝑁 = 3, in the absence of contact investiga-
tion, we have 43 = 64 possible states for the small group. Since
we are ignoring exogenous transmission, (𝑑/𝑑𝑡)𝑞

𝑆,𝑆,𝑆
= 0.

Because each individual exposed person progresses with rate
𝛾,

𝑑

𝑑𝑡
𝑞
𝐸,𝑆,𝑆
= −𝛾𝑞

𝐸,𝑆,𝑆
(1)

(with a similar equation for 𝑞
𝑆,𝐸,𝑆

and for 𝑞
𝑆,𝑆,𝐸

).
We denote the transmission coefficient by 𝛽, so that we

have

𝑑

𝑑𝑡
𝑞
𝐼,𝑆,𝑆
= 𝛾𝑞
𝐸,𝑆,𝑆
− 𝜌𝑞
𝐼,𝑆,𝑆
− 2
𝛽

2
𝑞
𝐼,𝑆,𝑆
, (2)

since (1) we have assumed that the recovery time for the
infective (an exponential with rate 𝜌) and the infection times
for each susceptible are independent and that (2) the force of
infection for each susceptible individualsis given by 𝛽 times
the prevalence in the rest of the population (the number of
the infective divided by the population size minus 1).

The full set of equations for a single small group can be
written in a more compact form. Let 1

𝑋
𝑖
=𝑆

be the indicator
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function for the event that person 𝑖 is in state 𝑆 and so forth.
For the𝑁 = 3 case, we let 𝑋

1
, 𝑋
2
, and 𝑋

3
represent the state

of person 1, 2, and 3, respectively. For all states 𝑋
1
, 𝑋
2
, and

𝑋
3
,

𝑑

𝑑𝑡
𝑞
𝑋
1
,𝑋
2
,𝑋
3

= 𝛾 (1
𝑋
1
=𝐼
− 1
𝑋
1
=𝐸
) 𝑞
𝐸,𝑋
2
,𝑋
3

+ 𝛾 (1
𝑋
2
=𝐼
− 1
𝑋
2
=𝐸
) 𝑞
𝑋
1
,𝐸,𝑋
3

+ 𝛾 (1
𝑋
3
=𝐼
− 1
𝑋
3
=𝐸
) 𝑞
𝑋
1
,𝑋
2
,𝐸

+ 𝜌 (1
𝑋
1
=𝑅
− 1
𝑋
1
=𝐼
) 𝑞
𝐼,𝑋
2
,𝑋
3

+ 𝜌 (1
𝑋
2
=𝑅
− 1
𝑋
2
=𝐼
) 𝑞
𝑋
1
,𝐼,𝑋
3

+ 𝜌 (1
𝑋
3
=𝑅
− 1
𝑋
3
=𝐼
) 𝑞
𝑋
1
,𝑋
2
,𝐼

+ 𝜆 (𝑋
1
, 𝑋
2
, 𝑋
3
) (1
𝑋
1
=𝐸
− 1
𝑋
1
=𝑆
) 𝑞
𝑆,𝑋
2
,𝑋
3

+ 𝜆 (𝑋
1
, 𝑋
2
, 𝑋
3
) (1
𝑋
2
=𝐸
− 1
𝑋
2
=𝑆
) 𝑞
𝑋
1
,𝑆,𝑋
3

+ 𝜆 (𝑋
1
, 𝑋
2
, 𝑋
3
) (1
𝑋
3
=𝐸
− 1
𝑋
3
=𝑆
) 𝑞
𝑋
1
,𝑋
2
,𝑆
,

(3)

where 𝜆(𝑋
1
, 𝑋
2
, 𝑋
3
) = 𝛽∑

3

𝑖=1
1
𝑋
𝑖
=𝐼
/(𝑁 − 1). Extension to

larger sizes𝑁 for the small groups is straightforward.

2.3. Contact Investigation Model in the Absence of Infection.
Before extending the simple model (3) to include contact
investigation, we introduce the contact investigation process
model that would occur in the absence of anyone being
infected (as might occur, for instance, in an investigation of
a suspected case subsequently determined not to be truly
infected).

Here, all individuals are susceptible, but we assume that
individuals are either unknown to the investigation (𝑆) or
known (𝑆󸀠). In the absence of infection, individuals become
newly known when and only when they are disclosed by
other known individuals. Once an individual is known to
the investigation, he or she remains known throughout
the investigation. In effect, we assume contact investigation
behaves like simple SI epidemic itself.

For disease transmission, we assume that disease may
be transmitted between any two people. For contact inves-
tigation, we do not assume that every person is willing to
disclose any other person; any identified person will be asked
to name all contacts but may choose not to do so. Let 𝛿

𝑖𝑗
be a

binary variable indicating whether person 𝑖 would disclose 𝑗
if investigated. It is possible that 𝛿

𝑖𝑗
̸= 𝛿
𝑗𝑖
; for instance, person

𝑖 is willing to disclose person 𝑗, but person 𝑗 is not willing
to disclose person 𝑖. We assume that the disclosure variables
𝛿
𝑖𝑗
are constant in time and do not depend on the state of

the system; whether person 𝑖 is willing to disclose person 𝑗
does not depend on whether or not person 𝑗 has disclosed
person 𝑖, would be willing to disclose person 𝑖, or has already
disclosed person 𝑖. While no individual is epidemiologically
isolated, it is possible that there is an individual whom no one

would disclose; such a person could only become known to
investigators if he or she were diagnosed first.

We model the rate at which persons unknown to the
investigation become newly known as follows. Suppose that
person 𝑖 is known to the investigation, but person 𝑗 is
not. Then if person 𝑖 is willing to disclose person 𝑗, then
we assume that the waiting time for person 𝑗 to become
known is exponentially distributed with rate 𝜉 as a result,
independent of whether person 𝑖 is willing to disclose any
other individuals. For mathematical simplicity, we assume
that the rate at which any unknown individual becomes
known is the sum of the rates corresponding to each contact
who is disclosing him or her; we denote the total rate of
investigation for person 𝑖 by 𝜂

𝑖
. No specific order is assumed

for the investigations to take place.
In this setting of a small group of three people without

any infection, 𝑞
𝑆,𝑆,𝑆

denotes the probability that no individual
has been contacted by disease control investigators, that is,
that no individual is known to the investigation. Beginning
with individuals who are known to the investigation at the
beginning (𝑡 = 0), new individuals become known when
they are disclosed by people already known, and so if no
one is assumed known at the beginning, no one will ever
become known. Moreover, since we assume that once a
person is known to the investigation, he or she remains
known; (𝑑/𝑑𝑡)𝑞

𝑆,𝑆,𝑆
= 0. Continuing, 𝑞

𝑆
󸀠
,𝑆,𝑆

is the probability
that person 1 is knownbut that persons 2 and 3 are not known.
Since the rate at which one person will become known as the
result of being disclosed by a single other individual is 𝜉, the
rate at which person 2 will be disclosed is 𝜉𝛿

12
. We assume an

independent and identical rate for the identification of person
3 as a result of person 1. We can then write

𝑑

𝑑𝑡
𝑞
𝑆
󸀠
,𝑆,𝑆
= −𝑞
𝑆
󸀠
,𝑆,𝑆
(𝜉𝛿
12
+ 𝜉𝛿
13
) , (4)

𝑑

𝑑𝑡
𝑞
𝑆
󸀠
,𝑆
󸀠
,𝑆
= 𝑞
𝑆
󸀠
,𝑆,𝑆
𝜉𝛿
12
+ 𝑞
𝑆,𝑆
󸀠
,𝑆
𝜉𝛿
21
− 𝑞
𝑆
󸀠
,𝑆
󸀠
,𝑆
𝜉 (𝛿
13
+ 𝛿
23
) ,

𝑑

𝑑𝑡
𝑞
𝑆
󸀠
,𝑆
󸀠
,𝑆
󸀠 = 𝜉 (𝑞

𝑆
󸀠
,𝑆
󸀠
,𝑆
(𝛿
13
+ 𝛿
23
) + 𝑞
𝑆
󸀠
,𝑆,𝑆
󸀠 (𝛿
12
+ 𝛿
32
)

+ 𝑞
𝑆,𝑆
󸀠
,𝑆
󸀠 (𝛿
21
+ 𝛿
31
))

(5)

with similar equations for (𝑑/𝑑𝑡)𝑞
𝑆,𝑆
󸀠
,𝑆
, (𝑑/𝑑𝑡)𝑞

𝑆,𝑆,𝑆
󸀠 ,

(𝑑/𝑑𝑡)𝑞
𝑆
󸀠
,𝑆,𝑆
󸀠 , and (𝑑/𝑑𝑡)𝑞

𝑆,𝑆
󸀠
,𝑆
󸀠 .

2.4. Disease Transmission and Contact Investigation. We will
add the contact investigation model from the previous sub-
section to the simple SEIR transmission model. One way
for individuals to become known to the investigation is to
be disclosed by another known individual who is willing
to disclose him or her, as in the previous subsection. We
now assume, additionally, that reporting insures that all
diagnosed individuals are known to the investigation, and we
ignore reporting delays. Newly diagnosed individuals are the
only way that a contact investigation can become initiated;
the first diagnosed individual inaugurates the first contact
investigation, regardless of whether any other individuals
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have been infected or diagnosed and regardless of whether
or not the first diagnosed individual was the first infectious
case. (We do not assume that any individuals are known to
the investigation at the outset (𝑡 = 0).)

When an individual is investigated, several events occur
in addition to begin queried about his or her contacts
(who will then be investigated at rate 𝜉 if disclosed), as
in Section 2.3. First, if an individual is investigated and is
infective (𝐼), he or she is immediately diagnosed. Thus, the
mean time to diagnosis can be shorter for an infective if she
or he has contacts that disclose her or him.

When a susceptible individual is investigated, he or
she may take protective measures to reduce the chance of
infection. Also, when an exposed individual is contacted,
he or she may receive postexposure protective measures.
Such measures may include vaccination (as in the case of
measles or smallpox) or the provision of immunoglobulin
(as in the case of measles, for instance). Thus, susceptible
individuals who are known to the investigation are assumed
to have a smaller risk of infection, and both susceptible and
exposed individuals known to the investigation have a rate
of vaccination or other protective actions which may prevent
them from becoming cases. For an individual in state 𝑆󸀠,
we assume that the efficacy of personal protective measures
in reducing the risk of infection is denoted 1 − 𝜁, so that
if 𝜁 = 0, the person has no risk at all, and if 𝜁 = 1,
the protective measures are completely without effect. The
force of infection experienced by a person in state 𝑆󸀠 is
then given by 𝜁𝜆(𝑋

1
, 𝑋
2
, 𝑋
3
). Individuals in states 𝑆󸀠 receive

postexposure prophylaxis or vaccination at rate 𝜔, and can
thus be protected from disease, entering state 𝑉.

