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Abstract

Experimental Studies on Information Economics

by

Menglong Guan

This dissertation consists of three experimental studies on information economics,

exploring the topics of the demand for information, the choice and use of information,

and information design within strategic contexts.

Chapter 1 studies how people choose sets of information sources (referred to as in-

formation bundles). The findings reveal that subjects frequently fail to choose the more

instrumentally valuable bundle in binary choices, largely due to the challenge of integrat-

ing the information sources within a bundle to identify their joint information content.

The mistakes in choices can not be attributed to an inability to use information bundles.

Instead, these mistakes are strongly explained by subjects’ tendency to follow a simple

but imperfect heuristic when valuing them, which we call “common source cancellation

(CSC)”. The heuristic causes subjects to mistakenly disregard the common informa-

tion source in two bundles and focus solely on the comparison of the sources that the

two bundles do not share. As a result, choices between information bundles are made

without adequately considering the joint information content of each bundle. Notably,

CSC emerges as a robust explanation for the information bundle choices for all subjects,

including those who make perfect use of information bundles to make inferences.

Chapter 2, based on a joint work with Ryan Oprea and Sevgi Yuksel, studies how

people’s demand for information structures is shaped by their informativeness—the re-

duction in uncertainty they produce. To do this, we introduce new methods that remove

confounds for information demand like failures of Bayesian reasoning. We show that
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people (i) strongly demand informativeness when it has instrumental value but also (ii)

display a sharp aversion to informativeness when it cannot be used to improve choice,

sometimes leading to costly errors in information choice. Several strands of evidence

suggest that this aversion is driven by subjective information processing costs that rise

with informativeness.

Chapter 3, based on a joint work with Sen Geng, explores theoretically and experi-

mentally whether information design can be used by trustees as a signaling device to boost

trusting acts. In our main setting, a trustee partially or fully decides a binary payoff allo-

cation and designs an information structure; then a trustor decides whether to invest. In

the control setting, information design is not available. In line with the standard equilib-

rium analysis, we find that introducing information design increases trustworthiness and

trusting acts, and some trustees choose full trustworthiness with the most informative

structure. We also find systematic behavioral deviations, including some trustees’ choos-

ing zero trustworthiness with the least informative structure and trustors’ overtrusting

in low informative structures. We finally provide a model of heterogeneity in prosociality

and strategic sophistication, which rationalizes the experimental findings.

JEL: D01, D80, D91
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Chapter 1

Choosing Between Information

Bundles

1.1 Introduction

In numerous contexts, people choose and make use of combined information sources

(referred to as an information bundle) to form beliefs and facilitate judgments. For in-

stance, doctors often choose multiple diagnostic tests to perform on patients, politicians

assemble teams of consultants for advisory purposes, investors choose multiple financial

market analysts to follow to seek investment advice, journal editors choose referees to re-

view papers, and individuals decide which combinations of news sources to subscribe to.

The optimal choice of information bundles hinges on a correct understanding of the joint

information content of information sources within a bundle, and thus requires people

to appropriately integrate multiple information sources. Information integration, which

involves merging information from different sources in order to create a unified and com-

prehensive view, is potentially cognitively challenging. This is because it requires thinking

through the possibility of receiving multiple pieces of information, the substitutability
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Choosing Between Information Bundles Chapter 1

or complementarity of those pieces of information, and what they jointly imply.1 For

example, for a doctor to choose a proper set of diagnostic tests, she must understand

the joint diagnosticity of different tests and know how to interpret possible combinations

of test results. Similarly, an individual deciding between news sources must weigh their

complementarity with existing sources and determine which combination yields the most

comprehensive coverage.

In an age of abundant information, people can easily access many diverse information

sources. Choosing which sources to use or pay attention to is thus an increasingly common

decision problem people encounter in daily life. Understanding how people choose sets

of information sources, i.e., information bundles, and what mistakes they make in those

choices has therefore become increasingly relevant. Yet, to date, we know very little

about these questions. To address the gap, this paper presents an experiment designed

specifically to investigate people’s choices of information bundles.

In the experiment, subjects face a simple guessing game in which they need to guess

a binary state of the world. Before making a guess, subjects receive information from

information sources that may improve the accuracy of their guesses. As illustrated in

Figure 1.1, each information source is presented in an intuitive way that shows (i) the

prior as a set of twenty objects (ten triangles and ten circles), one of which will be

randomly drawn to determine the true state (triangle or circle, i.e., T or C) and (ii)

possible signals as subsets of the twenty objects (e.g., σ in Figure 1.1 has two subsets x

and y).2 When a subject receives a signal, she learns which subset contains the randomly

drawn object before guessing the shape of the randomly drawn object. With multiple

1Therefore, the challenges could lie in contingent reasoning, understanding and dealing with the
correlation between information (sources), computational complexity involved, etc.

2Under this representation, an information source can be formally conceptualized as a partition of
the extended state space Ω × {1, ..., 20} (Green & Stokey 1978), where Ω = {T,C} is the set the
payoff-relevant states. For example, the information source σ in Figure 1.1 can be characterized as
σ = {x, y} = {(T, {1, ..., 5}) ∪ (C, {11, ..., 18}), (T, {6, ..., 10}) ∪ (C, {19, 20})}.

2



Choosing Between Information Bundles Chapter 1
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Figure 1.1: Examples of Representing Information Sources as Partitions Notes: σ, σ0 and σb

are three information sources. Subjects must guess the shape (triangle or circle) of a randomly drawn object among
twenty objects. They are told which colored subset(s) contains the randomly drawn object under their chosen information
source(s). σ0 ∨ σ, meaning the join of σ and σ0, is the integrated form of the information bundle {σ0, σ}, which can be
derived by finding out the intersections of signals (subsets) from σ and σ0.

information sources, she receives information like this (i.e., which subset contains the

true outcome) from each source.

This partition representation of information sources, which is built upon Guan, Oprea

& Yuksel (2023) (GOY) and Brooks, Frankel & Kamenica (2023) (BFK), has two im-

portant features. First, it makes the characteristics of an information source visually

transparent and can help remove classic mistakes in interpreting or using information

(e.g., failures of Bayesian reasoning) that may bias the choice of information.3 Second,

it pins down the joint information content between information sources and lays out a

unique and seemingly straightforward way to correctly integrate information. For in-

stance, the intersection of each possible pair of signals (subsets) of σ0 and σ pins down

their joint information content, described by σ0 ∨ σ, meaning the join of σ0 and σ, as

shown in Figure 1.1.4 The indicated procedure of integrating information under this

design captures how information integration is done in real-world scenarios: merging

3The results of the experiment strongly support this: conditional on receiving a signal from a given
information source, subjects make optimal (from the Bayesian perspective) guesses about the shape
of the randomly drawn object 98% of the time. In the experiment of GOY, which uses a different
visualization of partition representation, subjects also use individual information sources optimally 98%
of the time.

4Signal (subset) a in σ0 ∨σ is the intersection of x in σ and m in σ0; b is the intersection of y and m;
c is the intersection of y and n; and d is the intersection of x and n.
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Choosing Between Information Bundles Chapter 1

information from multiple sources to create a unified, cohesive, and comprehensive view.

The experiment consists in part of a sequence of binary choices (eight in total) between

information bundles. In each of them, a subject chooses between a pair of information

bundles, {σ0, σ} and {σ0, σ
′}, where σ0, σ and σ′ are three distinct information sources.

The subject will be provided with her chosen information bundle in a future payoff-

relevant guessing game (in which she receives a signal from each source within the bundle

before making guesses), making the choice elicitation incentive-compatible. According

to standard economic theory, the subject should always choose the more instrumentally

valuable bundle (i.e., the bundle that may induce a higher guessing accuracy).

My first main finding is that subjects’ choices between information bundles are largely

suboptimal: their likelihood of choosing the more instrumentally valuable bundles is only

56%. I further show that the suboptimal choices are strongly driven by subjects’ fail-

ures to integrate information sources within a bundle and identify their joint information

content. In a control setting, each pair of information bundles (denoted as {σ0, σ} and

{σ0, σ
′}) are pre-integrated into single information sources that contain the same infor-

mation content as the bundles (e.g., σ0 ∨ σ shown in Figure 1.1 contains the same infor-

mation as σ0 and σ together). Subjects then make choices between the two constructed

join information sources (denoted as σ0 ∨ σ and σ0 ∨ σ′). Removing the need to inte-

grate sources and identify their joint information content, the optimality of information

choices increases considerably to 77% (signed-rank test, p < 0.001).5 In addition, I find

that subjects’ choices between a pair of bundles barely correlate with their choices be-

tween the corresponding pair of join information sources (Kendall’s τ = 0.148, p = 0.62),

indicating significant failures in identifying the joint information content of bundles and

making choices accordingly.

5At the subject level, 69% (85%) of subjects have a strictly (weakly) higher likelihood of choosing
the more valuable information in binary choices between join information sources than those between
(theoretically equivalent) information bundles.

4
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The decrease in choice optimality from the control to the treatment (i.e., when facing

information bundles) settings exhibits a pattern that aligns with a theory of difficulty in

comparing information bundles suggested by BFK that I designed the experiment to test.

BFK characterizes a set of comparison relationships between information sources (rep-

resented as partitions) and shows that for any σ0, {σ0, σ} Blackwell dominates {σ0, σ
′}

(meaning the former is weakly more instrumentally valuable) if and only if σ reveals-

or-refines σ′. Reveal-or-refine means that each signal of σ either fully reveals the state

or is a subset of some signal of σ′. A stronger relationship is refine, meaning that each

signal of σ is a subset of some signal of σ′. The two relationships can be easily verified by

“visual inspection” given the adopted partition representation of information sources.6

BFK’s results suggest a theory of difficulty in comparing information bundles: When

σ and σ′ have a refine or reveal-or-refine relationship, the comparison of {σ0, σ} and

{σ0, σ
′} can be done easily without the need to integrate sources and identify the joint

information content of each bundle. My experimental design incorporates the comparison

relationships characterized by BFK. Findings show that the optimality gap between bun-

dle choices and the corresponding join source choices is relatively smaller when σ refines

or reveals-or-refines σ′, compared to other cases. This suggests that subjects’ informa-

tion bundle choices in those two cases are less distorted by the difficulties of information

integration, supporting the theory of difficulty in comparing information bundles implied

by BFK.

Next, I identify the source of the mistakes in information bundle choices. Making the

optimal choice between information bundles generally requires subjects to think through

the joint instrumental value of each bundle (i.e., how each bundle improves guessing

accuracy) and then make choices accordingly. Suboptimal choices could arise from two

plausible channels: (i) while subjects may intend to follow the optimal approach, they

6Check Figure A.4 in Appendix A.2 for examples of σ reveals-or-refines σ′ and σ refines σ′.
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may be unable to properly interpret information bundles, leading to mistakes in valuing

them; (ii) alternatively, subjects may entirely deviate from the optimal approach of

valuing and comparing information bundles and make systematic mistakes in choices

as a result.

To examine the first channel, I study how subjects make use of each bundle in the

guessing game by eliciting their guesses about the randomly drawn object conditional on

each possible pair of signals that the bundle might generate. Subjects make Bayesian

optimal guesses 85% of the time, indicating fairly good use of the information bundles.

Nonetheless, this was significantly lower than the 98% optimality rate when using join

information sources. This suggests that the challenge of integrating information indeed

leads to more errors in information usage.7 However, this reduction in guessing accuracy

cannot explain mistakes in choices between bundles. Subjects only choose the bundle

with a (weakly) higher “practical” value conditional on their submitted guesses 62% of

the time (significantly lower than the rate of 78% in choices between join sources). And

the correlation between comparisons of the practical value of bundles and actual bundle

choices is weak (Kendall’s τ = 0.296, p = 0.31). Following the elicitation of guesses,

subjects are also asked to assess what level of guessing accuracy an information bundle

induces conditional on how they use it.8 These subjective assessments cannot explain

bundle choices either. Subjects choose the bundle to which they assign a (weakly) higher

assessment only 61% of the time (significantly lower than the rate of 72% in choices

between join sources). The correlation between assessments and actual choices is also

minimal (Kendall’s τ = 0.255, p = 0.38). Taken together, these results suggest that

subjects make information bundle choices without much consideration of how they would

7I also find that 82 percent of the suboptimal guesses when using information bundles can be explained
by subjects following a simple but incorrect way of combing signals (subsets). A more detailed discussion
is provided in Section 1.4.2.

