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Abstract

Cold Pools, Effective Buoyancy, and Atmospheric Convection
by
Nadir Jeevanjee
Doctor of Philosophy in Physics
University of California, Berkeley
Professor David M. Romps, Co-chair

Professor Jonathan Wurtele, Co-chair

‘Cold pools’ are pools of air that have been cooled by rain evaporation, and which subse-
quently slump down and spread out across the Earth’s surface due to their negative buoyancy.
Such cold pools, which typically arise from rain produced by convection, also feed back upon
convection by kicking up new convection at their edges.

This thesis studies the interaction of cold pools and convection at two levels of detail:
on one end, we study the dynamics and thermodynamics of a single, idealized cold pool,
and on the other, we study the interplay between a steady-state ensemble of convection and
the many cold pools that accompany it. A recurring notion is that of ‘effective buoyancy’,
which is the net acceleration experienced by a density anomaly such as a cold pool, including
the back-reaction of the environment (i.e. the ‘virtual mass effect’) which reduces the net
acceleration from its Archimedean value. We derive analytical formulae for the effective
buoyancy of cold pools and other roughly cylindrical density anomalies, and use the same
framework to understand the forces at play when cold pools trigger new convection. We also
analyze the sizes and lifetimes of cold pools, and examine the impact of cold pools on the
organization (i.e. clustering) of convection.
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Chapter 1

Introduction

Convection is the primary means by which the Earth’s surface cools itself. In the annual
and global mean, the surface absorbs roughly 150 W/m? of sunlight, but re-reradiates away
(in the infrared) only 50 W/m? of that because of strong, opposing downwelling infrared
radiation from the atmosphere (i.e., the greenhouse effect). The remaining ~ 100 W/m? is
carried away from the surface by convection, mostly in the form of latent heat associated
with water vapor that has evaporated from the surface [28].

Despite its importance in the planetary energy balance, however, much about convection
remains ill-understood. We are uncertain about many things, including:

1. How clouds are initiated

2. Why and how they sometimes ‘clump’ together, i.e. organize
3. How they mix with their environment

4. What sets their vertical velocity

5. How suspended cloud condensate grows to form precipitation

Furthermore, this inability to understand clouds in the present day precludes accurate
predictions about how clouds will change with global warming. Since global climate models
(GCMs) cannot resolve clouds explicitly, they must ‘parameterize’ them, i.e. make their best
guess about what clouds will do under any given circumstance. Since the questions above
are (like the clouds) unresolved, these guesses vary quite widely between models, and hence
so do the models’ representation of clouds and their changes with warming. Furthermore,
since clouds can both strongly reflect sunlight as well as strongly enhance the greenhouse
effect, these uncertain changes in clouds have large climate implications. In fact, clouds are
the dominant source of uncertainty in global warming projections [5], a lingering state of
affairs that has persisted for over a generation [10].

Progress will likely require a bottom-up approach of understanding the various phenom-
ena listed above, from as theoretical a point-of-view as possible. This is a long-term project
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ranging over many subfields of physics (fluid mechanics, thermodynamics, radiation, etc.),
and much work will be required before even any one of the questions above will be answered
satisfactorily enough such that GCMs do not significantly vary in how the corresponding
process is parameterized.

Our goal in this thesis, then, will be to focus on one or two of the questions listed above,
and to try and add some validated mathematical and physical understanding to our picture
of the relevant phenomena. Even if we achieve our goal, it will not immediately reduce
uncertainty in estimates of global warming, nor will it allow us to revise these estimates,
but it will put us a few steps closer to having cloud parameterizations that are grounded in
process-based understanding, rather than inspired guesswork.

That said, we will focus on convective triggering (question 1) and convective organization
(question 2) in this thesis. Both of these phenomena impact the general climate as well as
particular variables of interest, such as temperature and precipitation. Convective triggering,
for instance, is crucial for the variability of precipitation. The upper atmosphere is often
unstable and hence would permit convection and the accompanying precipitation, but this
is suppressed by a stable layer near the surface which inhibits convection. A triggering
mechanism is required to overcome this stability, and so an understanding of what triggers
convection and how should lead to better understanding and modeling of the variability of
convection and precipitation. This variability is typically underestimated by current GCMs
le.g. 43], whose convective parameterizations [such as the Zhang-McFarlane scheme, ref. 83]
do not necessarily take triggering into account.

As for organization, it is has been observed that organized systems such as mesoscale
convective systems [MCSs, see e.g. 57] are major contributors to total rainfall [21] and ex-
treme rainfall [72]. Furthermore, MCSs decrease the water-vapor greenhouse effect by drying
out their environment [77]. Despite their importance for precipitation and climate, however,
MCSs are not currently represented with any fidelity in GCMs, and it has been suggested
that this could be an important missing feedback [50]. Thus, a better understanding of
MCSs and organized convection in general is clearly desirable.

A common thread between the phenomena of triggering and organization are ‘cold pools’,
which are pools of air near the surface that have been cooled by rain evaporation, and
subsequently slump down and spread out due to their negative buoyancy; see Fig. 1.1.
These cold pools are produced by convection via the associated rainfall, but also feed back
upon convection by triggering new convection at their edges (see [78] and Fig. 2.2 below).
It is also know that when convection is organized, cold pools can negatively feed back upon
this organization [57]. Given this close interplay between convection and cold pools, then,
we pose the following questions:

1. What are the forces that produce new convection at a cold pool’s edge? Is the trig-
gering mechanical in nature, so that new convection is ‘pushed up’ by the outflow at
the cold pool’s edge? Or, does the temperature contrast between a cold pool and its
environment mean that air near the cold pool edge feels an enhanced buoyant acceler-
ation? It has also been observed [78, 42] that the edges of cold pools are anomalously
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moist; does this also play a role in triggering, perhaps via the ‘virtual effect’; i.e. the
fact that water vapor is lighter than dry air and hence moist air is more buoyant?

2. What are the dynamics of cold pools themselves? General arguments [32] show that
parcels with large aspect ratios — i.e., that are much wider than they are tall — expe-
rience a marked reduction of acceleration from the naive Archimedean value, because
they must push significant amounts of environmental air out of their way as they accel-
erate [the ‘virtual mass’ effect, 18, not to be confused with the virtual effect of water
vapor discussed above|. This effect is well-known but has not been straightforward
to estimate without involved numerical calculation. Cold pools certainly exhibit large
aspect ratios — is there a way to estimate the effect of this on their acceleration? And
does their close proximity to the surface alter this effect?

3. What is the thermodynamic evolution of a cold pool? The surface will typically warm
a cold pool as the cold pool traverses it, ultimately ‘killing” the cold pool by warming
it up to the ambient temperature. Both numerical and observational studies show that
this typically happens after 2-3 hours, at a radius of order ~ 10 km [e.g. 78, 84]. What
determines these length and time scales?

4. Idealized numerical simulations show that even without external forcing, convection
can spontaneously clump together, or ‘self-aggregate’. This only happens, however,
when the horizontal dimensions of the simulation are greater than ~ 300 km. What is
the role, if any, of cold pools in determining this critical length scale? And why is it
domains larger than this length scale that favor self-aggregation?

These questions will be addressed in Chapters 2-5, respectively. A summary and discus-
sion of future work is given in Chapter 6.
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Figure 1.1: Schematic of convection and cold pool generation. Left: As a cloud grows,
water condenses and is lofted up along with the rising air (red arrows). Right: As the cloud
mature some of the condensed water begins to fall as rain. Some of this rain evaporates on
the way down, creating negatively buoyant air which begins to descend (red arrows). When
this air reaches the ground it slumps down and spreads out, forming a cold pool. Figure
courtesy Wolfgang Langhans.



Chapter 2

Effective Buoyancy, Inertial Pressure,
and the Mechanical Triggering of
Convection by Cold Pools

2.1 Introduction

The initiation of convection is an outstanding and pressing issue in cloud dynamics. Clar-
ification of the mechanisms involved is necessary for the construction of reliable convective
parameterizations in global climate models, and in particular for reliably ‘closing” mass flux
schemes, which must diagnose cloud-base mass flux in terms of prognostic variables. Many
current mass flux schemes, such as the Zhang-McFarlane scheme [83] currently employed
in the Community Atmosphere Model' [55], have closures that rely on uncertain convective
timescale parameters, to which the parent models exhibit considerable sensitivity [61, 51,
52]. Thus, a firm understanding of how convection is initiated is critical for trustworthy
convective parameterizations and accurate simulations of global climate.

Though convection can take many forms (e.g., trade cumulus, squall lines, mesoscale
convective systems) and is variously influenced by the large-scale environment (e.g., surface
temperature gradients, wind shear, and large-scale vertical motion), the mass flux closure
problem remains unsolved even in the simple case of unorganized radiative-convective equi-
librium (RCE) over an ocean with uniform temperature?. It is known, however, that in
cloud-resolving-model (CRM) studies of RCE, convection is preferentially triggered at cold-
pool gust fronts, as demonstrated by [78] (hereafter T01). Thus, a closer study of what
happens at such gust fronts is necessary to understand how convection in RCE is generated.

!'The Community Atmosphere Model is the atmospheric component of the Community Earth System
Model, one of two state-of-the-art American climate models participating in the Intergovernmental Panel on
Climate Change’s global warming assessments [35].

2RCE simulations typically feature periodic boundary conditions in the horizontal, so that the atmosphere
is energetically closed, with energy coming in from the surface in the form of latent heat of water vapor and
escaping to space via infra-red radiation.
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That gust fronts in general can trigger convection (i.e., generate boundary-layer plumes
with significant vertical velocity) is well known, e.g., from the study of squall lines [81] or
midlatitude continental convection [16]. In these cases it has generally been assumed that
the triggering is dynamical in nature, i.e., that it arises from horizontal convergence at the
gust front. For oceanic RCE, however, TO1l noted that the thermal recovery of mature
cold pools, along with pronounced moisture anomalies at the gust front, yield a dramatic
reduction in convective inhibition (CIN) and enhancement of convective available potential
energy (CAPE) there, pointing to a strong thermodynamic role for cold pools in organizing
convection. While neither CIN nor CAPE directly relate to the generation of boundary-layer
mass flux, the thermal recovery of the mature cold pools pointed out by T01, along with the
virtual effect due to the moisture anomalies at the gust front, raise the possibility that there
is a significant buoyant contribution to the initial triggering. Our main goal in this paper is
to assess this possibility, by evaluating the relative roles of mechanical and thermodynamical
forces in generating mass flux at cold-pool gust fronts in oceanic RCE. We will focus on how
low-level (z = 300 m) mass flux is generated, and leave aside for the time being the question
of how that low-level mass flux relates to cloud-base mass flux. Answering the latter question
will be critical for solving the mass flux closure problem discussed above, and our work here
can be seen as a first step in that direction.

Assessing the relative roles of thermodynamical and mechanical accelerations will require
us to define these quantities, so we propose here the following simple definitions. We define
the vertical buoyant acceleration [or ‘effective buoyancy’, [13], hereafter DJ03] a to be the
Lagrangian acceleration that would result if the wind fields were instantaneously zeroed out,
ie.

ay = — (2.1)

dt

u=0

where u = (u, v, w) is the wind field. Up to a factor of 5(z) (a reference density profile), this
will be our ‘thermodynamic force’. We analogously define the vertical inertial acceleration
a; to be the Lagrangian vertical acceleration resulting from an instantaneous zeroing out of
any horizontal density anomalies, i.e.

(2.2)

where p is the system density (including the weight of hydrometeors). Up to a factor of p
this will be our ‘mechanical” or ‘dynamical’ force, though it is really due entirely to inertia,
as we will see.

We will show in the next section that %’ = ap + a; and that a;, and a; depend entirely
on density and wind fields, respectively, and thus comprise a suitable decomposition of
vertical force into thermodynamic and mechanical components. Mathematically equivalent
decompositions are somewhat well-known and have been considered by previous authors
le.g., DJ03; 82, 39], but the definitions (2.1) and (2.2) are new. In addition to bearing a
simple physical interpretation, these definitions also yield unambiguous boundary conditions
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for a, and a;, which are often imposed by hand [DJ03; 38] and can be a source of ambiguity
[see 49, pg.29].

A central feature of the definition (2.1) is that the buoyant acceleration a; includes both
the Archimedean buoyancy B as well as the environmental response to the accelerations
produced by B. We will see that a;, can be very different in magnitude and spatial distribution
than B, to the degree that B cannot always be considered a first approximation for a.
Thus, a proper determination of the character of convective triggering by cold pools depends
crucially on considering a;, rather than B, as advocated by [15].

We begin by using the definitions (2.1) and (2.2) to derive diagnostic Poisson equations
for a, and a;. With a proper force decomposition in hand, we then run a CRM in RCE
and diagnose a;, and a; at cold pool gust fronts and across the entire domain. From this,
we derive evidence that the inertial acceleration a; is the primary driver behind tropical
convective triggering, and give a simple argument for why this should be. Our argument
suggests that in the absence of cold pools a, may dominate; we confirm this by running a
shallow-to-deep convection simulation, during which the dominant forcing transitions from
ay to a; as precipitation sets in and cold pools appear.

2.2 Buoyant and Inertial accelerations

Vertical force decomposition

We begin by deriving diagnostic equations for a, and a;. Our starting point is the anelastic
momentum equation

_du

Pat
where p is the pressure and g the gravitational acceleration. There is no Coriolis term as
we are considering equatorial, oceanic RCE. A common approach is to approximate (2.3)
by introducing a reference pressure profile p(z) in hydrostatic balance with p, along with
accompanying perturbations p’ = p — p and p' = p — p, which leads to

= —Vp — pgz (2.3)

du 1

— = Bz — =V 2.4

TR (2.4)
where B = —p'g/p is the usual Archimedean buoyancy. Here, however, we follow the ap-

proach taken in DJ03 and [12] and alternatively decompose the pressure field as
P = Pnt P, (2.5a)
where p, = / dz'pg, (2.5b)

so that py, is the local hydrostatic pressure field and pyy, is the local non-hydrostatic pressure
field. Plugging this into (2.3) yields

P~ = —VDun — Vapn, (2.6)
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where V;, = 0,% 4+ 9,¥ and we have an exact cancellation between the gravitational force
and —0,py,. The z-component of (2.6) is simply

_dw

-, nh 2.

so the Lagrangian vertical acceleration is given by 1/p times the non-hydrostatic vertical
pressure gradient force —0,pynn. [This result also dates back to [45] and [12].]

To apply the definitions (2.1) and (2.2), we must diagnose 0.p,,. This can be achieved
by taking the divergence of both sides of (2.6) and invoking anelastic mass continuity, which
yields the Poisson equation

~V?pan = V - [p(u - V)u] + Vipy (2.8)

where V? is the usual three-dimensional Laplacian and V; = 02+ 0;. Here, as in subsequent
equations, we write the Laplacian term with a minus sign so that positive values on the
right-hand side of the Poisson equation tend to generate positive responses in the solution
(in this case, the solution for p,,). Applying —0, to (2.8) yields

~V? (=0:pm) = —0.V - [p(u- V)u] + gVip, (2.9)

where we used the definition (2.5b) of py.
We can now combine the diagnostic equation (2.9) with the result (2.7) and the definition
(2.1) to obtain a Poisson equation for a:

—V2(pay) = gVip. (2.10)

Some remarks on this equation are in order. Note that it is horizontal density variations, as
opposed to more general thermodynamic variations, that give rise to a,, which is why we refer
to it as a ‘buoyant’ acceleration rather than a more general ‘thermodynamic’ acceleration.
Also, up to the factor of p which makes our a, an acceleration rather than a force per volume,
(2.10) is identical to Eqn. (6) of DJ03, so we adopt his nomenclature and alternatively refer
to a; as the ‘effective buoyancy’. Finally, an alternative diagnostic expression for the effective
buoyancy can be obtained via (2.4); this is the approach used by most other authors [e.g.,
15, 82, 39], and we will compare and contrast these approaches in Appendix A.1.

Next, we turn to the diagnosis of the inertial acceleration a;. Combining (2.9), (2.7), and
(2.2) yields the desired expression:

~V2(pa;) = -0,V - [p(u - V)ul. (2.11)

Note that a; is sourced by the advection of momentum, which is nothing but inertia, which is
why we refer to a; as an ‘inertial’ acceleration. This quantity has appeared in the literature
many times before, most often as the z-component of a ‘dynamic’ pressure gradient [e.g., 49,
70, 38]. It will be both computationally and conceptually expedient for us to also consider
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pa; as the vertical component of a pressure gradient. We will refer to the corresponding
pressure field as the ‘inertial pressure’, denoted p;, and we give the details of its definition,
interpretation, and computation in Appendix A.2.

Note that the determination of a, and a; via the Poisson equations (2.10) and (2.11) is
incomplete without boundary conditions (BCs). We will be considering an atmosphere with
rigid bottom (z = 0) and top (z = z), so that w = 0 at z = 0 and z = z. Equation (2.7)
then implies —0,py, = 0 at heights 0 and z;. These BCs are unchanged by setting u = 0 or
p = p, and so the definitions (2.1) and (2.2) yield the Dirichlet BCs a, = a; = 0 at 2 = 0
and z = z.

Finally, we observe that by Eqns. (2.10), (2.11), and (2.9), pay, + pa; obeys the same
Poisson equation as —0.p,y,. Furthermore, both quantities have the same BCs. This tells us
that pa, + pa; = —0.pun, and (2.7) then implies

dw
dt

Equation (2.12) is the desired decomposition of the vertical acceleration into buoyant and
inertial components. Mathematically equivalent forms of (2.12) can be found elsewhere in
the literature, e.g. [49] Eqn 10.15, [39], and [82], and the derivation given here closely follows
that given in DJ03 in many respects. The novel elements are the definitions (2.1) and (2.2),
which yield unambiguous boundary conditions for a, and a; and give them a simple physical
interpretation.