Finally, we assume that any exposed person (state 𝐸󸀠)
contacted during an investigation is assumed to have been
made aware that he or she may have been exposed. Such
individuals are vaccinated at rate 𝜔, just as susceptible
individuals are, and, moreover, such individuals are assumed
to be diagnosed and removed immediately if they develop
symptoms (and are therefore never infectious to others).
Thus, in our simple idealization of contact investigation,
we assume that contact investigations help control disease
by (1) preventing transmission from infections that occur
in contacted individuals prior to symptoms due to rapid
diagnosis and voluntary isolation, (2) permitting the use
of postexposure protective measures for exposed persons,
and (3) allowing uninfected susceptible individuals to take
protective measures. An individual who is never infected and
never disclosed will never become known to an investigation.
Finally, we assume no further attrition; all named contacts
will eventually be identified.

The state space of the model now may be written (see
Figure 1) as follows:

𝑆—susceptible, never contacted by disease control
investigators,

𝐸—exposed, never contacted by disease control
investigators,

𝐼—infectious, never contacted by disease control
investigators,

𝜆 𝛾

𝛾

𝜂
i

𝜂
i

𝜌 + 𝜂
i

𝜔
𝜔

𝜁𝜆

S E I

R

V

S
󳰀

E
󳰀

Figure 1: State space for a single individual, according to (6). Each
possible state is represented with a circle, labeled with the state (𝑆—
susceptible,𝐸—exposed, 𝐼—infectious,𝑅—diagnosed and visited by
a disease control investigator, 𝑆󸀠—susceptible but has been visited
by a disease control investigator, 𝐸󸀠—exposed, but has been visited
by a disease control investigator, 𝑉—exposed, but protected by
postexposure prophylaxis). Possible transitions are indicated with
arrows and informally labeled with expressions used to compute
the rate; see (6) for details. We denote the total force of infection
for each individual by 𝜆, which depends on the number of other
infected individuals; we denote the total rate of investigation for
a given individual by 𝜂

𝑖
, which depends on the number of other

investigated individuals willing to disclose that individual.

𝑆
󸀠—susceptible that has been contacted by disease
control investigators,
𝐸
󸀠—exposed, and has been contacted by disease

control investigators,
𝑅—diagnosed and removed, and has been contacted
by disease control investigators (by assumption),
𝑉—exposed but removed; disease prevented due to
post-exposure prophylaxis or vaccination.

Specifically, an individual in state 𝑆 (susceptible, never
investigated) may move to state 𝑆󸀠 (susceptible, investigated);
the rate at which this occurs depends on which contacts
have been investigated and whether the contacts choose to
disclose. Suppose that person 1 is in state 𝑆 (and thus has not
been investigated). If person 2 is in state 𝑆󸀠, 𝐸󸀠, 𝑅, or 𝑉, then
person 2 has been visited by disease control investigators and
has had an opportunity to disclose person 1 (as well as person
3) to the investigators. Similarly, if person 3 is in one of 𝑆󸀠, 𝐸󸀠,
𝑅, or 𝑉, he or she too has an opportunity to disclose person 1
(as well as person 2). The total rate at which person 1 will be
visited is then 𝜂

1
= 𝛿
21
1
𝑋
2
∈{𝑆
󸀠
,𝐸
󸀠
,𝑅,𝑉}
+ 𝛿
31
1
𝑋
3
∈{𝑆
󸀠
,𝐸
󸀠
,𝑅,𝑉}

. When
a person in state 𝑆 is visited, he or she moves to the state 𝑆󸀠;
when a person in state 𝐸 is visited, he or she moves to 𝐸󸀠, and
when an infective, in state 𝐼, is visited, he or she is diagnosed
and enters state 𝑅.

For the case 𝑁 = 3, we may write the equations
in the same compact form as above. The equation below
(representing all 73 = 343 states of the process) includes
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terms featuring 𝛾 for individuals progressing from latency,
terms featuring 𝜌 for removal of the infective, terms featuring
𝜆(𝑋
1
, 𝑋
2
, 𝑋
3
) for disease transmission within the cluster,

terms featuring 𝜔 for postexposure preventive measures, and
terms featuring 𝛿

𝑖𝑗
for disclosure of contacts.

We write for all states 𝑋
1
, 𝑋
2
, and 𝑋

3
(where 𝑋

𝑖
∈

{𝑆, 𝐸, 𝐼, 𝑆
󸀠
, 𝐸
󸀠
, 𝑅, 𝑉}),

𝑑

𝑑𝑡
𝑞
𝑋
1
,𝑋
2
,𝑋
3

= 𝑞
󸀠

𝐵
+ 𝑞
󸀠

𝐴
+ 𝑞
󸀠

𝑅
+ 𝑞
󸀠

𝐼
+ 𝑞
󸀠

𝑉
+ 𝑞
󸀠

𝐶,1
+ 𝑞
󸀠

𝐶,2
+ 𝑞
󸀠

𝐶,3
,

(6)

where 𝑞󸀠
𝐵
are terms for disease progression before a person

is ever contacted in an investigation, 𝑞󸀠
𝐴
are terms for disease

progression after a person has been contacted, 𝑞󸀠
𝑅
are terms

for removal by diagnosis unrelated to contact investigation, 𝑞󸀠
𝐼

are terms for infection, 𝑞󸀠
𝑉
are terms for vaccination, and 𝑞󸀠

𝐶,𝑖

(𝑖 = 1, 2, 3) are terms for disclosure and contact investigation.
This, like the previous set, may be straightforwardly extended
to larger group sizes.

Here, for𝑁 = 3,

𝑞
󸀠

𝐵
= 𝛾 (1

𝑋
1
=𝐼
− 1
𝑋
1
=𝐸
) 𝑞
𝐸,𝑋
2
,𝑋
3

+ 𝛾 (1
𝑋
2
=𝐼
− 1
𝑋
2
=𝐸
) 𝑞
𝑋
1
,𝐸,𝑋
3

+ 𝛾 (1
𝑋
3
=𝐼
− 1
𝑋
3
=𝐸
) 𝑞
𝑋
1
,𝑋
2
,𝐸
,

𝑞
󸀠

𝐴
= 𝛾 (1

𝑋
1
=𝑅
− 1
𝑋
1
=𝐸
󸀠) 𝑞
𝐸
󸀠
,𝑋
2
,𝑋
3

+ 𝛾 (1
𝑋
2
=𝑅
− 1
𝑋
2
=𝐸
󸀠) 𝑞
𝑋
1
,𝐸
󸀠
,𝑋
3

+ 𝛾 (1
𝑋
3
=𝑅
− 1
𝑋
3
=𝐸
󸀠) 𝑞
𝑋
1
,𝑋
2
,𝐸
󸀠 ,

𝑞
󸀠

𝑅
= 𝜌 (1

𝑋
1
=𝑅
− 1
𝑋
1
=𝐼
) 𝑞
𝐼,𝑋
2
,𝑋
3

+ 𝜌 (1
𝑋
2
=𝑅
− 1
𝑋
2
=𝐼
) 𝑞
𝑋
1
,𝐼,𝑋
3

+ 𝜌 (1
𝑋
3
=𝑅
− 1
𝑋
3
=𝐼
) 𝑞
𝑋
1
,𝑋
2
,𝐼
.

(7)

Individuals in 𝑆 and 𝑆󸀠 can both be infected, so that the
infection component has six terms:

𝑞
󸀠

𝐼
= 𝜆 (𝑋

1
, 𝑋
2
, 𝑋
3
) (1
𝑋
1
=𝐸
− 1
𝑋
1
=𝑆
) 𝑞
𝑆,𝑋
2
,𝑋
3

+ 𝜆 (𝑋
1
, 𝑋
2
, 𝑋
3
) (1
𝑋
2
=𝐸
− 1
𝑋
2
=𝑆
) 𝑞
𝑋
1
,𝑆,𝑋
3

+ 𝜆 (𝑋
1
, 𝑋
2
, 𝑋
3
) (1
𝑋
3
=𝐸
− 1
𝑋
3
=𝑆
) 𝑞
𝑋
1
,𝑋
2
,𝑆

+ 𝜁𝜆 (𝑋
1
, 𝑋
2
, 𝑋
3
) (1
𝑋
1
=𝐸
󸀠 − 1
𝑋
1
=𝑆
󸀠) 𝑞
𝑆
󸀠
,𝑋
2
,𝑋
3

+ 𝜁𝜆 (𝑋
1
, 𝑋
2
, 𝑋
3
) (1
𝑋
2
=𝐸
󸀠 − 1
𝑋
2
=𝑆
󸀠) 𝑞
𝑋
1
,𝑆
󸀠
,𝑋
3

+ 𝜁𝜆 (𝑋
1
, 𝑋
2
, 𝑋
3
) (1
𝑋
3
=𝐸
󸀠 − 1
𝑋
3
=𝑆
󸀠) 𝑞
𝑋
1
,𝑋
2
,𝑆
󸀠 ,

(8)

𝜆(𝑋
1
, 𝑋
2
, 𝑋
3
) = 𝛽∑

3

𝑖=1
1
𝑋
𝑖
=𝐼
/(𝑁 − 1).

Individuals in both 𝑆󸀠 and 𝐸󸀠 can be protected by
vaccination:

𝑞
󸀠

𝑉
= 𝜔 (1

𝑋
1
=𝑉
− 1
𝑋
1
=𝑆
󸀠) 𝑞
𝑆
󸀠
,𝑋
2
,𝑋
3

+ 𝜔 (1
𝑋
2
=𝑉
− 1
𝑋
2
=𝑆
󸀠) 𝑞
𝑋
1
,𝑆
󸀠
,𝑋
3

+ 𝜔 (1
𝑋
3
=𝑉
− 1
𝑋
3
=𝑆
󸀠) 𝑞
𝑋
1
,𝑋
2
,𝑆
󸀠

+ 𝜔 (1
𝑋
1
=𝑉
− 1
𝑋
1
=𝐸
󸀠) 𝑞
𝐸
󸀠
,𝑋
2
,𝑋
3

+ 𝜔 (1
𝑋
2
=𝑉
− 1
𝑋
2
=𝐸
󸀠) 𝑞
𝑋
1
,𝐸
󸀠
,𝑋
3

+ 𝜔 (1
𝑋
3
=𝑉
− 1
𝑋
3
=𝐸
󸀠) 𝑞
𝑋
1
,𝑋
2
,𝐸
󸀠 .

