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Abstract

Nonlinear optical signals in the condensed phase are often accompanied by se-

quences of lower-order processes, known as cascades, which share the same phase

matching and power dependence on the incoming fields and are thus hard to distin-

guish. The suppression of cascading in order to reveal the desired nonlinear signal has

been a major challenge in multidimensional Raman spectroscopy, i.e., the χ
(5) signal

being masked by cascading signals given by a product of two χ
(3) processes. Since cas-

cading originates from the exchange of a virtual photon between molecules, it can be

manipulated by performing the experiment in an optical microcavity. Using a quantum

electrodynamical (QED) treatment we demonstrate that the χ
(3) cascading contribu-

tions can be greatly suppressed. By optimizing the cavity size and the incoming pulse

directions, we show that up to ∼99.5% suppression of the cascading signal is possible.

Multidimensional nonlinear optical spectroscopy provides a wealth of information beyond

linear techniques, which can only access the single-excitation spectrum. Multidimensional
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Raman spectroscopy is an effective tool for studying molecular vibrations and offers a finger-

print by which molecules can be identified. However, a many-body effect known as cascading

often contaminates Raman spectra in condensed phases and has been the main obstacle in

the development of multidimensional Raman spectroscopy.1–3 Various techniques for sepa-

rating out these processes have been developed.1,4–7 Recently a microscopic QED treatment

of cascading was developed which connects it to virtual photon exchange between molecules

and was applied to various sample geometries.8,9 A host of other effects owe their origin to

the quantum nature of the electric field. These include local-field effects,9–12 dipole-dipole

coupling,13,14 the Lamb shift,15 induced nonlinearities,16,17 spontaneous quantum synchro-

nization,18 and superradiance.19,20 Some of these also posses signatures of cooperativity.

Cascading is however different since the virtual photons are not detected and material reso-

nances are not shifted.

The fifth-order Raman technique uses two pulses. The first creates a vibrational coherence

via a Raman process and the second transfers this coherence to another vibrational mode,

via another Raman process. The system is finally probed by the transmission of a third

pulse after a second variable delay. Fifth-order Raman spectroscopy is a two-dimensional

technique that involves two controllable time delays. Cascading occurs when one molecule

in the sample serves as a source for inducing the polarization of another molecule. This

generates a contribution to the signal that comes as a χ(3)χ(3) on top of the desired χ(5)
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signal, in that the phase matching given by each lower-order susceptibility in cascading

combines to give the same phase-matching condition as the direct χ(5) process. For example,

in one type of six-wave mixing process, light with wavevectors k1, k2 and k3 interact with

one molecule via a χ(3) process to produce a field with kv = k3 − k2 + k1 and the kv-field

together with externally-applied fields k4, k5 interact with another molecule via a second χ(3)

event to produce the signal along the detecting direction ks = k5 − k4 + kv. This cascading

signal thus comes in the same direction as the direct signal ks = k5−k4+k3−k2+k1. The

same argument applies to other choices of signs of kj ’s as well as for repeated interactions

with fewer pulses. Cascading obscures the isolation of the desired χ(5) signal1–4,21,22 and

initial fifth-order Raman experiments in molecular liquid were plagued by cascades.1,3,4,22–28

It took several years to recognize the problem of finding out how to eliminate cascading.29–34

Recent progress in the fabrication of microcavities offers new opportunities for creating

dressed matter-photon states known as polaritons. This could lead to entirely new opti-

cal properties which significantly modify the chemical landscape35–37 and molecular prop-

erties.38–40 For example, the relaxation dynamics of CO-stretching in W(CO)6 has been

modified by strong light-matter coupling, in the pump-probe infrared spectrum.41 It has

also been reported that ground-state chemical reactions and photochemical reactivity were

significantly slowed down by a cavity.36,42

In this article, we demonstrate how cascading processes in fifth-order Raman signals can

be manipulated by placing the molecules in an optical microcavity. Intuitively, the coupling

of molecules to photons is governed by the mode density of photons, which can be altered

in a cavity. Microcavties could thus be used to control the cascading processes. In samples

larger than the wavelength of light, the phase-matching condition sets the wavevector of

cascading mode and the cavity could be taylored to suppress the density of states at this

mode. We explore the relation between cavity geometry and the magnitude of the cascading

terms relative to the direct process. We estimate that the cascading signal in the visible

regime can realisticaly be suppressed by 60% ∼ 95% with ∼99.5% suppression a theoretical
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possibility.