= ap + a;. (2.12)

Contrasting Archimedean and effective buoyancies

Before describing our experiments and their results, let us get a feel for how the effective
buoyancy a, works and how it differs from Archimedean buoyancy (some intuition for a; and
p; is developed in Appendix A.2). From (2.10) we see that a; is sourced by the horizontal
Laplacian of p, so that buoyant accelerations tend to be strongest at local extrema of density
(or, more generally, regions of gV%p # 0), rather than at density anomalies defined relative
to an arbitrary reference value (as with B). This means that the a, of a parcel is defined
relative to its immediate surroundings, so that a very warm parcel surrounded by other warm
air may accelerate less than a moderately warm parcel surrounded by cool air.

Since (2.10) is a Poisson equation, effective buoyancy is non-local: that is, localized
extrema of density give rise to accelerations everywhere, even where B = 0. This is, of
course, because any localized acceleration must (by mass continuity) be accompanied by
compensating accelerations in the rest of the atmosphere. These compensating accelerations
(see Appendix A.1 for their definition) often oppose the buoyancy field B that gives rise to
them [49, 32], yielding a reduced net acceleration for air with significant B. For isolated
regions of significant buoyancy, we thus expect that |a,| < |B].

These aspects of a; are illustrated by Figure 2.1, which shows z-z cross sections of B and
ap for two Gaussian bubbles of the form

p=p(2) + dp exp[—(r/ro)" — (2/2)"]
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Figure 2.1: An z-z cross-section of Archimedean buoyancy B and effective buoyancy a,
for Gaussian (n = 2) and hyper-Gaussian (n = 4) density perturbations of the form
exp|—(r/ro)™ — (2/20)"]. The shape of the density perturbations at the surface is given
in the left-most panels, and the precise form is given in the text. Note that a; is only a
fraction of B throughout most of both bubbles, and that a; is non-zero above z ~ 1000 m,
where B =~ 0. Also note the double peak in a; for the broad n = 4 distribution.

for n = 2 and 4. Here, 79 = 1 km, 2z, = 500 m, and dp = p(0)/300, where p(z) is taken
from our RCE simulations described below. We calculate B with respect to the horizontal
average of p rather than p; the fact that such a choice is required, yet somewhat arbitrary,
is yet another shortcoming of B [15].

Perhaps the most striking feature (for both values of n) of Figure 2.1 is the degree to
which |ay| < |B|, requiring a rather severe stretching of the color bar to render features of
both fields visible. Another interesting feature of Figure 2.1, particularly for n = 4, is that
for z 2 1000 m, a;, # 0 even though B ~ 0. As discussed above, this is because a; not only
accelerates the bubble but also sets up the accompanying environmental circulation.

Finally, for n = 4, one can calculate that VZp is a maximum near the ‘shoulder’ of the
density distribution at r ~ 500 m, and Figure 2.1 shows a corresponding maximum there in
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the ay, field as well. This is to be contrasted with the B field, where the maximum is found at
r = 0, where p itself has a minimum. Again, this is because net thermodynamic accelerations
are a function of how buoyant a parcel is relative to its immediate surroundings, and so when
the peak of the density distribution is too broad, the parcels there feel less acceleration than
their counterparts at the shoulder of the distribution. Thus, the spatial distribution of a,
can indeed differ from that of B; we will see even more dramatic examples of this in the next
section.

2.3 RCE simulations

With a preliminary understanding of a; in hand, we can proceed to investigate whether aj
or a; dominates the triggering of deep convection by cold pools in CRM simulations of RCE.
This section describes the numerical model used, as well as our specific case set-up. We also
briefly describe our calculation of a, and a;; this is discussed in greater detail in Appendix
A2

Our cloud-resolving simulations were performed with Das Atmosphérische Modell (DAM)
[63]. DAM is a three-dimensional (3-D), fully-compressible, non-hydrostatic cloud-resolving
model, which employs the six-class® Lin-Lord-Krueger microphysics scheme [44, 46, 40].
Radiation is interactive and is calculated using the Rapid Radiative Transfer Model [53].
We rely on implicit LES [48] for sub-grid scale transport, and thus no explicit sub-grid scale
turbulence scheme is used.

Our RCE simulations ran on a square doubly-periodic domain of horizontal dimension
L = 51.2 km, with a horizontal resolution of dr = 100 m. The vertical grid stretches
smoothly from 50 m resolution below 1200 m to 100 m resolution above, up to the model
top at 30 km. We ran with a fixed sea-surface temperature of 300 K, and calculated surface
heat and moisture fluxes using a bulk aerodynamic formula [20].

For a first diagnosis of a; and a; in RCE, we spun up the model for 60 days on an L = 12
km, dxr = 200 m domain, then used the vertical profiles from this run to initialize a 13-day
run on an L = 51 km, dr = 200 m domain. This run was then restarted with dxr = 100 m
and run for one more day to iron out any artifacts from changing the resolution. All data in
the next section are from the end of this run.

We diagnose the effective buoyancy a;, directly from CRM output via the Poisson equation
(2.10). We compute a; slightly indirectly by first computing the inertial pressure p; from
CRM output via (A.4) and then using a; = —(0,p;)/p. We solve both Poisson equations
by Fourier-transforming in the horizontal, which yields systems of algebraic equations that
can be solved by inverting a tri-diagonal matrix. As discussed in Section 2.2, the fact that
w = 0 at model top and bottom yields Dirichlet boundary conditions for a, and Neumann
boundary conditions for p;. The implementation of the latter is somewhat subtle, however,
and requires some care; see Appendix A.2 for details.

3This refers to the six forms that water takes in the scheme: vapor, non-precipitating liquid water,
precipitating liquid water (i.e., rain), non-precipitating ice, snow, and graupel.
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Figure 2.2: Plot of Archimedean buoyancy B, vertical velocity w, effective bouyancy ay,
and inertial acceleration a; in the boundary layer for a CRM snapshot. Note that incipient
convection (w 2 1 m/s) is almost entirely co-located with the cold pool boundaries visible
in the B field, and that the vertical acceleration there appears strongly dominated by a;.
Note the stretched color bar for all accelerations. The ‘O’ in the w plot marks the gust front
whose transect is plotted in Figure 2.3.

2.4 RCE results

Plan views of the vertical velocity w at z = 300 m as well as the vertical accelerations B,
a;, and a; at z = 150 m for a CRM snapshot are given in Figure 2.2. Cold pools are clearly
visible in the B field, and incipient convection at the cold pool gust fronts is evident in the
w field. Comparison of a; and a; suggests that this incipient convection is due primarily
to a; rather than a,. Note the much reduced magnitude and differing spatial scales of a,
relative to B, again requiring a severely stretched color bar; in this circumstance, B is not
even a first approximation for a,. This drastic difference between a, and B is a result of
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Figure 2.3: Plot of velocities v, w, Archimedean buoyancy B, potential temperature 6, spe-
cific humidity ¢,, pseudoadiabatic equivalent potential temperature 6., inertial acceleration
a;, effective buoyancy a,, and a, + a; for cold pool transect. The nascent plume at (z,y) =
(38 km, 150 m), visible in the w field, lies just above the gust front evident in the u field.
The plume has anomalously high 6, ¢, and B but is nonetheless triggered primarily by a;.
Note again the drastic differences in the a, and B fields.

the extreme aspect ratio of the cold pools as well as their proximity to the ground, where
an a, = 0 boundary condition is enforced. Understanding this difference will be the focus of
Chapter 3.

To further investigate the dominance of a; over a,, we take an y-z transect through a
particular cold pool gust front from Figure 2.2 and plot various quantities for this transect
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Figure 2.4: Regression coefficients r;, 7, (units g/m?) as defined in (2.13), plotted as a
function of (dx,dy) for various z. This more objective and comprehensive test again shows
that a; dominates over ay.

in Figure 2.3. (This particular gust front is marked with an ‘O’ in the w plot of Figure
2.2.) We see a vigorous southward-moving cold pool with a gust front at y ~ 38 km,
as well as a nascent plume (w > 1 m/s) just above at around z = 300 m. The warm,
moist air feeding this plume from below is visible in the plots of Archimedean buoyancy B,
potential temperature 6, water-vapor mixing ratio ¢, and equivalent potential temperature
. at (y,z) ~ (38 km, 150 m). The gust front and plume indeed exhibit anomalously high
0., as noted by T01. Despite such thermodynamic enhancement, however, the plume’s near-
surface acceleration is strongly dominated by a;. Even when plotted on a stretched color
scale, its buoyant acceleration a; is barely discernible and is much reduced relative to its
Archimedean buoyancy, consistent with our results from Section 2.2.

To quantitatively test the hypothesis that the a; spike is responsible for the nascent
plume, we check if w of the nascent plume at z = 300 m, which is about 2.5 m/s, is equal
to v/2a;h where h is the height of the a; spike at the gust front. Taking a; ~ .02 m/s* and
h = 200 m gives v/2a;h = 2.8 m/s, which is consistent with the actual w.

We analyzed several other cold pools and came to similar conclusions. Still, a more
comprehensive and objective test of the dominance of a; is needed. To that end, we identify
‘active’ columns (defined here to be those (z,y) with w(z,y, z = 300 m) > 0.5 m/s), and for
these regress pa; and pay evaluated at (z + dx,y + 0y, ), for various dz, dy, and z < 300 m,
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against w?(x,y,300 m). This yields regression coefficients ry(dz, dy, ), r;(dz,dy, z) which
are least-squares fits to

ap(T + 62,y + 6y, 2) = rp(0x, 8y, 2) - w?(x,y,300 m) + C,

2.13
ai(x + 6x,y + 8y, 2) = r;i(dx, 6y, 2) - w?(z,y,300 m) + C; (2.13)

where the intercepts Cj, C; are negligible and ignored henceforth. We use w? rather than w
because (by the work-energy theorem) a linear relationship with the forces is expected only
for w?. We regress the forces on w?, rather than the other way around, because we want
the regression coefficient to be directly proportional, rather than inversely proportional, to
the magnitude of the forces. Maps of 7, and r; as a function of (dx,dy) and at various z
are shown in Figure 2.4. [The units and order of magnitude of the coefficients are given by
p/2h = (1.2 kg/m?®)/(2 x 200m) = .003 kg/m?*.] These maps show clearly and objectively
the dominance of a; over a; in generating new mass flux in the boundary-layer, and comprise
our main numerical result.

2.5 Why does a; dominate?

The previous section presented anecdotal as well as systematic evidence that a; dominates
over a; in triggering new low-level mass flux in a simulation of deeply convecting RCE.
It remains, however, to gain some insight as to why this should be. In this section we
will estimate the ratio of a; to a, at a cold pool gust front by estimating the ratio of the
relevant source terms in their respective Poisson equations. We justify this approach by
noting that variations in a, and a; at the gust front occur over the same length scales and
so VZa;/V%ay, = a;/ay.

First consider the source term S,, = —0.V - [p(u - V)u] for @; in (2.11). This can be
re-written as

Sai = 82 [ﬁ (ajuz)((?zuj) — ﬁw283 lnﬁ] i (214)

To analyze this, note that the scale of p variations is much larger than those for the velocities,
so we can neglect derivatives of p. This leaves us with

Sa; = 00 [(05u;)(Oruy)] - (2.15)

Let us evaluate this at a gust front boundary, where U is a typical horizontal velocity of
the front, W is a typical vertical velocity of a triggered updraft, h is a typical height of the
front, and L is the length over which v and B transition from their cold pool values to their
ambient values. (From the surface level in Figure 2.3 this is evidently the grid spacing dz,
though we will see that our argument is resolution-independent.) Then every i = 1 or 2 in
(2.15) yields a factor of U/L, and every factor of i = 3 yields a factor of W/h, which equals
U/L by continuity. The same is true for j. The 0, contributes a factor of 1/h, and so we

can estimate (2.15) as
U2
Sa; = IPp——.
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Figure 2.5: Cartoon depicting the dominance of a; over a; as resulting primarily from the
ratio of downdraft height H to gust front height h, as in Eqn. (2.17).

Similarly, the source term for a, is given by

/

p

Say = gVip 2975

where p' is a characteristic density anomaly for a cold pool. Taking the ratio of our expres-
sions for S,, and S,, gives
Se, U 2
Sa,  2Bh

where B is a characteristic magnitude of Archimedean buoyancy for the cold pool. To
evaluate (2.16) we use the empirical observation [26] that for a lock-release density current,
the ‘total-depth’ Froude number Fry = U/v/ByH is roughly equal to 1/2, independent of
time and H.* Here H is a characteristic height for the negatively buoyant downdraft which
spawned the cold pool, and By is the magnitude of the cold pool’s initial buoyancy (typically
By 2 B). Plugging U? = 0.5ByH into (2.16) gives

(2.16)

Se, _ 9BoH
S., 4 Bh

4More specifically, if the initial slug has a radius Rg then Fry is roughly constant until the gust front
reaches 8 — 10 Ry, at which point the cold pools in our simulation have transitioned to warm pools.

> 1. (2.17)
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This is our main theoretical result. Taking typical values of H = 800 m, h = 200 m,
By = 0.02 m/s? and B = 0.01 m/s? gives a ratio of about 18, implying that, at the gust
fronts, a; is larger than a, by about an order of magnitude. This corresponds roughly to what
we see in Figures 2.2 and 2.3. A cartoon of this result, emphasizing the ratio of downdraft
height H to gust front height h as a determining factor in the dominance of a; over ay, is
given in Figure 2.5.

2.6 Shallow-to-deep simulation

Given that we have identified a; as the dominant force component in the generation of
boundary-layer mass flux in RCE, it is of interest to ask whether there are other set-
tings in which a;, rather than a;, might dominate. One might expect that for shallow
non-precipitating convection, the absence of cold pools would mean that the triggering of
convection is primarily buoyant in nature.

To test this, we run a shallow-to-deep CRM simulation similar to that of [41], where we
use the same model domain and grid spacing as for our RCE simulation above but initialize
with a thermodynamic profile based on observations from the Barbados Oceanography and
Meteorology Experiment (BOMEX)?. For heights between 0 and 3000 m we use the ¢ and ¢
profiles given in the CRM intercomparison study of this case in [74]. We then simply (and
somewhat crudely) extend the 6 profile to above 3000 m by linearly interpolating (z, 6) to a
tropopause at (14000 m, 350 K) and then to the model top at (30000 m, 800 K). We similarly
extend the ¢ profile via relative humidity RH by interpolating (z, RH) to (14000 m, 0.5) and
then to (30000 m, 0). These values roughly approximate those found in our RCE simulations.
We fix the latent heat flux at 150 W/m? and sensible heat flux at 10 W/m?, in accordance
with [74]. Note the contrast with other studies of the shallow-to-deep transition, such as
[41] and [4], where the transition is forced by time-dependent surface fluxes. Here, we are
less interested in a realistic transition between shallow and deep convection as we are in
contrasting their convective triggering mechanisms, and we deem this simple simulation
sufficient for that purpose.

We run this simulation for two days, saving 3-hourly snapshots. For each snapshot, we
calculate 7, and r; as in (2.13) but set dx = dy = 0 for clarity. We thus get one value
of r, and r; at each height for each snapshot, and time series of these (along with domain
mean precipitation) are presented in Figure 2.6. Indeed, we see that a, dominates while
precipitation is negligible, and that a; takes over as precipitation sets in; this confirms our
expectation, and provides a clear hydrodynamical distinction between mass flux generation
in the two regimes.

5This campaign observed the so-called ‘trade cumulus’ regime, wherein a temperature inversion around
z ~ 2000 m caps convection at that height, inhibiting precipitation.
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Figure 2.6: Time series of regression coefficients r; and ry,, computed as in (2.13) for various
z but with dz = dy = 0, along with precipitation time series, for the shallow-to-deep sim-
ulation. Note that a, dominates before precipitation sets in, at which point a; takes over.

2.7 Implications

We have used a carefully chosen formulation of the anelastic equations of motion to decom-
pose vertical accelerations into inertial and buoyant components, and have used the resulting
decomposition to analyze the triggering of low-level mass flux by cold pool gust fronts. This
can be seen as a first step towards answering the question of how cloud-base mass flux is
generated in the boundary layer of an atmosphere in deeply convecting RCE. Along the way,
we have also developed some intuition for the inertial and buoyant accelerations, and have
addressed some ancillary questions that arise in their interpretation and computation.

The notion of effective buoyancy, though not new, has received relatively little attention.
The physics it embodies is well-known, in that it is widely acknowledged in the literature
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that buoyant accelerations of parcels are reduced by back-reaction from the environment
and that this effect depends on the horizontal extent of the parcel, but these effects are
rarely computed explicitly. Furthermore, widely-used diagnostic quantities such as CAPE
and CIN, which play central roles in various convective parameterizations [e.g., 83, 8|, are
based on easily calculated Archimedean buoyancy, rather than on the complete buoyant
force.® Since the results presented here (and in particular Figures 2.1 and 2.2) suggest that
Archimedean buoyancy can be highly inadequate in capturing buoyant acceleration, both
in magnitude and spatial distribution, care must be taken in the quantitative application
of such diagnostics. If a parcel’s CIN, for instance, is a poor estimate of the negative
buoyant acceleration it experiences as it makes its way to cloud-base, then there may be
little theoretical justification for the CIN/TKE mass-flux closures employed in, e.g., [47]
and [8]. There is thus a need for a simple yet quantitatively reliable way to estimate the
effective buoyancy of a parcel given some additional datum about its spatial dimensions and
proximity to the ground, and we pursue that in Chapter 3.

The other component of vertical force, the inertial pressure gradient pa; = —0.p;, seems
to be more familiar than effective buoyancy, having in particular played a key role in the
analysis of severe storms and tornadoes [e.g., 70, 38, 49]. Despite this exposure, though, p;
remains slightly enigmatic. There seems to be little discussion in the literature of p; as an
enforcer of mass continuity in the face of inertial motions, and how this implies that strain
and vorticity generate p; disturbances of opposing sign. Furthermore, the calculation of p; via
(A.4) raises issues of boundary-condition implementation and finite-difference interpolation
that often go unmentioned, but actually require rather exquisite care. We have endeavored
to fill these gaps in the interpretation and calculation of p; in Appendix A.2.

