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ABSTRACT Xpert MTB/RIF Ultra (Ultra)-detected rifampicin-resistant tuberculosis (TB) 
is often programmatically confirmed using MTBDRplus. There are limited data on 
discordant results, including when re-tested using newer methods, like FluoroType 
MTBDR (FT-MTBDR) and targeted deep sequencing. MTBDRplus rifampicin-susceptible 
isolates from people with Ultra rifampicin-resistant sputum were identified from a 
South African programmatic laboratory. FT-MTBDR and single molecule-overlapping 
reads (SMOR; rpoB, inhA, katG) on isolate DNA were done (SMOR was used as a refer­
ence standard). Between 1 April 2021 and 30 September 2022, 8% (109/1347) of Ultra 
rifampicin-resistant specimens were MTBDRplus-susceptible. Of 89% (97/109) isolates 
with a sequenceable rpoB, SMOR resolved most in favor of Ultra (79% [77/97]). Sputum 
with lower mycobacterial load was associated with Ultra false-positive resistance (46% 
[11/24] of “very low” Ultra had false resistance vs 12% [9/73; P = 0.0004] of ≥“low”), as 
were Ultra heteroresistance calls (all wild-type probes, ≥1 mutant probe) (62% [23/37 vs 
25% 15/60] for Ultra without heteroresistance calls; P = 0.0003). Of the 91% (88/97) of 
isolates successfully tested by FT-MTBDR, 55% (48/88) were FT-MTBDR rifampicin-resist­
ant and 45% (40/88) susceptible, translating to 69% (47/68) sensitivity and 95% (19/20) 
specificity. In the 91% (99/109) of isolates with inhA and katG sequenced, 62% (61/99) 
were SMOR isoniazid-susceptible. When Ultra and MTBDRplus rifampicin results are 
discordant, Ultra is more likely to be correct, and FT-MTBDR agrees more with Ultra 
than MTBDRplus; however, lower load and the Ultra heteroresistance probe pattern were 
risk factors for Ultra false rifampicin-resistant results. Most people with Ultra–MTBDRplus 
discordant resistance results were isoniazid-susceptible. These data have implications for 
drug-resistant TB diagnosis.

KEYWORDS tuberculosis, diagnosis, rifampicin susceptibility, heteroresistance

X pert MTB/RIF Ultra (Ultra; Cepheid, Sunnyvale, USA) is a widely used test for 
diagnosing tuberculosis (TB) and detecting rifampicin resistance. Endorsed by the 

WHO, Ultra has been an essential screening tool in high-incidence countries, such as 
South Africa, where it has been used routinely since 2011. At the time of this study, in the 
South African TB Control program, if Ultra detected Mycobacterium tuberculosis complex 
(MTBC) and rifampicin resistance, a second specimen is typically cultured. The resulting 
MTBC isolate can be tested with GenoType MTBDRplus VER 2.0 (MTBDRplus, Bruker-Hain 
Lifescience, Nehren, Germany), which confirms rifampicin resistance and can additionally 
detect isoniazid resistance. However, discrepancies between results obtained directly 
from the patient specimen and those from cultured isolates or other molecular assays 
can occur, complicating both reporting and clinical management. This discordance, 
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which could be due to heteroresistance, can lead to poor outcomes (1), patient distress, 
and significant financial burden due to delays and additional testing.

Although superseded in some settings by FluoroType MTBDR VER 2.0 (FT-MTBDR; 
Bruker-Hain Lifescience, Nehren, Germany) (2, 3), MTBDRplus is widely used for confir­
matory drug susceptibility testing (DST). Both Ultra and MTBDRplus target the rpoB 
rifampicin-resistant determining region (RRDR) of MTBC. Reports from our high burden 
setting of South Africa highlight discordance in ~7% of Xpert MTB/RIF (Xpert; Ultra’s 
predecessor) resistant samples, which were MTBDRplus rifampicin-susceptible (4, 5). 
Sub-optimal Xpert readouts, particularly in the “very low” semi­quantification category, 
and probe delay have been linked to false rifampicin-resistant calls (6). However, this 
has not yet been studied in the context of Ultra. Aside from factors, like human error 
or cross-contamination, discordant results may also arise due to heteroresistance and 
culture bias, as Ultra is performed directly on specimens, while MTBDRplus is typically 
conducted on cultured isolates (7–9).

