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Abstract
Methionine adenosyltransferase genes encode enzymes responsible for the biosynthesis of

S-adenosylmethionine, the principal biological methyl donor and precursor of polyamines

andglutathione.Mammaliancells express threegenes –MAT1A,MAT2A, andMAT2B –with

distinct expression and functions.MAT1A is mainly expressed in the liver andmaintains the

differentiated states of both hepatocytes and bile duct epithelial cells. Conversely,MAT2A

and MAT2B are widely distributed in non-parenchymal cells of the liver and extrahepatic

tissues. Increasing evidence suggests that methionine adenosyltransferases play signifi-

cant roles in the development of cancers. Liver cancers, namely hepatocellular carcinoma

and cholangiocarcinoma, involve dysregulation of all threemethionine adenosyltransferase

genes. MAT1A reduction is associated with increased oxidative stress, progenitor cell

expansion, genomic instability, and other mechanisms implicated in tumorigenesis. MAT2A/MAT2B induction confers growth

and survival advantage to cancerous cells, enhancing tumormigration. Highlighted examples from colon, gastric, breast, pancreas

and prostate cancer studies further underscore methionine adenosyltransferase genes’ role beyond the liver in cancer develop-

ment. In this subset of extra-hepatic cancers, MAT2A andMAT2B are induced via different regulatorymechanisms. Understanding

the role of methionine adenosyltransferase genes in tumorigenesis helps identify attributes of these genes that may serve as

valuable targets for therapy. While S-adenosylmethionine, and its metabolite, methylthioadenosine, have been largely explored

as therapeutic interventions, targets aimed at regulation of MAT gene expression and methionine adenosyltransferase protein–

protein interactions are now surfacing as potential effective strategies for treatment and chemoprevention of cancers.

Keywords: Chemoprevention, cholangiocarcinoma, colon cancer, hepatocellular carcinoma, methionine adenosyltransferase,

S-adenoylmethionine
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MAT genes and isoenzymes

MATs are an essential enzyme family that synthesize
S-adenosylmethionine (SAMe), the main methyl donor and
precursor in polyamine and glutathione synthesis.1 SAMe is
vital to the methylation of nucleic acids, phospholipids,

histones, biologic amines, and proteins; thus, changes in its

biosynthesis can profoundly affect cellular growth, differen-

tiation, and function. Recent data also suggest that MATs

play significant roles apart from SAMe synthesis, most nota-

bly, serving as transcription factors and co-factors, as well as

Impact statement
This review examines the role of methionine

adenosyltransferases (MATs) in human

cancer development, with a particular focus

on liver cancers in which all three MAT

genes are implicated in tumorigenesis. An

overview of MAT genes, isoenzymes and

their regulation provide context for under-

standing consequences of dysregulation.

Highlighting examples from liver, colon,

gastric, breast, pancreas and prostate

cancers underscore the importance of

understanding MAT’s tumorigenic role in

identifying future targets for cancer therapy.
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part of a scaffold complex implicated in cancer development

(see below).
Mammalian cells express three genes – MAT1A,

MAT2A, and MAT2B – with distinct expression and
functions. MAT1A is mainly expressed in the liver and
maintains the differentiated states of both hepatocytes
and bile duct epithelial cells.1,2 MAT1A encodes the cata-
lytic subunit a1, which forms a homo-dimer (MATIII) and
tetramer (MATI).3 Conversely, MAT2A and MAT2B are
widely distributed in non-parenchymal cells of the liver
and extrahepatic tissues. MAT2A encodes the catalytic a2
subunit found in MATII, predominates in fetal liver and is
replaced by MAT1A shortly after birth.4,5 MAT2B encodes
the regulatory subunit MATb, which regulates MATII activ-
ity by lowering its Km for methionine and its Ki for SAMe.6,7

MAT2B additionally encodes two major splicing variants,
V1 (same as MATb) and V2, which differs from V1 in
the first 20 amino acids at the N-terminus.8 Both MAT2B
variants regulate important processes apart from MATII
activity, as they interact with many proteins that affect
cell growth and signaling pathways (see below). MATI
and MATIII have higher Kms than MATII and are not feed-
back inhibited by SAMe. These differences in kinetic and
regulatory properties between theMAT isoenzymes allow a
marked increase in hepatic SAMe level after a high methi-
onine load.1 This is important, as the liver is the main site
of methionine catabolism, where half of daily intake is
converted to SAMe.1 Table 1 summarizes the three MAT
genes, isoenzymes, kinetic and regulatory properties of
the isoenzymes.

MAT gene regulation and dysregulation

All three MAT genes are regulated at transcriptional, post-
transcriptional and post-translational levels. This section
describes these regulatory mechanisms for each of the
human MAT genes in the normal setting and in cancers.
The following section describes the consequences of their
dysregulation.