Finally, our result that the inertial acceleration a; dominates the low-level triggering of
new mass flux provides a stepping stone to a more complete picture of mass flux generation
in the boundary-layer. Though we have not made a precise connection between the low-level
mass flux investigated here and cloud-base mass flux, a positive correlation is to be expected,
and thus our results lend preliminary support to convective parameterizations in which the
inertial triggering of mass flux at cold pool gust fronts takes center stage, as in [62].

Of course, many details remain to be filled in. For instance, although a; dominates over
ap in the lower boundary layer, the transect in Figure 2.3 (as well as other transects we
inspected) suggest that the force balance may shift as the plume rises, and that a, may play
a role in shepherding nascent plumes through the middle boundary layer and up to their
lifting condensation levels. Quantifying this role would be necessary to complete the picture
of cloud-base mass flux generation.

Apart from the generation of deep convective mass flux, there are other problems which
might be fruitfully analyzed with the approaches taken here. It could be helpful to attempt
a scaling estimate for a;/a; as in (2.17), but for shallow convection, where turbulent motions
instead of cold pools are responsible for generating the heterogeneity in density and wind

6As computed via ap, or by adding in the buoyancy perturbation pressure force —0,p}, as per (A.1)
below.
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that generate a, and a;. Also, applying the force decomposition (2.12) to convection in
the free troposphere could further refine our picture of the vertical momentum budget of
thermals, as recently studied in, e.g., [80], [73], and [67].

Finally, we point out a similar recent study which also examines the relative influence
of thermodynamic and mechanic properties of cold pools upon convective triggering [79].
Similar to this study, those authors also found that mechanical forces dominate over ther-
modynamic ones in triggering low-level mass flux. Furthermore, they employed a Lagrangian
particle dispersion which allowed them to quantify the influence of cold pool thermodynam-
ics in reducing particles’ lifting condensation levels. They also introduced a novel algorithm
for tracking the lifetimes of cold pools and the residence times of particles within them,
providing new insights into the origins of mass flux triggered by cold pools.
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Chapter 3

Effective buoyancy at the surface and
aloft

3.1 Introduction

We pointed out in the last chapter that under some circumstances, the Archimedean buoy-
ancy B is a poor approximation to the effective buoyancy 3, which gives the true acceleration
a density anomaly will experience due to its buoyancy. This was evident in Figs. 2.1 and
2.2, though in those figures it is unclear how much the discrepancy between B and f is due
to aspect ratio effects, and how much might be due to (heretofore unstudied) surface effects.

To disentangle this we calculate B and g fields for Gaussian bubbles of a fixed aspect ratio
but of variable distance from the ground. More specifically, we consider density distributions

of the form
r? z—z 2
L cm 1
R2 < H/2 ) ] ’ (3.1)

with height H = 1000 m, radius R = 1000 m, Ap = —p(2zem)/300 for an approximate
temperature anomaly of 1 K, and bubble centers z., = 2000, 500, and 0 m. Figure 3.1
shows z-z cross-sections at y = 0 of B and f3 for these bubbles.! The ratio of the maximum
of 8 to the maximum of B is roughly 1/2 for the “free” bubble, and this ratio decreases
rapidly as the bubble approaches the surface. At the surface one can also see that the
maxima of § and B are no longer co-located.

Thus, surface effects can be as significant as aspect ratio effects. We lack simple formulae
for estimating either of these effects, which is symptomatic of our fuzzy understanding of
them. Our aim in this chapter is to remedy this by developing, testing, and understanding
analytical expressions for the effective buoyancy of fluid parcels near the surface and aloft.
We will solve the the Poisson equation for 5 given in [13] (hereafter DJ03) for idealized

p(x) =p(z) + Apexp

!The domain set-up and p(z) for the bubbles is the same as for the large-eddy simulations discussed in
section 3.5 below, and we compute S numerically as described in the last chapter.
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Figure 3.1: z-z cross sections at y = 0 of B and § = B — (0,p})/p for Gaussian bubbles of
the form (3.1) with R = 1000 m, H = 1000 m, and center height z.,, = 2000, 500, and 0
m, respectively. Horizontal and vertical dimensions are plotted to scale, though the vertical
axis in the top row differs from that of the other rows. The lone contour is drawn at the
95th percentile value in each plot. Note the marked difference in magnitude between B and
B, how this difference becomes more pronounced as the bubble moves toward the surface,
and how the maximum of f stays a finite height above the surface even as the maximum of

B approaches z = 0.

density distributions, and employ the closely related ‘buoyancy pressure’ (Appendix A.1) to

gain intuition for our results.

3.2 Preliminaries

The Poisson equation for effective buoyancy

We begin by recalling the definition (2.1) of 5 as the Lagrangian vertical acceleration that

would result from zeroing out the wind fields:

dw

t

B

u=0
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In the previous chapter we used this to derive the Poisson equation (2.10) for 3, originally
due to DJO3:

=VA(0B) = gVip (3.2)

(Recall that V; = 02+0;; the difference between V3 and V? is the source of all the interesting
physics that follows.) Neglecting vertical variations in p (since the scale of such variations is
larger than the density anomalies we will consider) and noting that VZp = V2p/, we obtain
an even simpler form,

-V =-ViB. (3.3)

This is the Poisson equation for  that we will use in this chapter.

Effective buoyancy and the buoyancy pressure

Though Eqn. (3.3) is all we require to obtain analytical expressions for 3, getting intuition
for what these expressions tell us will require us to consider the buoyancy pressure pg, also
discussed in Appendix A.1. Analogous to the definition (2.1), pg is defined as the non-
hydrostatic pressure that would result from zeroing out the wind fields:

Pbs = pﬂh|u:0 .

Taking the divergence of (2.6), invoking anelastic mass continuity, and setting u = 0 yields
the Poisson equation
—V2p5 = V%phyd . (34)

This equation just says that the divergence of —Vpg must cancel out any divergence pro-
duced by the horizontal hydrostatic pressure gradient —Vjpyya. That Eqn. (3.4) is remi-
niscent of Eqns. (2.10) and (3.3) is no accident; applying —0, to both sides of (3.4) yields
—V?%(=9,ps) = gVip, and it follows from (2.6) that the boundary conditions of —d,ps are
identical to that of pf3, so we conclude that

ﬁﬁ = —0:pg - (35)

Thus, [ is essentially the vertical component of the pressure gradient —Vpg which arises to
compensate for hydrostatic pressure forces. Considering pg will give us a picture of the full
3-D circulation resulting from parcel buoyancy, which will facilitate intuition for 3.

Back-of-the-envelope estimate of effective buoyancy

We will be interested in solutions of (3.3) for parcels of characteristic height H and horizontal
scale D. In terms of these parameters, we can roughly estimate 9 ~ 1/D? (here and below,
r = /2?2 4+ y? is our cylindrical radial coordinate) and 9? ~ 1/H? and plug into (3.3) to
obtain B

b= 1+ D2/H?

(3.6)
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This suggests that |3| < |B|, as we expect, and that the proportionality factor depends
quadratically on a parcel’s aspect ratio D/H. The exact solutions of (3.3) for isolated
cylindrical density anomalies, which we will present below, confirm this.

Before proceeding to that analysis, let us use (3.6) to re-do the usual linear perturbation
analysis of a parcel in a stratified environment with potential temperature profile f(z) and
Brunt-Vaisala frequency N = y/gd(Inf)/dz . In the linear regime with no background flow
there is no ‘inertial’ or ‘dynamic’ pressure stemming from the non-linear advection term in
the momentum equation, and so dw/dt =  (see previous chapter). Applying this to a small
displacement 0z, and using Eqn. (3.6), we then have

d*5z N?

_ 5z.
a1+ DY H2

Letting & = 1/D and m = 1/H, this implies that the parcel will oscillate with angular

frequency
N Nk

which is just the usual expression for the frequency of a gravity wave with horizontal and
vertical wavenumbers k and m [see, for example, 30]. Thus, the reduction of the gravity-wave
frequency from the Brunt-Vaisala value can be seen as just the effect of effective buoyancy.
That Eqn. (3.6) gives the exact right answer for w is no accident, as (3.6) is itself exact for
gravity waves, as can be checked by plugging in oscillating fields B, 5 ~ exp(i(kz+mz—wt))
into Eqn. (3.3).

Despite the applicability of Eqn. (3.6) in the gravity-wave context, and the fact that it
captures the reduction of g relative to B as a function of a parcel’s aspect ratio, it is just
a crude estimate and does not capture the dependence of § on a parcel’s proximity to the
surface seen in Fig. 3.1. To make further progress, we will need the exact solutions presented
in the next two sections.

3.3 The free cylinder

We now refine the result (3.6) for the case of a ‘free’ parcel, i.e., a density anomaly in an
infinite domain without boundary. The case of a parcel at the surface is treated in the next
section. We proceed by partially solving the Poisson equation (3.3) for a uniform cylindrical
density anomaly centered around the origin with Archimedean buoyancy By, diameter D,
and height H. This is illustrated in Fig. 3.2a. The buoyancy field thus has the form

B =By H(D/2—r) H(z+ H/2) H(H/2 — 2) (3.7)

where the Heaviside step functions H serve to restrict the density anomaly to our cylinder.
Plugging this into (3.3) yields

V23— % On(ro(r — DJ2)) H(= + H/2) H(H/2 — =) (3.8)
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Figure 3.2: Illustrations of the buoyancy distributions appearing on the right-hand side of
(3.3) for (a) the free cylinder and (b) the surface cylinder. The distribution is even about
z = 0 for the free cylinder, but odd for the surface cylinder, enforcing a 5(0) = 0 boundary
condition for the latter.

where §(r) = 0,H(r) is the Dirac delta function.

A complete analytical solution of (3.8) would be arduous, if not impossible, but here
we seek only the solution for § on the z-axis, which simplifies the problem considerably.
Since the Green’s function G(x;x’) for the Laplacian V2 for a field with ‘open’ boundary
conditions (i.e., a field which vanishes at infinity) is just 1/(47|x — x'|), and since we are
interested only in x = (0,0, 2), B(z) on the z-axis is given by

B(z) = / i G((0,0, 2) : %) V2B()
_ By 1z o [T O (T/(S(T/ - D/2)>
7/ dz dr )

a —H/2 0 2 4+ (z — 2)?

This double integral can be evaluated using integration by parts, the definition of the delta
function, and trigonometric substitution. The result is

_ B 1-22/H N 1+2z/H (3.9)
- 2 \ /D*JH? + (1 —22/H)? VD H? + (1+22/H)? ) '

B(z)

This analytical expression is one of the main results of this paper.
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Figure 3.3: The curves §(z) (in green) from Eqn. (3.9) for free cylinders of various aspect
ratios D/H. The cylinders themselves are depicted to scale in pink. As D/H increases,
there is a marked decrease in the maximum of 5(z), as well as an increase in the vertical
scale over which § decays.

The function [(z) is plotted as a function of z/H in Fig. 3.3 for various aspect ratios
D/H, which are depicted to scale by pink boxes. Note that as D/H increases, the maximum
of  decreases. This can be further illustrated by evaluating (3.9) at z = 0, which yields

B(0) = B (3.10)
1+ D?/H?

This is plotted as a function of aspect ratio in Fig. 3.4, and quantifies the effect of aspect ratio
on buoyant accelerations: for D/H = 1, the environmental response offsets the Archimedean
buoyancy by 30%; for D/H = 2, 50%. For small aspect ratios D/H < 1 the plot of (3.10)
in Fig. 3.4 flattens out, so narrow plumes do not become significantly more buoyant by
splitting apart. In this regime we can also Taylor-expand the denominator in (3.10) to first

order which yields
B(0) ~ HLQ
+ D?/(2H?)

an expression very similar to (3.6). For the opposite, large aspect-ratio regime we have the
alternate approximation

when D/H < 1,

H

We will contrast this expression with its analog for the surface cylinder in the next section.
These formulae quantify the decline of effective buoyancy with aspect ratio. What causes
this decline, however? And why does it take the form (3.11) in the large-aspect ratio limit?
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Figure 3.4: Effective buoyancies at the center of the free cylinder [Eqn. (3.10), solid line]
and the surface cylinder [Eqn. (3.19), dashed line| as a function of D/H. Note that § is is
always smaller for the surface cylinder than for the free one, and that it decreases much more
rapidly as D/H increases. The thin gray line plots the result (3.25) of [56], which tracks our
Eqn. (3.10) very closely.

To answer these questions we turn to the buoyancy pressure pg introduced in Section 3.2.
We must first find pg(z), which is easily obtained via (3.5) by integrating (3.9). Imposing
the boundary condition pg — 0 as 2 — oo yields

ps(z) = # ( — /DYH* ¥ (1—-2:/H?2+ /DJH> + (1 +2:/H)? — 2) (3.12)

where
Aphyd = —ﬁBoH/Q (313)

is the phyq anomaly at the cylinder’s center. Evaluating (3.12) at z = 0 yields

ps(0) = —Aphya - (3.14)

This simple result is key for understanding the free cylinder, and does not hold for the
surface cylinder. To gain intuition for it, consider a smooth, cylindrical buoyancy distribution
(e.g., a Gaussian bubble as in Fig. 3.1), as depicted schematically in Figure 3.5a; the cylinder
of uniform buoyancy given by (3.7) can be seen as a limit of such distributions. Figure 3.5a
gives a heuristic derivation of (3.14), as follows.
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Figure 3.5: Cartoon of the gradients —Vpyya and —Vpg and associated divergences for (a)
the free cylinder and (b) the surface cylinder. Note that for the free cylinder, the vertical
divergence from —V _pg = pf is zero, so the horizontal convergence from —V;pyyq must be
balanced entirely by horizontal divergence from —V;pg, which yields ps = —Apyyq. For the
surface cylinder there is a vertical contribution to the divergence since §(0) = 0, and so a
smaller value of | — V;,ps| (and its divergence) is sufficient to balance the divergence from

—VhPuyd, yielding ps < —Appyq.

1. The hydrostatic pressure anomaly Appyg < 0 in the cylinder drives convergence into
the cylinder via —Vjpyya (blue arrows).

2. This must be balanced by divergence from —Vpg, as per Eqn. (3.4). The z — —=z
symmetry of (3.3) implies that 5 at cylinder top and bottom must be equal, however,
so the vertical component of —Vpg cannot contribute any divergence (vertical green
ArTOWS).

3. The horizontal divergence of —Vpgz must then balance the convergence from —V,pyyq
(horizontal green arrows). Since this balance occurs over a common length scale D, we
can infer Eqn. (3.14).

Now, a key feature of Eqn. (3.14) is that ps(0) is independent of horizontal scale. Why,
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Figure 3.6: As in Fig. 3.3, but for surface cylinders with 5(z) given by (3.18). In addition to
a decrease in § and increase in vertical scale as D/H increases, the location zy., (light gray
dashed line) of B,.x moves upward, with 2y, located just above the cylinder for D/H = 5.

then, does 8 decline with increasing D/H for fixed H? As show in Appendix B.1, for large
aspect ratios, the normalized field pg/ps(0) is a fixed function of x/D, with negligible H-
dependence. In particular, this means that the height at which pg decays to a given fraction
of itself scales with D. Thus, 8 = —(0,pg)/p must scale as

ps(0)
~ . 3.15
5~ 2 (319
If we combine this with Eqn. (3.14) and the definition (3.13) we get

Aphyd H
— ~ By— 3.16
ﬁD ODv ( )

8 ~

which is just the scaling we found in (3.11). Thus, the basic reason that aspect ratio matters
for a free parcel is that the vertical scale of pg is a function of the parcel’s horizontal scale D.
(This can also be inferred from Fig. 3.3.) If D increases while H (and hence pg(0) = —Appyd)
is fixed, a taller column of air must be moved with a fixed pressure differential, decreasing
the gradient 8 = (—0.pg)/p-

3.4 The surface cylinder

We now turn to parcels located at the lower boundary of a domain, where the vertical
velocity w is identically 0 and hence so is § by (2.1). To solve (3.3) for a cylinder at



CHAPTER 3. EFFECTIVE BUOYANCY AT THE SURFACE AND ALOFT 30

the surface (where the surface is at z = 0), we employ the method of images [DJ03; 25].
The idea of this technique is to enforce a (0) = 0 boundary condition by solving the
open boundary condition problem as in the previous section, but with an additional ‘image
cylinder’ generated by reflecting the original surface cylinder across the z = 0 plane and
switching the sign of its anomaly; see Fig. 3.2b. The source term V3B in (3.3) will then be
odd with respect to z, which implies 8 will be odd too, ensuring 5(0) = 0.

In this case, then, the Poisson equation for f is

~V2B=-ViBoH(R—71)[H()H(H — 2) — H(—2)H(H +2)] . (3.17)

Integration against the Green’s function as in the previous section yields the desired formula
for 8 along the z-axis:

By ( 1—z/H . 2:/H 1+z/H ) |

Blz) =

2 \/D?*/4H?+ (1 —2/H)? \/D2?/AH?>+22/H?>  \/D%/4H? + (1 + z/H)?

(3.18)
This expression is the other main analytical result of this paper. This §(z) is plotted as
function of z/H for various D/H in Fig. 3.6. Similar to the free cylinder, the overall magni-
tude of § decreases with increasing D/H. To analyze this, we estimate the parcel’s overall

effective buoyancy by evaluating 5 at the center of the cylinder, yielding

3By 1 1
2 <\/1+D2/H2 \/9+D2/H2)'

We plot this function against D/H as the dashed line in Fig. 3.4. Note that this curve is
always less than that for the free cylinder, consistent with Fig. 3.1, and declines much more
rapidly with increasing D/H. In fact, the large aspect-ratio limit gives

B(H/2) = (3.19)

H3
8(0) ~ GBOE
which should be compared with the H/D scaling in Eqn. (3.11).

Another noteworthy feature of Fig. 3.6 is that, like the free cylinder, the vertical scale
over which [ declines increases as D increases, but in this case the location z,., of the
maximum of (z) (light grey dashed line in Fig. 3.6) also changes, and even appears outside
the cylinder for D/H = 5. This may be surprising, but is consistent with the fact that, for
D > H, zpax scales with D (Appendix B.1).