We consider a homogeneous sample containing N identical molecules in an optical cavity.

Each molecule has ground and single-excited electronic levels, accompanied by vibrational

manifolds. In a Fabry-Perot cavity, where two mirrors are placed in longitudinal z-direction

with distance L to access the confinement as shown in Fig. 1(top), the vacuum modes are

quantized with the dispersion relation ωn(k⊥) = c

√

|k⊥|2 +
n2π2

L2 with k⊥ the wavevector in

the transverse x, y-direction and n = 1, 2, 3, · · · denoting the standing wave modes along the

z-direction. The material Hamiltonian reads

HM =

N
∑

a=1

( Dg
∑

i=1

ε(i)g |g
(a)
i 〉〈g

(a)
i |+

De
∑

j=1

ε(j)e |e
(a)
j 〉〈e

(a)
j |

)

, (1)

where |g
(a)
i 〉 and |e

(a)
i 〉 are the ith vibrational excitations of the electronic ground and excited

states of molecule a respectively while Dg and De are the dimensions of the ground and

excited vibrational manifolds (the molecules are assumed identical). The photon Hamiltonian

is

HR =
∞
∑

n=1

∑

k⊥,λ

~ωn(k⊥)a
(λ),†
n,k⊥

a
(λ)
n,k⊥

, (2)

where a
(λ)
n,k⊥

is the annihilation operator of the cavity photons and λ denotes the photon

polarization. The molecule-photon interaction is of the dipolar form HMR =
∑N

a=1Pa ·

E(ra, t) with Pa = ǫ̂
(a)
M (V ++V −) being the dipole moment of molecule a and E is the electric

field of the radiation in cavity. V − =
∑

g,e µge|g
(a)〉〈e(a)|, V + ≡ (V −)†. With multimode

expansion of the electric field, the molecule-photon interaction can be written as

HMγ =

N
∑

a=1

∑

k⊥,λ

∞
∑

n=1

(

ǫ̂
(a)
M · ǫ̂(λ)(k⊥)

)

√

2πωn

Ω
sin
(nπza

L

)

(

V + + V −
)

×
(

a
(λ)
n,k⊥

ei(k⊥·ra−ωnt) + a
(λ),†
n,k⊥

e−i(k⊥·ra−ωnt)
)

,

(3)
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where ǫ̂(λ)(k⊥) is the polarization vector of the electric field and Ω stands for the cavity

volume.

We shall calculate the photon counting signal: S = dN
dt

= Im[
∑N

a=1

∫

dtE∗
s (ra, t)〈V̂L(t)〉]

where VL denotes the transition dipole and is the superoperator acting from the left: V̂Lρ ≡

V ρ. In general, the fifth-order off-resonant Raman signal is induced by five pumping pulses

with wave vectors kj; j = 1, 2, 3, 4, 5 and one heterodyne probe with wave vector ks, as shown

in Fig. 1. The signal depends on two time delays T2, T4 as illustrated in Fig. 1(bottom),

making this fifth-order Raman signal a two-dimensional technique. Pulses k1 and k2 are

centered at τ̄1 while the k3-, k4-pulses come at τ̄3 and k5-, ks-pulses are centered at τ̄5