Two additional critical gaps exist. First, although Ultra itself does not directly 
report rifampicin heteroresistance, Ultra-reported probe melting temperatures have 
been suggested as a potential tool for inferring heteroresistance (if a specific probe 
has melting temperatures corresponding to both wild-type and mutant strains) (10). 
However, the diagnostic accuracy of such Ultra’s heteroresistance calls on clinical 
specimens has not been evaluated. Second, it is unclear whether the level of discordance 
between Ultra and FT-MTBDR, which utilizes LiquidArray technology to detect MTBC and 
mutations in rpoB, inhA, and katG genes, is comparable to that observed with MTBDRplus 
(2).

We sought to address these knowledge gaps in individuals identified programmat­
ically as having discordant rifampicin results (Ultra-resistant, MTBDRplus-susceptible). 
To ascertain true rifampicin susceptibility status, we employed targeted deep sequenc­
ing with single-molecule-overlapping reads (SMORs) as a reference standard (7, 9). 
SMOR detects resistant allele subpopulations at ≥0.1% in near real-time compared with 
whole genome sequencing, which reliably detects mutations at 5%–10%, depending 
on sequencing depth (11, 12). Additionally, we used FT-MTBDR as a comparator and 
analyzed isoniazid susceptibility using different tests as, in people with rifampicin-resist­
ant TB, isoniazid may still have clinical utility. Our study also sought to identify test 
parameters associated with discordance, heteroresistance, and rifampicin mono-resist­
ance.

MATERIALS AND METHODS

Study design and setting

The study was conducted from 1 April 2021 to 30 September 2022, using patient 
specimens and their corresponding isolates processed at the high-throughput National 
Health Laboratory Service (NHLS) Greenpoint TB Laboratory (Cape Town, South 
Africa; ~60,000 TB tests per month).

Routine diagnostic algorithm

Following the diagnostic algorithm, healthcare workers collected two sputum samples 
an hour apart from individuals with presumptive TB not presently on TB treatment. 
Upon laboratory receipt, one specimen was arbitrarily selected for testing with Ultra 
and processed according to the manufacturer’s instructions (13). If Ultra detected MTBC 
and rifampicin resistance, the second specimen was processed for mycobacterial culture 
using the standard N-acteyl-L-cysteine-sodium hydroxide (NALC-NaOH) (1.25% final 
concentration) decontamination procedure and 0.5 mL inoculated into a Mycobacterium 
Growth Indicator Tube 960 (MGIT960; Becton Dickinson Diagnostic Systems, Sparks, USA) 
supplemented with polymyxin B (400 units/mL), amphotericin B (40 µg/mL), nalidixic 
acid (160 µg/mL), trimethoprim (40 µg/mL), and azlocillin (40 µg/mL) (PANTA, Becton 
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Dickinson Diagnostic Systems) and incubated for ≤35 days. After a tube is automati­
cally flagged growth-positive, Ziehl–Neelsen (ZN) microscopy was performed to detect 
acid-fast bacilli (AFB). If AFBs were observed, MTBDRplus was conducted on the MGIT 
culture according to the manufacturer’s protocol, using the GenoScan instrument with 
semi-automated reading and manual confirmation (14). The MGIT tubes were stored at 
room temperature for up to 7 days until DNA extraction for MTBDRplus, FT-MTBDR, and 
SMOR analysis. All assays were performed once, with no repeat testing.

Discordant isolate selection and definition of Ultra heteroresistance results

We selected MTBDRplus rifampicin-susceptible isolates from specimens collected 
concurrently with those tested by Ultra (Fig. 1). Patients were classified as Ultra heterore­
sistant based on the melting temperature curve peaks for each rpoB probe as previously 
described (10). Briefly, if each probe exhibited melting peaks corresponding to the 
wild-type temperature in addition to at least one rpoB mutant melting peak, the result 
was designated heteroresistant (Fig. 2).

FluoroType MTBDR

DNA extraction

MGIT960 growth culture (500 μL) was treated with 167 µL of inactivation reagent (room 
temperature, 30 min), and DNA was extracted using the GXT96 × 2 Extraction Kit 
VER1.0 (Bruker-Hain Lifescience, Nehren, Germany) with the GenoXtract fleXT instrument 
(Bruker–Hain Lifescience, Nehren, Germany), as per the manufacturer’s instructions (15, 
16). With each extraction, saline buffer and un-inoculated MGIT960 (supplemented with 
PANTA) were included as a negative control, alongside the provided positive control.