Why do surface parcels accelerate less than free ones? As in the previous section, we
turn to ps for insight. Again invoking (3.5), we integrate (3.18) with our ps — 0 as z — oo
boundary condition to obtain

when D/H > 1, (3.20)

_ Ap hyd

pp(2) 5

(—\/D2/4H2 Y (1—2/H)? + 2¢/D*JAH% + 22/H? — /D*/AH? + (1 1 2/h)? )
(3.21)
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Taking the D/H > 1 limit in (3.21) and evaluating at z = 0 then gives

H
pg(O) =~ —Aphydﬁ < —Aphyd . (322)

This stands in marked contrast to the free cylinder result (3.14), and is one of the main
ways in which the surface cylinder differs from the free one. We again give a heuristic
derivation for a smooth cylindrical density distribution, shown in Fig. 3.5b, as follows:

1. The hydrostatic pressure anomaly Appyq < 0 in the cylinder drives horizontal conver-
gence into the cylinder via —V;ppya (blue arrows).

2. This must again be balanced by divergence from —Vpg. For the surface cylinder,
however, there is now a contribution from the vertical component of —Vps (vertical
green arrow). This is because the §(0) = 0 boundary condition at the surface breaks the
reflection symmetry about the horizontal plane passing through the cylinder’s center.

3. The horizontal component of —Vpgs is thus no longer required to balance all of the
convergence from —Vpphyq (horizontal green arrows), and so can have a smaller mag-
nitude | — Vpps| < | —Viphyd|. Since these gradients occur over a common length scale
D we can infer pg(0) < —Apnya, as expressed in (3.22).

We can now combine the foregoing with our earlier results to give a heuristic derivation
of the scaling in (3.20). We have three scaling laws concerning the effective buoyancy of a
surface parcel when D > H :

1. From Eqn. (3.15), we know that Bmax ~ ps(0)/(pD).

2. From Eqn. (3.22), we know that the effect of a nonzero vertical divergence of —Vpg,
which arises from broken reflection symmetry, gives pg(0) ~ ApnyaH/D.

3. Assuming a linear increase of § with height from z = 0 to 2.y, the scaling 2z, ~ D
then gives S(H/2) ~ BmaxH/D.

Combining these three scaling laws then gives

H H
B (7) ~ 5max5 by scaling law 3
0)H
~ p__ﬁ))ﬁ by scaling law 1
p
A H
~ —%ﬁ by scaling law 2
p
H3
~ Boﬁ by the definition (3.13) .

Roughly speaking, each of our scaling laws yields a factor of H/D, combining to give a
H?3/D? scaling just as in Eqn. (3.20).



CHAPTER 3. EFFECTIVE BUOYANCY AT THE SURFACE AND ALOFT 32

t=0 min. t=2 min. t=4 min. t=6 min.
r1.0 r1.0 - 1.0
S S S S
ol +0.8 o +0.8 ol +0.8 o
—LO —L0 —in =0
: r0.6 : r0.6 : r0.6 :
gm gm gm gm
No r0.4 No r0.4 No r0.4 No
N N N N
0.2 0.2 +0.2
n n n n
o - 0.0 o - 0.0 o - 0.0 o

5 05 05 05 05 05 05 05
X [km] X [km] X [km] X [km]

Figure 3.7: x — z cross sections at y = 0 of gyurity, along with z.,(t) (black circle circles) for
the D = 1000 m free cylinder. Only the middle 1/2 of the horizontal domain is shown.

3.5 LES tests

We now test the dependence of effective buoyancy on parcel aspect ratio and surface prox-
imity by performing large-eddy simulations (LES) of the motion of our free and surface
cylinders, again using DAM (cf. Section 2.3). We use a three-dimensional domain with
doubly-periodic boundary conditions in the horizontal, and take a neutrally stratified, dry
environment with a temperature of 300 K at the lower boundary, where w and [ are zero.
The neutral stratification and surface temperature, along with an assumption of hydrostatic
balance, are sufficient to determine the environmental density profile p(z). For given cylin-
der parameters D (which we vary) and H (which we fix at 1000 m), the domain width and
height must be taken large enough to sufficiently approximate the horizontally infinite and
vertically (half) infinite boundary conditions of the free (surface) cylinders. Since the scale
height of ps scales with D when D/H > 1 (Appendix B.1), and since we must leave room
for our cylinders to rise, we take the domain height 2, = max(2D,6H) for free cylinders
and zy,p = max(D,4H) for surface cylinders. We take the domain width to be 6.4D. This is
sufficient to ensure only small? differences between the idealized analytical and finite-domain
numerical profiles of §/Bj.
Our density field is

p(x) =p(2) — p(2em) /300 for r < D/2, |z — zem| < H/2,

with p = p(z) everywhere else. The center heights 2.y, are zyop/2 for the free cylinder and H/2
for the surface cylinder. The grid spacings are do = dy = D/40 and dz = min(dz, H/20).
The adaptive time step is set to a maximum of dz/(10 m/s) to satisfy the CFL condition
[17] for velocities up to at least ~ 10 m/s.

The cylinders are initialized with a purity tracer field gpurity that is set to 1 inside the
cylinder and 0 outside and is advected passively by the flow. For each time t, we diagnose

2More specifically, the difference between the analytical and numerical profiles of 3/Bg never exceeds
0.04, with the relative error in in-parcel acceleration (the quantity we care about) never exceeding 5% at a
given height for a given case.
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Figure 3.8: Diagnosed position of cylinder center-of-mass z.n,(t) (open black circles) for our
cylindrical density anomalies with H = 1000 m and various D, as simulated by LES. The
decreased acceleration with increasing aspect ratio is clear, especially when D/H 2 1 and for
the surface cylinder in particular. The blue line shows the Archimedean buoyancy estimate
zp(t) from Eqn. (3.23), which for the skinny cylinders agrees with the LES at early times, but
cannot capture the initial acceleration of the wider cylinders. The red line shows the effective
buoyancy estimate zg(¢) from Eqn. (3.24), which fares better in capturing the parcel’s initial
acceleration for both free and surface cylinders, except for the D/H =5 cylinders. See the
text for further discussion.

the cylinder’s center of mass z-coordinate as

0 fffd3xqut p(x,t)
ZCHI
ST dxa(xt) p(xt)
where the integrals are taken over the whole model domain. To get a sense of how these

parcels evolve, the guuity fleld, along with z.y(t), is plotted at 3 minute intervals for the
D = 1000 m free cylinder in Fig. 3.7.
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Next, we plot the trajectories zem(t) — zem(0) for free and surface cylinders in Fig. 3.8.
We take D = 200, 1000, and 5000 m, so that D/H = 1/5, 1, and 5, just as in Figs. 3.3 and
3.6. Figure 3.8 shows that the z.,(t) trajectories indeed exhibit the expected dependence of
effective buoyancy on aspect ratio. The effect of the surface is not noticeable for D/H = 1/5
and 1, but is noticeable for D/H = 5; this is consistent with Fig. 3.4, and suggests that the
effect of the surface becomes significant when D/H 2 1.

Figure 3.8 thus qualitatively confirms the physics presented in Sections 3.3 and 3.4. Can
the formulae (3.10) and (3.19) derived in those sections be of any quantitative use? And
how do they compare with the naive predictions of the Archimedean buoyancy? Let us take
a first stab at this by focusing on the initial acceleration of our cylinders. The Archimedean
estimate for this is simply the average initial Archimedean buoyancy B,, [B is not exactly
constant throughout the cylinder, due to small variations in p(z)], and so we plot the curve

zp(t) = 0.5Bt° (3.23)

in blue for each panel of Fig. 3.8. For the D/H = 1/5 cylinders, zp(t) matches z.,(t) quite
well for early times (f < 2 — 3 minutes), and thus the Archimedean buoyancy is a good
approximation to the initial acceleration of these parcels. As aspect ratio increases, though,
there is a growing discrepancy between the initial accelerations of zp(t) and zey,(f) which is
most pronounced for the surface cylinder. This is no surprise, though, as B,, is insensitive
to aspect ratio and surface proximity; indeed, the curves zp(t) are virtually identical for all
SiX cases.

Let us now turn to the effective buoyancy 5. By its very definition (2.1) and the fact
that our simulated atmosphere is initially motionless, we know that the average (., of
over the cylinder must equal the initial acceleration of z.,(t). The question, then, is to what
degree the expressions (3.10) and (3.19), which strictly speaking only describe the center of
the cylinder, approximate (,,. To get a sense of this, we plot the trajectories

z5(t) = 0.5601% (3.24)

where [ is just given by Eqns. (3.10) and (3.19) for the free and surface cases, respectively,
against the diagnosed z.y(t) in Fig. 3.8. For D/H = 1/5 the curves zp(t) and z3(t) are
virtually identical, as one would expect, and both capture the initial acceleration of zy ().
For D/H =1, z3(t) captures the diagnosed initial acceleration whereas zp(t) does not. For
D/H =5, zp(t) underestimates the initial acceleration quite significantly. This is because
our uniform density anomalies with step function discontinuities feature a 3 that actually
increases with r up to the cylinder’s edge at » = D/2, since that is where the singular
source for f is located in the Poisson equations (3.8) and (3.17). For D/H < 1, these radial
variations in 5 are small and so Eqns. (3.10) and (3.19) are nonetheless good approximations
to the average 3, but for the D/H > 1 this is no longer true, and Eqns. (3.10) and (3.19)
underestimates the cylinder’s average $. This can also be seen in in the left column of Fig.
3.9, where the curves (3.10) and (3.19) are overlain on top of f,,/Bay computed numerically
for free and surface cylinders with A = 1000 m and various D. In the next section we will
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Figure 3.9: Comparison of the analytical expressions (3.10) and (3.19) with numerically
diagnosed values of (., /Bay for our cylinders and for Gaussian bubbles of the form (3.1),
with H = 1000 m and various D. Our formulae rather significantly underestimate (3, /Bay
for large aspect ratio cylinders, but give better agreement for large aspect ratio Gaussian

bubbles.

come back to this figure, and discuss whether Eqns. (3.10) and (3.19) can be of quantitative
use when D/H > 1.

As a final aside, we should comment on the over-prediction of z.,(t) by z5(¢) at later
times (¢ > 3 minutes) for the D/H < 1 cases, where there is actually good initial agreement.
Once a parcel begins to move, it experiences an internal circulation which may change its
shape as well as entrain environmental air (Fig. 3.7), both of which will reduce its effective
buoyancy. Furthermore, we expect drag forces to kick in and eventually balance any buoyant
accelerations [64, 66], yielding a terminal velocity rather than continuing acceleration. Such
a balance between buoyancy and drag at later times seems consistent with the diagnosed
Zem(t) in Fig. 3.8, and would also contribute to an overestimation of z.y,(t) by z5(t).
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3.6 Summary and Discussion
We summarize our results as follows:

e The effective buoyancy of a fluid parcel depends on aspect ratio and surface proximity,
as expressed in Eqns. (3.9) and (3.18) and depicted in Fig. 3.4.

e These effects can be understood in terms of the buoyancy pressure pg, of which f is
essentially just the vertical gradient.

e These effects indeed manifest in parcel motion as simulated by LES.

Many questions and potential applications remain, of course. An obvious first question
is: what determines the aspect ratio of real convecting elements in the atmosphere? Our
work here quantifies the well-known advantage that skinny parcels have over squat parcels in
convecting. But a parcel that is too skinny will likely suffer too much dilution from entrain-
ment to convect very far, and so the aspect ratio of real clouds is most likely determined by
a balance between effective buoyancy and entrainment. Settling this question quantitatively,
however, would require a more solid understanding of how entrainment varies with aspect
ratio [68].

Another obvious follow-up question is: to what extent do Eqns. (3.10) and (3.19), which
even for our highly idealized uniform cylinders only capture f,, for D/H < 1, apply to
real convective clouds, which have highly heterogenous density distributions and irregular
shapes? Interestingly, if we consider slightly less artifical density distributions such as Gaus-
sian bubbles of the form (3.1) , then we no longer get a increase of 5 with r (Fig. 3.1), and
Eqns. (3.10) and (3.19) give a better approximation of .y /By, as shown in the right-hand
column of Fig. 3.9. Thus, we may hold out some hope that our analytical expressions apply
to more realistic convection. However, a comparison with density distributions derived from
(say) cloud-resolving simulations would be necessary to confirm this.

We should note here that Eqn. (3.10) is not the only published candidate for § as a
function of aspect ratio. Recently, [56] calculated f for a horizontally infinite slab of height
H with sinusoidal density variations in x and y, and found that for such density distributions

f=B[l—exp(—H/D)] (3.25)

where D = 2/v/k? + 2 is an effective diameter and k, [ are the horizontal wavenumbers of
the distribution. This curve is plotted in Fig. 3.4 in light gray, and matches quite closely
the curve (3.10). Eqn. (3.25) can also be obtained by integrating a uniform buoyancy
profile of height H and center-of-mass height z.,, — 0o against the Green’s function in Eqn.
(15) of [58]. That paper also touches upon the effect of the surface, and emphasizes the
application of formulae such as their Eqns. (18) and (21) [analogous to our Eqns. (3.10)
and (3.19)] to understanding the transition from hydrostatic to non-hydrostatic regimes
in numerical modeling. In this regard, note that Eqn. (3.19) tells us that a grid-point
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surface plume of height 1 km in a ‘convection-permitting’ model of horizontal resolution
4 km [the threshold identified in the recent review by [59]] should experience a roughly
order-of-magnitude reduction in acceleration from the Archimedean value.

Finally, we note that the basic physics investigated here, namely the effect of environ-
mental inertia on an accelerating parcel, is well known in the fluid dynamics literature as the
‘virtual mass’ or ‘induced mass’ effect [see, e.g., 2, 18]. This effect is usually incorporated
into parameterizations of the vertical velocity equation, which often take the form [67]

d
d—l;) = aB — bew? , (3.26)

where a and b are dimensionless, a is often referred to as a ‘virtual mass coefficient’ [e.g.,
8], and € is an entrainment rate (units m~!). The —ew? expression captures the effect
of entrainment (mixing) drag, and b accounts for other types of drag such as form drag
and wave drag, all of which are expected to be proportional to w?. Before relating our
results to such a parameterization, we should re-arrange (3.26) as it is unsatisfactory on two
grounds. First, since b multiplies € it introduces a spurious connection between (say) form
drag and entrainment. Second, any force (not just buoyancy) will induce a back-reaction
from the environment, and so the virtual mass coefficient a should multiply the drag term
as well (assuming that the spatial distribution of buoyancy and drag forces is identical, so
that we may use the same virtual mass coefficient). This suggests a drag term of the form
alcgA/(2V) + eJw?, where A is the projected area of the parcel, V is its volume, and ¢, is a
drag coefficient representing form and wave drag. Equation (3.26) can then be re-written as

1 dw ciA 9
- —_ B | 2
a dt [2V+€}w ’ (3:27)
which combined with the definition (2.1) yields
a=f/B.

Thus, our results (3.10) and (3.19) are just highly idealized calculations of the virtual mass
coefficient a. Furthermore, they show that this coefficient depends on surface proximity.

Other analytical calculations of virtual mass coefficients exist in the fluid dynamics lit-
erature, but are often for foreign objects such as gas bubbles or solid spheres accelerating
through a fluid [see, e.g., 2, 18]. Our case differs from that treated in textbooks in that
the mass we are considering is part of the fluid, and so may accelerate non-uniformly and
develop an internal circulation (as seen in Fig. 3.7). Mathematically, the difference is that
we have no boundary condition on the environmental fluid velocity at the parcel’s edge, as
there would be for a solid body. It could, however, be of theoretical and perhaps practical
interest to compare our expressions (3.10) and (3.19) to analogous expressions for solid bod-
ies of similar geometries, such as the results of [9]. That there may be some connection is
suggested by the special case of a sphere. To approximate this case we set D = H in Eqn.
(3.10), which yields an acceleration of By/v/2 ~ 0.71By; this is quite close to the solid-body
value of 2B,/3, typically derived by other means [18].
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Chapter 4

On the sizes and lifetimes of cold
pools

4.1 Introduction

The previous chapters studied the triggering of convection at cold pool edges, as well as the
buoyant accelerations experienced by cold pools and other approximately cylindrical density
anomalies. As mentioned in the introduction, however, there are basic questions about cold
pool thermodynamics for which we have little theoretical explanation. In particular, we have
little sense of what determines the ultimate size and lifetime of cold pools, before they die
by being warmed up to the ambient temperature.

To investigate this, we develop an “integral” or “box” model of a uniform, cylindrical
cold pool. Such models have been used with some success to study gravity currents in a
wide range of applications [34, 11, 33, 27, 69, 29]. Here, we develop the governing equations
for a cold pool that is subject to entrainment, form drag, and surface fluxes of enthalpy and
momentum. With these governing equations, we aim to develop a theory for the sizes and
lifetimes of cold pools in the tropical atmosphere. As mentioned in the introduction, such a
theory would be particularly relevant to global climate models, many of which have begun
to include representations of cold pools in their convective parameterizations [60, 71, 23, 24,
62, 14].