MAT1A

Epigenetic mechanisms and transcription factors are
involved in MAT1A transcriptional regulation. In normal
liver, MAT1A is epigenetically upregulated by hyperacety-
lation and cytosine hypomethylation upstream of the
MAT1A transcription start site.9 Hypermethylation of the
MAT1A promoter is observed in hepatocellular carcinoma
(HCC) and cholangiocarcinoma (CCA).2,9,10 Methylation of
the coding region also reduces MAT1A transcription.11

Importantly, hypermethylation of the MAT1A promoter
and coding region was reported in patients with advanced
non-alcoholic fatty liver disease (NAFLD) with fibrosis
score 3–4, but not mild NAFLD.12

The MAT1A promoter contains consensus binding sites
for multiple transcription factors/co-factors that include:
glucocorticoid, interleukin-6 (IL-6), hepatocyte nuclear
factor (HNF), activator protein 1 (AP-1), CCAAT enhancer
binding protein (C/EBP), cyclic AMP response element
binding protein (CREBP), E2F, signal transducers and acti-
vators of transcription (STAT), c-MYC and v-MYB.13

Among these transcription factors, glucocorticoid and C/
EBP demonstrate positive regulation of human MAT1A
transcription.13,14 Recently, c-MYC, MAF BZIP transcrip-
tion factor G (MAFG), and c-MAF were shown to negative-
ly regulation the human MAT1A promoter.2 All three
proteins are upregulated in both HCC and CCA, and
repress MAT1A transcription by interacting at the
MAT1A promoter’s E-box region.2

Multiple factors downregulate MAT1A post-
transcriptionally. Binding of AU-rich RNA binding factor
(AUF1) to its 30- untranslated region negatively regulates
MAT1A mRNA.15 AUF1 expression is high in HCC and
fetal liver and falls during liver development, coinciding
with increasedMAT1A expression.15 Furthermore,MAT1A
mRNA level is downregulated by microRNAs (miRs) in
HCC.16,17 Preneoplastic liver lesions induced by 2-acetyla-
minofluorene injections in rats caused induction of miR-22
and miR-29b that inhibited Mat1a mRNA expression.16

MicroRNAs miR-485–3p, miR-495 and miR-664 are
induced in human HCC and all three negatively regulate

Table 1. Mammalian MAT genes and isoenzymes.

MAT gene

Protein

product MAT isoenzyme Regulatory subunit Km for methionine Ki for SAMe

MAT1A a1 MATI (tetramer)

MATIII (dimer)

None MATI: 23 mM–1 mM

MATIII: 210 mM
–7 mM

MATI: 400 mM
MATIII: none

MAT2A a2 Catalytic subunit of

MATII

Yes, both V1 and V2

regulate MATII by

lowering the Km for

methionine, V1

also lowers the Ki

for SAMe (V2 has

not been

examined)

4–10 mM 60 mM

MAT2B V1 (same as

b), V2
Regulatory subunit of

MATII

MAT: methionine adenosyltransferase.
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MAT1A mRNA directly.17 Reduced MAT1A expression
resulted in a lower nuclear SAMe level, hypomethylation
of the LIN28B promoter region and increased LIN28B
expression.17 Importantly, LIN28B is an oncogene that
exerts reciprocal regulation with Let-7, a tumor suppressor.
Blocking expression of these miRNAs recovers MAT1A
expression, functionally inhibits growth, induces apoptosis
in HCC cell lines, and inhibits HCC growth in vivo.17

Post-translationally, MATI/III is inactivated by covalent
modification of cysteine 121 either by oxidation or nitro-
sylation.1,18 This is observed in multiple liver diseases
and explains the fall in hepatic MAT activity. High GSH
level can reverse cysteine 121 covalent modification; how-
ever, GSH is often reduced in chronic liver disease leading
to a vicious feed-forward cycle. MATI/III can be phosphor-
ylated by protein kinase C,19 but this does not alter enzy-
matic activity.

MAT2A

MAT2A is expressed at low levels in normal adult liver, but
is induced during rapid liver growth and dedifferentia-
tion.1 Like MAT1A, MAT2A expression is regulated both
transcriptionally and post-transcriptionally. We identified
Sp1, c-MYB, nuclear factor-jB (NF-jB), and AP-1 as
participants in MAT2A transcriptional up-regulation in
HCC.20–22 Hypoxia-inducible factor factor-1a (HIF-1a), acti-
vated in HCC, binds to a consensus binding site in the
MAT2A promoter and activates transcription in hepatoma
cells.23 Hepatitis B X protein also activates MAT2A gene
transcription by facilitating NF-jB and CREB binding to
the MAT2A promoter, contributing to induction of
MAT2A in HBV-associated HCC.24 Promoter methylation
and histone acetylation also regulate human MAT2A
transcription.25,26

Post-transcriptionally, MAT2A mRNA level is regulated
by HuR and methylated-HuR.15 HuR is a ubiquitously
expressed mRNA binding protein known to stabilize
its target mRNAs, whereas methylated-HuR exerts the
opposite effect.15 Interestingly, during hepatocyte
de-differentiation and in HCC, there is a switch from
methylated-HuR to HuR binding of the 30-UTR of
MAT2A, resulting in increased MAT2A mRNA level.15

Several miRNAs also regulate MAT2A post-
transcriptionally. MiR-21–3p, induced by the anticancer
drug berberine, was shown to suppress MAT2A mRNA
level in HepG2 cells leading to growth arrest and apopto-
sis.27 Recently, both miR-34a and miR-34b were shown to
directly target the MAT2A 30UTR, downregulating MAT2A
expression in colon, prostate, and pancreas cancer cells.28

Both miR-34a and miR-34b are tumor suppressor miRNAs
and the former is downregulated in HCC,29 which may
contribute to MAT2A induction in HCC.