8This belief elicitation is incentivized by the Binarized Scoring Rule (Hossain & Okui 2013) and
implemented following the procedure proposed by Wilson & Vespa (2016).
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Choosing Between Information Bundles Chapter 1

use the bundles, and therefore, mistakes in choices cannot be primarily attributed to

errors or noise in the usage of information bundles. This is the second main finding of

the paper.

Another possible channel driving mistakes in choices between information bundles is

that subjects use some simpler decision rule that systematically deviates from the rational

one. A potentially simple and intuitive decision rule is to reduce a choice between a pair

of bundles {σ0, σ} and {σ0, σ
′} to a choice between σ and σ′ by “canceling” σ0, which

I call the common source cancellation (CSC) heuristic. This heuristic is very appealing

since it offers a way out of the difficulties associated with identifying the joint information

content of information sources.9,10

To directly test if CSC drives information bundle choices, subjects are asked to make

another sequence of binary choices between two single information sources (e.g., σ versus

σ′). Each is designed to correspond to a binary choice between bundles {σ0, σ} and

{σ0, σ
′} from the experiment. If subjects follow the CSC heuristic, their choices between

{σ0, σ} and {σ0, σ
′} should align sharply with their choices between σ between σ′.

My third main finding is that CSC is the primary driver of information bundle choices.

Subjects’ likelihood of choosing σ over σ′ strongly explains their likelihood of choosing

{σ0, σ} over {σ0, σ
′} (Kendall’s τ = 0.764, p < 0.01). Regression analysis further con-

firms that subjects’ choices between bundles ({σ0, σ} versus {σ0, σ
′}) are significantly

9The heuristic is related to the “tendency to simplify decision problems” in human decision making
emphasized by Rubinstein (1998) and a large literature on bounded rationality. Rubinstein (1998)
hypothesizes that when comparing two choice alternatives, decision makers have the tendency to simplify
the comparison by canceling the components of the two alternatives that are alike, which means canceling
σ0 when choosing between {σ0, σ} and {σ0, σ

′} in my experiment.
10The heuristic might also be related to but can not be reduced to correlation neglect (Eyster &

Weizsäcker 2011, Enke & Zimmermann 2019). Blackwell (1951, 1953) and Mu, Pomatto, Strack &
Tamuz (2021) discuss that when σ0 is independent (conditional on the true state) of σ and σ′, if σ
Blackwell dominates σ′, then {σ0, σ} Blackwell dominates {σ0, σ

′} as well (meaning the former is at
least weakly more instrumentally valuable). However, this is not generally true when σ and σ′ can not
be Blackwell ordered. At least in that scenario, even a correlation-neglect subject still needs to think
through the joint information content of each bundle to identify which one is more valuable.

7
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responsive to the difference in instrumental value (and informativeness) between σ and

σ′ rather than the value (informativeness) difference between the bundles.11 When fo-

cusing on the mistakes in bundle choices, I find that the choices between σ and σ′ can

account for over 68 percent of all the suboptimal choices between information bundles. In

addition, a heterogeneity analysis shows that CSC emerges as a primary explanation for

information bundle choices and mistakes in those choices for all subjects, including those

who make perfect use of information bundles in the guessing game. The heterogeneity

analysis also reveals that subjects who are less able to integrate and interpret disag-

gregated information tend to rely more heavily on the heuristic in information bundle

choices. The common source cancellation heuristic that prevails in the data is very intu-

itive and is plausibly important in many choices of information sources. This heuristic

means that people tend to compare information sources in isolation without considering

their joint information content with other in-company sources (that they already have or

choose together). One consequence of the heuristic is that it hinders people from diversi-

fying their choices of information sources as they should. For instance, in the context of

news consumption, this heuristic may potentially exacerbate polarization in news media

choices. Imagine a scenario where a Republican is deciding between turning to either

Fox News and The Blaze, or Fox News and CNN for political news. If influenced by

the common source cancellation heuristic, the person would focus only on the compar-

ison between The Blaze and CNN but not take into account the joint coverage of each

combination of news sources. As a result, the person fails to recognize that the latter

combination is likely to provide more comprehensive coverage of political news (as Fox

News and CNN are less overlapped). This oversight would lead to a missed opportunity

for a more diverse and inclusive news consumption, resulting in less accurate beliefs.

11In contrast, regression analysis shows that subjects’ choices between information bundles are only
slightly responsive to the practical value (conditional on guesses) or assessments of the bundles.

8
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This paper adds to a growing literature investigating how people choose or evaluate

instrumentally valuable information sources (structures) (Ambuehl & Li 2018, Charness,

Oprea & Yuksel 2021, Montanari & Nunnari 2022, Guan, Oprea & Yuksel 2023, Novak,

Matveenko & Ravaioli 2023, Liang 2023).12 Existing studies focus on choosing or evaluat-

ing single information sources in circumstances in which there is no need to consider the

joint information content between sources.13 In contrast, this paper focuses on choices

between information bundles, i.e., sets of information sources, in which the optimal choice

requires correctly identifying the joint information content between sources.

This paper relates to recent theoretical works on the comparisons of information

sources given some pre-existing information source (Brooks, Frankel & Kamenica 2023),

and the dynamic acquisition of possibly complementary information sources (Liang & Mu

2020, Liang, Mu & Syrgkanis 2022).14 To my knowledge, the current paper is the first

experimental study that examines whether and how people consider the joint information

content between sources when it is a necessary step for the optimal choice of information.

The experiment shows that people have limited ability to integrate information sources,

and they do not take adequate account of the joint information content between sources

12Some other work focuses on the demand for non-instrumental information or information sources.
The interested reader is referred to Nielsen (2020) or GOY for reviews of the literature.

13A recent work by Calford & Chakraborty (2023) studies the use, valuation and choice of multiple
deterministic signals, rather than noisy information sources (structures).

14Blackwell (1951) and Mu, Pomatto, Strack & Tamuz (2021) discuss the comparison between sets of
information sources but focus only on independent (conditional on the true state) information sources.
Besides, some existing studies consider the settings that require thinking about the joint information
content of multiple information sources or multiple pieces of information but do not focus on the choice of
information. For example, Börgers, Hernando-Veciana & Krähmer (2013) characterize the complemen-
tarity and substitutability of two information sources (Blackwell experiments), Gentzkow & Kamenica
(2017a,b) study information design games with multiple senders who provide potentially complementary
information to influence a receiver, De Oliveira, Ishii & Lin (2021) focus on characterizing the optimal
strategy of combining information sources that is robust to the correlation between information sources,
Arieli, Babichenko & Smorodinsky (2018) study the robust aggregation of signals from information
sources of which the decision maker may have limited knowledge, Levy & Razin (2021, 2022) study the
optimal way of combining signals generated from multiple correlated information sources whose corre-
lation structures are unknown or ambiguous, Enke & Zimmermann (2019), Hossain & Okui (2021) and
Fedyk & Hodson (2023) experimentally study belief formation given signals from correlated information
sources, etc.

9
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when making choices.

This paper also relates to a strand of literature showing that people choose simple

but imperfect decision rules as a way to avoid difficulties associated with developing or

executing optimal strategies in cognitively challenging decision settings. The literature

documents that System 1 thinking (i.e., the fast, automatic, intuitive, and effortless way

of thinking) drives human reasoning and decision making in many cases (Kahneman

2011), decision makers have a tendency to simplify decision problems (Rubinstein 1998),

people narrowly frame choices by thinking about a choice in isolation without considering

the broader context (Kahneman & Lovallo 1993, Barberis, Huang & Thaler 2006, Rabin

& Weizsäcker 2009), decision makers often form a simplified model of the world and act

using that simplified model (Gabaix 2014), etc. The current paper provides evidence of

people following simplifying heuristics in a new and important context, the choices of

sets of information sources.

The remainder of the paper is organized as follows. Section 1.2 introduces the con-

ceptual framework. Section 1.3 describes the experimental design. Section 1.4 presents

the main results. Section 1.5 discusses the possible reasons behind the emergence of

the common source cancellation heuristic and other determinants of information choices.

Section 1.6 concludes.

1.2 Conceptual Framework

1.2.1 Instrumental Value of Information

Let ω ∈ Ω be the state of the world, where Ω is a finite state space. There is a prior

distribution on Ω denoted by p. An information source (information structure) σ is a

mapping from the state space Ω to a finite signal space S. Let σs
ω be the probability of

10
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the information source σ generating signal s ∈ S conditional on state ω. Signal s induces

a posterior distribution, denoted by qsσ, over the state space Ω. According to Bayes’ Rule,

qsσ(ω) =
p(ω)σs

ω

qσ(s)
, where qσ(s) =

∑
ω p(ω)σ

s
ω is the probability of signal s being realized.

A decision problem D = (A, u) consists of a finite action set A and a utility function

u : A × Ω → R. The decision maker (DM) chooses an action a ∈ A after observing

signal s generated by information source σ to maximize E[u(a, ω)|s] =
∑

ω q
s
σ(ω)u(a, ω).

Following the standard definition in economics, the instrumental value of information

source σ, in decision problem D, is the increase in expected utility due to the DM being

able to condition her action choice on the realized signals. That is,

Vσ =
∑
s∈S

qσ(s)max
a∈A

E[u(a, ω)|s]−max
a∈A

E[u(a, ω)]

where E[u(a, ω)] =
∑

ω p(ω)u(a, ω).

The decision problem D used in this paper is a simple guessing game. There is a

binary state of the world, i.e., Ω = {T,C}, with a uniform prior p : p(T ) = p(C) = 0.5.

The DM makes a guess a ∈ A = {T,C} with the objective of matching the underlying

state. The DM earns a bonus of γ (γ > 0) if her guess matches the state and zero

otherwise, i.e., u(a, ω = a) = γ and u(a, ω = −a) = 0. A utility-maximizing DM always

guesses the more likely state. With an information source, the DM guesses the underlying

state to be the more likely state conditional on the realized signal. The guess will be

correct, i.e., a = w, with a probability of max{qsσ, 1 − qsσ}. Therefore, the instrumental

11
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value of σ can be simplified into:

Vσ =
(∑

s∈S

qσ(s)max{qsσ, 1− qsσ}︸ ︷︷ ︸
Guessing accuracy
conditional on s︸ ︷︷ ︸

Expectation over s

− p︸︷︷︸
Guessing accuracy
without information

)

︸ ︷︷ ︸
Expected improvement in guessing accuracy

γ (1.1)

which is the expected improvement of guessing accuracy induced by σ multiplying with

the constant reward γ.

1.2.2 Information Bundles

An information bundle is a finite set of information sources. In this study, I focus

on information bundles that consist of two distinct information sources, for example,

an information bundle b = {σ, σ′}. With bundle b, the DM observes both a signal

s ∈ S from σ and a signal s′ ∈ S ′ from σ′ before taking an action. Let qb({s, s′}) =∑
ω p(ω)p({s, s′}|ω) be the probability of observing s and s′ at the same time, Sb =

{{s, s′} : qb({s, s′}) > 0, s ∈ S, s′ ∈ S ′} be the finite set of all possible signal combinations,

and sb be a realized signal combination.15 The information bundle b is then a mapping

from state space Ω to Sb. It is convenient to think of each sb as a re-defined signal such

that sb is equivalent to observing {s, s′} and Sb as the set of the re-defined signals. Then

the mapping characterized by b is just an information source, denoted as σb. Following

BFK, the information source σb is referred to as the join of σ and σ′, denoted as σb ≡

σ ∨ σ′, meaning σb is equivalent to observing both σ and σ′.