(9)

For investigation, we assume that person 1 becomes
investigated at rate 𝜉 if person 2 is a known case or contact
(is in state 𝑆󸀠, 𝐸󸀠, 𝑅, or 𝑉) and is willing to disclose person 1
(𝛿
21
= 1) and at an additional rate 𝜉 if person 3 is a known

case or contact willing to disclose him or her. Thus,

𝑞
󸀠

𝐶,1
= 𝜉 (𝛿

21
1
𝑋
2
∈{𝑆
󸀠
,𝐸
󸀠
,𝑅,𝑉}
+ 𝛿
31
1
𝑋
3
∈{𝑆
󸀠
,𝐸
󸀠
,𝑅,𝑉}
)

× ((1
𝑋
1
=𝑆
󸀠 − 1
𝑋
1
=𝑆
) 𝑞
𝑆,𝑋
2
,𝑋
3

+ (1
𝑋
1
=𝐸
󸀠 − 1
𝑋
1
=𝐸
) 𝑞
𝐸,𝑋
2
,𝑋
3

+ (1
𝑋
1
=𝑅
− 1
𝑋
1
=𝐼
) 𝑞
𝐼,𝑋
2
,𝑋
3

)

(10)

Similarly for person 2,

𝑞
󸀠

𝐶,2
= 𝜉 (𝛿

12
1
𝑋
1
∈{𝑆
󸀠
,𝐸
󸀠
,𝑅,𝑉}
+ 𝛿
32
1
𝑋
3
∈{𝑆
󸀠
,𝐸
󸀠
,𝑅,𝑉}
)

× ((1
𝑋
2
=𝑆
󸀠 − 1
𝑋
2
=𝑆
) 𝑞
𝑋
1
,𝑆,𝑋
3

+ (1
𝑋
2
=𝐸
󸀠 − 1
𝑋
2
=𝐸
) 𝑞
𝑋
1
,𝐸,𝑋
3

+ (1
𝑋
2
=𝑅
− 1
𝑋
2
=𝐼
) 𝑞
𝑋
1
,𝐼,𝑋
3

)

(11)

and person 3,

𝑞
󸀠

𝐶,3
= 𝜉 (𝛿

13
1
𝑋
1
∈{𝑆
󸀠
,𝐸
󸀠
,𝑅,𝑉}
+ 𝛿
23
1
𝑋
2
∈{𝑆
󸀠
,𝐸
󸀠
,𝑅,𝑉}
)

× ((1
𝑋
3
=𝑆
󸀠 − 1
𝑋
3
=𝑆
) 𝑞
𝑋
1
,𝑋
2
,𝑆

+ (1
𝑋
3
=𝐸
󸀠 − 1
𝑋
3
=𝐸
) 𝑞
𝑋
1
,𝑋
2
,𝐸

+ (1
𝑋
3
=𝑅
− 1
𝑋
3
=𝐼
) 𝑞
𝑋
1
,𝑋
2
,𝐼
) .

(12)

Equation (6) describes a continuous timeMarkov process
[67] for stochastic transitions among the 73 possible states of a
three-person group. The equations imply that the transitions
between the states form a directed acyclic graph; no state can
ever be visited more than once.Thus, beginning with a single
index case (person 1 without loss of generality), the system
undergoes stochastic transitions until it reaches an absorbing
state. Figure 2 provides an example of one such trajectory.
First in this example, person 1 is exposed and then becomes
infectious. In the second step, person 1 infects person 2 (lower
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Figure 2: Example of state transitions within a small group,
according to (6). Each arrow is labeled with a description of the
transition. Each individual is represented as a circle, labeled with the
state (𝑆—susceptible, 𝐸—exposed, 𝐼—infectious,𝑅—diagnosed and
visited by a disease control investigator, 𝑆󸀠—susceptible but has been
visited by a disease control investigator, 𝐸󸀠—exposed, but has been
visited by a disease control investigator, 𝑉—exposed, but protected
by post-exposure prophylaxis). The individual who undergoes the
next transition is shown as a gray circle. Many such paths are
possible.

left circle). Person 1 is diagnosed and a contact investigation
occurs in the third step. Person 2 is then contacted and
investigated in the fourth step but then progresses to disease
and diagnosis in the last step. In this example, person 3 never
becomes infected.

At time 0, 𝑞
𝐸,𝑆,𝑆
(0) = 1, and all other states, 𝑞

𝑋
1
,𝑋
2
,𝑋
3

(0) =

0 (for all 𝑋
1
, 𝑋
2
, and 𝑋

3
such that (𝑋

1
, 𝑋
2
, 𝑋
3
) ̸= (𝐸, 𝑆, 𝑆)).

The final probabilities can be computed by integrating this set
of first order linear equations with constant coefficients (6) to
determine the solution for 𝑡 → ∞. The expected complete
size of a within-group outbreak may be found by

𝜇 = 𝑞
𝑅,𝑋
2
∈{𝑆,𝑆
󸀠
},𝑋
3
∈{𝑆,𝑆
󸀠
} (∞)

+ 2 (𝑞
𝑅,𝑋
2
∈{𝑆,𝑆
󸀠
},𝑅 (∞) + 𝑞𝑅,𝑅,𝑋

3
∈{𝑆,𝑆
󸀠
} (∞))

+ 3𝑞
𝑅,𝑅,𝑅 (∞) ,

(13)

where 𝑞
𝑅,𝑋
2
∈{𝑆,𝑆
󸀠
},𝑋
3
∈{𝑆,𝑆
󸀠
}
(𝑡) = 𝑞

𝑅,𝑆,𝑆
(𝑡) + 𝑞

𝑅,𝑆,𝑆
󸀠(𝑡) + 𝑞

𝑅,𝑆
󸀠
,𝑆
(𝑡) +

𝑞
𝑅,𝑆
󸀠
,𝑆
󸀠(𝑡) for any 𝑡 and so forth. Although the number of

individuals in each state is always an integer, the expected
values we compute are not. For the 𝑁 = 3 case, the above
equations imply that in the absence of disclosure (𝛿

𝑖𝑗
= 0 for

all 𝑖, 𝑗),

𝜇 =
𝜌

𝛽 + 𝜌
+ 2

4𝛽𝜌
2

(𝛽 + 𝜌) (𝛽 + 2𝜌)
2
+ 3

(𝛽 + 4𝜌) 𝛽
2

(𝛽 + 𝜌) (𝛽 + 2𝜌)
2
.

(14)

The nature of the costs or disutilities associated with
either disclosure or disease is not specified. Disclosure in
some settings is an undesirable outcome, and we wish to
compare this to the costs of disease. It is not necessary that
a person actually incurs any harm from the investigation,
because, for some individuals, even a confidential disclosure
of an illicit contact may be uncomfortable and undesirable.
In principle, it may be possible to estimate such costs using

willingness to pay data or time-tradeoff data, but we do not
pursue this here.

We assume that the cost of disclosure is 𝐶
𝑖𝑗
, which is

the cost incurred by person 𝑖 upon disclosing person 𝑗.
We assume that this cost is incurred whenever person 𝑖 is
investigated and has chosen to disclose person 𝑗, regardless
of how the person is actually found (whether or not person
𝑗 is diagnosed before being reached by an investigation, or
whether or not he or she has been disclosed by someone else).
We will assume an overall cost of participating in any disease
control investigation (and this cost may be zero or even
negative, in case of an incentive for participation); denote this
overall cost by 𝐶

𝑜
; we will assume that this is zero in almost

all cases below unless specifically indicated otherwise. We
denote the cost of infection by 𝐹, and always assume 𝐹 > 𝐶

𝑜

(disease is always costlier than any incentive for participating
in a contact investigation).

Our assumptions imply that the payoff for each person
may be computed from the final state of the system. For any
final state represented by (𝑋

1
, 𝑋
2
, 𝑋
3
), where 𝑋

𝑖
is the state

of person 𝑖, the payoff for person 𝑖 given that state may be
computed from the negative of the cost:

𝑃
(𝑋
1
,𝑋
2
,𝑋
3
)

𝑖
= −(1

𝑋
𝑖
=𝑅
𝐹 + 1
𝑋
𝑖
∈{𝑆
󸀠
,𝑅,𝑉}
(

𝑁

∑

𝑗=1

𝛿
𝑖𝑗
𝐶
𝑖𝑗
+ 𝐶
𝑜
)) ,

(15)

where 𝛿
𝑖𝑖
= 0. Here, if a person is investigated, we compute

the disclosure costs for each person she or he has chosen to
disclose. If a person was infected, the final state is 𝑅, and
we add the cost for infection 𝐹. Finally, we add the overall
participation cost 𝐶

𝑜
. The net expected payoff for person 𝑖

is then obtained by summing the payoffs for each final state
𝑃
(𝑋
1
,𝑋
2
,𝑋
3
)

𝑖
over all possible final states:

𝑃
𝑖

= ∑

𝑋
1
∈{𝑆,𝑆
󸀠
,𝑅,𝑉}

∑

𝑋
2
∈{𝑆,𝑆
󸀠
,𝑅,𝑉}

∑

𝑋
3
∈{𝑆,𝑆
󸀠
,𝑅,𝑉}

𝑞
𝑋
1
,𝑋
2
,𝑋
3
(∞)𝑃

(𝑋
1
,𝑋
2
,𝑋
3
)

𝑖
.

(16)

The payoff for the entire group is simply 𝑃 = ∑
𝑖
𝑃
𝑖
.

Alternatively, wemay assume that the cost for each person
is

𝑃
𝑖
(𝑋
1
, 𝑋
2
, 𝑋
3
)

= −(1
𝑋
𝑖
=𝑅
𝐹 + 1
𝑋
𝑖
∈{𝑆
󸀠
,𝑅,𝑉}
(

𝑁

∑

𝑗=1

𝛿
𝑖𝑗
𝐶
𝑖𝑗
+ 𝐶
𝑜
max (𝛿

𝑖𝑗
))) ,

(17)

where, in this case, the overall cost or benefit 𝐶
𝑜
is assumed

to occur only if the respondent 𝑖 actually discloses a contact.
Other cost models are possible; for instance, it is possible that
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an individual could incur a cost if someone else discloses him
or her. For this paper, we consider only the simple model
outlined here.