MATa2, the protein encoded by MAT2A, is also regulat-
ed via multiple post-translational modifications (PTMs).
MATa2 is stabilized by sumoylation at several lysine resi-
dues, K340, K372, and K394.30 Sumoylation also enhances
MATa2’s interaction with an important pro-survival
protein, B-cell lymphoma 2 (BCL-2), leading to BCL-2 sta-
bilization.30 Other HCC-relevant PTMs of MATa2 are

acetylation and ubiquitylation. MATa2 can be acetylated
at K81 by P300 (E1A binding protein), which promotes sub-
sequent ubiquitin protein ligase E3 component n-recognin
4-mediated ubiquitylation/degradation.31 Deacetylation
by histone deacetylase 3 (HDAC3) stabilizes MATa2.
Interestingly, folate deprivation upregulated MATa2
K81 acetylation, destabilized MATa2 and reduced cell
growth.31 In HCC, a decrease in MATa2 K81 acetylation is
associated with increased expression of HDAC3 compared
to normal tissue, underscoring relevance of this PTM to
liver cancer.31

MAT2B

Less is known about MAT2B regulation. At the transcrip-
tional level, tumor necrosis factor a (TNF-a) induces V1 or
MATb expression (but not V2) by mechanisms involving
AP-1 and NF-jB.8 In liver cancer cells, leptin increases,
while SAMe inhibits MAT2B promoter activity and expres-
sion via ERK and AKT signaling mechanisms.32 We also
demonstrated that sirtuin 1 (SIRT1) can activate MAT2B
transcriptionally.33 Post-transcriptionally, HuR stabilizes
MAT2B mRNA,33 whereas miR-21–3p directly targets
MAT2B 30UTR to destabilize its mRNA.27 At the protein
level, MATb stability is affected by several protein interac-
tions. MATb-MATa2 interaction is suspected to stabilize
these two proteins as overexpression of MAT2B raised
MATa2 levels.34 We confirmed this, as knockdown of
endogenous MAT2A or MAT2B lowered protein level of
the other in multiple human cancer cell lines.28 This finding
helps explain why these two proteins are often simulta-
neously induced. MATb also interacts with HuR and
SIRT1, and resveratrol enhances these interactions by
stabilizing them.33 Finally, both variants of MAT2B
also interact with G-protein-coupled receptor kinase-
interacting protein 1 (GIT1) to form a scaffold complex.
This interaction stabilizes all participants and activates
RAS-RAF-MEK-ERK signaling in liver and colon cancer
cells.35,36 Table 2 summarizes regulation and dysregulation
of the three MAT genes.

Consequences of MAT gene dysregulation

MAT1A

MAT1A expression and MATI/III activity falls in chronic
liver disease.1 Epigenetic hypermethylation of promoter
and coding regions is attributed to this decline in gene
expression and activity. This explains observed impairment
of methionine clearance and reduced hepatic GSH level in
liver disease patients, since MATI/III are largely responsi-
ble for methionine catabolism and SAMe is a key precursor
for liver GSH, respectively.1 In HCC, MAT1A is often
silenced and low MAT1A expression correlates with poor
prognosis.10,37 The Mat1a-knockout (KO) mouse model
(Mat1a-KO) has revealed consequences of chronic hepatic
SAMe deficiency and provided insight on how loss of
MAT1A can lead to HCC development. Mat1a-KO mice
have reduced hepatic SAMe and GSH levels, consistent
with what’s known about the kinetic and regulatory differ-
ences between the MAT isoenzymes and the importance of
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SAMe as a precursor of GSH in the liver.38 Although KO
livers appear normal at three months, liver weights are
greater and KO mice are sensitized to develop fatty liver
when challenged with a choline-deficient diet for six
days.38 KO mice have increased activity of the cytochrome
P450 2E1 (CYP2E1) enzyme, which facilitates release of
reactive oxygen species (ROS) during hepatotoxin metabo-
lism.39 On a normal diet, KO mice spontaneously develop
steatohepatitis by 8 months and HCC by 18 months.38,40

Mitochondrial dysfunction is also evident in Mat1a-KO
mice; MAT1A deficiency depletes the mitochondrial chap-
erone, prohibitin 1 (PHB1), leading to increased propensity
for injury, mitochondrial damage, and oxidative stress.41

While increased ROS sensitizes KO mice to liver injury,
multiple dysregulated pathways are implicated in HCC
development. These pathways include expansion of pro-
genitor cells, some of which are cancer stem cells in aging
KO mice,42 increased genomic instability due to decreased
protein level of apurinic/apyrimidinic endonuclease 1,43

and uncontrolled extracellular signal-regulated kinases
(ERK) activation due to decreased stability of dual-
specificity mitogen-activated protein kinases (MAPK)
phosphatase.44 Other pathways include: abnormal LKB1/
AMPK signaling, (which behaves as an oncogenic pathway
in liver),45,46 reduced protein level of PHB1 (a mitochondri-
al chaperone protein that may also function as a tumor
suppressor in hepatocytes and bile duct epithelial
cells),41,47 and increased expression of ubiquitin-
conjugating enzyme 9 (UBC9) (the sole E2 enzyme in
protein sumoylation that is often induced in cancer).48