The instrumental value of information bundle b can be defined in the same way as

15With the partition representation of information sources, the correlation between two information
sources is pinned down, and p({s, s′}) are straightforward to identify.
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above:

Vb = Vσb
=

(∑
s∈Sb

qσb
(s)max{qsσb

, 1− qsσb
} − p

)
γ

Note that the join information source σb and the information bundle b are theoretically

equivalent and equally valuable, but the use or evaluation of the latter requires a further

step of integrating signals.

Given that γ is a constant, for simplicity, I will refer to the expected improvement in

guessing accuracy induced by a certain information bundle (source) as its instrumental

value. In standard economic theory, the choice between information bundles (sources) is

assumed to rely only on the comparison of their instrumental value.

1.2.3 A Taxonomy of Comparisons of Information Bundles

When comparing and choosing between information bundles, in general, the DM

needs to think through the joint instrumental value of each bundle (which necessarily

involves information integration) and then make choices accordingly. An important recent

paper by Brooks, Frankel & Kamenica (2023) studies the comparisons of information

sources given some pre-existing information source. Their results provide a taxonomy of

information bundle comparisons and characterize the scenarios in which the comparison

can be done in an easy and intuitive way.

BFK adopts an alternative conceptualization of information sources (that was first

formalized by Green & Stokey (1978)). Under that conceptualization, an information

source is characterized as a partition of the extended state space Ω×X, where X is the

set of “states” that govern the signal realization conditional on the payoff-relevant state

(Ω), and a signal s is a subset of Ω×X, i.e., an element of the partition. Building upon the

partition representation of information sources, BFK characterizes a list of comparison

13
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relationships between information sources, including (from strongest to weakest): (i)

Refine, σ refines σ′, denoted as σRσ′, if any signal of σ is a subset of some signal of σ′;

(ii) Reveal-or-refine, σ reveal-or-refine σ′, denoted as σOσ′, if any signal of σ either fully

reveals the state (i.e., P (s|ω) > 0 for at most one ω) or is a subset of some signal of σ′;

(iii) Sufficiency, σ is sufficient for σ′, denoted as σSσ′, if for any s ∈ σ and any s′ ∈ σ′,

P (s′|s, ω) = P (s′|s), or equivalently, if for any decision problem D, σ ∨ σ′ has the same

value as σ; (iv) Blackwell, σ Blackwell dominates σ′ if σ is (weakly) more valuable than

σ′ for any decision problem D (Blackwell 1953).16 These relationships, especially the

first two, are straightforward to check given the partition representation of information

sources.17

What are the implications of these relationships between information sources on the

comparison of information bundles? Consider any information source σ0. Its joint infor-

mation content with σ (σ′) can be characterized by the interactions of all possible signal

combinations (each signal being a subset of Ω×X) of it and σ (σ′). By the definition of

refine, if σ refines σ′, then any signal of σ0 ∨ σ will be a subset of some signal of σ0 ∨ σ′,

i.e., σ0∨σ refines σ0∨σ′. Similarly, if σ reveals-or-refines σ′, then σ0∨σ reveals-or-refines

σ0 ∨ σ′. So for any σ0, if σRσ′ or σOσ′, then σ0 ∨ σ is (weakly) more instrumentally

valuable than σ0 ∨ σ′ (as both refine and reveal-or-refine imply Blackwell), and equiva-

lently, bundle {σ0, σ} is (weakly) more valuable than {σ0, σ
′}. In fact, BFK proves that

for any σ0, {σ0, σ} Blackwell dominates {σ0, σ
′}, meaning the former is (weakly) more

instrumentally valuable in any decision problem, if and only if σOσ′.

BFK’s results suggest a theory of difficulty in comparing (and choosing between)

information bundles. When σ and σ′ exhibit a refine or reveal-or-refine relationship, the

16The interested reader is referred to BFK for a more detailed discussion of the listed comparison
relationships (and an uncovered relationship Martingale, which is weaker than Sufficiency but stronger
than Blackwell).

17Figure A.4 in Appendix A.2 presents examples of these comparison relationships.
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comparison of {σ0, σ} and {σ0, σ
′} becomes relatively intuitive and does not necessarily

require the DM to integrate sources and recognize the joint information content (the joint

instrumental value) of each bundle. In contrast, in other cases, the DM must carefully

think through the joint information content to determine which bundle is more valuable

and thus have to go through the difficulties associated with information integration and

the computational burdens of identifying instrumental value. Or put differently, a choice

(comparison) between {σ0, σ} and {σ0, σ
′} can be simplified into a choice (comparison)

between σ and σ′ when the two sources exhibit a refine or reveal-or-refine relationship.

However, such simplification is not correct and will lead to mistakes in other cases, as

weaker relationships, such as sufficiency and Blackwell, between σ and σ′ can not pin

down the comparison relationship between bundles.

1.3 Experimental Design

The goal of the experiment is to study whether and under what circumstances people

make optimal choices of information bundles, measure the impact that the challenge of

information integration has on information choice, and explore the main forces driving

choices of information bundles, including why people make mistakes in these choices.

Subjects in the experiment face three types of decision tasks: (i) Guessing Task, elic-

iting subjects’ guesses in the guessing game for all possible information that they might

receive from a certain information bundle (i.e., measuring subjects’ ability to use an in-

formation bundle); (ii) Assessment Task, following each Guessing task, eliciting subjects’

assessments of the level of guessing accuracy an information bundle induces (i.e., mea-

suring subjects’ perceived usefulness of a bundle); (iii) Information Choice Task, eliciting

subjects’ choices between information bundles. Further details of the three types of tasks

are described in Section 1.3.3 below. The Guessing and Assessment tasks study whether
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subjects make errors in using or evaluating the information content of information bun-

dles. Recent experimental studies suggest that both the failures in evaluating information

(e.g., Liang (2023) and GOY) and misuse of information (e.g., Ambuehl & Li (2018) and

Guan, Lin, Zhou & Vora (2023)) can drive suboptimal demand for information.

The experiment employs a within-subjects design with two settings that turn on or off

the requirement to integrate information from multiple sources (i.e., in order to identify

the joint information content of a bundle):

• Separated , each information bundle is presented in its original form as a set of

two information sources.

• Joined , each information bundle is replaced by its corresponding join information

source.

This variation allows me to isolate the impact of the difficulties associated with informa-

tion integration on the usage, assessment, and especially choices of information bundles.

1.3.1 Guessing Game and Visual Representation of Information

The guessing game used in the experiment is as follows: there is a set of twenty

objects, including ten triangles and ten circles; one object is randomly drawn, and the

subjects’ task is to guess the shape of the randomly drawn object; subjects earn a bonus

of $12 if guessing correctly but zero otherwise.

Before making a guess, subjects receive information about the randomly drawn object

from an information source or a bundle of sources. Each information source is represented

as a partition of the twenty objects, i.e., grouping the twenty objects into non-empty

subsets, referred to as groups in the experiment. An information source provides subjects

with information about which group contains the randomly drawn object. Each group
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in the partition is thus a distinct signal that the information source might generate.

The partition representation makes the characteristics of an information source visually

transparent. The number of objects in a group visually shows the probability of the signal

being realized; the composition of objects in a group intuitively reveals the posterior

probability of the randomly drawn object being a triangle or circle. Note that posteriors

inform optimal choices in the guessing game. Knowing posteriors and the probabilities of

signal realizations is sufficient to identify the instrumental value (as defined in Equation

(1.1)) of an information source. For example, σ in Figure 1.1 is a partition with two

signals (groups), x and y, each visualized by the combination of a distinct color bar and

a letter. With this information source, subjects learn which group (x or y) the randomly

drawn object is in before they guess the shape of the randomly drawn object. It is

intuitive to identify that the probability of signal x (y) being realized is 13
20

( 7
20
) and the

posterior of the randomly drawn object being triangle conditional on signal x (y) is 5
13

(5
7
).

Following Section 1.2.3, an information source represented in this way can be formally

conceptualized as a finite partition of the extended state space Ω× {1, ..., 20} (Green &

Stokey 1978). For example, the information source σ in Figure 1.1 can be characterized

as σ = {x, y} = {(T, {1, ..., 5})∪ (C, {11, ..., 18}), (T, {6, ..., 10})∪ (C, {19, 20})}. The in-

terpretation of this conceptualization is that a random number is drawn uniformly from

{1,...20} and determines the signal realization conditional on the state. This conceptu-

alization highlights another important benefit of partition representation: it pins down

the correlation between information sources and makes identifying the joint information

content of multiple information sources straightforward. For instance, σ0 ∨ σ shown in

Figure 1.1 is the join of σ and σ′. Any signal realization from σ0 ∨ σ is simply the inter-

section of s and s′, each being a subset of Ω × {1, ..., 20}, for some s from σ and some

s′ from σ′. Specifically, signal a = (T, {1, ..., 5}) from σ0 ∨ σ is the intersection of signal
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x = (T, {1, ..., 5}) ∪ (C, {11, ..., 18}) from σ and signal m = (T, {1, ..., 8}) ∪ (C, {19, 20})

from σ′, denoted as a = x ∩m, and similarly, b = y ∩m, c = y ∩ n and d = x ∩ n.

1.3.2 Information Bundles and Sources Studied in the Experi-

ment

The experiment includes eight different pairs of information bundles, each pair being

denoted as {σ0, σ} and {σ0, σ
′}. These pairs comprehensively encompass the comparison

relationships between individual information sources σ and σ′ introduced in Section 1.2.3,

as well as cases in which σ and σ′ can not be Blackwell ordered. This design incorporates

the taxonomy of comparisons of information bundles characterized by BFK and enables

me to test the implied theory of difficulty in comparing and choosing between information

bundles.

Table 1.1: Studied Information Bundles and sources

Isolated : σ vs. σ′ Joined : σ0 ∨ σ vs. σ0 ∨ σ′

Separated : {σ0, σ} vs. {σ0, σ
′}

Comparison relationship Difference in value: 0.05 Difference in value: 0.1

(1) Refine (R) > >
(2) Reveal-or-refine (O) > >
(3) Sufficiency (S) > >
(4) Blackwell (B) > >

(5) Not Blackwell (NB) > >
(6) Not Blackwell (-NB) < >

(7) - Blackwell (-B) < >
(8) - Sufficiency (-S) < >

Notes: Each case of (1)-(8) corresponds to a pair of information bundles {σ0, σ} and {σ0, σ′}, consisting of three distinct
information sources, and a pair of join information sources corresponding to the bundles. Comparison relationships are
introduced in Section 1.2.3. Value denotes the instrumental value, i.e., the expected improvement in guessing accuracy
induced by an information bundle or source as defined in Section 1.2. > (<) denotes the left information bundle or source
has a higher (lower) value than the right one in a comparison. −B (−S) denotes σ′ Blackwell dominates (is sufficient
for) σ.

Table 1.1 summarizes the studied information bundles, the corresponding individual

information sources, and join information sources into eight cases. In each case, {σ0, σ}
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(σ0 ∨ σ) is more valuable than {σ0, σ
′} (σ0 ∨ σ′) by a 0.1 increment in guessing accuracy

($1.2 increase in the expected payoff). I also manage to keep σ′ the same or use its

symmetric version in cases (1)-(6) to make these cases more comparable to each other.

The difference in instrumental value between σ and σ′ is fixed to be a 0.05 increment in

guessing accuracy ($0.6 increase in the expected payoff), but the sign is flipped in some

cases, with > (<) denoting σ being more (less) valuable than σ′. This variation allows

me to test whether subjects’ information bundle choices might be misled by comparing σ

and σ′ individually, i.e., whether subjects incorrectly simplify choices between information

bundles when the relationship between σ′ and σ is weaker than reveal-or-refine. All of

those information bundles and sources are presented in Figure A.4 of Appendix A.2.