4.2 Cylindrical cold pool

Consider a cylindrical cold pool that is characterized by a radius R, height H, uniform density
anomaly p’ (relative to the environmental air at the same height), and a radial velocity u”
that is independent of z and proportional to the radial coordinate r. Let us denote the
volume of a cold pool by V', which is related to R and H by

V = tHR®. (4.1)
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We will denote the rate of change of the cold pool’s radius as U = dR/dt. Within the cold
pool, the radial velocity u" will be defined as

u" = %r. (4.2)
By continuity,
2U
W= -z (4.3)

Therefore, the total kinetic energy of the cold pool is
R H 4
KE = p/ dr(27rr)/ dz= (u™ +w?)
0 0 2
L 2(H ?
4 3\ R

For R > H, the specific kinetic energy is simply U?/4. The gravitational potential energy
of the cold pool is simply

= pV U?. (4.4)

/
H
PE = 7 ;/ . (4.5)
Changes in volume occur through entrainment. We write this as
1y _ v (4.6)
—V =« .
dt ’

where e, which has units of m~!, is the fractional entrainment per distance traveled by the
cold pool’s front. For example, if a cold pool has a volume of 1 km® and an entrainment
rate of ¢ = 107* m™~!, then it will entrain 10° m? as its radius increases by one meter. By
entraining environmental air with zero density anomaly, entrainment tends to reduce the
cold pool’s density anomaly according to the following equation:

d
— = —eUyp . 4.7
(dtp)entrainment = ( )

4.3 Sinks of energy

Our goal is to obtain a set of governing equations for the cold pool, including an equa-
tion for dU/dt. The gravity-current box models constructed by Huppert and Simpson [34],
Ross, Tompkins, and Parker [69], and many others have neglected cold-pool dynamics en-
tirely. Instead, those studies have assumed that the cold pool’s front moves at a speed U
that is proportional to /Hgp'/p; this is equivalent to assuming that the Froude number
U/+/Hgp'/p is constant. This is a poor assumption because, in reality, the Froude number
starts at zero (for an initially stationary cold pool), grows to positive values (as U grows),
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goes to infinity (as p’ goes to zero), and then becomes imaginary (for negative p). In this
study, all of the large-eddy simulations (LES) of cold pools with surface enthalpy fluxes
exhibit this behavior regardless of whether H and p’ are calculated for the entire cold pool
or just its head. Clearly, the assumption of a constant Froude number is inadequate for
modeling cold-pool dynamics.

We will find the governing equation for U by constructing the budget for the cold pool’s
total energy TE, which is the sum of its potential energy PE and its kinetic energy KE. If
we can determine the sources and sinks of TE, then we can write down the energy equation,
which will take the form

d _d .
ETE = E(KE + PE) = sinks. (4.8)
Only one dU/dt will appear in this equation, and it is generated by d/dt acting on the U?
in the definition of KE. By rearranging, this will give us our prognostic governing equation
for U.

There are five sinks of total energy, which are caused by entrainment, surface drag, form
drag, other pressure forces, and surface enthalpy fluxes. These five sinks are described in the
following subsections.

Entrainment

Entrainment reduces kinetic energy by diluting the momentum. Consider a parcel with
mass m and speed u. Its momentum is mu and its kinetic energy KE is mu?/2. If the parcel
entrains a mass dm with no momentum, then its mass goes to m + dm by conservation of
mass and its speed goes to mu/(m + dm) by conservation of momentum. Therefore, KE
goes to (1 — dm/m)KE. By analogy, when the cold pool entrains a mass fraction eUdt, we
will assume that the cold pool’s KE goes to (1 — eUdt)KE. Therefore, entrainment affects

total energy by
d

—TE = —eUKE. 4.9
<dt ) entrainment ) ( )

Note that entrainment will also “puff up” the cold pool, leading to a lifting of the center of
mass of p’ and, as a result, an increase in PE. We assume, however, that this increase in PE
is obtained at the expense of KE so that this has no net effect on the total energy. (Note
that turbulent entrainment can only occur if there is motion, i.e., positive KE, so this effect
will never drive KE to negative values.)

Surface drag

Surface drag reduces kinetic energy by operating on the cold pool with a force opposite its
motion. Using a bulk formula for the surface momentum flux, surface drag reduces total
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energy according to

d 2
(—TE) = —/aleccdspu’"3 = —ZreqpRPU?, (4.10)
dt surface drag A )

where A is the area underneath the cold pool and cg = 1.5 x 1073 is the surface drag
coefficient.

Form drag

Form drag, caused by pressure forces between the cold pool and the environment, also reduces
kinetic energy. Dissipation of energy from form drag is given by the integral of cq4pU?/2
over the cold pool’s outer boundary area 2w RH, where c4 is the form drag coefficient. This
gives

d
(—TE> = —meypRHU®. (4.11)
dt form drag

The correct value for ¢4 is unknown. It will be treated as a tunable parameter and found
by optimization.

Other pressure forces

Form drag is not the only force acting between the cold pool and its environment, as a
cold pool will also experience the “’buoyancy perturbation pressure’ discussed in Appendix
A.1 which will cause the cold pool to accelerate less rapidly than would be estimated from
buoyancy alone. The effect of this is precisely the reduction of Archimedean buoyancy to
effective buoyancy, discussed at length in the previous chapter. From that chapter’s Eqn.
(3.19) we can estimate that for a cylindrical cold pool at the surface with H = R, the effective
buoyancy is only about 1/4 that of the buoyancy. This does not mean, however, that only
1/4 of the cold pool’s initial PE is converted to the cold pool’s KE. Instead, the cold pool
treats the overlying environment like a flywheel, pumping energy into it initially only to
extract much of that energy as the cold pool is squashed by the descending environment.
Rather than attempt to model this complicated dynamics in any detail, we will simply define
« as the fraction of the cold pool’s initial potential energy that is immediately or eventually
converted to kinetic energy of the cold pool; 1 — « is the fraction that is permanently lost
to the environment by pressure forces not attributable to form drag. Rather than write this
as an explicit sink, we will simply introduce a factor of « in the definition of the cold pool’s
potential energy PE, modifying equation (4.5) to

agp'VH
—

PE = (4.12)

The correct value for « is unknown other than the fact that it must be between zero and
one. Like cg, its value will be found by optimization.
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Surface enthalpy fluxes

Surface enthalpy fluxes reduce the density anomaly p’ and, therefore, the potential energy.
For the surface fluxes of density anomaly, we can write

d 1 2 2 P\ U
a = o [ e’ (p,—p) = —cas (1-=2) 20, 4.13
(dtp>surface fluxes V/A st (ps p) BCd ( pl Hp ( )

where p, is the density of air that would be in equilibrium with the surface. Since PE is
proportional to p/, these surface enthalpy fluxes reduce TE according to

d 2 P\ U
—TE = ——cgs |1 — =2 | =PE. 4.14
(dt ) surface fluxes 3 “ ( P ! ) H ( )

4.4 Governing equations

We can now specify the right-hand side of equation (4.8) as the sum of all of the sinks given
by equations (4.9), (4.10), (4.11), and (4.14). This gives

d d 2 2 P\ U

—KE + —PE = —cUKE — Z7cg,pR*U? — RHU? — Zcqs [1— =) =PE. (4.15

g RE+ £ = TCasp) TCafp 5Cd < p’) 7 (4.15)
Next, we need to write dPE/dt and dKE/dt in terms of U and dU/dt. For dPE/dt, we first
need to get an expression for the total time derivative of p/, which we obtain by combining
equations (4.7) and (4.13). This gives

d , 2 P\ 1 ,
—p = — = -2 = : 4.1
i [€+ 3cd5< p,) H} Up (4.16)
The equation for dPE/dt then becomes
d d (agp'VH
—PE = — | ——
i = 5 ()

_d (agp'V?
dt \ 27R?
2d. 2d_ 1d
= (2% 2%k — %)) PE
(th Rdt +p’dtp)

2 2 o\ 1
- _Z_Zz 1—-5) | UPE. 4.1
|i€ R 3Cds< 0,) H:| ( 7)

For dKE/dt, we can proceed in a similar way after taking the derivative of equation (4.4).
This gives

d 1 1 47 d
—KE = pU? |- 2rH3 (e — 2 - —H)—U. 4.1
o pU {45‘/4— TH"(e /R)} + pU <2V—|— 3 ) dtU (4.18)
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Substituting the expression for dPE/dt and dKE/dt from equations (4.17) and (4.18) into
the left-hand side of (4.15), we get

d Vo 4AmrH37! 1 agp'VH
—U = |—= - |- 2mH? (e — 2 24 (2/R—e) 2 —
dtU {2 + 3 } { [45V+ mH” (e /R)] U+ (2/R—¢) "
1 L 2772 2
— & ZV -+ ?H U* — g?TCdSR U* — WCdeHU y (419)
The other governing equations are:
d
—R = 4.2
d
-V = 4.21
dtv eUVv (4.21)
d r_ 2 /o 1 /
o= (e +gcas(l=p/p )E> Up', (4.22)
H = V/(zR?). (4.23)

4.5 Simplified governing equations

Although equations (4.19-4.23) form a complete set of governing equations for the uniform,
cylindrical cold pool, they are too complicated to provide much insight. Fortunately, many
of the terms can be dropped because they are negligible in magnitude. To find out which
terms can be dropped, we first need to find the minimum height of the cold pool.

Note that (4.21) and (4.23) can be combined to give

d

Tl = (e—2/R)H, (4.24)

which, assuming a constant ¢, integrates to

H = H (%)2exp [e(R - RO)] , (4.25)

where Ry and H, are the initial radius and height, respectively. The minimum value of H
occurs where dH/dR = 0, which, according to (4.24), is when R = 2/e. As we will see in
section 4.9, a typical value for the fractional entrainment rate is ¢ = 0.2 km™!. Therefore,
the minimum H occurs around R = 10 km. Assuming Ry = Hy = 1 km, equation (4.25)
gives a minimum H of 60 m.

Now, let us turn our attention to the governing equation for p’, which can be written as

d | 2cas  2¢q45 |05\
— ) = _ B T L1 4.26
ar" (€+ 3H T 3H o )7 (4.26)
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where we have assumed that p/, < 0, meaning that the virtual potential temperature flux off
the surface is positive. Assuming that ¢ = 0.2 km™! and ¢4 = 1.5 x 1073, the 2c4,/3H is
equal to or larger than € only if H < 5 m. As we just learned, however, H never gets smaller
than about 60 m, which is an order of magnitude larger than this threshold. Therefore, the
second term in parentheses can be dropped. Note that we cannot drop the last term because
p' can become very small compared to |p}|. After dropping the 2¢45/3H term, we can then
use (4.25) to replace H in (4.26), and then we can integrate, yielding

2
p= e ER) 1y (R*—RY)| . (4.27)

, 1
56@%@
Note that this is an analytical expression for p’ as a function of R.

Next, we need to simplify equation (4.19), which is the governing equation for U. First,
we will set the form drag coefficient ¢4 to zero; this will be justified in section 4.9. Second,
we will discard all of the H? terms. The H? terms all stem from the contribution of vertical
momentum to the cold pool’s kinetic energy. Intuitively, we know that the contribution of
vertical momentum to the kinetic energy of a cylindrical cold pool is only relevant in the
initial stages as it begins to fall, as some of the potential energy gets briefly routed through
vertical kinetic energy on its way to becoming horizontal kinetic energy. Indeed, all of the
H?3 terms in (4.19) are added to V terms, and H?/V oc H/R, which decreases rapidly in the
initial stages of a cold pool. So, we throw away all of the H® terms; this is tantamount to
writing

KE = pV;lU2 (4.28)
rather than the full expression in equation (4.4). Of course, throwing away the H? terms
adds some error to the initial development of our theoretical cold pool. If we were interested
in studying the initial stages of cold pools — say, for R in the range of Ry to 2Ry — then
this could be a problem. But, our focus here is on the lifetimes and eventual sizes of cold
pools, not the initial stages of cold pools, so this approach will suit us fine. In addition, this
approximation overestimates the kinetic energy only for Ry < R < 2Ry, which occupies an
exceedingly small fraction of the cold pool’s lifetime and maximum area: only ~6 minutes
of a lifetime that is measured in hours, and only ~1% of the cold pool’s eventual area.

At this point, the governing equation for U has been simplified to

d 2 agp'H  4ey
—U = —eU? = - ——2U*. 4.29
ar <= 7 (R 5) ) _5H (4.29)
entrainment \  N—
drag surface drag

descent and puffing

On the right-hand side, there are three sources and sinks of U, which are due to entrainment
drag, exchange of energy between PE and KE, and surface drag. As discussed above, H never
becomes small enough for ¢4/ H to approach the magnitude of €, so we may discard the third
term on the right-hand side. The middle term, however, requires more thought. The piece
proportional to 2/R is the force that accelerates the cold pool by converting gravitational
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potential energy to kinetic energy: cold-pool spreading leads to descent that lowers its center
of mass. The piece proportional to ¢ is a force that decelerates the cold pool by converting
kinetic energy to potential energy: cold-pool entrainment causes the cold pool to puff up and
raise its center of mass. For R < 2/e, the center of mass descends with time, accelerating
the cold pool. For R > 2/e, the center of mass ascends with time, decelerating the cold
pool. This is something of a strange notion: for R > 2¢, expansion of the cold pool saps it
of kinetic energy. As we will see in section 4.9, the LES cold pools have an entrainment rate
that tends to decrease at large R in a way that keeps € equal to or less than 2/R, so this
behavior is largely avoided.

Qualitatively, the middle term on the right-hand side of (4.29) has its biggest moment
at the very beginning of the cold pool’s life. In the short time that it takes for the cold pool
to increase its radius from Ry to 2Ry, about 75% of the initial potential energy is expended.
For a cold pool with Ry = Hy = 1 km and a 1-K temperature anomaly, this only takes about
6 minutes. Therefore, rather than try to model the detailed interactions between PE and
KE, we will simply put all of the initial PE into KE at the very start. This allows us to drop
the middle term on the right-hand side of (4.29). By equations (4.12) and (4.28), we must
give the cold pool an initial U equal to

[20.gp, H.
Uy = (| 29000 (4.30)
p

With the understanding that U is to be set to Uy as given by equation (4.30) at time
t = 0, we now have

dlog(U) = —edR.

Integrating, again assuming a constant ¢, we get
U = Upexp [ _«(R— Ro)] , (4.31)

which is an analytical expression for U as a function of R. Note that this describes a very
simple process: the reduction of kinetic energy by entrainment.

Since this is a very simple equation, it can be written in many convenient forms. For
example, we can solve for time ¢ as a function of cold-pool radius R,

t = % <exp [e(R - Ro)} - 1) . (4.32)

We can also write down an expression for R(t),
1
R = Ry + —log(1 + tely), (4.33)
€

and an expression for U(t),
Uy
U= ———. 4.34
1+ tEUO ( )
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Although there are many such equations that can be written down, the simplified theory
for a cylindrical cold pool can be completely and succinctly described by the following three
equations:

R(t) = Ro—i—%log(l—i—ter) (4.35)
R 2

H(R) = H, (ﬁ) exp [g(R—RO)} (4.36)

/ —e(R—Ro / 2 / 1

p(R) = e (p0+§CdspS%(Rg—Rg)) . (4.37)

4.6 Radius and time of death

These equations can be used to predict the demise of cold pools. Let us define the termination
— or, more colloquially, the death — of a cold pool as the time when it ceases to be cold.
Or, to acknowledge the virtual-temperature effect of water vapor, we can be more precise by
defining the termination of a cold pool as the time when p’ = 0. Note that we will be using
the equations derived in the previous section, which apply to an isolated cold pool over a
flat surface with no mean wind; a mean wind, topography, or collisions with other cold pools
could all hasten a cold pool’s demise. Throughout the paper, we will denote the terminal
time and terminal radius as ¢,—¢ and R,—_g, respectively.
We can solve for the terminal radius by setting p’ = 0 in (4.37). This gives

)1/3 | (438)

which, surprisingly, has no dependence on the entrainment rate. Note that, for c4s = 1.5 x
1073, 9/2¢4s equals 3000. Therefore, so long as Rg|p,| is not three orders of magnitude
larger than Hyp[, then the terminal R is very well approximated by the second term in
parentheses. In fact, inspection of cold-pool transects from the simulations performed for
Chapter 2 reveals that Hy/Ry ~ 1 and pf/|p| ~ 1. Therefore, we can safely simplify this

expression to
1/3
Ry = o ) (439)

Due to the 1/3 exponent, the dependence of R,y on Hy/ Ry and p,/|p}| is weak. If we take
Ho/Ro~ 1 and /|| =~ 1, then

9 Hy pf
2¢q4s Ro |0l

Ry_o = Ry (1 +

9 Hy py
2¢qs Ro |p{9|

9 1/3
Ry_o ~ RO( ) — 14R,. (4.40)
2Cds

Therefore, from pure physical reasoning, we can conclude that the terminal radius of a cold
pool is about 14 times its initial radius. Figure 4.1 shows the dependence of R,_q/R, as
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Figure 4.1: The terminal radius R,—o from equation (4.38) plotted as a function of
Hopy/Rolp,]. Thanks to the 1/3 exponent in equation (4.38), Ry—o ranges only over a
factor of 4 as Hyp{,/ Ro|pl| varies over a factor of 100. The dashed lines denote the values of
Hopi/Rolpl| =1 and Ry—o/ Ry = 14 from equation (4.40).

a function of Hypf/Ro|p,|. Thanks to the 1/3 exponent in equation (4.38), the terminal
radius varies over a small range (7 to 31 km) even as Hyp{,/Ro|p.| is varied over two orders
of magnitude (from 0.1 to 10).

Using R = R, —¢ in (4.32) gives the time when the cold pool ceases to be cold,

ty—o = 1 (exp [E(Rpxzo — RO)] — 1) : (4.41)
€U0
While the terminal radius of a cold pool is constrained to lie within roughly a factor of
two of 14Ry, the terminal time can vary over a much larger range. This occurs because, in
the expression for t,_g, there is both a factor of 1/U; and an exponential of R,_y. Note
that the terminal radius does not depend on Uy because the two processes that reduce p’ —
entrainment and surface fluxes — operate on a per-distance fashion. Therefore, a halving of
Uy leaves the terminal radius unchanged, but it doubles the terminal time. The sensitivity of
ty—o is illustrated in Figure 4.2, which shows R,—¢ and t,—, as heat maps plotted on axes of
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Figure 4.2: (left) The terminal radius R,y—o given by equation (4.38) plotted as a function
of Hoppy/Rolpl| and gHopy/p for Ry = 1 km and e = 0.2 km~*. Note that R,_, depends
only on Hopj/Rol|p,| and varies only over a factor of 4 for a 100-factor range in Hopf,/ Ro|pk|-
(right) Same, but for the terminal time t,—, obtained from equation (4.41). Unlike the
terminal radius, the terminal time depends on both expressions and it ranges here over three
orders of magnitude. The circles denote the locations in parameter space of the large-eddy
simulations presented in section 4.8.