Among these dysregulated pathways, restoration of hepat-
ic SAMe level normalized ERK activity and reduced UBC9
expression.44,48

Though SAMe deficiency may contribute to dysregula-
tion of many signaling pathways, we recently reported that
MATa1 can act as a transcription co-factor that interacts
with other E-box binding regulatory proteins, such as
c-MYC.2,47 We identified c-MYC, MAFG, c-MAF, MAX net-
work transcriptional repressor (MNT), PHB1, and MYC

associated factor X (MAX) as MATa1 interacting proteins
that differentially regulate gene expression at the E-box
(50-CACGTG-30), with c-MYC/MAFG/c-MAF serving as
E-box activators, and PHB1 and MATa1 as repressors.2,47

It is well known that c-MYC and MNTcompete for hetero-
dimerization with MAX for E-box binding in opposite
ways.49 Our recent studies demonstrated that MATa1 can
also heterodimerize with MAX, and bind to the E-box to
repress E-box-driven promoter activity.47 Interestingly,
while c-MYC possesses an E-box that acts as an enhancer
element, MAT1A has a repressor E-box. Thus, MAT1A and
c-MYC exert reciprocal regulation against each other in part
through this mechanism.2 MAT1A can regulate gene
expression through epigenetics (i.e. LIN28B promoter
methylation mentioned above), but its repressive effect on
c-MYC expression occurs despite inhibition of DNA meth-
ylation or histone 3 lysine 27 trimethylation (H3K27me3, a
transcriptional repressor).2 This supports the notion that
MATa1 can also regulate gene expression as a transcription
co-factor (it is unable to bind to the E-box by itself), inde-
pendent of epigenetics. MAT1A is expressed at high levels
in normal hepatocytes and bile duct epithelial cells and is
repressed in CCA, where c-MYC, MAFG, and c-MAF are
induced. These changes favor c-MYC induction as well as
CCA proliferation because both effects are suppressed by
MAT1A overexpression.2 Together, loss of MAT1A can
result in altered liver signaling pathways due to chronically
low SAMe levels and/or loss of MATa1-regulated gene
expression, leading to development of liver pathology
including HCC and CCA.

MAT2A

In HCC, the fall inMAT1A expression is often accompanied
by MAT2A induction.10,50 Increased MAT2A expression
provides cancer cells a dual growth/survival benefit.
Due to kinetic differences and regulatory properties dis-
cussed above, a switch from MAT1A to MAT2A expression
results in lower steady state SAMe level and favors prolif-
erative signaling in the liver.50,51 Indeed, quiescent

Table 2. Regulatory mechanisms of human MAT genes and proteins.

MAT

gene

Expression pattern

in cancers

Transcriptional

regulation

Post-transcriptional

regulation

Post-translational

regulation

MAT1A Downregulated in hepa-

tocellular carcinoma

and

cholangiocarcinoma

Silenced by promoter and

coding region hyperme-

thylation; increased by

glucocorticoids and C/

EBP; downregulated by

c-MYC, MAFG and

c-MAF

Inhibited by AUF1, miR-485-

3p, miR-495, miR-664 by

binding to MAT1A 30-UTR

Inactivated by covalent

modification of cysteine

121, which can be

reversed by GSH

MAT2A Upregulated in liver,

colon, gastric, breast,

pancreas, prostate

cancers

Induced by promoter hypo-

methylation; increased by

Sp1, c-MYB, NF-jB, AP-
1, HIF-1a, and HBx; sup-

pressed by SAMe

Increased by HuR; inhibited

by methylated-HuR, miR-

21-3p, miR-34a, miR-34b

binding to MAT2A 30-UTR

Stabilized by sumoylation at

K340, 373, 394, and

interaction with MATb;
destabilized by acetyla-

tion at K81

MAT2B Upregulated in liver,

colon, pancreas and

prostate cancers

V1 (but not V2) is induced by

AP-1, NF-jB, and SIRT1;

inhibited by SAMe

Increased by HuR; inhibited

by miR-21-3p binding to

MAT2B 30-UTR

Stabilized by interaction with

MATa2 and GIT1

MAT: methionine adenosyltransferase.
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hepatocytes have high SAMe levels and a fall in SAMe level
is needed for hepatocyte proliferation in conditions such as
post-partial hepatectomy.1 SAMe’s inhibitory effect on
hepatocyte growth factor (HGF),52 required for liver regen-
eration, is one proposed mechanism that explains this
observation. However, in cancer cells where MAT1A is
not expressed, an increase in MAT2A crucially supplies
SAMe for polyamine biosynthesis.22 Similarly, silencing
MAT2A prevents leptin’s pro-survival signaling by
decreasing intracellular SAMe and limiting polyamine bio-
synthesis.32 Cross-talk between MAT2A and polyamine
biosynthesis also occurs in both liver and colon
cancer cells.22 Induction of MAT2A enhances polyamine
biosynthesis and growth, while increase in polyamines pro-
motes MAT2A transcription by a feed-forward mechanism
involving AP-1.22

IncreasedMAT2A expression can bestow a survival ben-
efit by enhancing BCL-2 expression.30 At least two mecha-
nisms are involved. First, MATa2 can act as a transcription
factor that directly binds to the BCL-2 promoter and acti-
vates promoter activity.30 Second, MATa2 can physically
interact with BCL-2 protein to enhance BCL-2 stability.30

These MATa2 mechanisms require sumoylation at critical
lysine residues, which stabilize MATa230 and may enhance
nuclear targeting and DNA trans-activating activity (topics
for future investigation). SUMO-stabilized MATa2 confers
chemo-resistance to liver and colon cancer cells by prevent-
ing apoptosis mediated by 5-fluorouracil (5-FU).30

Recently, we reported that increased MAT2A expression
in cancer cells enhances tumor migration and invasion.28

This is largely because increased MATa2 stabilizes MATb,
which we believe is the critical mediator in these processes.