1.3.3 Stages of the Experiment

The experiment consists of four parts.

Part 1 (Guessing and Assessment under the Joined setting, 16 rounds). This part

contains 16 Guessing tasks. In each of them, an information source (σ0 ∨ σ or σ0 ∨ σ′

from one of the eight cases listed in Table 1.1) as a partition is shown, and a subject

submits her guesses about the shape of the randomly drawn object for each possible piece

of information (i.e., each possible group containing the randomly drawn object) she might

receive from the given information source. This elicits subjects’ contingent plans about

how to use an information source. Following each Guessing task, subjects are also asked

to assess what level of guessing accuracy the information source induces, which reveals

subjects’ perceptions of the source’s actual usefulness. The elicitation is incentivized

by the Binarized Scoring Rule (Hossain & Okui 2013) and implemented following the

procedure proposed by Wilson & Vespa (2016).

Figure 1.2 is a screenshot of Part 1. Note that the Assessment task appears right
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Figure 1.2: Screenshot of Guessing and Assessment Tasks in Part 1 Notes: The Assessment task
appears below a Guessing task after subjects make all guessing choices and click a “Continue” button. The submitted
guesses are shown on the screen but are no longer changeable when subjects work on the Assessment task.

below a Guessing task, after subjects submit their guesses. The Guessing task and

subjects’ submitted guesses (which are no longer changeable) are shown on the screen

when subjects work on the Assessment task.

Part 2 (Choices between Information sources, 16 rounds). This part includes 16 Infor-

mation Choice tasks. In each of them, subjects choose between two distinct information

sources, i.e., σ0 ∨ σ versus σ0 ∨ σ (the Joined setting) or σ versus σ′ (referred to as the

Isolated setting afterward) from one of the eight cases. Figure 1.3 presents a screenshot

of the task. To incentivize choices, subjects will be given their chosen information sources

in a (potential) final Guessing task at the end of the experiment.

Part 3 (Guessing and Assessment under the Separated setting, 16 rounds). Subjects

complete another 16 Guessing tasks and 16 follow-up Assessment tasks. The tasks are

the same as those in Part 1 except that subjects now face information bundles, {σ0, σ}
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Figure 1.3: Screenshot of Information Choice Task in Part 2

or {σ0, σ
′} from the eight cases, instead of the join information sources, σ0∨σ or σ0∨σ′.

Figure 1.4 is a screenshot of the Guessing and Assessment tasks in Part 3.

Part 4 (Choices between Information Bundles, 8 rounds). This part consists of 8 binary

choices between information bundles, i.e., {σ0, σ} versus {σ0, σ
′}. Each corresponds to

one of the eight cases. Figure 1.5 is a screenshot of the task.

The four parts of the experiment are arrayed in ascending order of difficulty. Sub-

jects start with relatively easy decision problems in Parts 1 and 2, become familiar with

the three types of tasks and experiment interfaces, and then face relatively challenging

problems in Parts 3 and 4. Having Guessing and Assessment tasks before Information

Choice tasks also helps to mitigate the potential influence of failures in contingent think-

ing (Esponda & Vespa 2014, Martinez-Marquina, Niederle & Vespa 2019), i.e., subjects

failing to foresee how they will use the information when making information choices.

Additionally, the order of tasks within each part is randomized for each subject. In each

Information choice task, the position of the two options (i.e., two bundles or sources) is

also randomized.

1.3.4 Incentives and Implementation Details

The experiment was conducted at the LITE laboratory at the University of California,

Santa Barbara, in June 2023. 100 subjects were recruited to participate in 7 sessions
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Figure 1.4: Screenshot of Guessing and Assessment Tasks in Part 3

using the ORSEE recruitment system (Greiner 2015). The experiment used the software

programmed by the author in oTree (Chen, Schonger & Wickens 2016). Between 7 and

20 subjects participated in each session, which lasted 90 minutes.

All subjects received a show-up fee of $8. The experiment instructions contain six

comprehension questions, and subjects got $0.2 for each question they answered correctly

in one attempt. Subjects’ earnings from the experiment were determined according to a

randomly selected round. For a subject, if one of the rounds in Parts 1 or 3 was selected,

the subject’s submitted guesses in that round were used to determine whether she received

a $12 reward from the Guessing task, and her answer in the follow-up Assessment task

was used to determine whether she received another $5 reward. If one of the Information

Choice tasks in Parts 2 or 4 was selected, the subject completed a final Guessing task
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Figure 1.5: Screenshot of Information Choice Task in Part 4

given her chosen information bundle or source in that selected Information Choice task.

Her guesses in the final task determined whether she received a $12 reward. The average

(median) final payoff is around $22 ($21).

1.4 Results

The main findings of the experiment are organized as follows. Section 1.4.1 analyzes

and compares choices of information under the Separated and Joined settings. Section

1.4.2 looks at subjects’ usage and assessment of the actual usefulness (conditional on the

usage) of information bundles and corresponding join information sources. The section

also examines whether mistakes in the choices of information bundles can be attributed

to errors or noise in the usage of bundles. Section 1.4.3 then investigates whether the

mistakes are instead systematic, driven by a simple but imperfect heuristic in information

bundle choices. Section 1.4.4 explores the heterogeneity in these results among subjects.
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Figure 1.6: Choices of Information Bundles and Join information Sources Notes: The optimality
of information choices is measured by the likelihood of choosing the high-value information bundle or source (relative to
the other) in binary choices. Short vertical lines in the left panel denote 95 percent confidence intervals. In the right
panel, the y-axis (x-axis) plots the likelihood of choosing bundle (join information source) {σ0, σ} over {σ0, σ} (σ0 ∨ σ
over σ0 ∨ σ′) in Information Choice tasks under the Separated (Joined) setting.

1.4.1 Choices of Bundles and Join Information Sources

I begin by looking at the optimality of subjects’ choices between information bundles,

as measured by their likelihood of choosing the more instrumentally valuable bundle (i.e.,

the high-value bundle) over the other in binary choices, and to what extent the optimality

is constrained by the challenge of information integration. The left panel of Figure 1.6

shows that in binary choices between information bundles, subjects choose the high-value

bundles only 56 percent of the time. The mistakes of failing to choose the high-value

information turn out to be largely driven by subjects’ failures to integrate information

sources within a bundle and thereby identify their joint information content. Under the

Joined setting, in which there is no need for information integration, subjects’ likelihood

of choosing the high-value information increases considerably, to over 77 percent (signed-

rank test, p < 0.001).

Given my experimental design, the optimal decisions in the information choice tasks

(i.e., binary choices) under the Separated and Joined settings are theoretically the same.

If subjects are able to integrate sources and identify the joint information content of each
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bundle, then their choices under the Separated setting ought to align with their choices

under the Joined setting. The right panel of Figure 1.6 presents a direct comparison

of choices under the two settings. In the graph, each data point represents one case

(eight cases in total as summarized in Table 1.1), the y-axis plots subjects’ likelihood of

choosing the bundle {σ0, σ} over {σ0, σ
′}, and the x-axis plots their likelihood of choosing

the join information source σ0∨σ over σ0∨σ′. Choices between join information sources

poorly explain choices between (theoretically equivalent) information bundles and the two

dimensions of likelihoods are barely correlated (Kendall’s τ = 0.148, p = 0.62), suggesting

subjects largely fail to integrate sources and do not base their choices between information

bundles on the joint information content of each bundle. Moreover, examining choices

under the Separated and Joined settings subject by subject, I find that 69% (85%) of

subjects have a strictly (weakly) higher likelihood of choosing the high-value information

in binary choices under the Joined setting than under the Separated setting.

Result 1 Subjects’ choices between information bundles are largely suboptimal and sub-

stantially deviate from their choices between theoretically equivalent join information

sources.

Section 1.2.3 argues that BFK’s characterization of comparison relationships between

information sources suggests a theory of difficulty in comparisons of information bundles.

When σ and σ′ exhibit a refine (R) or reveal-or-refine (O) relationship, identifying which

bundle, {σ0, σ} or {σ0, σ
′} (for any σ0), is more valuable does not necessarily require

the DM to integrate sources and recognize the joint information content (the joint in-

strumental value) of each bundle. Otherwise, the DM has to carefully think about the

joint information content and engage in the difficult task of information integration. A

testable hypothesis related to this theory is that subjects’ choices between information

bundles should be less constrained by the challenge of information integration in cases in
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which σ and σ′ exhibit a refine or reveal-or-refine relationship compared to other cases.

To test this, I focus on the difference in the optimality of information choices between

the Joined and Separated settings and study how the difference changes across cases that

vary in the comparison relationship between σ and σ′ (eight cases in total as summarized

in Table 1.1). Figure 1.7 depicts these differences. The left panel covers all data while

the right panel focuses on the subjects for whom the more instrumentally valuable infor-

mation bundle or join information source of each case is indeed more helpful in Guessing

tasks (i.e., practically induces a weakly higher guessing accuracy). Note that these sub-

jects have a relatively clear incentive to choose the high-value information bundle or join

information source. In both panels, the x-axis denotes the eight different cases, and the

y-axis plots the difference between the likelihood of choosing the high-value join informa-

tion source under the Joined setting and the likelihood of choosing the high-value bundle

under the Separated setting of each case. When σRσ′ or σOσ′ holds, the decrease in

choice optimality is relatively small. The decreases under the two cases are the lowest if

focusing on subjects with a clear incentive to choose high-value information, as the right

panel shows. I take these as suggestive evidence that supports the theory of difficulty in

comparisons of information bundles implied by BFK.

The figure reveals another noticeable pattern: the decrease in choice optimality is

much smaller in cases in which the value comparison between σ and σ′ is ordinally

consistent with the comparison between bundles {σ0, σ} and {σ0, σ
′} than in cases where

the two value comparisons go to opposite directions. This can be seen in either panel when

comparing the first five cases with cases -NB, -B, and -S. I will show in later sections that

this pattern is an important clue to the primary mechanism driving subjects’ information

bundle choices.

Result 2 The information choices are less optimal under the Separated setting compared
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Figure 1.7: Decrease in the Optimality of Information Choices from Joined to Separated
Settings Notes: The left panel covers all data while, in each case, the right panel focuses on the subjects for whom the
more instrumentally valuable information bundle or join source is indeed more helpful in Guessing tasks. Each data point
plots the difference between the likelihood of choosing the high-value join information source under the Joined setting and
the likelihood of choosing the high-value bundle under the Separated of a case. Eight different cases are introduced in
Table 1.1. On the x-axis, the cases are ordered regarding the strength of the comparison relationship between σ and σ′. R
denotes refine, O denotes reveal-or-refine, S denotes sufficiency, B denotes Blackwell, and NB denotes that two sources
can not be Blackwell ordered. Detailed descriptions of these comparison relationships are in Section 1.2.3. Short vertical
lines denote 95 percent confidence intervals by Bootstrapping.

to the Joined setting in every case. However, the decrease in choice optimality is relatively

smaller, meaning subjects are less constrained by the challenge of information integration,

when σRσ′ or σOσ′ holds. This supports the theory of difficulty in comparing information

bundles implied by BFK.

1.4.2 Usage and Assessment of Information and Choice

The above results show that subjects often fail to make optimal choices of information

bundles and the mistakes are largely due to the challenge of information integration.

But how does the challenge of information integration induce mistakes in choices? One

possibility is that the difficulties associated with information integration cause errors or

noise in the usage of information bundles (ex-post), leading to mistakes in information

bundle choices (ex-ante). In this section, I examine whether this channel is the main

source of mistakes.
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The optimality of subjects’ usage of information can be measured by the rate at

which guesses about the shape of a randomly drawn object, conditional on receiving

the information, are consistent with the Bayesian predictions. The left panel of Figure

1.8 presents the distribution of the subject-level optimality rates of guesses. Under the

Joined setting, where subjects face a join information source in each Guessing task, 76

out of 100 subjects always make optimal (from the Bayesian perspective) guesses, and

the average optimality rate is 98 percent. This near-perfect guessing behavior confirms

that the partition representation of information sources removes typical errors (such as

failures in Bayesian reasoning) people might make in using (single pieces of) information.