(τ̄2 ≡ τ̄1, τ̄4 ≡ τ̄3). Thus the two delays are T2 = τ̄3 − τ̄1, T4 = τ̄5 − τ̄3. The dipolar

field-matter interaction is given by Hint =
∑N

a=1Pa · E(ra, t), with the optical electric field

consisting of several pulses

E(r, t) =

5
∑

j=1

ǫ̂j

(

Ej(t− τ̄j)e
i(kj ·r−ωj(t−τ̄j )) + E∗

j (t− τ̄j)e
−i(kj ·r−ωj(t−τ̄j ))

)

(4)

and the envelope Ej(t − τ̄j) of the j-th pulse centered at time τ̄j with carrier frequency ωj

and wavevector kj . The 2D fifth-order Raman signal takes the form of Aχ(5) + Bχ(3)χ(3)

where the first term originates from the direct Raman process since it takes place at the

single molecule, and the second term is attributed to cascading. The direct Raman signal is

then given by

Sr(T4, T2) = Im

[ N
∑

a=1

∫

dt (ǫ̂s · ǫ̂
(a)
M )Tr

(

Es(ra, t)VL(t)e
− i

~

∫ t

−∞
Hint,−(τ)dτρ(−∞)

)

]

(5)

where Hint,−(t) = [Hint(t), ∗]. Obviously, the direct Raman signal scales as N . Substituting

Eq. (4) into Eq. (5) and taking the macroscopic limit
∑

a → N
Ω

∫

d3r, we finally obtain the
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fifth-order Raman signal

S(5)
r (T4, T2) =−

4π2N

~5Ω

∑

g,g′,g′′

∑

e,e′,e′′

µgeµg′eµg′e′µge′µg′′e′µg′′e′′

× µge′′Lδ
(2)(k⊥

s − k⊥
3 )e

i∆kzL
sin∆kzL

2
∆kzL

2

Mee′e′′

gg′g′′(T4, T2),

(6)

where ∆kz = kz
s − kz

3 is the overall phase mismatching and L is the cavity length . The form

of Mee′e′′

gg′g′′(T4, T2) is given in Eq. (9) in Supporting Information (SI).

θ2

θ3

z

k1,2

k3,4

k5

ks

Cavity

T2
T4

3

4

1

2

5

s

1 2 3

Figure 1: (Top) Molecular ensemble interacting with vacuum modes confined in Fabry-Perot
microcavity. The photons are confined in the z-direction; (Bottom) Pulse sequence of fifth-
order Raman spectra.

Using Eq. (3), the cascading signal calculated to 2nd order in the exciton-photon coupling

is

Sc = −Im

[ N
∑

a,b=1

∫

dt

∫ t

−∞

dτ

∫ τ

−∞

dτ ′E∗
s (ra, t)〈V+(t)V−(τ)〉a〈V+(τ

′)〉b〈Eγ,+(ra, τ)Eγ,−(rb, τ
′)〉0

]

(7)

As illustrated by the loop diagrams in Fig. 2, the fifth-order expansion of Eq. (7) leads
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to two types of cascading processes. One is the sequential cascading with phase matching

k⊥
s = k⊥

5 ± k⊥
4 ∓ k⊥, k⊥ = k⊥

3 ∓ k⊥
2 ± k⊥

1 and the other is the parallel cascading with phase

matching k⊥
s = ∓k⊥

4 ±k⊥
3 +k⊥, k⊥ = k⊥

5 ±k⊥
2 ∓k⊥

1 , where ⊥ denotes the perpendicular x, y-

direction. The overall fifth-order Raman signal is collected along the following directions:

k(1)
s = k5+k4−k3+k2−k1, k

(2)
s = k5+k4−k3−k2+k1, k

(3)
s = k5−k4+k3+k2−k1, k

(4)
s =

k5−k4+k3−k2+k1. The sequential and parallel cascades in the cavity can be obtained by

substituting the external pulses Eq. (4) into the cascading signals in Eq. (7) and taking the

time-ordering into account. The cascading signals with arbitrary choices of kj ; j = 1, 2, 3, 4, 5

of incoming pulses are given in SI. Here we will show the results for k2 = k1, k4 = k3, as

done in the experiments for liquid CS2.
1 The sequential and parallel cascades then take the

compact form

+

s

3

2

Figure 2: Loop diagrams for the sequential and parallel cascades. Black solid and blue wavy
arrows stand for the pulses and vacuum modes confined in cavity, respectively; (Bottom
right) The vibronic two-level scheme.
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S
(5),sq
c,ks=k3