MAT2B

As mentioned above, MAT2B and MAT2A expression often
simultaneously increase, which is unsurprising given their
frequent interaction and co-stabilizing effect.28 However,
other mechanisms may also be involved as their mRNA
levels are often altered in parallel (such as in HCC).8

Some of these shared mechanisms include AP-1 and NF-
jB, both transcription activators, and HuR, which stabilizes
both mRNAs.

Similar to MAT2A, increased MAT2B confers a growth
advantage; silencing either gene can lead to cancer cell apo-
ptosis.8,24 One of MAT2B’s effects on growth is attributed to
its ability to lower SAMe level to steady-state concentration
when overexpressed.53 More recent studies found MAT2B
regulates much more thanMATII enzyme activity. To better
understand the functions of MAT2B variants, we identified
their interactomes54 and functionally verified the impor-
tance of two of them in growth. First is the interaction
between MAT2B variants and HuR.54 We found that
when either of the MAT2B variants is overexpressed, cyto-
solic HuR content increased, leading to increased mRNA
levels of cyclin D1 and cyclin A (known targets of HuR) and
increased growth.54 The opposite occurred when MAT2B
variants were silenced.54 Second, the interaction between
MAT2B variants and GIT1 form a scaffold complex that
efficiently binds and activates MAPK components,

mitogen-activated protein kinase (MEK), and ERK.35,36

Silencing either MAT2BV1, V2, or GIT1 blocks ERK activa-
tion.35 In the classical MAPK activation pathway, signal
transduction from RAF kinases to MEK causes phosphory-
lation and activation.55 MAT2B variants-GIT1 complex acti-
vates and recruits C-RAF and B-RAF toMEK in liver cancer
cell lines, promoting MEK activation.36 B-RAF and C-RAF
also form homodimers and heterodimers that enhance
activity compared to monomeric states.56 The MAT2B
variants-GIT1 complex also induces heterodimerization
between B-RAF and C-RAF,36 thereby amplifying the
MEK signal. Finally, MAT2B variants interact, stabilize,
and activate RAS, located upstream of RAF kinases.36

Thus, the MAT2B variants-GIT1 complex interacts and acti-
vates all components of RAS-RAF-MEK-ERK signaling – a
pathway often dysregulated in cancers. Of note, the effects
of MAT2B variants on this signaling pathway occurred
independent of MATa2 in these studies, as the overexpres-
sion vectors used included a tag that prevents MATa2 inter-
action. While MAT2B variants can exert pro-tumorigenic
effect without MATa2, we suspect MATa2 requires MATb
to induce ERK (this warrants further investigation).

MAT genes in other cancers

Although most studies reportingMAT gene involvement in
cancer focus on liver, there are increasing reports that
MAT2A andMAT2B are also dysregulated in other cancers,
namely: colon, gastric, breast, pancreatic, and prostate
cancer.

In colon cancer, MAT2A mRNA levels and MATa2 pro-
tein levels are elevated, mirroring expression in liver
cancer.57 In contrast to liver cancer, however, MAT2B
mRNA levels remain unchanged but protein levels are
increased.35,57 Four signaling pathways are recognized in
colorectal carcinogenesis: Wnt, K-RAS, transforming
growth factor b, and p53,58 with mutations in these path-
ways leading to inactivation of tumor suppressor function
or activation of proto-oncogenes. Additionally, epidermal
growth factor (EGF), insulin-like growth factor-1 (IGF-1),
and leptin are three well-known growth factors implicated
in colon cancer growth and invasion.59,60 All three growth
factors induce MAT2A gene expression through transcrip-
tional up-regulation, and promote growth by via endoge-
nous production of SAMe and polyamines; exogenous
SAMe and its metabolite methylthioadenosine (MTA) pre-
vent MAT2A induction by these growth factors.57 Mitogens
such as IGF-1 are thought to up-regulate MAT2A expres-
sion at the transcriptional level, through increased binding
of transcription factors to enhancer elements including AP-
1 and NF-jB.61

There are shared pathways in which MAT2A is impli-
cated in both colon and liver carcinogenesis. Crosstalk
between MAT2A and polyamines, as well as BCL-2 regula-
tion occurs in both colon and liver cancer cells. Similarly,
there are significant parallels betweenMAT2B’s role in liver
and colon cancer. MAT2B and GIT1 are over-expressed in
both cancers, and regulate RAS-RAF-MEK-ERK signaling
similarly in both cell types.35,36 Mutations in this signaling
pathway are well known in many cancers, and targeting
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RAS-RAF-MEK-ERK has been the subject of intense
research.62

MAT2A upregulation also occurs in gastric cancer.
MAT2A mRNA levels are significantly higher in gastric
cancer patients than in corresponding non-tumor tissues
and are correlated with high tumor classification indicating
lymph node metastasis and poor tumor differentiation.63

Studies also describe the effect of SAMe on c-MYC,
H-RAS and tumor-suppressor gene p16 (INK4a) promoter
methylation, as well as gastric cancer cell inhibition. SAMe
treatment led to heavy promoter methylation, which con-
sequently downregulated mRNA and protein levels, and
prevented gastric cancer growth63 pointing to SAMe sup-
plementation as an attractive therapeutic approach.