In contrast, under the Separated setting, where subjects face an information bundle and

have to integrate a pair of signals by themselves, the average optimality rate decreases to

85 percent, and only 32 subjects make optimal guesses all of the time. On the one hand,

the guessing optimality under the Separated setting is still impressive, suggesting subjects

are highly sensitive to joint information content when using a bundle of information

sources. On the other hand, the reduction in guessing optimality due to the challenge

of information integration is considerable (signed rank test, p < 0.001). Information

integration seems to be challenging for most of the subjects. The right panel of Figure

1.8 presents the distribution of the subject-level decrease in guessing optimality rate

from the Joined to the Separated settings. 66 (90) subjects have strictly (weakly) lower

optimality rates when they have to integrate two pieces of information by themselves in

Guessing tasks under the Separated setting.

I also explore what guessing errors subjects typically make in the presence of the

challenge of information integration. The scenario in which the largest proportion of

subjects guess suboptimally is when they learn groups b and q of the information bundle

shown in Figure 1.9 contain the randomly drawn object. The Bayesian optimal guess

is Triangle, but 54 subjects guessed Circle. This guessing error can be explained by
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Figure 1.8: Guessing Optimality Notes: The optimality of guesses is measured by the share of submitted guesses
that are optimal from the Bayesian perspective. The decrease in optimality is the difference in guessing optimality between
the Joined and Separated settings.

the subjects integrating signals (groups) in a simple but incorrect way: count the total

numbers of triangles and circles, respectively, that the two groups contain, then guess

Triangle if the total number of triangles is higher and guess Circle otherwise. In the

mentioned scenario, the decision rule predicts guessing Circle because groups b and q

together contain more circles than triangles, i.e., 11 circles versus 7 triangles. Strikingly,

this incorrect way of integrating signals can explain around 82 percent (770/942) of errors

in the Guessing tasks under the Separated setting.18,19

18Possible interpretation of the decision rule is that people do not cross-check information but simply
pool information together and then make judgments based on the “quantity” comparison of “for” and
“against” clues without thinking about the actual implication of the combination of multiple pieces of
information.

19The decision rule is also highly correlated (though may not be reduced to) several documented rules
of signal integration in the literature: (i) correlation neglect, perceiving the two signals to be independent
and using the two signals separately to update beliefs; (ii) DeGroot rule, take a simple average of the
posterior beliefs induced by two signals; (iii) Not-To-Integrate, focusing on only one signal (the more
revealing one) but not the join of signals. These three alternative rules generate the same predictions
of guesses given the studied information bundles in the experiment. These predictions deviate from the
aforementioned decision rule in only 5 out of 63 scenarios and can explain 71% of guessing errors (67%
if excluding one scenario in which the three rules give uniform predictions).
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Figure 1.9: Example of Information Bundle

Result 3 The challenge of information integration leads to more errors in the usage of

information: guesses are optimal 98% of the time when using join information sources;

the optimality rate significantly decreases to 85% when using theoretically equivalent in-

formation bundles; and most (about 82%) of the guessing errors in the latter case can be

attributed to an incorrect but simple way of integrating signals.

Can subjects’ choices between information bundles be explained by their (imperfect)

usage of the bundles? To understand this, I compute the “practical” instrumental value

of each information bundle conditional on how the bundle is used (i.e., conditional on

subjects’ submitted guesses in the Guessing task with the bundle), which I refer to as

value given guesses, and examine whether it can explain choices between information

bundles. As shown in the left panel of Figure 1.10, overall, subjects choose the bun-

dle with a weakly higher value given guesses in binary choices only 62% of the time

(significantly lower than the rate of 78% in choices between join information sources,

p < 0.001). In addition, I compare the indicated likelihood of choosing one bundle over

the other based on value given guesses with the actually observed choice likelihood across

the eight binary choices between information bundles (Figure A.2 in Appendix A.1 de-

picts the comparison). I find that the two likelihoods are barely correlated (Kendall’s

τ = 0.296, p = 0.31). These findings suggest that subjects do not take adequate account

of their future usage of information bundles when they make choices.

It is also possible that subjects do think about their future usage of information bun-

dles but in a noisy way. The Assessment task in the experiment directly elicits subjects’
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Figure 1.10: Subjective Optimality of Information Choices Notes: In the left (right) panel, the choice
optimality is measured by the likelihood of choosing the information bundle or source with a weakly higher value given
guesses (assessments) in binary choices. Short vertical lines denote 95 percent confidence intervals.

assessments of the practical usefulness of each information bundle (and corresponding

join information source). Do the elicited assessments explain choices between informa-

tion bundles? Results suggest that this is not the case, either. The right panel of Figure

1.10 shows that overall, subjects choose the bundle to which they assign a weakly higher

assessment only 61% of the time (significantly lower than the rate of 72% in choices

between join information sources, p < 0.001). Across the eight binary choices, the in-

dicated likelihood of choosing one bundle over the other based on assessments barely

correlates (Kendall’s τ = 0.255, p = 0.38) with the actually observed choice likelihood.

These results once again indicate that subjects make choices between information bundles

without much consideration of how they would use the bundles to make inferences.

Result 4 Subjects make information bundle choices without much consideration of how

they would use the bundles, and therefore, mistakes in those choices cannot be primarily

attributed to errors or noise in the usage of information bundles.
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1.4.3 Common Source Cancellation in Bundle Choices

The previous section shows that subjects’ choices between information bundles are

only weakly related to their ability to use the bundles. This suggests that the mistakes

subjects make in choosing between information bundles are likely driven by the use of a

decision rule other than the optimal one – one that does not attempt to fully integrate the

information contained in the bundles. The analysis in Section 1.4.1 shows that failures

of integration (i.e. the difference between the optimality of information choice in the

Joined vs. Separated settings) are much more severe when the bundle that contains a

more valuable source (considered in isolation) is not the more valuable bundle. This

finding indicates that subjects’ choices between information bundles are sensitive to the

direct comparison of the information sources the two bundles being compared do not

share. This suggests a hypothesis: when choosing between information bundles {σ0, σ}

and {σ0, σ
′}, subjects might heuristically simplify their decision-making by “canceling”

σ0 and reducing a choice between bundles to a choice between individual sources σ and

σ′. This simplifying heuristic, which I call common source cancellation (CSC), is very

intuitive and appealing as it circumvents the difficult task of integrating information and

identifying the joint information content of each bundle.

Figure 1.11 provides evidence supporting that subjects follow the CSC heuristic.

The left panel of the figure looks into the optimality of information bundle choices in two

scenarios: (i) where σ is less valuable than σ′ but {σ0, σ} is more valuable than {σ0, σ
′}

(cases (6)-(8) listed in Table 1.1), categorized as Individually Worse; and (ii) where

the value comparison between σ and σ′ aligns with the comparison between the two

corresponding bundles (cases (1)-(5) in Table 1.1), categorized as Individually Better. In

the first scenario, subjects make optimal information bundle choices only 45 percent of the

time. In contrast, the optimality rate increases substantially to 63 percent in the second
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Figure 1.11: Common Source Cancellation in Information Bundle Choices Notes: The left panel
plots the likelihood of choosing bundle {σ0, σ} over {σ0, σ′}, with the former being more instrumentally valuable than the
latter by a 0.1 increment in guessing accuracy (i.e., $1.2 increase in the expected payoff). “Individually Worse” refers to
cases (6)-(8) listed in Table 1.1 and “Individually Better” refers to cases (1)-(5). Short vertical lines denote 95 percent
confidence intervals by Bootstrapping. In the right panel, the y-axis plots the likelihood of choosing bundle {σ0, σ} over
{σ0, σ′} under the Separated setting, and the x-axis plots the likelihood of choosing σ over σ′ under the Isolated setting.
The red dashed line is the best linear fit, and the grey region is the 95 percent confidence interval for predictions of the
linear fits.

scenario. This pattern confirms that subjects are influenced by the direct comparison

between σ and σ′ when choosing between two corresponding bundles. The right panel

of Figure 1.11 then directly compares subjects’ choices between isolated information

sources σ and σ′ and their choices between corresponding bundles {σ0, σ} and {σ0, σ
′}.

As the graph shows, the likelihood of choosing σ over σ′ strongly explains the likelihood

of choosing {σ0, σ} over {σ0, σ
′} across the eight cases and overall, the two likelihoods

are highly correlated (Kendall’s τ = 0.764, p < 0.01). Moreover, when focusing on the

suboptimal choices between information bundles, I find that subjects’ choices between

σ and σ′ can account for over 68 percent of the mistakes in information bundle choices.

These findings, aligning with the CSC heuristic, strongly suggest that when choosing

between information bundles, subjects tend to focus solely on the comparison between σ

and σ′ without thinking about the joint information content of each bundle.

Table 1.2 offers additional statistical evidence for these findings. Regression model

(1) in the table regresses the choice of bundle {σ0, σ} over {σ0, σ
′} on the difference
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in instrumental value (measured with respect to guessing accuracy) between the two

corresponding isolated information sources σ and σ′, with the constant term capturing

the difference in instrumental value (i.e., 0.1 increment in guessing accuracy) between the

two bundles. Results show that subjects’ choices between information bundles strongly

respond to the value comparison of the two isolated sources but barely respond to the

value comparison of the two bundles. Regression model (2) additionally includes the

difference in assessments and the difference in value given guesses between two bundles

as independent variables, both being measured with respect to guessing accuracy as well.

Subjects’ choices also seem to be (slightly) responsive to subjective assessments and value

given guesses of bundles. However, the effect size of both is much smaller than that of the

value comparison of the two corresponding isolated sources, suggesting the CSC heuristic

is the primary driver of information bundle choices.

Table 1.2: Choices Between Information Bundles

Logit Regression
(choose {σ0, σ} over {σ0, σ

′})
(1) (2)

Difference in Value (Isolated, σ vs. σ′) 7.158∗∗∗ 7.116∗∗∗

(1.634) (1.671)

Difference in Assessment 1.663∗

(0.871)

Difference in Value Given Guesses 1.998∗∗

(0.877)

Constant 0.157∗ 0.065
(0.092) (0.085)

No. of subjects 100 100
N 800 800

Notes: Logit regressions with the dependent variable being whether bundle {σ0, σ} is chosen in a binary choice. The
difference in (theoretical) instrumental value between two bundles is always 0.1 increment in guessing accuracy and is
captured by the constant term. Assessment refers to the elicited assessment of the instrumental value of an information
bundle. Value given guesses denotes the “empirical” instrumental value of an information bundle accounting for how the
bundle is used. Value, assessment, and value given guesses are all measured regarding guessing accuracy. For the Optimal
group, value given guesses equals the theoretical instrumental value. Therefore, the difference in value given guesses is
always 0.1 between a pair of bundles, making its coefficient to be 0. Clustered standard errors in parentheses. * p<0.1,
** p<0.05, *** p<0.01.
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Result 5 Subjects primarily follow the common source cancellation (CSC) heuristic

when choosing information bundles. The choices between two isolated information sources

σ and σ′ strongly explain choices between two corresponding bundles {σ0, σ} and {σ0, σ
′}

and can account for most of the mistakes in the latter.

1.4.4 Heterogeneity

The results so far establish that, at the aggregate level, the CSC heuristic is the

primary driving force behind subjects’ choices between information bundles and can

account for most of the mistakes in choices. Is this true for all subjects? Do subjects

who seem to understand the joint information content of bundles (i.e., being able to

interpret and use information bundles in an optimal way) still follow this heuristic? More

broadly, is the tendency of common source cancellation associated with subjects’ ability to

integrate information (which is necessary for making optimal choices between information

bundles)? Answering these questions will help us to understand the significance and

prevalence of the CSC heuristic in the context of choosing information bundles and shed

light on the determinant of the heuristic.