Hoph/ Rolp.] and gHypj/p, assuming Ry = 1 km and € = 0.2 km™'. Both axes are chosen to
range over two orders of magnitude, centered on the values obtained using Ry = Hy = 1 km
and py = |p,| = 1 K. As in Figure 4.1, Ry—, varies by only a factor of four from its lowest
value to its highest value (i.e., within a factor of two of 14 km). In contrast, t,— varies over
a range covering more than three orders of magnitude, from about 10 minutes to 10 days.
Since equation (4.38) has no dependence on ¢, it is tempting to think that entrainment
plays no role in setting the terminal radius. To the contrary, entrainment plays a very
important role in setting R,—¢. In the derivation of equation (4.26) for p’, entrainment
allowed us to neglect the piece of the surface flux that scales as p’ (this was the argument
about H having a finite lower bound). Why were we able to neglect this term? After all, the
surface enthalpy flux is proportional to p’ — p’, so it might seem odd that we could neglect
the p’ part of this. The reason, though, is simple. Entrainment quickly reduces p’ towards
zero, and it does so without changing the total mass anomaly Vp'. As a result, entrainment
“hides” the coldness of the cold pool from the surface without changing the total amount of
enthalpy needed from the surface to terminate the cold pool, which is proportional to the
mass anomaly Vp'. So, entrainment plays a vital role in generating equation (4.38) even
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though it does not show up explicitly there.
In fact, we can see this mechanism at work in equation (4.39). Noting that the initial
cold-pool volume Vj is equal to mRZHy, we can write (4.39) as

;N 1/3
Ry_o = (%) . (4.42)

2rcas ),

In the numerator, V4 p; is the cold pool’s initial mass anomaly, which can only be reduced by
surface fluxes. Since entrainment quickly hides the coldness of the cold pool (i.e., p’ — 0),
|p| is the density difference between the cold pool and the air in direct contact with the
surface. Therefore, the ¢4|pl| in the denominator is proportional to the surface enthalpy flux.
The cube root is explained by the fact that the integrated surface flux is proportional to the
product of the cold-pool surface area (order R?) and the total translation of the cold pool
over the surface (order R).

To quantify the effect of entrainment on R,—o, we can recalculate the expression for
R, — assuming zero entrainment. To do this, we need to start over from equation (4.26),
set € = 0, and retain the cgsp’ term. The resulting expression is

9 H AV
Ry—o = Ry [1 + 2_%?(()] log (1 + &Z,)] (for e =0). (4.43)
This is practically the same as equation (13) in Ross, Tompkins, and Parker [69], who derived
a box model for cold pools by ignoring entrainment entirely. The one difference is the factor
of 9/2 here, which is 3 in Ross, Tompkins, and Parker [69] stemming from the mistake
of using " = U rather than u" = Ur/R. For small pj/|p.|, equation (4.43) simplifies to
equation (4.38). For large p/|p.|, however, equations (4.43) and (4.38) differ substantially.
If a cold pool with Ry = Hy = 1 km is 2 K colder than its surroundings, and if the ambient
air-sea temperature difference is 0.2 K, then pf/|p| equals 10. In this case, equation (4.38)
predicts Ry_o = 31 km while equation (4.43) predicts R,y—o = 19 km. By hiding the cold
pool’s total thermal deficit (equivalently, its p'V’), entrainment reduces surface fluxes and
increases the terminal sizes of cold pools.

Before concluding this section, let us consider whether the initial condition assumed here —
a static cylinder of cold air — is appropriate and generalizable to more realistic conditions. In
a real rain event, there is a finite time during which cold air is generated and fed into the cold
pool. Given a typical updraft speed of 10 m s~! and an atmospheric scale height of 10 km, we
might expect the duration of precipitation shafts to be about 10 km/10 m s™! ~ 20 minutes.
Indeed, this is the typical lifetime of precipitation shafts in the large-eddy simulations (LES)
of radiative-convective equilibrium (RCE) performed in Chapter 2. Since 20 minutes is short
compared to the lifetimes of cold pools predicted here, the use of instantaneously generated
cold pools is appropriate.

To apply equations (4.41) and (4.42) to cold pools that are measured in observations
or LES, we must generalize the definitions of Ry, Vy, pp, and Uy to those cases. For Ry,
this is straightforward: we can define Ry as the halfwidth of the precipitation shaft or, for
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non-circular rain footprints, we can define Ry as the square root of the footprint divided by
7. For Vy, Uy, and pj, we can calculate these variables based on the air that flows laterally
out of the rain shaft. For notational simplicity, imagine that the rain shaft has a circular
footprint of radius Ry. Then, the total initial cold-pool mass (pgVp), mass anomaly (pyVp),
and kinetic energy (poVoUZ/4) are given by

T 21 ZBL

Vo = RO/ dt/ dgb/ dzu"H(u")p (4.44)
0 0 0
T 27 ZBL

Vo = RO/ dt/ d¢/ dzu"H(u")p' (4.45)
0 0 0

1 T 21 ZBL 1 1
poVo-Us = Ry / dt / do / dzu"H(u") [p’gz + —pu" + —pw?| ,  (4.46)
4 0 0 0 2 2
where zpp, is the depth of the boundary layer, py is the density of boundary-layer air, ¢ is
the azimuth about the cold-pool center, T' is the duration of the precipitation shaft, and
‘H is the Heaviside unit step function. After solving these equations for Vg, Uy, and pj, the
results can be plugged into (4.41) and (4.42) to estimate the terminal time and radius.

4.7 Measuring in LES

To evaluate this theory, we will use large-eddy simulations of individual cold pools initialized
as cold cylinders of air. To keep track of a cold pool’s evolution, we will use a passive tracer
whose mixing ratio is initialized to one within the initial cold pool and zero outside. As in
Romps and Kuang [65], we will refer to this as the purity tracer. Since cold pools in LES do
not retain a uniform, cylindrical shape, we must make some choices about how to calculate
the cold pool’s volume, radius, and density anomaly.

Let us define

(X) =/ dz Xqp,
0

where ¢ is the purity mixing ratio and X is one of the following: 1, ¢, u, v, and p’. Here,
u and v are the horizontal wind components and p' = p(x,y, 2,t) — peny(2,t = 0), where
Penv(z,t = 0) is the initial profile of density in the environment. In all of the LES, the
instantaneous two-dimensional distributions of these quantities are saved every two minutes.
From these quantities, we can define a cold-pool height distribution h(z,y,t), total mass
M (t), radial-velocity distribution u"(z,y,t), density-anomaly distribution p'(z,y,t), mean
density anomaly p'(t), and radius R(t). To find the correct expressions for these variables,
we will find the expressions that give the correct answers for a uniform cylinder. For a
cylinder with uniform density p, uniform purity ¢, and depth h,

(X) = hpgX .
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From this equation, we can see, for example, that (1)?/p{q) equals the cold pool’s height h.
Therefore, for the LES output, we define the cold-pool height h(z,y,t) as

@2

heyt) = p(q)

: (4.47)

where p is a constant representative density near the surface, and we define the total mass
of the cold pool as
(1)?

M(t) = /A Pl (4.48)

where A is the area over which (g) is above some threshold value (we use 0.01 kg/m?).
Proceeding in the same way, we find that u"(x,y,t), p/(x,y,t) and p'(t) should be defined as

o _ (wr+ vy 44
deyt) = (4.50)

(1)
pt) = %/Adzx%. (4.51)

To borrow a phrase from computer science, we are “overloading” the symbol p’ to mean
different things in different contexts in order to simplify the notation. When p’ refers to a
four-dimensional variable, it equals p(x,y, 2,t) — penv(z,t = 0). When p’ refers to a three-
dimensional variable, it is given by equation (4.50). When p’ refers to a one-dimensional
variable, it is given by equation (4.51). In the text and figures that follow, context will make
clear which definition is being used.

We define the cold-pool radius R(t) somewhat differently so that it captures the location
of the cold-pool front as accurately as possible. For a uniform cylinder, the radius R can be
written as the following integral for any n > 1:

n+1 [, dx(1)r!

R = :
n [, d*x(1)rm=2

(4.52)

For a non-uniform cold pool, this will give the distance from the center to the edge that
is farthest away in the limit of n — oo. Since this limit is noisy, we use n = 10, which
gives an accurate and smooth R(t). The radius obtained in this way is very similar to the
one obtained by taking the square root of the area of (¢) > 0.01 divided by 7. Finally, we
diagnose the fractional entrainment rate ¢ as

d
£ = ﬁlog(M). (4.53)
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LES # Surface drag? Enthalpy fluxes? Ti,(K) Teny(K) Taut(K)
1 No No 299 300 301
2 No Yes 299 300 301
3 Yes No 299 300 301
4 Yes Yes 299 300 301
5 Yes Yes 299 300 304
6 Yes Yes 299.75 300 301
7 Yes Yes 296 300 304
8 Yes Yes 296 300 316
9 Yes Yes 299.75 300 300.25

Table 4.1: A list of the large-eddy simulations indicating whether or not surface drag was
present, whether or not surface enthalpy fluxes were present, the temperature of the cold
pool T, the temperature of the environmental surface air 7%,,, and the temperature of the
sea surface Ty

4.8 The large-eddy simulations

Table 4.1 describes the nine LES that are used to compare with the theory developed in
the previous sections. All of the simulations were initialized with a motionless, cylindrical
cold pool with a uniform temperature perturbation defined relative to the environment at the
same height. For computational feasibility, all of the cold pools have an initial height Hy and
initial radius Ry equal to one kilometer; larger initial heights and radii would have required
larger computational domains. Both the cold pool and the environment are dry and have a
dry-adiabatic lapse rate. A small amount of random noise is added to the initial temperature
field to break the symmetry. For each of the nine simulations, Table 4.1 specifies whether
or not surface fluxes of momentum (i.e., drag) or enthalpy are communicated between the
surface and the atmosphere. In either case, the fluxes are calculated using the bulk aerody-
namic formula, i.e., —cgsp|@|t or cgsp|t](Tsws — T), with a drag coefficient cqs = 1.5 x 1073,
The temperatures in Table 4.1 specify the initial cold-pool surface air temperature Tt,, the
initial environmental surface air temperature 1.,,, and the surface temperature Ty, . The
identifying numbers (i.e., #1 through #9) assigned to each simulation in Table 4.1 will be
used throughout the paper.

All of the LES are performed using Das Atmosphérische Modell [DAM; 63], which is a
fully compressible large-eddy model. All of the simulations are performed without radiation,
without microphysics (all of the simulations are dry), and without planetary rotation. The
domains have a model top at 3 km and a square horizontal domain that is sufficiently large
to encompass the cold pool throughout the 3.5 hours of simulation (38.4 km square for all
of the simulations). The horizontal grid spacing is Ax = Ay = 50 m and the vertical grid
spacing is Az = 10 m for z < 600 m, Az = 50 m for z > 1300 m, and smoothly transitioning
in between.
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Figure 4.3: For LES #1 (no surface fluxes of momentum or enthalpy, and an initial
299/300/301 K temperature distribution), the 3-hour root-mean-square difference between
the R(t) diagnosed from the LES and the R(t) governed by equations (4.19-4.23) for different
values of (abscissa) o and (ordinate) cqr. The best fit occurs for ¢4 = 0 and a = 0.7, which
is highlighted with a white box; these values are used in all subsequent figures.

4.9 Comparing LES and theory

Our objective in this section is to compare the cold-pool theory with the large-eddy sim-
ulations of cold pools. Before we can do that, however, we must use the LES to find the
appropriate values of a (the fraction of gravitational energy converted to cold-pool kinetic
energy) and cqe (the form-drag coefficient). For this purpose, we use LES #1 and our full
theoretical equations (4.19-4.23) to find the best choice of a and cg4. We use LES #1 for
this exercise because it is the simplest of all the LES in the sense that it has neither surface
drag nor enthalpy fluxes; including those surface fluxes would only increase the sources of
potential error in the theoretical calculation and, therefore, add error to the calculated best-
fit o and cgr. Also, to reduce the treatment of entrainment as a potential source of error, we
give the theoretical equations the actual e(R) diagnosed from the LES.

Figure 4.3 plots the root-mean-square difference between R(t) calculated from equations
(4.19-4.23) and R(t) calculated from equation (4.52). The best fits are obtained for ¢4 = 0,
indicating that form drag is negligible. This is an interesting result, especially in comparison
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Figure 4.4: (left) A comparison of R(t) for (dashed black) LES #1 and (solid red) the
full theory given by equations (4.19-4.23) using the actual ¢(R) diagnosed from the LES.
(middle) A comparison of R(t) for (dashed black) LES #1 and (solid red) the full theory
using a constant ¢ equal to 0.1, 0.2, and 0.3 km™'. (right) A comparison of (dashed black)
the full theory using constant ¢ and (solid red) the simplified theory given by equations
(4.35-4.37) using the same constant €. These panels demonstrate that the full numerical
theory is an excellent match to the LES, and very little error is introduced by assuming a
constant entrainment rate or by using the simplified governing equations.

with recent findings that cloud thermals experience significant drag [64] despite having, like
cold pools, an internal vortex-ring circulation. These results are not inconsistent because
wave drag was identified as a likely dominant source of drag for cloud thermals [66], whereas
there is no wave drag in these simulations with neutral stratification. (Waves can be sup-
ported on the interface between the cold pool and the environment, but there is no way for
those waves to propagate away from the cold pool and, therefore, no way for them to remove
momentum from the cold pool.) Also, it is important to note that the entrainment drag is
calculated as if the entrained air has zero momentum, which may overestimate the entrain-
ment drag and, therefore, give a best fit with a less-than-realistic cq. As for «, although it
is difficult to tell from Figure 4.3, the best fit occurs for a value of 0.7. In other words, 70%
of the cold pool’s gravitational potential energy is converted to kinetic energy of the cold
pool, with the remainder going into the kinetic energy of the environment. These values of
cqf = 0 and a = 0.7 will be used in all theoretical calculations henceforth.

The left panel of Figure 4.4 shows that the theoretical solution for R(t) using the full
theory with the (R) diagnosed from the LES is, indeed, a good fit to the LES. But, in order
to use the simplified equations derived in section 4.5, we must pick a constant fractional
entrainment rate. The middle panel of Figure 4.4 shows that the full theory — i.e., equations
(4.19-4.23) from section 4.4 — with a constant fractional entrainment rate of ¢ = 0.2 km™*
is also a good fit to the LES. For comparison, the solutions with ¢ = 0.1 and 0.3 km™!
are shown, which are poor fits. Next, we can evaluate the simplified theory — i.e., equations
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Figure 4.5: Snapshots of cold-pool properties from LES #4 in Table 4.1 (i.e., with surface
enthalpy fluxes, surface drag, and an initial 299/300/301 K temperature distribution) and
the corresponding theoretical solution using equation (4.36) for h, equations (4.2) and (4.31)
for u", and equation (4.37) for p/, which is then multiplied by —p/T to express it as a
temperature perturbation 7".

(4.35-4.37) from section 4.5 — by plotting their R(t) against the R(¢) from the full theory. As
argued in section 4.5, the full theory and simplified theory should agree quite well. Indeed,
the right panel of Figure 4.4 confirms this.

Now, what do these LES and theoretical cold pools look like from a bird’s-eye view? To
give a sense for this, Figure 4.5 gives the plan view of h(z,y,t), u"(x,y,t), and p'(x,y,t)
(multiplied by —p/T to convert it to a temperature perturbation) for LES #4 (arguably, the
most realistic of the nine simulations) at 30-minute intervals, along with the corresponding
fields predicted from the simplified theory (equations 4.35-4.37). Figure 4.6 plots the same
information, but azimuthally averaged at 30-minute intervals. Of course, there is a great
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Figure 4.6: (top) Azimuthal averages of cold-pool height h, radial velocity u”", and tem-
perature anomaly 7" for LES #4 at 30-minute intervals and (bottom) same, but from the
corresponding theoretical solution using equation (4.36) for h, equations (4.2) and (4.31)
for u", and equation (4.37) for p/, which is then multiplied by —p/T to express it as a
temperature perturbation 7".

deal of internal structure to real cold pools that cannot be captured by a uniform cylinder.
Nevertheless, the simplified theory does a decent job of capturing the size and horizontally
averaged properties of the LES cold pool. Note that, in the azimuthal averages, many of the
largest discrepancies between the LES and theory occur at small radii, which make a small
contribution to the cold pool’s area.

A key conclusion from section 4.5, and codified in equation (4.35), is that R(t) is largely
insensitive to drag and surface enthalpy fluxes. We can check this by comparing the R(t)
from LES #1 through #4, which share the same initial temperature distribution but differ
in whether or not they have surface drag. These R(t) are plotted in the left panel of Figure
4.7, where R(t) is on the abscissa to be consistent with the other panels. The dashed curves
have no surface drag, while the solid curves do. The black curves have no surface enthalpy
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Figure 4.7: As a function of cold-pool radius R, (left) time, (middle) cold-pool density
anomaly, and (right) cold-pool entrainment rate for LES #1-4 in Table 4.1 (i.e., with an
initial 299/300/301 K temperature distribution). Simulations with surface enthalpy fluxes
are red; those without are black. Simulations with surface drag are solid; those without
are dashed. Triangles denote where the cold pools cease to be “cold” pools; curves beyond
those points are faded to emphasize that those are no longer cold pools, strictly speaking. In
the left panel, note that the four R(t) curves are very similar, indicating an insensitivity to
surface enthalpy and momentum fluxes. In the right panel, note that the entrainment rates
are also very similar up to the point where cold pools start to have enhanced mixing due to
patches of neutrally or positively buoyant air.

flux, while the red curves do. The triangles denote where the cold pools terminate (i.e., cease
to be cold); trajectories beyond those radii are plotted in pink. All of the cold pools have
very similar R(t), in agreement with the theory.