If we assume that each individual infects 𝐾 individuals
outside their group and that the population is composed
of many such groups, then the overall basic reproduction
number, describing the ability of a disease to invade the pop-
ulation as a whole, is given by𝐾𝜇, as shown by [64]. Contact
investigation acts to control the disease, in this simple setting,
by reducing 𝜇. In general, contact investigations may overlap
groups, which are not included in the simple model above.
In the analysis that follows, we distinguish the payoff for the
individuals separately and for the small group (𝑁 = 3) as a
whole; we do not treat society at large (persons outside the
group we are modeling).

3. Results

The system of ordinary differential equations given by (6) is
a linear system with constant coefficients. Beginning with the
initial condition 𝑞

𝑋
1
,𝑋
2
,𝑋
3

= 0 for all combinations of𝑋
1
,𝑋
2
,

and 𝑋
3
other than 𝑞

𝐸,𝑆,𝑆
= 1, the total probability in each

final state of the system as 𝑡 → ∞ can be computed as the
sumof the probability of arriving at each final (i.e., absorbing)
state along each possible path to that state. For simplicity of
discussion, we use the conventional names Alice, Bob, and
Charlie for persons 1, 2, and 3, respectively; these widely used
conventional names have no other significance (e.g. [68]).
We computed the total infection probability for each person,
assuming that the epidemic beginswithAlice exposed.Not all
of the total 343 system states are ultimately reachable from the
initial condition (assuming 𝛿

𝑖𝑗
> 0 for 𝑖, 𝑗 = 1, 2, 3 and 𝑖 ̸= 𝑗).

Wewill ignore boundary cases corresponding to no infection,
recovery, investigation, and progression; we always assume
𝛽 > 0, 𝛾 > 0, 𝜉 > 0, and 𝜌 > 0.

Equation (6) defines a continuous time Markov chain.
For all possible values of the decision variables 𝛿

𝑖𝑗
, the

chain always exhibits absorbing states. Specifically, a triple
(𝑋
1
, 𝑋
2
, 𝑋
3
) specifying the states of each individual can only

be an absorbing state if 𝑋
𝑖
∈ {𝑆, 𝑆

󸀠
, 𝑅, 𝑉} for 𝑖 = 1, 2, 3,

because there is always a nonzero transition rate from any
state containing an individual in states 𝐸, 𝐸󸀠, or 𝐼 (Figure 1).
Any triple (𝑋

1
, 𝑋
2
, 𝑋
3
) where 𝑋

𝑖
∈ {𝑆, 𝑆

󸀠
, 𝑅, 𝑉} (𝑖 = 1, 2, 3)

can represent an absorbing state for the entire system if for
all 𝑘 such that 𝑋

𝑘
= 𝑆
𝑘
, 𝛿
𝑗𝑘
= 1 implies 𝑋

𝑗
= 𝑆
𝑗
, which

simply states that an absorbing state for the system containing
an uninvestigated susceptible individual is only possible if
the only people willing to disclose him or her are themselves
uninvestigated susceptible individuals. States containing 𝑆󸀠
are absorbing states only when 𝜔 = 0.

The transition rates from each state of the system to each
other state of the entire system constitute the generator 𝑃
of the system. We let 𝑝

ℓ𝑘
be the transition rate to state ℓ

from state 𝑘; 𝑝
𝑘𝑘
= 0 for all 𝑘. We then define the usual

jump chain [69] associated with the continuous timeMarkov
chain defined by 𝑃, that is, a discrete time Markov chain
which corresponds to the sequence of state transitions. The
set of statesmay be divided into transient states and absorbing

states, and we will arrange the states such that (1) the initial
state (𝐸, 𝑆, 𝑆) is first and (2) if 𝑝

ℓ𝑘
> 0, state 𝑘 comes

before state ℓ. The absorbing states therefore come last. The
probability matrix for the jump chain can then be written in
partitioned form

J = [ K 0
A I ] , (18)

where the leading block K corresponds to all the transient
states of the system and A to transitions from the transient
states to the absorbing set. The probability that the system
enters an absorbing state ℓ given being in any transient state
initially is thenA(I − K)−1. Since (I − K)−1 = I+K+K2 + ⋅ ⋅ ⋅ ,
the expression (I − K)−1 can be interpreted as a sum over
all possible paths from the initial state to the penultimate
transient state;A(I − K)−1 is then the sum over all paths from
the initial state to the absorbing state. It can be shown that K
is acyclic.

In practice, we expressed the elements of the jump
matrix J as symbolic expressions, represented by clauses
in a Prolog knowledge base (http://www.swi-prolog.org/,
v. 6.2.6 for Macintosh). This was then used to enumerate
all possible sequences of system states, together with the
conditional probabilities that the system would undergo
a transition to the next state in the sequence given the
current state. This computation was conducted for each
of the 64 strategy choices of the three players (not each
strategy choice corresponds to the same list of absorbing
states for the model; when there is no disclosure, for
instance, states such as (𝐼, 𝑆, 𝑉) cannot be reached). Finally,
algebraic simplification of the resulting path probabilities
was performed using the computer mathematics pack-
ages Sage (http://www.sagemath.org/, v. 5.0 for Macintosh)
and Form (http://www.nikhef.nl/∼form/maindir/, v. 4.0).
These were checked using numerical integration using the
package deSolve for R (http://www.r-project.org/, v. 3.0.1
for Macintosh).

For each strategy choice of all three individuals, we deter-
mined the probability that person 3 (Charlie) was infected.
Assuming fixed strategies for the other two individuals, how
does the infection probability for Charlie change if he chooses
to disclose other individuals? The results are summarized
in Table 1. A similar table can be written for the second
individual (Bob, not shown).

Equations (19)–(22) provide analytic expressions for the
change in infection probability experienced by person 3
(Charlie) for each combination of disclosure choicesmade (as
given in Table 1). Using these infection probabilities, we can
compute the expected benefits as well as costs experienced by
each person. These costs and benefits depend on the choices
made by each person in the group and can be used to compute
the payoff for each player and therefore the solution to the
game

𝐾
1
= 4𝛽
2
𝛾
2
𝜌𝜉
2
𝜁 ((𝛾 + 𝜔) (𝛽 + 𝜌) (𝛽 + 2𝜌)

× (𝛽 + 2𝜌 + 2𝜉) (𝛽 + 2𝛾 + 2𝜌)

× (𝛽𝜁 + 2𝜔 + 2𝜌) (𝛽𝜁 + 2𝜔 + 2𝜌 + 2𝜉))
−1
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Table 1: Reduction in infection for Charlie due to disclosures by Charlie, assuming given strategies for the other two individuals. For each
row, Alice is assumed to disclose either Bob or Charlie or both, as indicated in the first two columns; Bob is assumed to disclose either Alice
or Charlie or both, as given in the next two columns. The next column (Alice versus none) shows how much the infection probability for
Charlie is reduced by disclosing Alice instead of disclosing no one. The column labeled “Bob versus none” shows the reduction by disclosing
Bob instead of no one and so forth. Analytic expressions for the quantities 𝐾

1
, 𝐾
2
, 𝐾
3
, and 𝐾

4
are given in the text.

Alice
discloses

Bob
discloses Reduction in infection probability for Charlie comparing disclosure choices of

Bob Charlie Alice Charlie Alice versus none Bob versus none Both versus none Both versus Alice Both versus Bob
N N N N 0 0 0 0 0
Y N N N 0 0 0 0 0
N Y N N 0 𝐾

2
𝐾
2

𝐾
2

0
Y Y N N 0 𝐾

4
𝐾
4

𝐾
4

0
N N Y N 0 0 0 0 0
Y N Y N 0 0 0 0 0
N Y Y N 0 𝐾

2
𝐾
2

𝐾
2

0
Y Y Y N 0 𝐾

4
𝐾
4

𝐾
4

0
N N N Y 𝐾

1
0 𝐾

1
0 𝐾

1

Y N N Y 𝐾
1

0 𝐾
1

0 𝐾
1

N Y N Y 𝐾
1

𝐾
2

𝐾
2
+ 𝐾
1

𝐾
2

𝐾
1

Y Y N Y 𝐾
1

𝐾
4

𝐾
4
+ 𝐾
1

𝐾
4

𝐾
1

N N Y Y 𝐾
3

0 𝐾
3

0 𝐾
3

Y N Y Y 𝐾
3

0 𝐾
3

0 𝐾
3

N Y Y Y 𝐾
3

𝐾
2

𝐾
2
+ 𝐾
3

𝐾
2

𝐾
3

Y Y Y Y 𝐾
3

𝐾
4

𝐾
4
+ 𝐾
3

𝐾
4

𝐾
3

𝐾
2
= 𝛽
2
𝛾
2
𝜌𝜉
2
𝜁 (𝑐
0
+ 𝑐
1
𝛽 + 𝑐
2
𝛽
2
+ 𝑐
3
𝛽
3
)

× ((𝛾 + 𝜉) (𝛾 + 𝜔)
2
(𝛽 + 𝜌) (𝛽 + 2𝜌) (𝛾 + 𝜔 + 𝜉)

× (𝛽 + 2𝜌 + 2𝜉) (𝛽 + 2𝛾 + 2𝜌) (𝛽𝜁 + 2𝜔 + 2𝜌)

× (𝛽𝜁 + 2𝜔 + 2𝜌 + 2𝜉) )
−1

.