(T4, T2) = −
256π6N2

~5Ω2

∑

g1,g
′

1

∑

g2,g
′

2

∑

e1,e
′

1

∑

e2,e
′

2

µg1e1µg′
1
e1µg′

1
e′
1
µg1e

′

1
µg2e2µg′

2
e2µg′

2
e′
2
µg2e

′

2

×
∞
∑

m=1

∑

k⊥

ωm

Ω

(

δ(2)(k⊥
2 − k⊥)

)2 m2π2L2

(∆kz
sqL± 2mπ)2

(

sin
∆kzsqL

2
∆kzsqL

2

)2

×Qm
g1g

′

1
e1e

′

1

(T4, T2)

S
(5),pr
c,ks=k3

(T4, T2) =
512π6N2

~5Ω2

∑

g1,g
′

1

∑

g2,g
′

2

∑

e1,e
′

1

∑

e2,e
′

2

µg1e1µg′
1
e1µg′

1
e′
1
µg1e

′

1
µg2e2µg′

2
e2µg′

2
e′
2
µg2e

′

2

×
∞
∑

m=1

∑

k⊥

ωm

Ω

(

δ(2)(k⊥
3 − k⊥)

)2 m2π2L2

(∆kz
prL± 2mπ)2

(

sin
∆kzprL

2
∆kzprL

2

)2

× Y m
g1g

′

1
e1e

′

1

(T4, T2)

(8)

where ∆kz
sq = kz

2 ∓
mπ
L

and ∆kz
pr = kz

3 ∓
mπ
L

are the intermediate phase mismatch in the

longitudinal direction for sequential and parallel cascades, respectively while Qm
g1g

′

1
e1e

′

1

(T4, T2)

and Y m
g1g

′

1
e1e

′

1

(T4, T2) are given in SI to avoid redundancy since the cavity-induced control of

cascading signals is dictated by the prefactors in front of Q and Y . Since the modes in

perpendicular direction are not quantized, the conditions k⊥ ≃ k⊥
2 and k⊥ ≃ k⊥

3 can always

be satisfied, which leads to the control of cascades by the longitudinal phase mismatch in

the prefactor in Eq. (8). Thus, the photon frequencies are ωsq
m = c

√

k2
2sin

2θ2 +
m2π2

L2 and

ωpr
m = c

√

k2
3sin

2θ3 +
m2π2

L2 , where θ2, θ3 are the incident angles of k2, k3-pulses with respect

to the longitudinal z-direction as illustrated in Fig. 1(top).

The cavity length L must be comparable with the pulse wavelength, namely, 0.2π
k2

. L .

20π
k2

for sequential and 0.2π
k3

. L . 20π
k3

for parallel cascades. This is due to the fact that

the density of vacuum modes cannot be considerably altered when L ≫ max
(

2π
k2
, 2π
k3

)

, which

reduces to the free-space case without a avity. We will first discuss the regime 0.2π
k2

. L . 2π
k2
,

0.2π
k3

. L . 2π
k3

where case the photon frequency is

ωsq
m ∼ ck2

√

sin2θ2 +
m2

4
, ωpr

m ∼ ck3

√

sin2θ3 +
m2

4
(9)

which leads to the estimation of the contributing vacuum modes: 1 ≤ m . 2, owing to the
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resonant condition ωsq
m , ωpr

m ∼ ωeg ≃ ckj , j = 1, 2, 3. In the visible regime with wavelength

400 ∼ 700nm, the length L of the cavity is 40nm . L . 400nm. According to the sinc-

function sin2x
x2 in Eq.(8), the & 50% suppression of the cascades results in

∣

∣k2|cosθ2| −
mπ
L

∣

∣ &

3
L
, which gives rise to the range of the angle

|cosθ2| .
π − 3

k2L
, |cosθ3| .