I examine heterogeneity by classifying subjects into three groups with respect to how

well they can make use of information bundles (i.e., a proxy of the ability to properly

integrate information): (i) Naive, subjects follow exactly the incorrect way of integrating

signals as discussed in Section 1.4.2 (10 subjects) or worse (i.e., those with a guessing

optimality rate lower than 0.746) in the Guessing tasks under the Separated setting; (ii)

In-Between, subjects make better use of information bundles than the Naive group but

are not fully optimally; (iii) Optimal, subjects make perfect use of information bundles.

The three groups include 37, 31, and 32 subjects, respectively. Table A.1 in Appendix

A.1 compares the three groups in terms of the optimality of their usage, assessment, and
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choices of information under both the Joined and Separated settings. The optimality

rates of the Optimal group are always the highest, and the rates of the Naive group are

almost always the lowest. The Optimal group also has the lowest decreases in optimality

rates from the Joined setting to the Separated setting, indicating this group of subjects

is less constrained by the difficulties associated with information integration relative to

other groups.

Figure 1.12 studies whether and to what extent each group follows the CSC heuristic

when choosing between information bundles. The figure replicates the right panel of

Figure 1.11 with the data from each group of subjects separately. As the figure shows,

choices between isolated information sources strongly explain the choices between infor-

mation bundles in each group. Even for the Optimal group, who use information bundles

optimally 100% of the time, their choices of information under the Isolated and Separated

settings are qualitatively aligned. Moreover, choices between isolated information sources

can account for 72 percent, 65 percent, and 67 percent of suboptimal choices between

bundles of the three groups, respectively. These results suggest that the CSC heuris-

tic plays a vital role in explaining choices between information bundles of each group.

Figure 1.12 also indicates that the tendency of common source cancellation is stronger

among subjects who make worse use of information bundles. The heuristic near-perfectly

explains the choices between information bundles of the Naive group, while its influence

is relatively weaker (though still considerable) among the other two groups. This indi-

cates people are more likely to follow the CSC heuristic if they are less able to integrate

information and interpret and use the joint information content correctly.

Table 1.3 replicates regression (2) in Table 1.2 with the data of each group sepa-

rately. Regression results show that choices between information bundles of each group

are significantly responsive to the value comparison of the two corresponding isolated

information sources, confirming that each group has the tendency of common source
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Figure 1.12: Common Source Cancellation in Information Bundle Choices – By Group Notes:
In each panel, the y-axis plots the likelihood of choosing bundle {σ0, σ} over {σ0, σ′} under the Separated setting, and
the x-axis plots the likelihood of choosing σ over σ′ under the Isolated setting. Naive, In-Between, and Optimal denote
three groups of subjects that are classified according to their guessing optimality under the Separated setting (details can
be found above). Red dashed lines are the best linear fits, and the grey regions are 95 percent confidence intervals for
predictions of the linear fits.

cancellation when choosing between information bundles. The effect size is the largest

for the Naive group and becomes relatively smaller for the other two groups. In addition,

the regression analysis reveals that the choices of the In-Between group are also signif-

icantly responsive to subjective assessments of information bundles, though the effect

size is substantially smaller than that of the difference in instrumental value between

two isolated sources. The choices of the Optimal group are also strongly responsive to

the difference in instrumental value of two bundles, suggesting this group of subjects is

sensitive to the joint information content of each bundle when making binary choices.

Figure A.3 in Appendix A.1 further shows that combining CSC with the mechanism

of following subjective assessments explains the bundle choices of the In-Between group

quantitatively well, and combining CSC with the mechanism of basing information bun-

dle choices on the joint information content of each bundle explains the choices of the

Optimal group quantitatively well.

Result 6 There is heterogeneity in the ability to integrate information among subjects.

But the common source cancellation heuristic emerges as a primary driver of the choices
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Table 1.3: Choices Between Information Bundles – By Group

Logit Regression
(choose {σ0, σ} over {σ0, σ

′})

Naive In-Between Optimal

Difference in Value (Isolated, σ vs. σ′) 8.200∗∗∗ 7.758∗∗ 6.227∗∗

(2.842) (3.246) (3.049)

Difference in Assessment -1.244 4.192∗∗∗ 2.558
(1.126) (1.603) (1.923)

Difference in Value Given Guesses 1.024 0.723 0.000
(0.912) (1.431) (.)

Constant -0.140 -0.144 0.632∗∗∗

(0.097) (0.149) (0.226)

No. of subjects 37 31 32
N 296 248 256

Notes: Logit regressions with the dependent variable being whether bundle {σ0, σ} is chosen in a binary choice. The
difference in (theoretical) instrumental value between two bundles is always 0.1 increment in guessing accuracy and is
captured by the constant term. Assessment refers to the elicited assessment of the instrumental value of an information
bundle. Value given guesses denotes the “empirical” instrumental value of an information bundle accounting for how the
bundle is used. Value, assessment, and value given guesses are all measured regarding guessing accuracy. For the Optimal
group, value given guesses equals the theoretical instrumental value. Therefore, the difference in value given guesses is
always 0.1 between a pair of bundles, making its coefficient to be 0. Clustered standard errors in parentheses. * p<0.1,
** p<0.05, *** p<0.01.

between information bundles of each group of subjects, including those who make perfect

use of each information bundle in the guessing game.

1.5 Discussion

Why Common Source Cancellation?

What are the reasons behind the emergence of the common source cancellation (CSC)

heuristic? First, following the heuristic in information bundle choices may be due to

subjects approaching the choice problem in a wrong way from the beginning. For instance,

they believe that the individually better source always constitutes a better bundle and

think that the common component σ0 can be canceled out when comparing two bundles

{σ0, σ} and {σ0, σ
′}. Second, it is also possible that subjects know that the heuristic
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is not the optimal approach but still choose to use it as a way out of the difficulties

associated with information integration and to save cognitive efforts.

While examining or distinguishing the two possible reasons is beyond the scope of

the current experiment, there is suggestive evidence that both might be at play. The

finding that the impact of the CSC heuristic is more pronounced among subjects who

struggle with information integration and the effective use of information bundles (ar-

guably more likely to approach the choice problem incorrectly or have a more limited

ability to approach the problem) seem to align with the first explanation. On the other

hand, the finding that the Optimal group, who make perfect use of each bundle and

demonstrate sensitivity to the joint information content of bundles, also largely follow

the CSC heuristic supports the second explanation. However, it should be noted that

these arguments are only suggestive but not conclusive.

Other Determinants of Information Choices

A growing literature shows many factors other than instrumental value may influence

information choices (see Nielsen (2020) or GOY for a review). The most related to the

current paper is GOY, which finds that the demand for single information sources is influ-

enced by informativeness, the fundamental characteristic of information sources, in addi-

tion to being responsive to instrumental value.20 Aligning with GOY, subjects’ informa-

tion choices in the current experiment also exhibit a sharp aversion to non-instrumental

informativeness.

The left panel of Figure 1.13 presents the likelihood of choosing the high-value in-

formation source in binary choices. Under both the Isolated and Joined settings, on

average, high-value sources are more likely to be chosen (i.e., the likelihoods are signifi-

cantly larger than 0.5). Besides, the likelihood significantly increases (signed rank test,

20Informativness is measured by the mutual information (Shannon 1948) between prior and posterior
beliefs induced by given information (Cabrales, Gossner & Serrano 2013).
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Figure 1.13: Choices between single Information sources Notes: In both panels, choice likelihood denotes
the likelihood of choosing the high-value information source in binary choices. Short vertical lines in the left panel denote
95 percent confidence intervals. ∆v denotes the difference in instrumental value between a pair of information sources.
Informativeness is measured by the mutual information between prior and posterior beliefs that the certain information
source induces. Dashed lines in the right panel are the best linear fits. Data of Isolated and Joined settings are distinguished
by color, grey versus blue.

p-value < 0.001) as the value difference between a pair of information sources increases

from 0.05 increment in guessing accuracy under the Isolated setting to 0.1 under the

Joined setting. The right panel of Figure 1.13 examines the impact of excess informa-

tiveness on the choice of individual information sources. Each data point represents a

binary choice, and the y-axis plots the likelihood of choosing the high-value source in

each binary choice. Grey and blue dots denote the data of Isolated and Joined settings,

respectively, and the dashed lines are the best linear fits. The graph shows that subjects

are averse to non-instrumental informativeness: as the high-value information source

becomes more informative (relative to the low-value source in the binary choice), the

likelihood of choosing it decreases.

The above results are confirmed by regression analyses shown in Table 1.4. With

whether to choose the high-value information source as the dependent variable, the dif-

ference in informativeness between a pair of sources is included as the independent vari-

able, and the constant term captures the effect of the difference in instrumental value
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(being 0.05 increment in guessing accuracy under Isolated and 0.1 under Joined). The

difference in informativeness has a significantly negative impact under either setting,

suggesting subjects are averse to informativeness. The constant term is significantly pos-

itive and substantially larger under the Joined setting than under the Isolated setting,

reflecting that subjects are responsive to instrumental value when choosing single sources.

Table 1.4: Informativeness Aversion in Information Choices

Isolated Joined Separated
(σ vs. σ′) (σ0 ∨ σ vs. σ0 ∨ σ′) ({σ0, σ} vs. {σ0, σ

′})

Diff in Informativeness -4.869∗∗∗ -4.265∗∗∗ -0.002 1.185
(0.737) (1.173) (1.034) (1.588)

Diff in Value (σ vs. σ′) 18.662∗∗∗

(3.904)

Diff in Informativeness (σ vs. σ′) -3.473∗∗∗

(1.179)

Constant 1.528∗∗∗ 2.385∗∗∗ 0.242 -0.083
(0.163) (0.374) (0.282) (0.414)

No. of Subjects 100 100 100 100
N 800 800 800 800

Notes: Logit regressions with the dependent variable being whether to choose the high-value information bundle or source
in a binary choice. Under Isolated, the difference in instrumental value between a pair of information sources is always
a 0.05 increment in guessing accuracy; the difference is always 0.1 under Joined and Separated. Informativeness is the
mutual information between prior and posterior beliefs that a certain information bundle or source induces. Clustered
standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01.

Additionally, in line with the common source cancellation heuristic, subjects’ choices

between information bundles are not influenced by the difference in value or informative-

ness between bundles. Instead, those choices are significantly responsive to the differences

in value and informativeness between the corresponding isolated sources contained in the

bundles. This responsiveness is also similar to that in choices under the Isolated setting.
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1.6 Conclusion

This paper investigates experimentally how people choose information bundles (i.e.,

sets of information sources), whether and under what circumstances they make mistakes,

and where those mistakes mainly come from. The study shows that subjects often fail

to choose the more instrumentally valuable bundle because of difficulties in integrating

sources within a bundle to identify their joint information content. Mistakes in informa-

tion bundle choices are systematic and can be primarily attributed to subjects following

an intuitive bit imperfect heuristic I call common source cancellation (CSC). This heuris-

tic causes subjects to fail to consider the joint information content of each bundle and

to mistakenly reduce a choice between bundles to a choice between the non-shared infor-

mation sources in the two bundles. A heterogeneity analysis reveals the wide prevalence

of this heuristic among subjects and shows that those with a more limited ability to

integrate information tend to rely more heavily on the heuristic in information bundle

choices. Given that information integration is likely to be more challenging (and thus

people are probably less able to do it) in real-world settings than in the simplified set-

ting of my experiment, it is plausible that the heuristic exerts an even more pronounced

influence in many real-world contexts.