(19)

Here,

𝑐
0
= 4 (𝛾

3
+ 2𝛾
2
𝜔 + 2𝛾

2
𝜌 + 2𝛾

2
𝜉 + 𝛾𝜔

2
+ 4𝛾𝜔𝜌 + 3𝛾𝜔𝜉

+ 2𝛾𝜌
2
+ 4𝛾𝜌𝜉 + 𝛾𝜉

2
+ 2𝜔
2
𝜌 + 𝜔
2
𝜉 + 4𝜔𝜌

2

+ 6𝜔𝜌𝜉 + 𝜔𝜉
2
+ 2𝜌
3
+ 4𝜌
2
𝜉 + 2𝜌𝜉

2
) ,

𝑐
1
= 4 (𝜌

2
𝜁 + 𝜌𝜉𝜁 + 𝛾 (𝛾 + 2𝜔 + 2𝜌 + 2𝜉)

+ 𝜔 (𝜔 + 4𝜌 + 3𝜉) + 2𝜌
2
+ 3𝜌𝜉 + 𝜉

2
) ,

𝑐
2
= 2 (2𝜌𝜁 + 𝜉𝜁 + 𝛾 + 2𝜔 + 𝜌 + 𝜉) ,

(20)

and 𝑐
3
= 𝜁. Also,

𝐾
3
= 4𝛽
2
𝛾
2
𝜌𝜉
2
𝜁 ((𝛾 + 𝜔) (𝛽 + 𝜌) (𝛽 + 2𝜌) (𝛽 + 2𝜌 + 4𝜉)

× (𝛽 + 2𝛾 + 2𝜌) (𝛽𝜁 + 2𝜔 + 2𝜌 + 2𝜉)

× (𝛽𝜁 + 2𝜔 + 2𝜌 + 4𝜉))
−1
,

(21)

and finally

𝐾
4
= 𝛽
2
𝛾
2
𝜌𝜉
2
𝜁 (𝐶 + 𝐷) ((𝛾 + 2𝜉) (𝛾 + 𝜔) (𝛽 + 𝜌) (𝛽 + 2𝜌)

× (𝛾 + 𝜔 + 𝜉) (𝛾 + 𝜔 + 2𝜉)

× (𝛽 + 2𝜌 + 4𝜉) (𝛽 + 2𝛾 + 2𝜌)

× (𝛽𝜁 + 2𝜔 + 2𝜌 + 2𝜉)

× (𝛽𝜁 + 2𝜔 + 2𝜌 + 4𝜉))
−1
,

(22)

where 𝐶 = 𝑐
0
+ 𝑐
1
𝛽 + 𝑐
2
𝛽
2
+ 𝑐
3
𝛽
3 is the same expression as in

𝐾
2
, and

𝐷 = 2𝜉 (𝑑
0
+ 𝑑
1
𝛽 + 𝑑
2
𝛽
2
) , (23)

with

𝑑
0
= 2 (6𝜌

2
+ 𝛾 (3𝛾 + 4𝜔 + 6𝜌) + 𝜔 (𝜔 + 8𝜌 + 5𝜉)

+ 𝜉 (7𝛾 + 14𝜌 + 4𝜉)) ,

𝑑
1
= 2 (𝜌𝜁 + 3𝛾 + 4𝜔 + 5𝜌 + 7𝜉) ,

𝑑
2
= 𝜁 + 2.

(24)

Finally, it can be shown that𝐾
2
> 𝐾
1
,𝐾
1
> 𝐾
3
,𝐾
2
> 𝐾
4
, and

𝐾
4
> 𝐾
3
.

3.1. Reduction of Transmission by Contact Investigation.
Based on (19)–(22), we first numerically examine a collection
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of scenarios to determine the reduction in transmission due
to contact investigation. Before examining the strategies of
each individual and how these choices affect disease trans-
mission (in the next subsection), we will assume that each
individual discloses all of his or her contacts and thereby esti-
mate the maximum disease reduction that can be achieved.
We will examine low, moderate, and large within-group
transmission, as measured by 𝜇 − 1, which is the expected
number of secondary cases. Also, we will look at large and
small values of the latency period relative to the infectious
period, large and small values of the investigation rate 𝜉
relative to the infectious period, large and small values of the
protection fraction 𝜁 for contacted susceptible individuals,
and large and small values for the postexposure protection
rate 𝜔. These conditions are summarized in Table 2.

Table 2 suggests that the maximum benefit, in terms of
prevented cases, occurs for intermediate transmission rates.
Moreover, the table indicates that for this simplemodel, a long
latent period, fast investigations, and prompt postexposure
prophylaxis (unsurprisingly) favor disease control.

3.2. Effect of Nondisclosure on Disease Transmission. Each
individual—Alice (the index case), Bob, or Charlie—may
choose to disclose or not to disclose each of his or her two
contacts. Thus, for example, Alice has four possibilities: (1)
disclosing neither Bob nor Charlie, (2) disclosing Bob but not
Charlie, (3) disclosing Charlie but not Bob, or (4) disclosing
both Bob and Charlie. Each individual has four possible
choices, and thus three individuals yield a total of 43 = 64
possible choices.

How does the total number of transmitted cases 𝜇 − 1
change if some people fail to disclose contacts? We chose
a scenario of rapid tracing and prophylaxis, together with
a long latent period (Scenario 8 from Table 2, assuming
an intermediate transmission rate 𝛽 such that 𝜇

0
− 1 =

1). We computed 𝜇 − 1 for each of the 64 possible choice
combinations, and these results are summarized in Table 3.

Is it, in general, possible for an individual to reduce his
or her probability of disease by disclosure of others? By
assumption, such a reduction is not possible for the first
person infected in the group (Alice). Without loss of gen-
erality, we may consider the decrease in disease probability
Charlie experiences if he (Charlie) discloses Alice, discloses
Bob, or discloses both Alice and Bob. Since Alice and Bob
each have four choices (disclosure or not of each of the
other two people), a total of 16 possible combinations of
these choices are available. For each specific choice of what
Alice and Bob choose, we compare the infection probability
when Charlie discloses Alice to the disease probability when
Charlie discloses no one. The difference is the amount by
which Charlie reduces his or her probability of disease by
disclosing Alice compared to no one. Several salient facts are
obtained from these expressions for contact investigations in
a group of size 3.

First, in the three-person group, if Alice discloses no
one, then Charlie can never reduce his likelihood of disease
unless Bob discloses him. If neither Alice nor Bob is willing
to disclose Charlie, then Charlie will never be known to

the investigation before diagnosis. The only person Charlie
should disclose to obtain benefit is Alice; since Alice is not
disclosing Bob, Bob only discloses Charlie after he (Bob)
is diagnosed and removed from transmission. But there
is a possibility that Alice, who infected Bob, still has not
been diagnosed yet; disclosure of Alice yields a possibility
of benefit. The ability of Charlie, therefore, to benefit from
disclosure depends on the choices made by the other persons
in the network.

Equations (19) through (24) imply that Charlie in fact
benefits (in terms of reduced disease) by disclosing Alice only
when Charlie has been disclosed by Bob. Suppose that Bob
does not disclose Charlie. Then the only opportunities for
Charlie to disclose must occur if he is diagnosed or if Alice
discloses him. Once Charlie is diagnosed, it is too late for him
to benefit by disclosing someone else; if Alice discloses him,
then Alice is already known to disease control investigators.
If Alice is already known, there is no benefit to disclosing her
again. Similarly, Charlie benefits by disclosing Bob only when
Alice discloses Charlie. As before, the choices of the other
groupmembers affect not only the payoffs of Charlie, but also
the ability of Charlie to benefit by making different choices.

Moreover, if 𝜁 = 0, that is, susceptible people who
have been contacted by an investigator are unable to become
infected, Charlie does not benefit from disclosing anyone—
one is able to obtain full protectionwithout disclosing anyone
once one is known to the investigation. In this simple
model, effective prevention among people who have been
investigated reduces incentives to disclose others, simply
because there is nothing else for any given individual to gain
once he or she has been investigated.

Finally, the expressions in the appendix show that (unsur-
prisingly), if there is no transmission (𝛽 = 0) or no inves-
tigation (𝜉 = 0), Charlie does not benefit from disclosure;
no benefit from disclosure is seen when 𝛾 = 0 and 𝜌 = 0,
because the index case would never proceed to disease and
diagnosis in these cases. Finally, Charlie never can increase
his likelihood of disease by disclosure.

3.3. Tradeoffs between Disclosure and Disease. We now
explore the model to determine the effect of costs of disease,
disclosure, and participation. We first assume no overall
participation costs or incentives (𝐶

𝑜
= 0), so that the total cost

for person 𝑖 participating in an investigation consists only of
the cost (real or perceived) that person 𝑖 faces from disclosing
each of the other persons who is disclosed. Alice (the initial
case), unlike Bob and Charlie, cannot reduce her expected
cost of disease by participating in an investigation.

3.3.1. Benefits for Disclosure. Whenever the costs for disclo-
sure are negative (there is a benefit to disclosure), the best
strategy for each individual is to disclose all other individuals.
Under these circumstances, disease prevention attains the
maximum possible value. We assume a disease cost 𝐹 of 1
(arbitrary units) and that 𝐶

𝑖𝑗
= −𝜖𝐹 (with 𝜖 > 1) and

present numerical analysis for the scenario of long latency,
prompt investigation, and prompt prophylaxis (Scenario 8,
and assuming intermediate transmission rates as before, i.e.
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Table 2: Numerical scenarios showing the percent reduction in disease transmission achievable by contact investigation and postexposure
prophylaxis, assuming complete disclosure. The latency column provides the ratio of the expected duration of the latent period relative to
the infectious period, the tracing column is the ratio of the duration of the infectious period to the expected waiting time to be found from a
single disclosure, and the prophylaxis column is the ratio of the duration of the latent period to the waiting time to postexposure prophylaxis
following contact investigation. The percent decline in transmission within the group ((1 − ((𝜇

1
− 1)/(𝜇

0
− 1))) × 100%) is shown for low,

medium, and high within-group transmission (𝜇
0
− 1 = 0.1, 1, and 1.9). No protective effect against infection was assumed for susceptible

individuals who were interviewed by contact investigators (𝜁 = 1).

Scenario Latency Tracing Prophylaxis Reduction (%)
𝜌/𝛾 𝜉/𝜌 𝜔/𝛾 𝜇 − 1 = 0.1, 1, 1.9

1 0.1 0.1 0.1 0.543%, 1.15%, 0.0832%
2 10 0.1 0.1 6.89%, 12.7%, 7.01%
3 0.1 10 0.1 4.36%, 13.7%, 3.43%
4 10 10 0.1 12%, 21.6%, 11.9%
5 0.1 0.1 10 0.791%, 1.76%, 0.267%
6 10 0.1 10 47.8%, 53.1%, 49.8%
7 0.1 10 10 8.64%, 19%, 9.71%
8 10 10 10 82.8%, 84.9%, 83.1%

Table 3: Expected number of secondary cases for different disclosure choices (Scenario 8, Table 2, with 𝜇
0
− 1 = 1). The rows indicate the

persons disclosed by Alice and Charlie; the columns indicate who Bob discloses. The cell entries indicate the expected number of secondary
cases within the group, obtained by integrating (6).