π − 3

k3L
(10)

For L ≃ 100nm and λvis ≃ 600nm, the incident angles of k2, k3-pulses can be estimated

as 80o . θ2 . 110o, 80o . θ3 . 110o. This indicates that one can observe the cavity-

induced suppression rate of & 50% for cascades in the visible spectrum when orientating

the k2, k3 pulses along the direction with 80o . θ2 . 110o, 80o . θ3 . 110o. Furthermore

the maximum suppression rate of ∼ 60% by microcavities is accessible when the signal is

collected along the perpendicular direction with θ2, θ3 = 90o.

We next consider a different scenario where the cavity length L is larger than the wave-

length of the pulses, specifically, L ∼ 2pπ
ki
, i = 2, 3 and 1 . p . 10. In this case, the

frequencies of the vacuum photons for squential and parallel cascades are

ωsq
m ≃ ck2

√

sin2θ2 +
m2

4p2
, ωpr

m ≃ ck3

√

sin2θ3 +
m2

4p2
(11)

which gives rise to the estimation of the contributing vacuum modes: 1 ≤ m . 2p, owing

to the resonant condition ωsq
m , ωpr

m ∼ ωeg ≃ ckj, j = 1, 2, 3. Based on the property of the

sinc-function in the prefactor in Eq.(8) the suppression of cascades with the ratio & 95%

demands |kiL|cosθi| −mπ| & 5 which leads to |cosθi| &
2pπ+5
kiL

. By setting L ≃ 2π
ki
(p + 1) we

obtain the estimated range for angle

|cosθi| &
p+ 5

2π

p+ 1
; i = 2, 3 (12)

For the situation when L ≃ 4π
ki

giving p ≃ 1 (i.e., λvis ≃ 500nm in visible spectrum,

9



L ≃ 1µm), only m = 1, 2 contribute to the summation over m in Eq.(8), which results in

the observation of & 95% suppression of cascades when the signal is collected along the

direction θ3 . 26o with the orientation θ2 . 26o of the k2-signal. It is worth noticing that a

∼ 99.5% suppression of cascades can be achieved when the k2- and k3-pulses are orientated

along the cavity axis (z-direction here) and kiL = 2(p+ 1)π, due to the fact that the upper

bound of the dimensionless prefactor of m = 1 term in the summation in Eq.(8) reads

π2

(4π−π)2
×

sin2 π
2

(2π−π
2
)2
≃ 0.005.

In conclusion we demonstrated that the cascading processes can be considerably sup-

pressed by controlling the size of microcavity and selecting the direction of the incoming

pulses. Our suppression scheme operates by altering the electromagnetic density of states

from its free-space value, in particular in the vicinity of third-order linear combinations of

incoming wavevectors (see discussion after Eq. (7)). A numerical estimation of the cav-

ity geometry for visible light shows that the cascading signal can be greatly suppressed, in

principle up to & 99.5%. Previously, the contamination of this intermediate process was

shown to be reduced by the design of polarization configurations, i.e., Dutch Cross, which

could achieve a suppression of four orders of magnitude.43,44 These existing designs could be

combined with a cavity-suppression scheme to overcome cascading in dense samples. Our

scheme also suggests further avenues for manipulation of the cascading processes by, e.g.,

using multiple, resonantly-coupled cavities rather than a single cavity or otherwise spatially

modulating the cavity structure. Our results may offer a new route to manipulating the

cascading processes, which plays an important role in multidimensional spectroscopy.
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