FIG 1 Study profile. We quantified discordant rifampicin susceptibility results (Ultra-resistant, MTBDRplus-susceptible) done at TB diagnosis on respiratory 

specimens over an 18-month period. The distribution of HR is shown, and most isolates that were confirmed by sequencing have RAVs missed by MTBDRplus 

but often detected by FT-MTBDR. Abbreviations: FT-MTBDR, FluoroType MTBDR; MicroHR, microheteroresistance; MacroHR, macroheteroresistance; MTBC, 

Mycobacterium tuberculosis complex; SMOR, single molecule-overlapping repeats; RAV, resistance-associated variant; TB, tuberculosis; Ultra, Xpert MTB/RIF Ultra.
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PCR

Extracted DNA was amplified using the FluoroCycler XT (Bruker–Hain Lifescience, 
Nehren, Germany) and analyzed with the controls using FluoroSoftware XT-IVD (version 
1.0.1.5.5.75; Bruker–Hain Lifescience, Nehren, Germany).

Single molecule-overlapping reads (SMOR)

DNA extraction

Briefly, 100 µL of growth from the MGIT960 tube was heated at 100°C for 30 min, as 
previously described (17).

Sequencing

SMOR testing was conducted at the Translational Genomics Research Institute (T-Gen, 
Arizona, USA), where primers were used to amplify inhA, katG, and rpoB resistance-deter­
mining regions as described (Table S1) (11). A second PCR added adapters using a 
previously published universal tail method. Samples were pooled and sequenced on an 
Illumina MiSeq (V3, 600 bp paired-end chemistry). Multiple no-template controls were 
used as quality control to ensure the integrity of results.

Bioinformatics

The Amplicon Sequencing Analysis Pipeline (version 1.9; ASAP) was used (11, 12), which 
requires overlapping forward and reverse reads to agree, and uses read counts to report 
variant frequency. Resistance calls were classified by ASAP into predefined categories 
based on the percentage of reads with a known resistance-associated variant (RAV) as 
“microheteroresistance” (0.1%–<5%), “macroheteroresistant” (5%–95%) or “full resistant” 
(>95%) (8). SMOR requires at least 10 paired reads at a locus to make a call. In this case, 
to call to 0.1%, 10,000 paired reads were required for reporting. When multiple RAVs were 

FIG 2 Examples of an Ultra report generated by the GeneXpert software showing melt peak temperatures for each amplicon. (A) A commonly seen 

rifampicin-resistant specimen with a variant in the rpoB2 region. There is no indication of HR because, for rpoB2, “melt” has no value but “Mut melt” does (black 

arrows). (B) In contrast, rpoB1 has both “melt” and “Mut melt” values, suggesting HR. Abbreviations: °C; degree Celsius; HR, heteroresistance; melt, wild-type melt 

peak temperature; Mut melt, mutant melt peak teak temperature; Ultra, Xpert MTB/RIF Ultra.
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detected in a single amplicon, ASAP was used to determine whether they were on the 
same read as previously described (18) and thus likely originate from a single population 
(haplotype identification).

Statistical analysis and definitions

The 2 × 2 tables were used to calculate sensitivity and specificity with 95% confidence 
intervals (CIs, exact binomial method), and SMOR results were used as a reference 
standard for rifampicin and isoniazid. The prtesti command (STATA 18, StataCorp) was 
used for comparisons between proportions. Results were classified as successful if a 
test yielded a definitive resistant or susceptible result. Outcomes where MTBC was not 
detected or results were uninterpretable were classified as unsuccessful.

RESULTS

Frequency of discordant rifampicin results

Between 1 April 2021 and 30 September 2022, 1,623 patients with Ultra rifampicin 
resistance were identified. MTBDRplus was performed on 91% (1483/1623) of these 
samples, with 91% (1347/1483) yielding determinate results for rifampicin susceptibility. 
Of these, 8% (109/1347) were MTBDRplus rifampicin-susceptible, and hence discordant 
with Ultra (Fig. 1).