Charlie discloses Bob discloses Bob discloses Bob discloses Bob discloses
Neither Alice only Charlie only Both

Alice discloses neither

Neither 1 0.998 0.835 0.835
Alice only 0.998 0.997 0.834 0.834
Bob only 0.835 0.834 0.671 0.671
Both 0.835 0.834 0.671 0.671

Alice discloses Bob
only

Neither 0.508 0.506 0.158 0.158
Alice only 0.506 0.505 0.157 0.157
Bob only 0.506 0.505 0.157 0.157
Both 0.506 0.505 0.157 0.156

Alice discloses
Charlie only

Neither 0.508 0.506 0.506 0.506
Alice only 0.506 0.505 0.505 0.505
Bob only 0.158 0.157 0.157 0.157
Both 0.158 0.157 0.157 0.156

Alice discloses both

Neither 0.156 0.155 0.154 0.154
Alice only 0.155 0.153 0.152 0.152
Bob only 0.154 0.152 0.152 0.151
Both 0.154 0.152 0.151 0.151

𝜇
0
− 1 = 1). In this case, numerical analysis shows that the

best strategy for each person is to disclose all contacts. Bob
and Charlie each have an expected payoff of approximately
0.124 (arbitrary units) under these assumptions (i.e., Scenario
8, Table 2). If Bob switches to one of his other strategies, the
expected payoff is lower: approximately −0.076 for disclosing
neither, approximately 0.0243 for disclosing Charlie only,
and approximately 0.0243 for disclosing Alice only. (The
latter two payoffs in fact differ slightly, since Charlie may
or may not be infected at the time of disclosure.) The same
results are obtained for Charlie (Charlie receives a lower
payoff if he changes to a different strategy), and, similarly,
Alice receives a lower payoff if any other strategy other than
disclosing everyone is chosen (in this case, simply because of

the incentives for disclosure). Similar results were obtained
for other values of 𝜖 (𝜖 = 0.01, 0.002, and 0.001; results not
shown).

3.3.2. Costs for Disclosure. Where each individual may face
costs for disclosing other individuals, the possibility of a
conflict of interest arises. We will again assume the same
numerical scenario as in the previous analysis (Scenario 8,
intermediate transmission), except that we now add a small
cost 𝜖 to disclosure. In this case, the Nash equilibrium is
for each player to disclose no contacts, despite the fact that
this yields the largest possible transmission of disease. This
occurs because the index case Alice, already infected, can
never reduce her probability of infection by disclosing and so
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has no incentive to bear the cost of disclosure. The personal
cost isminimized by never disclosing.Unfortunately, Bobwill
never be disclosed by Alice and will in turn only be contacted
after diagnosis—after which time it is also too late to benefit
directly by disclosure. The costs are also minimized for Bob
by never disclosing.The analysis is the same for Charlie.Thus,
the other individuals will never be contacted before infection,
and the same logic will apply to them. No contact tracing will
occur, and preventable infections will happen.

When we assume a reward for disclosing at least one con-
tact (17), a different result may occur. This is an assumption
that an individual has an incentive to disclose at least one
person, but no more. Assuming, for example, 𝐶

𝑜
= −0.15

and 𝐶
𝑖𝑗
= 0.1 for all 𝑖, 𝑗, 𝑖 ̸= 𝑗, we find two solutions (in the

sense that changing strategies cannot yield an improvement),
as shown in Table 4.

For the first strategy in Table 4, we find that Alice should
disclose Bob, Bob should disclose Charlie, andCharlie should
disclose Alice. By definition, this is equilibrium, because no
one can benefit by departing from it provided the other
participants do not change strategies. For Alice, the only
difference in payoff results from costs and incentives related
to disclosure; Alice cannot affect her own infection status (as
the index case, by assumption). By assumption, Alice receives
a benefit for disclosing one person but experiences a net cost
for disclosing two. Alice could choose either to disclose.

Bob and Charlie have the same incentives that Alice has
to disclose exactly one other person. For Bob and Charlie,
however, disclosing others may affect the probability of
disease, and so the best depends not only on the costs or
incentives for disclosure, but also on disease transmission.
If the strategy of Alice is to disclose Bob, then the best
strategy for Bob is to disclose Charlie and not Alice. Alice
is the index case and willing to disclose Bob, and so it
would frequently be wasteful for Bob to disclose Alice—
Alice is likely to have already been diagnosed. Similarly, if
Alice is choosing to disclose Bob, Charlie benefits more from
disclosing Alice than Bob. If Bob (but not Alice) is using the
strategy of disclosing Charlie, then Charlie could infer that
whenever he has been investigated before infection, it was
the result of Bob’s disclosure and that disclosing Bob again
is counterproductive—Alice is the better choice.

3.4. Disclosure before Diagnosis. In the preceding section,
individuals are assumed to use the same strategy for disclo-
sure all the time, whether or not the person was identified
before he or she became a case, or after. In the latter case,
the individual has no chance to prevent her or himself from
becoming diseased. We next suppose that each individual
could make a different choice about disclosure depending
on whether or not the person was originally identified as
a result of seeking health care (diagnosed from state 𝐼), or
as a result of investigation. We keep the same model of
transmission, but now distinguish between removed cases.
We denote by 𝑅 cases diagnosed from the state 𝐼, and we
denotr by 𝑅󸀠 cases known prior to symptoms (individuals
in state 𝐸󸀠 who become diseased). The revised equations are
given in Appendix. Here, 𝑋

1
, 𝑋
2
, and 𝑋

3
range through the

set 𝑆, 𝐸, 𝐼, 𝑅, 𝑆󸀠, 𝐸󸀠, 𝑅󸀠, and 𝑉. The variable 𝛿
𝑖𝑗
is 1 if person

𝑖 chooses to disclose person 𝑗 if person 𝑖 is identified before
symptoms and 0 otherwise, and 𝛿󸀠

𝑖𝑗
is 1 if person 𝑖 chooses to

disclose person 𝑗 after person 𝑖 has symptoms, and 0 if person
𝑖 does not disclose person 𝑗 under these circumstances. If
𝛿
𝑖𝑗
= 𝛿
󸀠

𝑖𝑗
for all 𝑖, 𝑗, this model reduces to the model

previously analyzed. For 𝑁 = 3 people, each person has 2
choices for each contact, for four decision variables. With
threemodeled individuals, there are thus 212 = 4096 strategic
choice combinations, and we simply confine our attention
to a few special cases of interest. The Kolmogorov equations
will be numerically integrated using the lsoda function in
the R package deSolve, v. 1.10. We assume no participation
incentives in this section (𝐶

𝑜
= 0).

If no one discloses after diagnosis (𝛿󸀠
12
= 𝛿
󸀠

21
= 𝛿
󸀠

13
=

𝛿
󸀠

31
= 𝛿
󸀠

23
= 𝛿
󸀠

32
= 0), then no investigations ever result and

the values of 𝛿
𝑖𝑗
do not matter. On the other hand, if everyone

always discloses after diagnosis (𝛿󸀠
12
= 𝛿
󸀠

21
= 𝛿
󸀠

13
= 𝛿
󸀠

31
=

𝛿
󸀠

23
= 𝛿
󸀠

32
= 1), then the first person to become diagnosed

discloses both other individuals.There is no further benefit to
disclosing these people again.Numerically, we chose Scenario
8 from Table 2 and assigned all disclosure costs to equal 0.1
times the cost of disease. The sole Nash equilibrium found
is for neither Bob nor Charlie to disclose anyone else if
contacted. Similar results were obtained even when the cost
was as low as 0.0001 for disclosure (the lowest positive cost
we numerically examined).

We also examined the case 𝛿󸀠
12
= 1 and = 𝛿󸀠

21
=

𝛿
󸀠

13
= 𝛿
󸀠

31
= 𝛿
󸀠

23
= 𝛿
󸀠

32
= 0, where the index case Alice

will initiate the investigation by disclosing Bob if diagnosed.
Assumingno incentives for participation, it is optimal for Bob
to disclose Charlie provided that the disclosure cost is very
small. We found, using Scenario 8 from above, that for a tiny
cost of 10−4, Bob should disclose Charlie and Charlie should
disclose no one. Bob should disclose Charlie because Charlie
may be diagnosed sooner than otherwise, reducing the risk to
Bob. Charlie should not disclose anyone; the only wayCharlie
could ever be investigated is either if he is diagnosed or if he
is disclosed by Bob. If Charlie has been diagnosed already, it
is too late for him to act to prevent disease and so disclosure
no longer is beneficial for him; if Bob has disclosed Charlie
already, there is no benefit to disclosing Bob again; either
way, Charlie should not disclose Bob in this case. Moreover,
Bob only discloses Charlie when Bob has been contacted
prior to disease, and this only occurs when Alice has already
been diagnosed. Thus, Charlie will only be contacted when
both Alice and Bob have already been investigated, and the
solution to the equations confirms the optimal strategy for
Charlie. This result, however, disappears when the cost of
disclosure is raised. At a cost of 10−3, the optimal strategy is
for Bob to disclose no one; Charlie will never be faced with
the choice of what to do if investigated before diagnosis.

4. Discussion

In this paper, we analyzed a simple model of cost-benefit
tradeoffs in a stylized model of contact investigation and
disclosure, reflecting public health circumstances in which
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Table 4: Nash equilibrium strategies resulting when 𝐶
𝑜
= −0.15 and 𝐶

𝑖𝑗
= 0.1.

Alice Bob Charlie Total transmission (𝜇 − 1)
Discloses Discloses Discloses

1 Bob only Charlie only Alice only 0.157
2 Charlie only Alice only Bob only 0.157

individuals may not wish to disclose other individuals in
their contact network. Such circumstances may arise if such
contacts reflect illicit activity, undocumented presence in the
country, or other reasons related to privacy. We therefore
assumed a cost for each such disclosure. The model assumes
that individuals may benefit by disclosing other individuals
in their network of contacts and that the sole such benefit is
a reduction in infection risk resulting from earlier diagnosis
of other individuals in the group. We assumed a specific
simple form where individuals use a fixed strategy, for which
any specific contact may or may not be disclosed, and that
this did not depend on the progression of the epidemic.
We assumed a simple stochastic epidemic model where
individuals could be protected after exposure by vaccination,
and that once an individual is diagnosed, he or she is removed
and will transmit no more infection. Finally, our analysis
was restricted to the case of a simple three person cluster.
We developed the analytic Kolmogorov equations for the
stochastic process, and solved these equations to determine
the expected payoffs.

In this setting, we found that if all individuals have a
cost of disclosure with no participation incentives, then the
optimal individual decision is to simply not disclose others.
Contact investigation is unsuccessful, andmore transmission
within the group results. Also, the population 𝑅

0
is larger

than it would otherwise have been. In this case, optimal
personal decisions are suboptimal for the group as a whole. In
this simple model, our assumptions guaranteed that once an
individual is infected, then the only remaining component in
their gamepayout that can induce disclosure is his or her fixed
cost or benefit of disclosure. Thus, in our base case analysis,
the index case has no incentive to disclose—it is too late for
him or her to benefit. No one else is disclosed, and thus each
other individual likewise is only diagnosed after infection,
also too late to benefit.