This study has several implications. The results suggest that information integration

is challenging and leads to errors in information usage and choice (even in a simplified

experimental setting). To facilitate people taking up valuable information and using it

to improve decision making, information should better not be provided in a disaggre-

gated way whenever possible. Besides, the prevalence of the common source cancellation

heuristic highlights that people tend to compare information sources in isolation without

considering their joint information content with other available sources. Influenced by

the heuristic, people are unlikely to diversify their information choices and consumption
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as they should. This calls for interventions aimed at directing individuals to think about

the joint information content of multiple sources and enhancing their ability to integrate

information.
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Chapter 2

Too Much Information

with Ryan Oprea and Sevgi Yuksel

2.1 Introduction

In this paper we experimentally study how people’s demand for information struc-

tures is shaped by informativeness. Informativeness is the basic descriptive characteristic

of information structures, measuring the reduction in uncertainty an information source

is expected to induce (Frankel & Kamenica 2019). In standard economic theory informa-

tiveness influences information demand only to the extent that it produces instrumental

value – i.e., to the extent that it is expected to improve decision making in relevant

decision tasks. To the extent this is true, conditional on instrumental value, decision

makers should be indifferent to informativeness and it should therefore have no direct

impact on information demand. The goal of our paper is to treat this standard theoretical

assumption as a null hypothesis, and compare it to two natural alternatives.

First, decision makers may directly value informativeness, above and beyond its con-

tribution to instrumental value. That is, perhaps due to natural human curiosity, distaste
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for residual uncertainty, caution or deep-seated information-seeking heuristics that arise

from the free disposal nature of information, people strictly prefer more informative in-

formation structures to less, even when holding instrumental value fixed. Second, it is

possible that people instead display an aversion to informativeness that does not con-

tribute directly to instrumental value. Richer (more informative) information structures

are, after all, more complex in the sense that they require more intensive information

processing to properly evaluate. If decision makers are unable (or unwilling) to bear the

costs of fully understanding these structures, they may put a smaller premium on them

relative to simpler (less informative) structures. Thus, an alternative hypothesis is that,

conditional on instrumental value, demand for information falls with informativeness.

Studying people’s demand for informativeness is difficult because it is easily con-

founded with other forces that shape and distort information demand. First, in typi-

cal experimental paradigms, the demand for information is confounded by well-known

mistakes people make in interpreting and making use of information. Perhaps most im-

portantly, most prior research on information in experimental economics is conducted

in prior-signal updating settings in which subjects must apply Bayes’ rule properly be-

fore they can even understand how a piece of information will influence their beliefs and

actions. Because people have systematic tendencies to violate Bayes’ rule, typical meth-

ods therefore run the risk of confounding systematic confusion about how information

informs choice with preferences for information. Second, in typical naturally occurring

observational settings, informativeness is easily confounded with drivers of taste for in-

formation that are difficult to theoretically operationalize and are therefore difficult to

measure and control. For instance, sources of information may vary in how entertaining

or worrisome they are, producing or inhibiting demand for information for reasons that

have little to do with informativeness. These “affective characteristics” of information

structures may be easily confounded with informativeness in ways that are difficult to
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Figure 2.1: Example on the Representation of Information Structures in the Experiment Notes:
The subjects’ task is to guess the color of a randomly selected ball. The information structure reveals whether the randomly
selected ball is in Group 1 or Group 2.

formally account for in measurement exercises.

Our contribution is to propose and implement a method for eliciting preferences for

information that is free from these confounds, allowing us to cleanly measure how infor-

mativeness shapes information demand. First, like most experiments in this literature,

we study a simple setting in which subjects (i) must guess a binary state of the world

(red or blue) but (ii) first receive a signal that may improve the accuracy of that guess.

Because this experimental paradigm is completely abstract, variation in informativeness

and instrumental value are unlikely to be confounded with affective characteristics of

information (e.g., variation in how “entertaining” a source of information is) that might

influence demand in uncontrolled or framed settings. Second, unlike most experiments,

we present information in a way that doesn’t require difficult applications of Bayes’ rule.

Instead, we present information as in Figure 2.1 by showing subjects (i) the prior as a

set of ten balls (six blue, four red), one of which will be randomly selected to determine

the true state and (ii) signals as subsets of these balls that, together, partition the ten

balls (signals are drawn as boxes around balls – in the example the ten balls are parti-

tioned into two subsets, so there are two possible signals). Subjects are told which subset

the actually-selected ball is from before guessing the state. We find that this way of

presenting signals entirely removes classical biases like over-under inference, motivated

reasoning and confirmation bias: upon receiving a signal, subjects make the rational

Bayesian decision (i.e., make an optimal guess about the color of the ball) 98% of the

time.

We use these techniques to elicit subjects’ preferences over sixteen distinct informa-
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tion structures, presented in this debiased way, with each structure corresponding to a

unique partition. This variation across structures independently varies informativeness

and instrumental value, allowing us to judge between our motivating hypotheses. We

measure preferences in two ways. First, we elicit weak ordinal preferences by having sub-

jects rank structures in order of preferences –higher-ranked information structures are

more likely to be assigned to them for a payoff-relevent future choice, making the weak

ranking incentive compatible. Second, we elicit strict cardinal preferences by eliciting

subjects’ willingness to pay to receive this information structure in a future choice, using

an incentive compatible BDM mechanism (Becker, Degroot & Marschak 1964).

Our first main finding is that subjects’ information preferences are strikingly sen-

sitive to instrumental value. Subjects, on average, strictly prefer more instrumentally

valuable information structures to less and sometimes reveal median valuations that are

reasonably close to true instrumental value. However, we also find significant failures to

rank information structures in terms of instrumental value and clear evidence that some

information structures are significantly mis-valued.

Our second main finding is that conditional on instrumental value, subjects display

a strong aversion to informativeness. When comparing two information structures with

the same instrumental value, subjects tend to strictly prefer the less informative of the

two. Indeed, our elicitations show that subjects are often willing to pay strictly less for

information structures that are more informative. Using agnostic clustering techniques,

we show that 2/3 of subjects display this strict aversion to informativeness (conditional

on instrumental value) while a smaller cluster covering 1/4 of subjects displays behavior

that suggests a preference for informativeness. We show that the dominant aversion to

informativeness in the population is sometimes severe enough to make subjects prefer

less instrumentally valuable information to more valuable alternatives. Indeed, our re-

sults suggest that aversion to informativeness is an important driver of failures to rank
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information structures according to instrumental value.

In the final part of the paper we examine why subjects display an aversion to in-

formativeness that can’t be used to improve choice. Our design allows us to rule out a

number of salient hypotheses. First, we show that the results cannot be rationalized as

an outgrowth of subjects’ preferences for the timing of information: our results go in the

opposite direction of recent measures of such preferences (Nielsen 2020). Indeed, our re-

sults suggest that this behavior is likely to be unrelated to uncertainty or risk preferences

of any sort: our design includes a treatment in which we remove uncertainty (and with it

preferences related to uncertainty) from these tasks while maintaining identical informa-

tion processing in the valuation task, and document broadly similar results. Second, as

discussed above, our design rules out classical inferential errors in assessing the informa-

tion produced by these structures: subjects in our tasks show no signs of Bayesian errors

like over-/under-inference, confirmation bias or motivated reasoning when making use

of information. This means that aversion to informativeness can’t be driven by rational

anticipation of systematic mistakes in the use of information. Third, our design rules out

the possibility that aversion to informativeness is due to inability to reason about how

informative structures will be used to inform choice. In a diagnostic treatment, we have

subjects make choices for every possible signal from every information structure before

evaluating any of them, and remind subjects of these choices at the evaluation stage.

Aversion to informativeness is no less strong in this treatment, suggesting that failures

to contingently reason about the use of information does not underlie this result.

Instead, our results suggest that aversion to informativeness is a consequence of the

fact that more informative structures are more costly to precisely evaluate and are there-

fore less well-understood by subjects, making them less attractive. Several pieces of

evidence point towards this “complexity” interpretation, rooted in the costs and diffi-

culties of evaluation. First, more informative information structures require significantly
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more time to evaluate than less informative structures: decision time or runtime is a

direct resource cost of information processing that is often used in the literature (and

throughout computer science) as a measure of complexity and effort.1 Second, this is

likely due to the fact that more informative information structures tend to consist of

a larger number of strongly differentiated pieces of information that have to be aggre-

gated in order to properly value them (e.g., they tend to contain more possible signals

and induce more heavily differentiated distinct posteriors). Thus, in a very direct sense,

properly valuing informative structures requires more work on the part of decision mak-

ers. Finally, we ran a treatment that removes uncertainty from information structures,

leaving only the complexity of aggregating their features as a potential driver of mis-

valuations. We find similar aversion to “informative” structures in this data, strongly

suggesting that the costs and difficulties of evaluation are the primary driver of this

aversion to informativeness.

Taken together, our findings suggest that more informative information structures

are less desirable, ceteris paribus, because they are more costly or difficult to evaluate,

leading subjects to undervalue them. It is important to be clear that this is a ceteris

paribus conclusion, made on the basis of a tightly controlled experiment designed to

deliberately isolate important primitives of interest to information economics. Clearly,

in applications many other characteristics of information that are harder to account

for in economic theory compete with informativeness (and instrumental value) to shape

information demand. For instance, people often pursue information that is informative

but not instrumentally valuable because it is entertaining or interesting, leading them

to demand informative but instrumentally useless trivia – characteristics that we do not

1Decision time is controversial as a complexity measure in some settings because subjects may choose
to spend less time on more difficult problems (i.e., problems that seem too difficult to correctly solve).
This is less of a problem in our setting because subjects virtually always make optimal decisions, condi-
tional on information.

49



Too Much Information Chapter 2

yet know how to model, measure or control. Because of this, our experiment (like most

experiments and indeed most models) deliberately brackets off these kinds of affective

drivers of information demand in order to study the influence of primitives of information

structures that we know how to measure and interpret. Doing this, we find that aversion

to informativeness is substantial and sometimes strong enough to cause subjects to prefer

less instrumentally valuable information to more, leaving accuracy and earnings “on the

table”.

Our paper contributes to several literatures.

First, we make a methodological contribution to the growing experimental literature

studying information demand. Our design allows us to study demand for information in

a setting where making optimal use of information is very easy and does not require com-

plex Bayesian reasoning. Thus, our visual representation of information structures suc-

cessfully excludes non-Bayesian reasoning or misinterpretation of information structures

as confounds for studying the demand for information. While we use these techniques to

study informativeness, they can be easily applied to study many other questions about

people’s taste for information.

Second, our paper adds to a growing literature studying how factors other than

instrumental value influence information demand. Prior studies have experimentally

or theoretically examined the role of confirmation seeking (Charness, Oprea & Yuksel

2021, Montanari & Nunnari 2022), preference for certainty (Ambuehl & Li 2018, No-

vak, Matveenko & Ravaioli 2023), timing of resolution of uncertainty (Grant, Kajii &

Polak 1998, Eliaz & Schotter 2007, 2010, Nielsen 2020, Falk & Zimmermann 2022, Je

2023), skewness of information (Masatlioglu, Orhun & Raymond 2023), anticipatory feel-

ings (Caplin & Leahy 2001), motivated attention (Falk & Zimmermann 2022, Golman &

Loewenstein 2018, Golman, Loewenstein, Molnar & Saccardo 2022), and behavioral mo-

tivations stimulated by changes in beliefs like disappointment aversion (Palacios-Huerta
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1999, Dillenberger 2010, Andries & Haddad 2020), loss aversion (Koszegi & Rabin 2009),

dissonance avoidance (Festinger 1957), suspense and surprise (Ely, Frankel & Kamenica

2015a), etc., play in information demand. Our contribution to this literature is to study

how demand is influenced by “informativeness”, the basic descriptive characteristic of in-

formation structures. We show that informativeness has a powerful influence above and

beyond its contribution to instrumental value. Because informativeness is a fundamen-

tal and universal characteristic of information structures, our findings have particularly

wide-spread normative implications for information design and positive implications for

predicting and interpreting information demand.