Significant deviations from a common R(t) occur only when the cold pools begin to have
significant regions of p’ < 0, i.e., as they are dying. This only occurs for the red curves
because only those simulations have surface enthalpy fluxes. The middle panel of Figure 4.7
shows the mean p’ as a function of radius. As the mean p’ approaches zero, the entrainment
rate, shown in the right panel of Figure 4.7, starts to grow rapidly. This occurs because
the stratification between the cold pool and its environment is removed, allowing enhanced
mixing by mechanical forcing and even by buoyant convection for regions of the “cold” pool
with p’ < 0.

For LES #1 and #3, which have no surface enthalpy fluxes, the total mass anomaly V p/
does not change in time, so the cold pool remains cold forever. It is intuitive that such a cold
pool would continue to spread until it has blanketed the entire domain. Equation (4.29),
however, suggests that this might not happen if £ exceeds 2/R. As discussed in section 4.5,
this would cause PE to grow as the cold pool expands, which would happen at the expense
of KE. If ¢ remained larger than 2/R for long enough, this could grind the cold pool to a
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Figure 4.8: (left) For LES #2 and #4-#9, the radii at which the cold pools terminate (i.e.,
cease to be cold) plotted against the corresponding theoretical prediction. Note that LES
#1 and #3 are not included because their lack of surface enthalpy fluxes means that they
never cease to be cold (i.e., never achieve p’ = 0). (right) Same, but for the time at which
the cold pools terminate.

halt, leaving untapped PE sitting motionless in the atmosphere. This is an absurd result,
so something must prevent this from happening. That “something” is that € must decrease
with radius to stay roughly at or below a bound of 2/R. This behavior can be seen in the
black curves in the right panel of Figure 4.7. At about 7 km, 2/ R becomes small enough to
equal €, but ¢ decreases to stay at or under the 2/R bound for all R > 7 km.

Another set of key theoretical predictions are equations (4.38) and (4.41), which give
expressions for the terminal radius R,—o and the terminal time ?,_o. Figure 4.8 plots
the terminal radius and time from the seven LES with surface enthalpy fluxes against the
corresponding predictions from equations (4.38) and (4.41), respectively. One-to-one lines
are added for visual reference. Although not perfect, the simple theory does a good job of
predicting the location and timing of cold-pool death.

It is interesting to note that LES #4, which has surface drag, terminates at a larger
radius and later time than LES #2, which is the same in all respects except that it has no
surface drag. This may be counterintuitive since it is natural to imagine that surface drag
would slow down the cold pool, leading to an earlier demise at a smaller radius. To the
contrary, the addition of surface drag reduces the low-level wind speed relative to the bulk
of the cold pool, thereby reducing the enthalpy fluxes. Since it is the zero crossing of p’ that
terminates a cold pool, surface drag leads to a later termination at a larger radius.
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4.10 Summary and Discussion

With the goal of understanding the dynamics of real cold pools, we have derived the governing
equations for a uniform, cylindrical cold pool. Inspection of the magnitudes of terms in the
equations reveals that the cold-pool dynamics has only a weak dependence on surface drag
that can be neglected. With this and some other well-justified approximations, the governing
equations reduce to a very simple theory for cold-pool dynamics, given by equations (4.35—
4.37). The cold-pool radius is a function of time that depends only on the initial radius, the
initial gravitational potential energy, and the fractional entrainment rate.

These equations make predictions for the lifetime and final size of cold pools, defining
the demise of a cold pool as when it ceases to be cold on average. The expressions for those
terminal sizes and times are given by equations (4.38) and (4.41) for an initially stationary
cold pool, or by equations (4.41) and (4.42) for a more realistic cold pool with initial values
estimated according to equations (4.44-4.45). Although entrainment dramatically reduces
0, the terminal radius — defined as the cold-pool radius when p’ = 0 — has no dependence
on the entrainment rate. By quickly “hiding” the coldness of the cold pool from the surface,
entrainment simplifies the estimation of surface fluxes without affecting the total enthalpy
fluxes needed to terminate the cold pool; this leads to a very predictable terminal radius
that does not depend on the precise value of the entrainment rate. The equations show that
the final radius is tightly constrained to be in the vicinity of ~14 times the initial radius,
while the terminal time can range over several orders of magnitude. Comparison with large-
eddy simulations, as shown in section 4.9, validates the simple theory and its predictions for
cold-pool sizes and lifetimes.

We can also compare our results to previous studies that have measured the sizes and
lifetimes of cold pools. Tompkins [78] studies cold pools in a large-eddy simulation of tropical
unorganized convection and finds the mean maximum radius to be 8.6 km. It is important to
note, however, that Tompkins [78] uses a very different definition of cold-pool radius. Here,
we measure the radius as the distance from the center of the cold pool to the outer perimeter
of the original cold-pool air, whether or not it is still “cold”; Tompkins [78] measures the
radius from the center of the cold pool to the perimeter of the currently “cold” air (specif-
ically, air with buoyancy less than —0.005 m s~2, or a potential temperature anomaly less
than —0.15 K). Feng et al. [19] studies cold pools in an LES using a similar definition (with a
buoyancy threshold of —0.003 m s~2) and finds a similar result: a mean maximum radius of
6.4 km. As seen in Figure 4.5, the definition of radius used by Tompkins [78] and Feng et al.
[19] gives a maximum radius that is only about half as large as the terminal radius. If we
account for this by doubling their reported maximum radii, we infer that they simulated cold
pools with mean maximum radii of about 13-17 km. This agrees with the theory presented
here, which predicts a ~14-km terminal radius for a cold pool with an initial radius of 1 km
and Hop,/Rolp,| ~ 1.

The theory also agrees well with the reported lifetimes. Tompkins [78] reports a mean
cold-pool lifetime of 2.5 hours and a mean initial temperature anomaly of —1 K. Using this
temperature anomaly to set p/, using a fractional entrainment rate of 0.2 km~! (as diagnosed
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in section 4.9), and using an initial radius and height of 1 km, equation (4.41) predicts a
lifetime of 2.8 hours, which is in close agreement with 2.5 hours. Feng et al. [19] report
a shorter lifetime of 1.2 hours, but this agrees, at least qualitatively, with their smaller
initial temperature anomaly of —0.5 K (see their Figure 6d). Changing the temperature
anomaly from —1 K to —0.5 K, while holding the other variables constant, reduces the
lifetime predicted by equation (4.41) from 2.8 hours to 2.1 hours. Differences in the air-sea
temperature difference or in the initial cold-pool height or radius could easily explain the
remaining discrepancy.

It is more difficult to observe cold pool sizes in nature, and even more difficult to measure
their lifetimes. At least anecdotally, it appears that cold pools reach a wider range of sizes
over the real tropical oceans than they do in large-eddy simulations of the tropical maritime
atmosphere. For example, Black [3], Zuidema et al. [84], and Feng et al. [19] observe real cold
pools over tropical oceans with radii of 50-100 km, 20-30 km, and 5-25 km, respectively. As
noted in the discussion of equation (4.38), it is difficult to generate a wide range of terminal
radii by varying just the normalized height Hy/ Ry or the normalized density-anomaly pf /| 0|
since they contribute to the terminal radius with only a one-third power. Instead, the
variance in the initial radius in equation (4.38) or initial mass anomaly in (4.42) is likely
the single largest contributor to the observed variance in the terminal radius. For example,
assuming a plausible boundary-layer depth Hy of 1 km and a plausible ratio of pj/|pl] = 1,
equation (4.38) would require an initial radius of Ry = 20 km to produce a terminal radius
of 100 km. Of course, this does not imply a need for a single cylindrical rain shaft that is
40-km across. By equation (4.42), it would also suffice to have five, nearby, 2-km-radius rain
shafts of 30-minute duration that replenish the air in their boundary-layer volume 20 times
during their lifetime, which would be possible with modest radial winds of 10 m s=! at the
edge of the rain shafts.

In the study of convection, convective entrainment is often cited as the biggest obstacle
to developing advanced theories of convective updrafts [68]. Based on the results shown here,
we suspect that cold-pool entrainment may prove to be as thorny an issue for cold pools
as convective entrainment has been for convection. The similarities are striking. Consider,
for example, that a bulk-plume model treats updrafts as homogeneous at each height, and
our “bulk-pool” model treats cold pools as homogeneous at each time. And, as in a bulk-
plume model, we have been forced to specify an entrainment rate that is motivated by
empiricism rather than theory. Fortunately, a cold pool’s terminal radius is independent of
the entrainment rate, so the theory presented here for cold-pool sizes is likely to stand the
test of time. On the other hand, the equations given here for a cold pool’s velocity U(t)
and terminal time ¢, - are highly dependent on the chosen entrainment rate. Since € may
vary significantly with initial radius, or it may evolve in important ways at larger radii (as
suggested by the black curves in the right panel of Figure 4.7), the extrapolation of our
results for U(t) and t,—¢ to cold pools with Ry much larger than those simulated here is not
without risk. To know for sure how well these equations and assumptions apply to larger
cold pools, more work is needed on simulating and observing a wide range of cold pool types,
and on developing theories for cold-pool entrainment.
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Chapter 5

Convective Self-Aggregation, Cold
Pools, and Domain Size

In this final chapter we study cold pools not in isolation (Chapters 3 and 4), nor in interaction
with individual convective cells (Chapter 2), but rather in interaction with a whole system
of organized convection.

In organized convection the spatial pattern of convection is fixed and persistent over
time. It has been found in both observations and numerical studies [31, 22, 75|, across a
wide range of scales. In particular, recent numerical studies [7, 36, 54] with cloud-resolving
models (CRMs) have shown that horizontally quasi-homogeneous tropical convection can be
unstable, yielding spontaneous development of a circulation featuring a moist, convecting
patch and a dry, non-convecting patch. This self-aggregated state has significantly different
horizontal-mean properties than the quasi-homogeneous state from which it formed: it is
significantly drier in the mean, for instance, and hence exhibits much stronger mean longwave
radiative cooling (LRC). Horizontal variations in LRC are important as well, as differences
in LRC between moist and dry columns play a critical role in the feedbacks responsible for
self-aggregation; see Bretherton, Blossey, and Khairoutdinov [7] and Muller and Held [54]
for details.

These two papers also investigated the sensitivity of aggregation to various parameters,
one of these being the domain size L. Both studies found that quasi-homogeneous states
will only self-aggregate if L 2 200-300 km. We will show in this chapter that this threshold
behavior is due to cold pools, and will investigate more generally why aggregation is favored
by larger domains.

5.1 Numerical simulations

All simulations in this paper were performed using DAM (See Section 2.3 for details and fur-
ther references). For this study, we performed runs on both three-dimensional (3D) square
domains as well as effectively two-dimensional (2D) bowling-alley domains, all of various
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Figure 5.1: Horizontal specific-humidity distribution [g/kg] at z = 500 m on day 60 for vari-
ous domain sizes L in the presence of cold pools. Note the sharp transition to an aggregated
state between L = 288 and L = 360 km.

sizes. All domains were doubly-periodic with a horizontal grid spacing of 3 km, and simula-
tions were run over a non-dynamical ocean with a fixed sea-surface temperature of 301 K.!
Surface enthalpy fluxes were calculated using a bulk aerodynamic formula and interactive
shortwave and longwave radiative fluxes were calculated using the Rapid Radiative Transfer
Module [53].

Each run was 60 days long and was initialized with an aggregated distribution of water
vapor similar to that used in Muller and Held [54].2 The initial temperature profile was
obtained from a small-domain (i.e., non-aggregated) simulation of radiative convective equi-
librium. We turned off large-scale dynamical forcings, set initial horizontal winds to zero,
and nudged the horizontal mean winds to zero over a time scale of two hours, both for con-
sistency with previous work [54, 7] and because we found these adjustments conducive to
aggregation.

IThis choice of SST is typical of the tropical oceans, and is the same as that used in Bretherton, Blossey,
and Khairoutdinov [7]. It is also squarely in the range of SSTs shown to be conducive to aggregation in
Khairoutdinov and Emanuel [36].

2Here, the lowest-level specific humidity ¢ started at 16 g/kg in the center of the domain and decreased
to 8 g/kg at the edge, and this horizontal distribution decreased exponentially with height with a scale height
of 3 km. The initial horizontal ¢ distribution was a radial function for the square domains and was linear
along the long dimension in the bowling-alley domains.
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Figure 5.2: Same as Figure 5.1, but in the absence of cold pools. Note that, in contrast to
Figure 5.1, aggregation occurs at domain sizes less than 300 km and only gradually weakens
as L decreases.

5.2 Aggregation in 3-D

As a first task, we reproduced the phenomenon of convective self-aggregation in 3D, as well
as its critical dependence on domain size. Figure 5.1 shows z-y snapshots of specific humidity
g on day 60 at z = 500 m for various domain sizes L. Aggregation, with its trademark dry
patches in regions of steady-state subsidence, is clearly evident for domain sizes larger than
L =~ 300 km. This is in rough agreement with the critical domain size of 200-300 km found
in Bretherton, Blossey, and Khairoutdinov [7] and Muller and Held [54].

To investigate the role of the boundary layer (BL) in convective aggregation, we elimi-
nated cold pools by turning off low-level (z < 1000 m) evaporation of precipitation.® In this
no-cold-pool scenario, we found that self-aggregation occurs at all domain sizes, but grad-
ually decreases in strength as the domain size L decreases. This can be seen in Figure 5.2,
which plots the same quantities as Figure 5.1 for the simulations with no cold pools. It ap-
pears that cold pools are responsible for inhibiting convective aggregation in small domains,
and for generating a discontinuous dependence of self-aggregation on domain size.

As stated above, our ultimate goal is to explain why larger domains favor convective
aggregation. Since cold pools neither generate nor maintain convective self-aggregation, it is
natural to study self-aggregation in their absence. Although self-aggregation is a continuous
function of domain size in the absence of cold pools — as opposed to discontinuous with cold
pools — our working hypothesis is that the underlying physics of self-aggregation is the same

3We chose z = 1000 m for the evaporation cut-off height simply because it seemed sufficiently high
enough to kill the cold pools. Lowering the cut-off height from 1000 to 600 m was enough to reintroduce
cold pools.
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Figure 5.3: Left: Steady-state B-L specific humidity ¢ for 2-D runs of various L with cold
pools. Note the sharp transition from constant to unimodal humidity between L = 216 and
L = 288 km, analogous to the 3-D results in Figure 5.1. Right: Same as left panel but
without cold pools. Note the existence of aggregation below the threshold exhibited in the
left-hand panel and the gradual weakening of aggregation as L decreases, analogous to the
3-D results in Figure 5.2.

in both cases. Furthermore, as a practical matter, it is easier to diagnose the mechanisms
responsible for a continuous transition than for a discontinuous one.

5.3 Aggregation in 2-D

To facilitate the analysis of the domain-size dependence of self-aggregation, we performed
a suite of similar 60-day runs over a bowling-alley domain where the long domain edge
(along the z-axis) varied and the short domain edge (along the y-axis) was fixed at 12 km.
We averaged over y, yielding what were effectively 2D runs, which were then amenable
to streamfunction analysis and study of the steady-state circulation. The set-up of the
simulations was identical to that of the full 3D runs above except for the domain dimensions.
Steady-state values of variables were obtained by averaging over the last twenty days of each
run. Boundary-layer averages were also employed, where the height A of the BL is defined
by the height z at which d?6/dz? is a maximum, where 6 is the steady-state potential
temperature and z is restricted to 200 m < z < 4000 m.*

We first performed simulations with cold pools. The left-hand panel of Figure 5.3 shows
horizontal profiles of steady-state ¢, averaged from z = 0 to h. Aggregation is evident for

4For unaggregated domains the #(z) profile is obtained by horizontally-averaging 6 over the whole domain.
For aggregated domains, however, the 6(z) profile is obtained by horizontally-averaging over only the driest
10% of columns, since the BL height is lowest there due to the large-scale subsidence over those columns.
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Figure 5.4: Steady-state specific humidity ¢ overlaid with streamfunction contours for 2D
runs without cold pools for domains with L= 72, 144, 288, and 540 km. The contour
spacings are 100, 125, 175, and 275 kg/m/s respectively. These values are chosen so that
each plot has the same number of contour lines. In each plot, the circulation around the
streamfunction maximum consists of a shallow circulation confined to z < 3500 m, as well as
a deep circulation that extends above z =~ 3500 m. Note that the number of deep convection
contours increases with L, implying that the magnitude of the deep circulation relative to
that of the shallow circulation increases as L increases.

domain sizes bigger than L ~ 250 km, again in agreement with a critical domain size in the
200-300-km range.

We then performed these runs without cold pools, as in the previous section. The results
are shown in the right-hand panel of Figure 5.3. Note the gradual, but pronounced, increase
in aggregation strength as L increases towards 200 km, similar to that of the 3D runs in
Figure 5.2. This shows that the 2D and 3D phenomena are quite analogous, so studying the
2D case should provide insight into the 3D case. We perform streamfunction analyses of our
2D runs in the next section.
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Figure 5.5: Circulation magnitudes as a function of domain size L. The magnitude D of the
dry, deep circulation is given by the black dots, while the magnitude S of the humid, shallow
circulation is given by the red dots. Note that D varies linearly with L, whereas .S varies by
only ~ 50%. Therefore, at small L, the shallow circulation dominates, moistening the dry
region and weakening aggregation.

5.4 Streamfunction analysis

We begin by plotting the steady-state water-vapor distribution and streamfunction contours
for a few representative cases in Figure 5.4. The streamfunction may be naturally divided
into a shallow circulation® (confined below z ~ 3500 m) and a deep circulation (extending
above z ~ 3500 m). The contour spacings for each plot in Figure 5.4 are chosen so that each
plot has the same number of contour lines. Note that the number of deep convection contours
increases with L, implying that the magnitude of the deep circulation relative to that of the
shallow circulation increases as L increases. We check this by plotting the magnitudes of
these circulations as functions of L in Figure 5.5. We take S to be the difference between the
low-level streamfunction maximum C' and the maximum value of the streamfunction along
the z = 3500 m contour. We then take D to be the maximum value of the streamfunction
along the z = 3500 m contour, so that D + S = C.