However, if there is some benefit to disclosing—some
incentive to remove all or part of these costs—a different
structure emerges. We examined additional cases: (1) com-
pletely offsetting the costs of disclosure and (2) partially
offsetting the costs of disclosure. If the costs of disclosure
are completely offset, so that all individuals benefit from
disclosing, the unsurprising result was that all individuals
disclose all contacts; this results in a smaller 𝑅

0
and an

alignment of individual and group optimality.
We also examined a case of partially offset costs, in which

a person should disclose one such contact, but not both. In
this case, we found two solutions. Using the conventional
names Alice (for the index case), Bob, and Charlie, these are
as follows. If Alice disclosed Bob, then Bob should disclose
Charlie, and Charlie should disclose Alice. Similarly, if Alice
disclosed Charlie, then Charlie should disclose Bob, and Bob

should disclose Alice; the same pattern is seen, with the roles
of Bob and Charlie reversed.

We examined an extended version of the model in which
individuals could make a different choice depending on
whether they were identified in time to prevent illness. This
model found that the direct benefits of prevention could
outweigh small disclosure costs, favoring disclosure. While
this threshold for favoring disclosure may be larger for
alternative or more realistic model structures, we believe that
direct immediate prevention benefits should not be relied on
to provide sufficient incentives for participation. Reducing
costs—including perceived costs—is crucial.

In real outbreaks, individuals lack the information neces-
sary to weigh the risks and benefits of disclosure. Individuals
do not, in general, know the extent of their exposure, the
benefits of vaccination at different times, nor the benefit
they would receive by disclosure. Thus, the solutions to the
game model are idealized optimal strategies realizable under
perfect information. Importantly, this analysis, focusing as
it does only on the small group (of size 3) and not beyond,
does not fully reflect the epidemiology of novel pathogen
introduction. Here, failure to prevent transmission early may
lead to widespread transmission beyond the small group.The
analysis presented above only includes transmission within
the small contact group and could be straightforwardly
extended to take into account the benefits—epidemiological
and otherwise—of stopping a large epidemic. We also note
that real decision making could take into account a much
richer strategic set, so that individuals could have a different
strategy depending on whether or not they know how many
cases there have been, what other individuals have done, or
other factors (e.g. [46, 61, 63, 70–73]). Finally, the limitations
of modeling human behavior as governed by classical eco-
nomic models of rational optimization have long been noted
[74]; in disease control settings or emergency responses more
generally, fear [75] as well as altruism [73, 76, 77] have been
reported.

Our model does show how decision-making based solely
on reducing an individual’s direct risk of disease can lead to
noncompliance and an overall unfavorable outcome for the
group. Moreover, it suggests that the ability of an individual
to reduce his or her own riskwould, under these assumptions,
be expected to reduce compliance with contact investigation.
The findings highlight the central importance of reducing
costs of contact investigation for all participants, perhaps
through incentives. Further work will be needed to assess the
robustness of these conclusions. Empirical data on percep-
tions of the risks and benefits of contact investigation and
the reasons for compliance and noncompliance are urgently
needed.
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Appendix

The extended equations for the analysis in Section 3.4 are as
follows:
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[1] D. Güriş, R. Harpaz, S. B. Redd, N. J. Smith, and M. J. Papania,
“Measles surveillance in the United States: an overview,” Journal
of Infectious Diseases, vol. 189, supplement 1, pp. S177–S184,
2004.

[2] Centers for Disease Control and Prevention (CDC), “Guide-
lines for the investigation of contacts of persons with infectious
tuberculosis: recommendations from theNational Tuberculosis
Controllers Association and CDC,”MMWR Recommendations
and Reports, vol. 54, no. RR-15, pp. 1–47, 2005.

[3] F. Fenner, D. A. Henderson, I. Arita, Z. Jezek, and L. D. Ladnyi,
Smallpox and Its Eradication, World Health Organization,
Geneva, Switzerland, 1988.

[4] D. D. Brewer, “Case-finding effectiveness of partner notification
and cluster investigation for sexually transmitted diseases/HIV,”
Sexually Transmitted Diseases, vol. 32, no. 2, pp. 78–83, 2005.

[5] R. R. Willcox, F. J. Jefferiss, and E. M. Naughten, “Contact
investigation of male West Indian patients with gonorrhoea,”



14 Computational and Mathematical Methods in Medicine

British Journal of Venereal Diseases, vol. 42, no. 3, pp. 167–170,
1966.

[6] R. F. Wykoff, C. W. Heath Jr., S. L. Hollis et al., “Contact tracing
to identify human immunodeficiency virus infection in a rural
community,” Journal of the American Medical Association, vol.
259, no. 24, pp. 3563–3566, 1988.

[7] K. T. D. Eames, C. Webb, K. Thomas, J. Smith, R. Salmon,
and J. M. F. Temple, “Assessing the role of contact tracing in
a suspected H7N2 influenza A outbreak in humans in Wales,”
BMC Infectious Diseases, vol. 10, article 141, 2010.

[8] B. J. Cowling, L. M. Ho, and G. M. Leung, “Effectiveness of
control measures during the SARS epidemic in Beijing: a com-
parison of the Rt curve and the epidemic curve,” Epidemiology
and Infection, vol. 136, no. 4, pp. 562–566, 2008.

[9] C. A. Donnelly, A. C. Ghani, G. M. Leung et al., “Epidemio-
logical determinants of spread of causal agent of severe acute
respiratory syndrome in Hong Kong,” The Lancet, vol. 361, no.
9371, pp. 1761–1766, 2003.

[10] J. Flint, S. Burton, J. F. Macey et al., “Assessment of in-flight
transmission of SARS—results of contact tracing, Canada,”
Canada Communicable Disease Report, vol. 29, no. 12, pp. 105–
110, 2003.

[11] L. James, N. Shindo, J. Cutter, S. Ma, and S. K. Chew, “Public
health measures implemented during the SARS outbreak in
Singapore, 2003,” Public Health, vol. 120, no. 1, pp. 20–26, 2006.

[12] D. Klinkenberg, C. Fraser, and H. Heesterbeek, “The effective-
ness of contact tracing in emerging epidemics,” PLoS ONE, vol.
1, no. 1, article e12, 2006.

[13] Centers for Disease Control and Prevention (CDC), “Emer-
gence of Avian Influenza A(H7N9) virus causing severe human
illness—China, February-April 2013,” Morbidity and Mortality
Weekly Report, vol. 62, no. 18, pp. 366–371, 2013.

[14] Q. Li, L. Zhou, M. Zhou et al., “Preliminary report: epidemiol-
ogy of the avian influenza A, (H7N9) outbreak in China,” The
New England Journal of Medicine, vol. 370, no. 6, pp. 520–532,
2013.

[15] Health Protection Agency (H. P. A) UK, Novel Coronavirus
Investigation Team, “Evidence of person-to-person transmis-
sion within a family cluster of novel coronavirus infections,
United Kingdom, February 2013,” Euro Surveillance, vol. 18, no.
11, Article ID 20427, 2013.

[16] Centers for Disease Control and Prevention, “Public health
preparedness capabilities: national standards for state and
local planning,” Tech. Rep., Centers for Disease Control
and Prevention, 2011, http://www.cdc.gov/phpr/capabilities/
DSLR capabilities July.pdf.

[17] B. Armbruster and M. L. Brandeau, “Optimal mix of screening
and contact tracing for endemic diseases,” Mathematical Bio-
sciences, vol. 209, no. 2, pp. 386–402, 2007.

[18] B. Armbruster and M. L. Brandeau, “Cost-effective control of
chronic viral diseases: finding the optimal level of screening and
contact tracing,” Mathematical Biosciences, vol. 224, no. 1, pp.
35–42, 2010.

[19] K. T. D. Eames, “Contact tracing strategies in heterogeneous
populations,” Epidemiology and Infection, vol. 135, no. 3, pp.
443–454, 2007.

[20] K. T. D. Eames and M. J. Keeling, “Contact tracing and disease
control,” Proceedings of the Royal Society B, vol. 270, no. 1533, pp.
2565–2571, 2003.

[21] T. House and M. J. Keeling, “The impact of contact tracing in
clustered populations,” PLoS Computational Biology, vol. 6, no.
3, Article ID e1000721, 2010.

[22] C. P. Jewell and G. O. Roberts, “Enhancing Bayesian risk
prediction for epidemics using contact tracing,” Biostatistics,
vol. 13, no. 4, pp. 567–579, 2012.

[23] I. Z. Kiss, D. M. Green, and R. R. Kao, “Disease contact tracing
in random and clustered networks,” Proceedings of the Royal
Society B, vol. 272, no. 1570, pp. 1407–1414, 2005.

[24] I. Z. Kiss, D. M. Green, and R. R. Kao, “The effect of network
mixing patterns on epidemic dynamics and the efficacy of
disease contact tracing,” Journal of the Royal Society Interface,
vol. 5, no. 24, pp. 791–799, 2008.

[25] J. Müller, M. Kretzschmar, and K. Dietz, “Contact tracing in
stochastic and deterministic epidemic models,” Mathematical
Biosciences, vol. 164, no. 1, pp. 39–64, 2000.

[26] J. Aparicio and J. Hernández, “Preventive treatment of tubercu-
losis through contact tracing,” Contemporary Mathematics, vol.
410, pp. 17–29, 2006.

[27] G. Guzzetta, M. Ajelli, Z. Yang, S. Merler, C. Furlanello,
and D. Kirschner, “Modeling socio-demography to capture
tuberculosis transmission dynamics in a low burden setting,”
Journal of Theoretical Biology, vol. 289, no. 1, pp. 197–205, 2011.

[28] J. M. McCaw and J. McVernon, “Prophylaxis or treatment?
Optimal use of an antiviral stockpile during an influenza
pandemic,” Mathematical Biosciences, vol. 209, no. 2, pp. 336–
360, 2007.

[29] S.-C. Chen, C.-F. Chang, and C.-M. Liao, “Predictive models
of control strategies involved in containing indoor airborne
infections,” Indoor Air, vol. 16, no. 6, pp. 469–481, 2006.

[30] C.-M. Liao, S. C. Chen, and C. F. Chang, “Modelling respiratory
infection control measure effects,” Epidemiology and Infection,
vol. 136, no. 3, pp. 299–308, 2008.