Relationship between Ultra and SMOR rifampicin results

RAV frequency

Of 92% (100/109) Ultra-MTBDRplus discordant isolates available for SMOR, 97% (97/100) 
generated a successful result; 39% (38/97) were classified as fully resistant, 19% (18/97) 
macroheteroresistant, 21% (20/97) microheteroresistant, and the remainder 21% (20/97) 
had no resistance-associated reads. Therefore, the positive predictive value (PPV) of 
Ultra rifampicin resistance for true rifampicin resistance (as defined by a SMOR reference 
standard) was 79% (77/97), with 21% (20/97) of Ultra results correspondingly being false 
positive for rifampicin resistance. Lower Ultra-detected load (higher CTmin) was positively 
associated with false-positive results (median [IQR] CTmin 29 [28–31] vs 19 [18–25] in true 
positives; P = 0.0001]. Specifically, in Ultra results with a “very low” semi-quantitation 
category, 46% (11/24) had false resistance compared with 12% (9/73, P = 0.0004) in 
those with a higher semi-quantitation category (when restricted to those with Ultra 
heteroresistant patterns, these were 75% [6/8] vs 21% [6/29]; P = 0.0037) (Table 1).

Heteroresistance

Thirty-nine percent (38/97) of people had SMOR-detected heteroresistance (Table S2), 
and 38% (37/97) of Ultra results exhibited heteroresistant probe patterns. Among these 
Ultra results, 67% (25/37) had SMOR-detected resistance with two classified as resist­
ant, 11 as macroheteroresistant, and 12 as microheteroresistance; 12 were classified 
as susceptible by SMOR. Of the 60 Ultra results without heteroresistant patterns, 87% 
(52/60) had SMOR-detected resistance, with 37 classified as resistant, seven as macrohe­
teroresistant, and eight as microheteroresistant; eight were classified as susceptible by 
SMOR. SMOR-detected heteroresistance was more common in Ultra-detected heterore­
sistance isolates compared with those without Ultra-detected heteroresistance (62% 
[23/37] vs 25% [15/60]; P = 0.0003). Ultra heteroresistance patterns therefore had 61% 
(23/38) sensitivity and 95% (37/39) specificity for SMOR heteroresistance. Finally, Ultra 
heteroresistance was more likely than Ultra non-heteroresistance resistance results to be 
false positive for rifampicin resistance (PPV, 68% [25/37] vs 87% [52/60]; P = 0.021]).

Haplotyping

Isolates from 21% (16/77) people had two or more rpoB mutations detected by SMOR. 
Nineteen percent (3/16) had all mutant calls on the same read, and the remaining 
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79% (13/16) had mutations on separate reads, suggesting they were in separate strain 
subpopulations.

Isoniazid susceptibility

Thirty-eight of 99 (38%) samples demonstrated isoniazid resistance-associated 
mutations by SMOR (22 resistant, seven macroheteroresistant, nine microheteroresist­
ance; 61 susceptible); 55% (21/38) had katG and 45% (17/38) inhA mutations by SMOR. 
Sensitivity and specificity for isoniazid resistance by MTBDRplus were 53% (20/38) and 
98% (60/61), respectively (Table S3). Among the isolates that were false MTBDRplus 
isoniazid-susceptible, 67% (12/18) had heteroresistance (eight microheteroresistance). 
Heteroresistance was less frequent in MTBDRplus isoniazid true positives, with 20% 
(4/20) being heteroresistant (three macroheteroresistance). Notably, of the 77 isolates 
that were SMOR rifampicin-resistant, 56% (43/77) were isoniazid-susceptible (rifampicin 
mono-resistant).

FluoroType MTBDR

Rifampicin

From the usable rifampicin SMOR results, 91% (88/97) also had successful FT-MTBDR 
results, with 55% (48/88) resistant (Ultra-concordant) and 45% (40/88) susceptible 
(MTBDRplus-concordant). FT-MTBDR sensitivity and specificity for rifampicin resistance 
were 69% (47/68) and 95% (19/20), respectively (Table S3). Among FT-MTBDR rifam­
picin-susceptible isolates, 53% (21/40) were rifampicin-resistant via SMOR. Of these, 
100% (21/21) had heteroresistance (19 microheteroresistant), and in all 100% (47/47), 
SMOR rifampicin-resistant isolates without heteroresistance were detected correctly by 
FT-MTBDR.