Like gastric cancer, tamoxifen-resistant breast cancer tis-
sues (TAMR-MCF-7 cells) exhibited increased basal expres-
sion of MAT2A compared to MCF-7 control cells. This was
also observed in tamoxifen-resistant human breast cancer
tissues compared to tamoxifen-responsive cells. Increased
transcription factors NF-jB, AP-1, and NRF2 in cell lines
may be attributed to these observations.64 Furthermore, the
effect of SAMe appears to depend on whether it is
increased endogenously (i.e. via increased MAT2A expres-
sion) or given in pharmacologic amounts. One study
showed that a 30% increase in endogenous SAMe level
found in TAMR-MCF-7 cells correlated with hypermethy-
lation of the tumor suppressor phosphatase and tensin
homolog (PTEN) and reduced PTEN expression that facil-
itated growth65; however, exogenous SAMe (200–500mM,
more than 10 times physiological level) induces autophagy
and apoptosis inMCF-7 cell lines, respectively.66 This seem-
ingly contradictory finding can be explained by whether
SAMe is varied physiologically or pharmacologically (see
below).

The role of MAT genes and SAMe in pancreatic cancer is
not well-studied. Interestingly, outside the liver, MAT1A is
highly expressed in pancreatic acinar cells67; however,
Mat1a KO mice do not develop pancreatic cancer (Lu SC,
unpublished observation). In severe necrotizing pancreati-
tis models, SAMe levels are 50% decreased and MAT1A
protein levels are post-translationally diminished, while
MAT2A expression is induced.67 Recently, we found
MAT2A and MAT2B proteins are overexpressed in pancre-
atic cancer and overexpressing MAT2A induced migration
of pancreatic cancer cells, likely due to enhancing MAT2B
protein stability and activating ERK.28 Like colon cancer,
miR-34a expression is often downregulated in pancreatic
cancer.68 MAT2A is directly targeted by miR-34a (and
miR-34b) to suppress expression and indirectly lower
MAT2B protein level by stability reduction.28

In prostate cancer, miR-34a expression is also downre-
gulated, facilitating cancer metastasis via miR-34a suppres-
sion of cancer stemness.69 We confirmed that miR-34a and
miR-34b also negatively regulate MAT2A and MAT2B at
the protein level in prostate cancer cells and overexpressing
MAT2A enhanced cancer migration.28 Consistently, both
MAT2A and MAT2B are induced in prostate cancer
specimens.28

MAT2A andMAT2B are key targets of miR-34a andmiR-
34b. This is supported by evidence that miR-34a and miR-

34b overexpression has minimal to no effect on cancer cell
growth, migration, or invasion when either MAT2A or
MAT2B is overexpressed.28 This strengthens support for
targeting MAT proteins in cancer treatment development.
Table 3 summarizes consequences of MAT genes
dysregulation.

Targeting MAT genes in cancer therapeutics

As our understanding of MAT genes and SAMe’s role in
cancer pathogenesis evolves, increasing ideas for potential
therapeutic interventions surface. Over two decades of
research supports SAMe’s role as a potential chemopreven-
tive agent for HCC, and emerging evidence now supports
its role in treatment of extra-hepatic malignancies.
Additionally, work over the last few years has elucidated
the role of MAT1A, MAT2A and MAT2B in tumorigenesis
and identifying these genes as valuable targets for cancer
therapeutic research and development. This section sum-
marizes the role of SAMe in this context and emerging
approaches that target MAT genes in cancer therapeutics.

SAMe as a chemopreventive and/or therapeutic agent

As previously mentioned, in human HCC, the MAT1A to
MAT2A switch is accompanied by increased MAT2B
expression, associated with lower SAMe levels and faster
growth.1 Interestingly, SAMemaintains MAT1A expression
and suppresses MAT2A and MAT2B expression.32,70

Table 3. Consequences of MAT genes dysregulation.

MAT

genes Consequences of dysregulation

MAT1A �Mat1a KO mice have hepatic SAMe and GSH deficiency,

increased oxidative stress, and spontaneous development

of NASH and HCC

�Dysregulated pathways include cancer stem cells, genomic

instability, sustained ERK activation, increased LKB1/

AMPK, and sumoylation

� Effects on gene expression:

◦MAT1A can regulate gene expression via epigenetics (i.e.

promoter methylation) and as a transcription co-factor

(i.e. heterodimerize with MAX, binds to the E-box and

represses E-box dependent genes, such as c-MYC)

MAT2A � Increased MAT2A expression confers cancer cell growth

advantage partly by enhancing polyamine biosynthesis,

which further induces MAT2A expression

�MAT2A overexpression confers cancer cell survival advan-

tage due to MATa2’s role as a transcription factor that binds

and activates the BCL-2 promoter

�MATa2 physically stabilizes BCL-2 which increases che-

moresistance to 5-FU in both liver and colon cancer cell

�MAT2A enhances cancer cell migration through stabilizing

MAT2B protein

MAT2B � Increased MAT2B expression:

◦Promotes tumor growth and metastasis

◦Promotes HuR cytosolic content, stabilizing many of its

targets that include cyclins to promote growth

◦MAT2B variants and GIT1 form a scaffold complex that

interacts and activates RAS-RAF-MEK-ERK signaling in

liver and colon cancer cells, promoting growth and

metastasis

MAT: methionine adenosyltransferase.
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TheMat1a-KOmouse model has clearly illustrated the mul-
titude of dysregulated pathways that favor HCC develop-
ment in the setting of chronic hepatic SAMe depletion.
Indeed, SAMe has demonstrated efficacy as a chemopre-
ventive agent against HCC rodent models in multiple stud-
ies.71–73 SAMe’s chemopreventative ability is attributed to
preventing proto-oncogene promoter hypomethylation in
these models, which results in gene induction. Using an
orthotopic HCC model where hepatic SAMe level is not
altered, however, SAMe dramatically inhibited tumor
establishment and growth suggesting other mechanisms
also participate, such as inhibiting angiogenesis and induc-
ing apoptosis of liver cancer cells.74 Interestingly, SAMe
treatment post-HCC development was ineffective in
tumor growth reduction.74 This phenomenon was attribut-
ed to compensatory induction of glycine N-methyltransfer-
ase (GNMT), the liver’s dominant methyltransferase, from
chronic SAMe administration, preventing hepatic SAMe
accumulation.74 Although hepatic SAMe level consistently
increased 10-fold following 24 h of intravenous administra-
tion, it was only 30% higher after 24 days of SAMe admin-
istration, which is not high enough to induce apoptosis (see
below).74 However, GNMT expression is often downregu-
lated in human HCC,75 so the verdict is still out whether
SAMe should be used therapeutically. One attractive fea-
ture of SAMe is that while it is pro-apoptotic in liver cancer
cells, it is anti-apoptotic in normal hepatocytes.76,77 The
minimum concentration required for SAMe to induce apo-
ptosis in liver cancer cells after 18 h is 0.5 mM (nearly 10-
fold higher than normal hepatic SAMe concentration),77,78

which explains why a 30% increase in hepatic SAMe level
did not result in tumor shrinkage.

SAMe versus MTA

Physiological variation and implications for pharmacologic
treatment are two important contexts in which we can
better understand differences between SAMe and MTA.
SAMe is unstable and spontaneously converts to MTA
(1.3% per hour at 37˚C, pH 7.0); thus, MTA may mediate
SAMe’s pharmacologic effect.57,79 Unlike SAMe, MTA is
highly stable, readily traverses the plasma membrane,
and inhibits both methylation and polyamine biosynthe-
sis.1 However, MTA can regenerate SAMe via the methio-
nine salvage pathway, which can be blocked with a MAT
inhibitor like cycloleucine.1 Thus, if the biological effect is
very rapid (so conversion toMTA is minimal), or associated
with an increase in methylation, and/or MTA’s effect is
blocked by cycloleucine, then SAMe is the active molecule.
On the other hand, if the outcome is not blocked by cyclo-
leucine or is associated with a fall in methylation, thenMTA
is the active molecule. This is illustrated by SAMe and
MTA’s inhibitory effect on lipopolysaccharide (LPS)-
induced expression of proinflammatory cytokines where
MTA was the active compound that blocked the LPS-
mediated increase in methylated histone 3 lysine 4
(H3K4) associated with these promoters.79 In contrast,
MTA’s ability to prevent the fall in Apurinic/
Apyrimidinic Endonuclease 1 (a critical protein involved
in DNA repair) protein level during culture of hepatocytes

was blocked by cycloleucine, which means MTA’s effect
was mediated by SAMe.43 InMat1a-KOmice, abnormalities
corrected after normalization of hepatic SAMe level with
supplemental administration suggest these are due to
SAMe deficiency as MTA levels are not affected in the KO
mice.38

Similar to SAMe, MTA also inhibits HCC cell growth
and prevents development of HCC in rats.71–73 In hepato-
ma cells, SAMe and MTA prevented leptin’s ability to
induce MAT2A and MAT2B, which are required for
growth.32

Both SAMe and MTA affect apoptosis. Interestingly,
both are anti-apoptotic in normal hepatocytes but pro-
apoptotic in liver cancer cells.76 They selectively induce
Bcl-xs, a pro-apoptotic protein, in liver cancer cells by
increasing alternative splicing of Bcl-x.77 SAMe and
MTA also induce apoptosis in colon cancer cells, but
not in NCM460 cell line – an immortalized cell line
derived from normal human colonocytes.80 The mecha-
nism of apoptosis is completely different from liver
cancer cells.81 SAMe and MTA lowered expression of cel-
lular FLICE inhibitory protein, an anti-apoptotic protein
that targets procaspase 8, and had no influence on Bcl-xS
expression.81