Figure 5.5 confirms that the ratio of D to .S grows as L increases: the shallow circulation
S varies by only about 50% as L ranges from 72-540 km, whereas D varies almost perfectly

A secondary shallow circulation was also observed in Bretherton, Blossey, and Khairoutdinov [7] and
Muller and Held [54].
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Figure 5.6: Aggregation strength, as measured by the minimum BL specific humidity quin,
plotted as a function of domain size L. Note that ¢, approaches its asymptotic value at a
characteristic domain size of 200-300 km, which is where the critical domain size lies in the
simulations with cold pools.

linearly with L. Thus D scales with L whereas S does not, and we contend that this is the
root cause of the observed domain-dependence of aggregation: S dominates at small domains,
moistening the dry region and weakening aggregation. More precisely, if we consider the half
of the dry region between x = 0 and the z-value of the low-level streamfunction maximum,
then C' is the magnitude of the circulation feeding the BL of this half. The average specific
humidity go of the air subsiding into this region will be a weighted sum of contributions
from S and D, which have characteristic specific humidities qg¢ > 0 and ¢p =~ 0. Since D is
the only quantity in q¢ that scales with L, go will increase as L decreases.

To assess the length scales over which this transition occurs, we calculated the minimum
values g, of the steady-state BL humidity distributions in the right-hand panel of Figure
5.3. These values are shown in Figure 5.6 as a function of domain size L. It is apparent
that gmin approaches an asymptotic value at a characteristic domain size of 200-300 km, just
where the critical domain size lies in the simulations that include cold pools.

5.5 The effect of cold pools on aggregation

The analysis of the previous section explains why aggregation gradually weakens as L de-
creases in our no-cold-pool simulations, but does not address how or why cold pools inhibit
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aggregation below the critical domain size. To investigate this, we performed a 2D simula-
tion with L = 216 km with initial conditions given by the day 60 snapshot of our earlier
L = 216 km no-cold-pool run; this gave our run an initial aggregated water-vapor distri-
bution similar to that shown for L = 216 km in the right panel of Figure 5.3. For this
new run, we turned the cold pools back on and watched the convection disaggregate. We
found that the boundary layer in the dry region becomes fully moistened by about day 11,
whereas the lower and upper troposphere do not fully moisten until about day 17. This
points to a sequence of events whereby the cold pools first moisten the dry-patch boundary
layer, followed by deepening convection that moistens the free troposphere. The larger the
domain, the drier the boundary layer in the dry patch and the longer the distance the cold
pools must travel to bring moisture there. Both of these effects prevent the cold pools from
homogenizing moisture and convection above the observed critical domain size.
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Chapter 6

Concluding Material

6.1 Summary of main results

The introduction to this thesis posed several questions about cold pools, their dynamics
and thermodynamics, and their interaction with convection. We compile the central results
addressing these questions in Table 6.1 below.

6.2 Observational tests and future work

Given these results, it is natural to ask how they might be confirmed in the real world (rather
than just in simulations), and what some logical next steps might be.

Let us begin with empirical confirmation. Some of our results could be empirically verified
quite easily. For instance, to test the effect of the surface in inhibiting buoyant accelerations,
one could simply take blocks of wood of various aspect ratios and submerge them in a tank
of water, both far from and close to a lower boundary, and then release them, observing the
differences in acceleration. Empirical tests of our formulae for the radius and time of death
of density currents might similarly be made with laboratory density currents in a lock-release
type experiment [26], but with a temperature difference between the current and its lower
boundary.

Testing the dominance of inertial forcing over buoyant forcing in triggering new convection
is probably not possible in a laboratory setting, since moist convection does not scale down
and the observation of vertical velocities in dry convection (without cloud condensate serving
as a natural conditional tracer) is difficult. With ample resources, though, one could take
comprehensive observations of naturally occurring cold pools and ask, for instance, whether
vertical accelerations at the gust fronts depend linearly on the downdraft height H, with all
other variables (such as By and h) held equal; if so, that confirms that the inertial forcing
(which is proportional to H) dominates over the buoyant forcing, which is insensitive to H.

As for future work: the conclusions of each individual chapter have discussed directions
for future work on each specific topic. But perhaps it is worth stepping back here to ask how
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Ch. Eqn. Meaning

The inertial acceleration a; dominates over the buoyant ac-
celeration a; at a cold pool’s edge because the former scales
2. a; H with the initial heigh H of the downdraft, whereas the lat-
ap h ter scales with the smaller height h of the gust front.

The effective buoyancy 3 is the gradient of the buoyancy
pressure pg , whose magnitude for a free parcel is set by
B = (—@pg)/ﬁ the hydrostatic pressure anomaly gH|Ap|/2. When parcel
diameter D increases [ decreases, because for D/H > 1,
D sets the vertical scale over which pg declines. Surface
froe gH | A P| surf parcels experience smaller pg, hence smaller /3, due to sym-
5 = 9 > Pg metry breaking by the surface.

The radius R, —o at which a cold pool terminates is de-

termined by the cold pool’s initial heat deficit, expressed
/ 1/3 / . .

A 2o as a mass anomaly Vppp, and the rate-per-unit-distance at

| which this anomaly is depleted, determined by cgs|pi|. A

typical value is R,—g = 14 Ry, give or take a factor of two.

Ry_o~ Ry| ——
p=0 0 (27Tcds|p,s

The magnitude of the deep circulation D in a self-
aggregated convective system scales with domain size L,
D~ L whereas the shallow circulation S does not. Since the for-

mer feeds dry air and the latter moist air into the dry patch,
S o L larger L favors a drier dry patch, and hence stronger aggre-
gation.

Table 6.1: A summary of this thesis’s central results.

future long-term projects, like this thesis, should be directed to maximize impact on climate
modeling and global warming uncertainty.

While we advocated in the introduction for a bottom-up approach to cloud physics which
can put cloud parameterizations on a firmer footing, the unanswered questions about clouds
and convection are too numerous to try and tackle all at once. Thus, we must somehow
identify which questions are most crucial for reducing cloud-related uncertainty in climate
models. This should also be done in light of the fact that computational capabilities will soon
allow for non-hydrostatic, convection-permitting GCMs, which may not require convective
parameterizations but will still require parameterizations of cloud microphysics, turbulence,
and radiation, all of which influence cloud-related uncertainty in present-day GCMs.

With this in mind we propose an experiment in which a CRM with modular plug-and-
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play microphysics, turbulence, and radiation parameterizations [such as the System for At-
mospheric Modeling, 37] is used to create a virtual ‘ensemble’ of models, each with different
permutations of the various parameterizations. This could be thought of as a cloud-resolving
analog of the ensembles used for global warming intercomparison projects, e.g. CMIP5 [76].
One could perform warming experiments with this ensemble, and diagnose feedbacks and
their uncertainties across the ensemble, just as for CMIP5. In contrast to CMIP5, though,
for any two models that differ, there would be a sequence of models differing in only one pa-
rameterization at a time connecting them. Thus it would be possible to diagnose the source
of differences amongst models, and thus determine which parameterizations cause the most
uncertainty. Furthermore, if the coefficient of variation in cloud feedbacks is significantly less
than for CMIP5, then this suggests that convection itself (which is resolved by the CRM but
not the GCM) may be the leading cause of uncertainty in GCMs, rather than microphysics
or turbulence schemes.

Such knowledge would be extremely helpful in guiding first-principles, physics-oriented
research like that presented in this thesis. If cloud microphysics was the largest source
of uncertainty, for instance, that would then suggest shifting our focus to that subject,
rather than continuing to study, say, convective fluid dynamics. Such knowledge would also
help us calibrate our expectations for convection-permitting GCMs, whose ability to reduce
uncertainty in cloud feedbacks is as yet unclear.

Progress thus seems to require a combination of bottom-up physics research, along with
top-down studies aimed at guiding that research. To date both bottom-up and top-down
approaches have of course been tried, but not always in concert. We hope that such an
approach will finally bear fruit in solving the persistent puzzle of clouds and climate.
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Appendix A

A.1 Comparison of two approaches to effective
buoyancy

Solving (2.10) is not the only way to obtain the buoyant acceleration. One can use the
momentum equation (2.4) and take its divergence to obtain a Poisson equation for p/, which
has —pd, B as one of its source terms. One can then define a ’buoyancy perturbation pressure’
p}, as the solution to —V?p, = —pd, B (modulo ambiguous boundary conditions, see [49] pg.
29), and it can be shown (DJ03) that

ap = B — (0:p,)/p- (A1)

Thus, one can compute a;, by computing B, solving —V?p; = —pd, B, and then summing.
This approach has been taken by other authors, e.g., [82] and [40]. Though the two ap-
proaches must yield the same result, they lend themselves to different interpretations. The
B — (0.,p,)/p expression says that Archimedean buoyancy drives buoyant accelerations, and
—(0.py,)/p gives the environmental response. To analogously interpret a; as computed via
(2.10), we proceed as follows. We define a ‘buoyant pressure’ ps (not to be confused with
the buoyancy perturbation pressure pj) as the py, field resulting from zeroing out the wind
fields, i.e. pg = punl,_q. It follows from (2.8) that

—V?ps = Vipn, (A.2)

and so pgarises to enforce mass continuity in the face of horizontal hydrostatic pressure forces
—Vppn. Furthermore, (A.2) implies a, = —0,pg/p, and hence the buoyant acceleration a,
can be seen as the vertical acceleration needed to compensate for horizontal motions driven
by the hydrostatic pressure gradient, as in the stack (or ‘chimney’) effect. The pg field is
discussed much further in Chapter 3.

We thus have two ways of thinking about the buoyant force. One significant disadvantage
of the B—(0.p;)/p approach is that it treats B as primary, even though B suffers significant
arbitrariness due to its dependence on an arbitrary reference state (as pointed out in Section
2.2 and emphasized by [15]). The a, approach does not suffer this ambiguity, and also lends
itself to a straightforward derivation of (2.17).
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A.2 Interpreting and calculating p;

Defining and interpreting p;

We mentioned in Section 2.2 that a; can be viewed as the z-component of the gradient of an
associated pressure, the inertial pressure p;, defined here as

Di = Punl ,—p - (A.3)

Applying this definition to (2.6) and taking its divergence yields the following Poisson equa-
tion for p; :
~V?p; =V - [p(u-V)ul. (A.4)

Eqn. (2.7) yields Neumann BCs 0,p; = 0 at model top and bottom. Applying —3, to both
sides of this equation, comparing with (2.11), and noting that Neumann BCs for p; imply
Dirichlet BCs for 0.p; show that indeed pa; = —0.p;.

Eqn. (A.4) can be interpreted as enforcing the cancellation of the tendency of mass
divergence generated by the inertial pressure with that generated by advection, in order to
maintain anelastic continuity. In other words, the p; field produces whatever force is needed
to ensure (anelastic) mass continuity in the face of the divergent tendencies generated by
fluid inertia.

To gain further intuition for p;, we refer to [6] who showed that the source term S,
which we define to be the right hand side of (A.4), can be written (neglecting p variations)
as

_ 1
S = llell = 511l (A5

where e is the strain tensor with components e;; = 1/2(0;u; + 0;u;), w is the vorticity vector
with components w; = €;;,0;uy, , and the norm squared || - ||* of a vector or matrix denotes
the sum of the squares of the components. Thus, strain is a source of positive pressure and
vorticity a source of negative pressure.

We can understand this as follows. First consider a 2-D velocity field u, vanishing at
infinity, that, to first order around the origin, is given by the solid-body rotation field u =
(—y,x) (Fig. Al(a)). If u is allowed to evolve solely under its own inertia, then, near the
origin,

Jdu=—(u-Vu=(z,y).

In other words, u will develop a component pointing radially outward from the origin (Fig.
A1(b)) as a consequence of the familiar centrifugal ‘force’. This advective tendency will
cause a divergence of mass, and since it is the job of p; to generate a convergence of mass
to counteract this, p; must have a low at the origin. Thus, vorticity must be a source of
negative p;.

Next, consider another u field that vanishes at infinity but is given to first order at the
origin by the irrotational field u = (—x,y) (Fig. Al(c)). This field converges along the x
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axis and diverges along the y axis and thus has nonzero strain at the origin. If u is allowed
to evolve solely under its own inertia, then, near the origin,

du=—(u-Vju=(—z,—-y).

In other words, u will develop a component pointing radially inward towards the origin (Fig.
A1(d)). This advective tendency will cause a convergence of mass, and since it is the job of
p; to generate a divergence of mass to counteract this, p; must have a high at the origin.
Thus, strain must be a source of positive p;.

Calculating p;

When calculating the inertial pressure p;, it is computationally expedient to rewrite Sy, yet
again to obtain the Poisson equation

~V?p; = p(0;u;)(O5u;) — w?0% In p. A6
j j

[The z-derivative of this is just the right-hand side of (2.14).] We solve (A.6) by first Fourier-
transforming from (z,y) to k= (ky, ky) in the horizontal, periodic dimensions, which yields
a set of algebraic equations for each k which are coupled only in z. This system can be
written in terms of a lg—dependent tri-diagonal matrix which is (in general) easily inverted,
whereupon we Fourier transform back and are done.

One issue that deserves further comment is that of the boundary conditions at model top
(z = z) and model bottom (z = 0). As noted above, p; obeys the Neumann BCs

0.pi(z) = 0.p;(0) = 0. (A7)

The rub is that these double Neumann BCs do not uniquely specify p;, but only determine
it up to a constant; thus these BCs are degenerate. This manifests computationally in
a non-invertible tri-diagonal matrix for k= 0, i.e., the constant Fourier component p;(z)
(denoting horizontal averages with an overbar). We can thus keep our Neumann BCs for
k # 0 as well as for p; at model bottom, and then specify our constant and remove the
degeneracy by imposing the Dirichlet BC p;(z;) = 0 at model top. This, however, seems
potentially inconsistent with (A.7), which implies 0,p;(z;) = 0 as well. Fortunately, the
Poisson equation carries an integral constraint that saves the day. Integrating (A.4) over the
entire domain, noting that the boundary of the domain consists of just the model top and
bottom, and applying the divergence theorem yields

—//dx dy 0.pily = //d:r; dy p(u-Viwl . (A.8)

The fact that w = 0 at z = 0 and z = z; implies that the right-hand side of (A.8) is zero. At
the same time, one can recognize the left-hand side as 0,p;(2,) — 0.pi(2;) times a constant.
This yields the constraint

0.9i(0) = 0.pi(2). (A.9)
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Thus, the Neumann BC at model bottom plus the constraint (A.8) implies that the Neumann
BC holds at model top as well, in addition to our Dirichlet BC there.

As an aside, we should note here that numerically, the summed source term p(0;u;)(0;u;)
on the right-hand side of (A.6) must be quite carefully computed in order for the constraint
(A.9) to be obeyed. In particular, on an Arakawa C-grid [1] the terms with different (3, j)
live at different points of the grid cell, but for a given (i, j) each factor d;u; and O;ju; lives
on the same point of the grid cell. To compute S, one must interpolate each term to a
common point before summing, but it is imperative to only perform this interpolation after
multiplying d;u; and d;u; together. We found that interpolating before multiplying yielded
a p; field which did not obey (A.9).

Returning to analytics, we observe that one can, in fact, go beyond the constraint (A.9)
and obtain an explicit expression for p;. We begin with the anelastic equation of motion

= pay — 0,p; (A.10)

and take a horizontal average over our domain with area A. We evaluate pa, by applying a
horizontal average to (2.10), which yields —9%(pay) = gV3ip = 0. This, along with the BCs
ay(0) = ap(z;) = 0, implies @, = 0. Meanwhile, mass continuity implies p 5¢ = 0. Applying
these results to the horizontal average of (A.10) yields

= =3
—0.p; = A//dwdypu Vw A//dmdya (pu'w) = O, pw?.

Integrating down from model top then shows that

Di = —pw?. (A.11)

We can interpret this equation as follows. The quantity pw? is simply the domain-averaged
flux of vertical momentum 7w. The convergence —0,pw? of this flux is a force, namely the
rate at which inertial motions generate pw. Continuity dictates that pw = 0, however, and
so (A.11) just says that p; provides the force necessary to ensure this, in consonance with
our discussion in the last section.

As a final note, (A.11) and the Dirichlet BCs on w show that p; obeys both Neumann and
Dirichlet BCs, and so either (or a mix) may be used in practice. Also, the relation (A.11)
serves as a useful diagnostic constraint against which one may check their calculation of p;.
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(irrotational) strain flow and (d) its convergent advective tendency. The inertial pressure p;

balances these tendencies by generating a low (high) at the origin in the case of pure rotation

(strain).
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Appendix B

B.1 The invariance of ps/ps(0) in the D/H > 1 limit

Consider the free cylinder’s buoyancy distribution, Eqn. (3.7). Setting x' = x/D we can

write this as
B(x’) = ByH(1/2 — 7“’) H(z' + H/2D) H(H/2D — Z’) .

In the D/H > 1 limit the product of the last two Heaviside functions becomes a delta
function (H/D)d(2'), i.e. the cylinder becomes a horizontal ‘line source’ in the primed
coordinates. Feeding this B field into the definition of pyyq and employing Eqns. (3.13) and

(3.14) yields
v (]%) = 2H(—2)\VPH (% - r') . (B.1)

This tells us that pg/ps(0) is an invariant function of x’, insensitive to changes in H and D
within the D/H > 1 regime. In particular, we conclude that ps/ps(0) will decay along the
z-axis to a given fraction of itself at a fixed 2/ = z/D, and hence this ‘scale height’ of pg
scales with D.

Repeating this exercise but for the surface cylinder (or for a cylinder close to the surface,
i.e. zem < D) yields an expression identical to (B.1), except with the replacement H(—z') —
d(2'). In this case, we conclude that both the scale height as well as the height 2., of
maximum [ scale with D.
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