Isoniazid

From the 98 people with successful isoniazid FT-MTBDR and SMOR results, 72% (71/98) 
were FT-MTBDR susceptible, and 28% (27/98) FT-MTBDR were resistant. FT-MTBDR 
sensitivity and specificity for isoniazid resistance were 71% (27/38) and 100% (60/60); 

TABLE 1 Ultra parameters among true- and false-Ultra rifampicin-resistant results in people who were 
MTBDRplus-susceptible, using SMOR on DNA from isolates as a reference standarda

True rifampicin-resistant
(n = 77)

False rifampicin-resistant
(n = 20)

CTmin 19 (18–25) 29 (27–31); P = 0.0001
Semi-quantitation category
  High 40 (31/77) 5 (1/20); P = 0.0028
  Medium 31 (24/77) 15 (3/20); P = 0.1506
  Low 12 (9/77) 25 (5/20); P = 0.1312
  Very low 17 (13/77) 55 (11/20); P = 0.0004
Specific probes with mutation label
  rpoB1 Mut 47 (32/68) 41 (7/17); P = 0.6633
  rpoB2 Mut 13 (9/68) 18 (3/17); P = 0.6403
  rpoB3 Mut 4 (3/68) 12 (2/17); P = 0.2491
  rpoB4 Mut A 13 (9/68) 12 (2/17); P = 0.8716
  rpoB4 Mut B 29 (2/68) 6 (1/17); P = 0.5567
  More than one MUT probe 19 (13/68) 12 (2/17); P = 0.4769
Ultra heteroresistance pattern
  Heteroresistance pattern 32 (25/77) 60 (12/20); P = 0.0239
aUltra heteroresistance calls and lower detected bacillary load are more frequent among false-resistant results. 
Data are median (IQR) or % (n/N). CTmin, cycle threshold minimum; HR, heteroresistance; MUT, mutation; Ultra, 
Xpert MTB/RIF Ultra. P-values are for within row comparisons across columns.
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respectively (Table S3). Among FT-MTBDR isoniazid-susceptible isolates, 15% (11/71) 
were isoniazid-resistant by SMOR. All of these, 100% (11/11) had heteroresistance (eight 
microheteroresistant), and 100% (22/22) SMOR isoniazid-resistant without heteroresist­
ance were detected correctly by FT-MTBDR. Among people with SMOR heteroresistance, 
FT-MTBDR correctly detected resistance in 31% (5/16).

Compared with MTBDRplus for isoniazid resistance

99 people had successful MTBDRplus and FT-MTBDR results, 90% of which were 
concordant (19 resistant, 70 susceptible) and 10 discordant (eight FT-MTBDR resistant 
and MTBDRplus susceptible, two FT-MTBDR susceptible and MTBDRplus resistance; SMOR 
supported the FT-MTBDR result in 90% [9/10] people). The sensitivity of FT-MTBDR for 
isoniazid resistance was better than MTBDRplus (53% [20/38] vs 71% [27/38]; P = 0.0983), 
whereas specificity remained similar (98% [60/61] vs 100% [60/60]; P = 0.3193) (Table S3).

DISCUSSION

To our knowledge, this study is the first to describe rifampicin susceptibility discord­
ance between the WHO-recommended rapid molecular tests Ultra and MTBDRplus. 
Our key findings are (i) most discordance (79%) was from MTBDRplus not detecting 
rifampicin resistance and (ii) 69% of these MTBDRplus-susceptible were detected as 
FT-MTBDR resistant, indicating that FT-MTBDR has higher sensitivity than MTBDRplus. 
However, (iii) a substantial proportion with sequencing-detected resistance (31%; all of 
which were heteroresistant) were missed by FT-MTBDR, and in people with heteroresist­
ance, multiple resistant strains were often present. Furthermore, (iv) although the Ultra 
heteroresistance probe pattern was associated with heteroresistance, this pattern had 
suboptimal sensitivity and specificity for heteroresistance and was itself associated with 
Ultra false-resistant calls (as was lower mycobacterial load). Finally, (v) more than half of 
the isolates were rifampicin mono-resistant, supporting the need for isoniazid DST. These 
data have implications for laboratory DST algorithms, especially resolution of discordant 
results by different molecular methods.