[31] Y.-H. Hsieh, Y.-S. Wang, H. de Arazoza, and R. Lounes,
“Modeling secondary level of HIV contact tracing: its impact
on HIV intervention in Cuba,” BMC Infectious Diseases, vol. 10,
no. 1, article 194, 2010.

[32] J. M. Hyman, J. Li, and E. A. Stanley, “Modeling the impact of
random screening and contact tracing in reducing the spread of
HIV,”Mathematical Biosciences, vol. 181, no. 1, pp. 17–54, 2003.

[33] B. Armbruster and M. L. Brandeau, “Contact tracing to control
infectious disease: when enough is enough,” Health Care Man-
agement Science, vol. 10, no. 4, pp. 341–355, 2007.

[34] G. P. Garnett and R. M. Anderson, “Contact tracing and the
estimation of sexual mixing patterns: the epidemiology of
gonococcal infections,” Sexually Transmitted Diseases, vol. 20,
no. 4, pp. 181–191, 1993.

[35] G. P. Garnett, K. J. Mertz, L. Finelli, W. C. Levine, and M. E. St.
Louis, “The transmission dynamics of gonorrhoea: modelling
the reported behaviour of infected patients from Newark, New
Jersey,” Philosophical Transactions of the Royal Society B, vol.
354, no. 1384, pp. 787–797, 1999.

[36] M.Kretzschmar, Y. T.H. P. vanDuynhoven, andA. J. Severijnen,
“Modeling prevention strategies for gonorrhea and chlamydia
using stochastic network simulations,”The American Journal of
Epidemiology, vol. 144, no. 3, pp. 306–317, 1996.

[37] D. S. Burke, J. M. Epstein, D. A. T. Cummings et al., “Individual-
based computational modeling of smallpox epidemic control
strategies,” Academic Emergency Medicine, vol. 13, no. 11, pp.
1142–1149, 2006.

[38] M. Eichner, “Case isolation and contact tracing can prevent the
spread of smallpox,”TheAmerican Journal of Epidemiology, vol.
158, no. 2, pp. 118–128, 2003.



Computational and Mathematical Methods in Medicine 15

[39] E. H. Kaplan, D. L. Craft, and L. M. Wein, “Analyzing bioterror
response logistics: the case of smallpox,” Mathematical Bio-
sciences, vol. 185, no. 1, pp. 33–72, 2003.

[40] T. C. Porco, K. Holbrook, S. E. Fernyak, D. Portnoy, R. Reiter,
and T. J. Aragón, “Logistics of community smallpox control
through contact tracing and ring vaccination: a stochastic
network model,” BMC Public Health, vol. 4, article 34, 2004.

[41] S. Riley and N. M. Ferguson, “Smallpox transmission and
control: spatial dynamics in Great Britain,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 103, no. 33, pp. 12637–12642, 2006.

[42] R. Shrestha-Kuwahara, M. Wilce, N. DeLuca, and Z. Taylor,
“Factors associated with identifying tuberculosis contacts,”
International Journal of Tuberculosis and Lung Disease, vol. 7,
no. 12, supplement 3, pp. S510–S516, 2003.

[43] R. J. Asghar, D. E. Patlan, M. C. Miner et al., “Limited utility of
name-based tuberculosis contact investigations among persons
using illicit drugs: results of an outbreak investigation,” Journal
of Urban Health, vol. 86, no. 5, pp. 776–780, 2009.

[44] N. N. Bock, J. P. Mallory, N. Mobley, B. DeVoe, and B. B.
Taylor, “Outbreak of tuberculosis associated with a floating
card game in the rural south: lessons for tuberculosis contact
investigations,” Clinical Infectious Diseases, vol. 27, no. 5, pp.
1221–1226, 1998.

[45] L. K. Fitzpatrick, J. A. Hardacker, W. Heirendt et al., “A
preventable outbreak of tuberculosis investigated through an
intricate social network,”Clinical Infectious Diseases, vol. 33, no.
11, pp. 1801–1806, 2001.

[46] C. T. Bauch, “Imitation dynamics predict vaccinating
behaviour,” Proceedings of the Royal Society B, vol. 272,
no. 1573, pp. 1669–1675, 2005.

[47] C. T. Bauch and D. J. D. Earn, “Vaccination and the theory of
games,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 101, no. 36, pp. 13391–13394, 2004.

[48] C. T. Bauch, A. P. Galvani, and D. J. D. Earn, “Group interest
versus self-interest in smallpox vaccination policy,” Proceedings
of the National Academy of Sciences of the United States of
America, vol. 100, no. 18, pp. 10564–10567, 2003.

[49] G. B. Chapman, M. Li, J. Vietri et al., “Using game theory to
examine incentives in influenza vaccination behavior,” Psycho-
logical Science, vol. 23, no. 9, pp. 1008–1015, 2012.

[50] F. Chen, “A mathematical analysis of public avoidance behavior
during epidemics using game theory,” Journal of Theoretical
Biology, vol. 302, pp. 18–28, 2012.

[51] A. P. Galvani, T. C. Reluga, and G. B. Chapman, “Long-standing
influenza vaccination policy is in accord with individual self-
interest but not with the utilitarian optimum,” Proceedings of the
National Academy of Sciences of theUnited States of America, vol.
104, no. 13, pp. 5692–5697, 2007.

[52] E. Shim, L. A. Meyers, and A. P. Galvani, “Optimal H1N1 vac-
cination strategies based on self-interest versus group interest,”
BMC Public Health, vol. 11, supplement 1, p. S4, 2011.

[53] S. Bhattacharyya and C. T. Bauch, “‘Wait and see’ vaccinating
behaviour during a pandemic: a game theoretic analysis,”
Vaccine, vol. 29, no. 33, pp. 5519–5525, 2011.

[54] J. Liu, B. F. Kochin, Y. I. Tekle, and A. P. Galvani, “Epidemio-
logical game-theory dynamics of chickenpox vaccination in the
USA and Israel,” Journal of the Royal Society Interface, vol. 9, no.
66, pp. 68–76, 2012.

[55] T. C. Reluga and A. P. Galvani, “A general approach for pop-
ulation games with application to vaccination,” Mathematical
Biosciences, vol. 230, no. 2, pp. 67–78, 2011.

[56] E. Shim, G. B. Chapman, and A. P. Galvani, “Decision making
with regard to antiviral intervention during an influenza pan-
demic,” Medical Decision Making, vol. 30, no. 4, pp. E64–E81,
2010.

[57] E. Shim, J. J. Grefenstette, S. M. Albert, B. E. Cakouros, andD. S.
Burke, “A game dynamicmodel for vaccine skeptics and vaccine
believers: measles as an example,” Journal ofTheoretical Biology,
vol. 295, pp. 194–203, 2012.

[58] E. Shim, B. Kochin, and A. Galvani, “Insights from epidemi-
ological game theory into gender-specific vaccination against
rubella,” Mathematical Biosciences and Engineering, vol. 6, no.
4, pp. 839–854, 2009.

[59] T. C. Porco, D. Gao, J. C. Scott et al., “When does overuse of
antibiotics become a tragedy of the commons?” PLoS ONE, vol.
7, no. 12, Article ID e46505, 2012.

[60] T. C. Reluga, “Game theory of social distancing in response
to an epidemic,” PLoS Computational Biology, vol. 6, no. 5, p.
e1000793, 2010.

[61] B. Morsky and C. T. Bauch, “outcome inelasticity and outcome
variability in behaviour-incidence models: an example from
an SEIR infection on a dynamic network,” Computational and
MathematicalMethods inMedicine, vol. 2012, Article ID 652562,
11 pages, 2012.

[62] A. Perisic and C. T. Bauch, “Social contact networks and disease
eradicability under voluntary vaccination,”PLoSComputational
Biology, vol. 5, no. 2, Article ID e1000280, 2009.

[63] C. R.Wells, J. M. Tchuenche, L. A. Meyers, A. P. Galvani, and C.
T. Bauch, “Impact of imitation processes on the effectiveness of
ring vaccination,” Bulletin of Mathematical Biology, vol. 73, no.
11, pp. 2748–2772, 2011.

[64] F. Ball, D. Mollison, and G. Scalia-Tomba, “Epidemics with two
levels of mixing,”The Annals of Applied Probability, vol. 7, no. 1,
pp. 46–89, 1997.

[65] N. G. Becker, “The effect of household distribution on trans-
mission and control of highly infectious diseases,”Mathematical
Biosciences, vol. 127, no. 2, pp. 207–219, 1995.

[66] R. M. Anderson and R. M. May, Infectious Diseases of Humans.
Dynamics and Control, Oxford University Press, Oxford, UK,
1991.

[67] P. Bremaud,Markov Chains: Gibbs Fields, Monte Carlo Simula-
tion, and Queues, Springer, New York, NY, USA, 1999.

[68] B. Schneier, Applied Cryptography, John Wiley & Sons, New
York, NY, USA, 2nd edition, 1996.

[69] J. R. Norris, Markov Chains, Cambridge University Press,
Cambridge, UK, 1997.

[70] C. T. Bauch and S. Bhattacharyya, “Evolutionary game theory
and social learning can determine how vaccine scares unfold,”
PLoS Computational Biology, vol. 8, no. 4, Article ID e1002452,
2012.

[71] C. T. Bauch, S. Bhattacharyya, and R. F. Ball, “Rapid emer-
gence of free-riding behavior in new pediatric immunization
programs,” PLoS ONE, vol. 5, no. 9, Article ID e12594, 2010.

[72] M. L. Ndeffo Mbah, J. Liu, C. T. Bauch et al., “The impact of
imitation on vaccination behavior in social contact networks,”
PLoS Computational Biology, vol. 8, no. 4, Article ID e1002469,
2012.

[73] E. Shim, G. B. Chapman, J. P. Townsend, and A. P. Galvani,
“The influence of altruism on influenza vaccination decisions,”
Journal of the Royal Society Interface, vol. 9, no. 74, pp. 2234–
2243, 2012.



16 Computational and Mathematical Methods in Medicine

[74] H. A. Simon, “Rational choice and the structure of the environ-
ment,” Psychological Review, vol. 63, no. 2, pp. 129–138, 1956.

[75] H.Wasswa, “Uganda gears up to contain Ebola,” BritishMedical
Journal, vol. 345, article e5210, 2012.

[76] E. J. Emanuel, “The lessons of SARS,” Annals of Internal
Medicine, vol. 139, no. 7, pp. 589–591, 2003.

[77] J. A. Rhyne, “Likely ethical, legal, and professional challenges
physicians will face during an influenza pandemic,” North
Carolina Medical Journal, vol. 68, no. 1, pp. 51–53, 2007.