There is also substantial evidence to support SAMe’s
role as a potential chemopreventive agent in colon cancer.
Chronic inflammation is an underlying risk factor for
colon cancer, and mouse models demonstrate that TNF-
a plays a critical role in development of inflammation-
induced colon cancer.82,83 Like others, we have shown
that SAMe and MTA can reduce the LPS-mediated
increase in TNF-a and iNOS expression in mouse macro-
phages in vitro and mouse livers in vivo.79,84 In addition
to altering inflammation, both SAMe and MTA reduce
the mitogenic effects of IGF-1, EGF, and leptin in colon
cancer cells, as previously mentioned.57 In the colitis-
associated colon cancer models, treatment with SAMe
and MTA lowered total tumor load by suppressing mul-
tiple oncogenic pathways that include NF-jB activation,
IL-6 signaling, and b-catenin.85 The mechanism for low-
ering b-catenin was further examined in both colon and
liver cancer cells. SAMe and MTA excluded b-catenin
from the nuclear compartment in cells with constitutively
active b-catenin, but accelerated b-catenin degradation by
a glycogen synthase kinase 3-b-dependent mechanism in
cells with wild type b-catenin.86 This ability to suppress
b-catenin regardless of whether this pathway is aberrant-
ly induced further supports their use as chemopreventive
agents in cancers where aberrant b-catenin pathway is a
prominent feature. Recently, we showed that SAMe and
MTA can raise the expression of miR-34a and miR-34b
and prevent colon cancer liver metastasis in a mouse
model of metastatic colon cancer.28

SAMe in other cancers

In gastric cancer, SAMe treatment inhibits the growth of
gastric cancer cell lines, SGC-7901 and MKN-45, and signif-
icantly decreased mRNA expression of c-MYC and uroki-
nase type plasminogen activator (uPA).63 These studies

Maldonado et al. MAT genes in cancers 113
...............................................................................................................................................................



were confirmed using in vivo xenograft experiments.63

In breast cancer cell lines, the role of SAMe as an adjunct
to existing chemotherapeutic therapies is currently being
explored. When SAMe is combined with Doxorubicin, the
anti-proliferative effect is strongly synergistic in the
hormone-dependent CG5 and MCF-7 human breast
cancer cell lines. This synergy is attributed to apoptosis
induction with observed activation of caspase 3 and 8;
this effect was also observed in hormone-independent
MDA-MB 231 cells, but less so, suggesting an additive
rather than synergistic effect.87 Additionally, SAMe may
play a role in cancer epigenetic therapy. 5-Azacytidine, a
chemotherapeutic agent used inmyelodysplastic disorders,
and its deoxy-analog, 5-aza-20-deoxycytidine are known to
induce cancer cell invasiveness and methylated prometa-
static genes by DNA demethylation.88 As a methyl donor,
SAMe may block the adverse demethylating activity of
5-aza-20-deoxycytidine while maintaining growth suppres-
sion effects. Additionally, SAMe demonstrated reversal of
global- and gene-specific demethylation induced by 5-aza-
20-deoxycytidine preventing cell invasiveness in breast
cancer cell lines, while still augmenting growth inhibitory
effects of 5-aza-20-deoxycytidine.88 Thus, SAMe is a poten-
tial candidate for use in combination therapy aimed at tar-
geting DNA methylation machinery as a new strategy for
epigenetic cancer therapy.

Targeting miRNAs that regulate MATs

Several miRNAs regulate MAT1A, MAT2A, and MAT2B.
We have demonstrated that targeting the three miRNAs
induced in HCC, miR-485–3p, miR-495, and miR-664, is a
viable strategy for HCC treatment using the orthotopic
HCC model.17 Indeed, when these miRNAs are knocked
down, we observe a recovery in MAT1A expression,
growth inhibition, and increased apoptosis in HCC in
vivo.17 MiR-34a and miR-34b, however, negatively regulate
MAT2A/MAT2B expression; thus, one may strategically
increase expression of these miRNAs to achieve gene sup-
pression.28 Similarly, berberine was shown to increase the
expression of miR-21–3p, which target MAT2A andMAT2B
in a human hepatoma cell line.27 As technology evolves,
targeting miRNAs that control gene expression will
become one of the best approaches to cancer treatment.89

Other approaches that target MATs

Recently, a novel allosteric inhibitor of MAT2A protein that
overlaps with the MAT2B binding site demonstrated prom-
ise in cancer treatment.90 Interrupting interaction between
MAT2B variants and GIT1 is likely to inhibit RAS-RAF-
MEK-ERK signaling, and thus may be another promising
therapeutic approach.

Conclusions and future directions

In conclusion, increasing evidence suggests that MAT
genes are dysregulated in many cancers and these path-
ways play critical roles in tumorigenesis. Targeting MAT
gene dysregulation with chemicals, small molecules that
block interactions or miRNAs that control expression may

prove effective strategies in future cancer therapy research
and development. While much advance has been made on
understanding the role of MAT genes in various cancers,
many questions remain for future investigation. For
instance, MATa1 and MATa2 share high homology yet
one is a tumor suppressor and the other an oncoprotein
in the liver. The underlying molecular mechanisms for
this distinct behavior are unclear. In addition, we have
only begun to unravel how these MAT proteins regulate
gene expression transcriptionally and proteins functionally.
Future investigations should include identifying genes that
are regulated by these MAT proteins, either epigenetically
or as transcription factors or co-factors. Finally, a better
characterization of the MAT proteins interactomes is
likely to reveal unknown functions of these proteins that
may provide more targets for designing therapy.
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