Most rifampicin resistance discordance arose from MTBDRplus not detecting RAVs, 
rather than Ultra falsely detecting RAVs. This might be because MTBDRplus interpretation 
is subjective even with the semi-automated GenoScan and requires human reporting. 
In contrast, FT-MTBDR reporting is fully automated. While FT-MTBDR identified most 
resistance missed by MTBDRplus, approximately half of the isolates FT-MTBDR detec­
ted as rifampicin-susceptible had sequencing-detected resistance. This contrasts with 
other studies that have reported FT-MTBDR sensitivities approaching 100% (2); however, 
these were done in Ultra rifampicin-resistant people (without specifically selecting the 
discordant MTBDRplus-susceptible subset).

Heteroresistance, which we show to be a cause of Ultra-MTBDRplus discordance 
was, about a third of the time, missed by FT-MTBDR. However, as these people were 
MTBDRplus-susceptible, FT-MTBDR is still substantially better at detecting resistance than 
the previous generation technology. Heteroresistant rpoB mutations, including L511P, 
D516Y, and S531L, which were undetected by MTBDRplus but identified by SMOR, 
highlight the need for advanced tools to improve resistance detection and the potential 
inclusion of these regions in new tests for resistance. Interestingly, within people with 
sequencing-detected heteroresistance, there was seldom one resistant strain implicated, 
which is unexpected, given that these are not samples taken from people on treatment, 
and sequencing was done after culture, which can result in loss of minority variants (8). 
Possible causes of this diversity include multiple exposures to rifampicin-resistant MTBC 
or substantial intra-host evolution.

Certain probe patterns reported by Ultra have been proposed to be useful for 
diagnosing heteroresistance (10), which may be clinically useful if first­line drugs could 
be included in the regimen to rapidly reduce bacterial load of the drug-susceptible 
subpopulation (19, 20). However, in our study, although this Ultra probe pattern was 
indeed associated with heteroresistance, it did not translate into high sensitivity and 
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specificity for heteroresistance. While FT-MTBDR does not currently offer a heteroresist­
ance readout, this feature could be incorporated into its software to potentially inform 
treatment. Finally, this Ultra hetereoresistance pattern (as well as that from FT-MTBDR) 
was also associated with Ultra false-resistant calls, as was the Ultra “very low” semi-quan­
titation category. This category is a recognized risk factor for Xpert false resistance (6), for 
which repeat testing is recommended. Our data therefore suggest that samples with an 
Ultra heteroresistance pattern and or “very low” bacterial load should be considered at 
increased risk for false resistance. The utility of repeat testing in such samples warrants 
further evaluation.

Our findings emphasize the importance of not assuming rifampicin resistance 
equates to isoniazid resistance, particularly in cases of discordant Ultra-MTBDRplus 
results. Previous studies have demonstrated that 19% (21) and 21% (22) of Xpert 
rifampicin-resistant cases are isoniazid-susceptible by MTBDRplus. Our data therefore 
support the scale-up of upfront routine isoniazid DST to avoid the inappropriate 
exclusion of isoniazid from regimens.

Our study has strengths and limitations. Ultra was done on specimens, while 
MTBDRplus, FT-MTBDR, and SMOR were done on isolates. While this may be represen­
tative of some programmatic algorithms, changes in subpopulation structures due to 
culture bias could create discordance. Furthermore, phenotypic susceptibility testing was 
not possible as isolates were not stored to preserve viability. However, SMOR has high 
sensitivity and specificity for phenotypic (and sub-phenotypic) resistance (7). Another 
consideration is that our study was designed to investigate Ultra-resistant, MTBDRplus-
susceptible discordance, rather than to assess Ultra rifampicin-resistant calls in all comers 
(which others have done for Ultra’s predecessor Xpert) (6). In other words, our findings 
should be interpreted within the context of samples pre-selected because they were 
Ultra-MTBDRplus discordant (such discordant samples are likely not representative of 
typical RAVs in our setting).

In conclusion, patients with Ultra rifampicin-resistant MTBC that were susceptible 
by MTBDRplus are predominantly truly rifampicin resistant unless Ultra produced a 
heteroresistant probe pattern or “very low” semi-quantitation category (both associated 
with false Ultra rifampicin results). Isoniazid, for which susceptibility testing should be 
done, likely remains useful in people with this Ultra-MTBDRplus discordance.
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