Most closely related to our study in this literature is Liang (2023), a concurrent pa-

per that studies suboptimal valuation of information structures and provides evidence

that is broadly supportive of the mechanism underlying our main results. In partic-

ular, his results suggest that subjects have difficulty foreseeing and integrating payoffs

from multiple information-contingent choices, but it is mostly difficulties with integration

which get in the way of optimal valuation. Specifically, in diagnostic treatments in which

information-contingent choices are predetermined and presented as such, subjects behave

more optimally. We also find suboptimal information demand that seems to derive from

similar difficulties in evaluating information structures. Our results also link these types

of difficulties in identifying instrumental value to informativeness.

Third our study provides a new kind of evidence in support of the central trade-off

at the heart of rational inattention models: people acquire information to maximize util-

ity net of information costs (Sims 2003, Matějka & McKay 2015, Caplin & Dean 2013).

These models assume that decision makers face information costs that are (in typical

parameterizations) increasing in Shannon mutual information between prior and poste-

rior beliefs – the same measure of informativeness we use in most of our empirical work.

Our paper contributes to this literature by expanding our understanding of when and
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why agents act as if information is costly. The rational inattention literature, strictly

speaking, assumes that information costs are costs of information gathering or extrac-

tion (this is why they are called “inattention” models). For instance, state-of-the-art

experiments on rational inattention typically ask subjects to extract information from

complex visual images (Dewan & Neligh 2020, Caplin, Csaba, Leahy & Nov 2020, Dean

& Neligh 2023) or from a series of equations (Ambuehl, Ockenfels & Stewart 2022). By

contrast, we deliberately minimize information gathering costs by giving subjects direct

and easily interpreted information on the state of the world. The fact that we nonethe-

less observe an aversion to informativeness suggests that information costs are not driven

only by the cognitive effort required to gather or extract information, but are also driven

by the cognitive effort required to evaluate the ex-ante value of information. Our results

therefore suggest that rational inattention models may also be effective models of com-

plexity (information processing) aversion, and may therefore have a much wider scope of

application than is typically supposed.

Finally, our study relates to a growing literature showing the role complexity plays in

a wide-range of economically important settings. Recent work suggests that people dislike

engaging in complex behaviors (Oprea 2020), that this distaste has a strong distorting

effect on choice (Banovetz & Oprea 2023), and that complexity limits and distorts the

kinds of beliefs people form (Kendall & Oprea 2023). As a result, complexity (broadly

defined as a cognitive processing costs) has been shown in recent work to be a major driver

of behavioral anomalies in a number of canonical choice settings including, e.g., lottery

anomalies (Enke & Graeber 2023, Oprea 2023), intertemporal choice anomalies (Enke,

Graeber & Oprea 2023) and failures of Bayesian reasoning (Ba, Bohren & Imas 2023).

Our work complements and extends this literature by providing evidence that valuations

for a very different (but no less canonical) choice object (information structures) are also

fundamentally shaped by complexity, leading to systematic anomalies in information
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demand.

The remainder of the paper is organized as follows. Section 2.2 presents our theoretical

framework. Section 2.3 describes the experimental design. Section 2.4 presents results

and Section 2.5 examines the mechanism driving these results. Section 2.6 concludes by

discussing the implications of our results.

2.2 Theoretical Framework and Behavioral Hypothe-

ses

2.2.1 Informativeness and Instrumental Value

Consider a finite state space Ω, with a typical state denoted by ω. The prior distri-

bution on Ω is denoted by p. An information structure σ is a stochastic mapping from

the state space Ω to a finite set of signals S. It is useful to think of σ as inducing a

distribution over posteriors.2 That is, given p, an information structure σ induces (i) a

distribution qσ over S and (ii) conditional on each signal s, a posterior distribution psσ

over the state space.

The amount of information generated by an information structure is described by

a metric we will call its informativeness : the expected reduction in uncertainty in-

duced by the information structure (see Frankel & Kamenica (2019) for an in-depth

discussion). Several measures of informativeness can be defined because several met-

rics of “uncertainty” (and thereby “uncertainty reduction”) can be selected for the pur-

pose. For instance, the most prominent measure in the literature is based on Shan-

non entropy (Shannon 1948), a canonical measure of uncertainty in beliefs defined as

2For each ω, let σω(s) ∈ ∆(S) denote the probability that signal s is realized. The probability of
observing signal s is qσ(s) :=

∑
ω p(ω)σω(s). For each signal, the posterior distribution on Ω can be

computed using Bayes’ rule. Conditional on each signal s, psσ(ω) =
p(ω)σω(s)

qσ(s)
.
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H(p) = −
∑
ω∈Ω

p(ω) ln p(ω). As characterized in Cabrales, Gossner & Serrano (2013), the

entropy informativeness of information structure σ is the expected reduction of entropy

of the decision-maker’s beliefs as a result of the information conveyed by σ, that is, the

Shannon mutual information between prior and posterior beliefs:

Iσ = H(p)−
∑
s∈S

q(s)H(ps). (2.1)

This measure of informativeness is equal to zero when σ carries no information (posterior

always equal prior) and is maximized at H(p) when σ fully reveals the state. In summary,

entropy informativeness provides a numeric measure of informativeness independent of

the decision problem, allowing complete ordering of information structures. When study-

ing “informativeness” we will focus on this entropy-based metric throughout the paper,

but in Appendix B.6 we show that little depends on this choice: our results are robust

to varying the specific definition of informativeness we use.3

In standard economic theory, the value of an information structure to a decision-maker

(DM) depends on the decision problem the information structure is meant to inform.

Suppose the DM faces a decision problem in which she observes signal s from information

structure σ and takes action a ∈ A to maximize E[u(a, ω)|s] :=
∑

ps(ω)u(a, ω), where

u(a, ω) describes the decision-maker’s state-dependent utility function. The instrumental

value (or simply value) of σ, given the set of actions A available and utility function u,

is the expected increase in utility made possible by the DM being able to condition her

3For instance, an alternative ordering of informativeness across information structures is provided
by Blackwell (1953). According to Blackwell’s ordering, an information structure is more informative
than another whenever the latter is a garbling of the former, i.e., signals form the less informative
structure can be interpreted as observing those from the more informative one with noise. Blackwell
requires a strong condition for the comparison between information structures. By Blackwell’s Theorem,
a more informative structure (according to Blackwell ordering) generates higher instrumental value (as
defined later in this section) in any decision problem. Thus, Blackwell provides only a partial order of
informativeness, making it less useful for our purposes than entropy informativeness.
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action on the realized signals:

Vσ =
∑
s∈S

q(s)max
a∈A

E[u(a, ω)|s]︸ ︷︷ ︸
Expected utility
conditional on s︸ ︷︷ ︸

Expectation over s

−max
a∈A

E[u(a, ω)]︸ ︷︷ ︸
Expected utility

without s

.

Note that, when u is denominated in money, Vσ can further be interpreted as the the

greatest price a rational decision-maker would be willing to pay for information from σ

before facing a specific decision problem. Instrumental value is the key characteristic

shaping information demand (i.e., preferences for information) in standard information

economics.

Although informativeness and instrumental value are related, they are not the same

thing. When comparing information structures σ and σ′, it is possible for σ to be as (or

even more) valuable than σ′ while being less entropy informative. The reason for this is

intuitive: in the context of any given decision problem it is possible for an information

structure to reduce uncertainty in ways that are not useful for informing choice. This

observation is what motivates our experiment.

2.2.2 Question and Hypotheses

Our question is how informativeness shapes people’s preferences for (or demand for)

information structures. As suggested above, economic theory gives a clear answer to this

question: informativeness influences the demand for information only to the extent that

it improves expected utility in a decision problem by allowing the decision maker to make

better choices..

H0. Conditional on instrumental value, demand is not influenced by informativeness.

H0 hypothesizes that people evaluate information structures exclusively through the
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lens of the relevant decision problem that the information will be used to inform. An

alternative possibility is that evaluation of information might be at least partially divorced

from the specifics of the decision problem at hand. That is, it may be that decision

makers’ demand for information is influenced not only by the decision but also (at least

in part) by characteristics of the information structure itself.

For instance, decision makers might prefer more informative structures, even when

that informativeness is not useful for improving decision making. One reason for this

might be that decision makers are drawn to more information as a hedge against the

possibility that they’ve misunderstood how they would use that information. Or taste

for informativeness might arise from rules of thumb, culled from natural life, that often

instruct us to cautiously seek out information even when it is not immediately obvious

how to use it. After all, information can always be disregarded if it doesn’t prove to be

useful. A final possibility is curiosity – a direct preference for more over less information

in information sources (Golman & Loewenstein 2018, Golman, Loewenstein, Molnar &

Saccardo 2022)– which might cause people to, ceteris paribus, prefer more informative

information structures to less. We state this broad possibility as a second hypothesis:

H1. Conditional on instrumental value, demand for information is increasing with infor-

mativeness.

A final possibility is that people instead display an aversion to informativeness, par-

ticularly when additional information is not useful. Why might this be the case? Perhaps

the most salient possibility is that information structures with high informativeness re-

quire more information processing and are therefore more costly to properly interpret

and evaluate. That is, more informative structures may be more complex to process,

using the definition of the term from computer science. Indeed, the idea that entropy

reduction is costly to decision makers is an assumption often made in models of bounded

rationality like rational inattention models (Sims 2003, Matějka & McKay 2015, Caplin
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& Dean 2013), though typically in settings somewhat different from ours. If decision

makers are unable (or unwilling) to bear the costs of fully understanding these struc-

tures, they may put a smaller premium on them relative to simpler (less informative)

structures, ceteris paribus. We state this possibility as a final hypothesis.

H2. Conditional on instrumental value, demand for information is decreasing with in-

formativeness.

Our experiment, discussed below, is designed to distinguish between these hypotheses.

In particular we designed our experiment to study (i) to what degree instrumental value

predicts how people rank and bid on information structures and (ii) to what degree

informativeness acts as an additional driver of information demand once its contribution

to instrumental value is accounted for.

2.2.3 A Guessing Task

To study the questions posed above, we focus on a simple guessing task in our exper-

iment. The state of the world is binary, i.e. Ω = {b, r}, where b (as will be clear in the

next section) can be interpreted as referring to the color blue and r referring to the color

red. The decision-maker’s prior is fixed at p := p(b) = 0.6. The decision-maker takes

a binary action, A = {b, r}, with the goal of matching the state such that u(a, ω) = B

(where B is a bonus) if a = ω and zero otherwise.

With this simple specification, the instrumental value of an information structure

reduces to the following:

Vσ =
(∑

s∈S

q(s)max{ps, 1− ps}︸ ︷︷ ︸
Guessing accuracy
conditional on s︸ ︷︷ ︸

Expectation over s

− p︸︷︷︸
Guessing accuracy
without information

)
B. (2.2)

57



Too Much Information Chapter 2

Note that the expected utility of the decision-maker in this problem is equal to their

guessing accuracy times the bonus associated with guessing correctly.4 Thus, the value

of an information structure for a decision maker-facing such a guessing task is directly

linked to the expected improvement in their guessing accuracy. Although this setting is

simple, as we will show in the next section, it is rich enough to allow us to construct a

set of information structures that independently vary in instrumental value and informa-

tiveness, allowing us to test our hypotheses.

2.3 Experimental Design

2.3.1 Guessing Task and Representation of Information

We built our experimental design around the simple guessing task introduced in the

last section. A random ball is drawn from a set of 10 which always consists of six blue

balls and four red balls. The subjects’ task is to correctly guess the color of that randomly

selected ball. If they correctly guess the ball’s color, they earn a bonus payment of $10.

Before making their guess, subjects receive partial information about the randomly

selected ball from an information structure. Each information structure is represented

as a partition of the 10 balls. The information structure provides information about

the randomly selected ball by revealing to the subject which cell of the partition the

randomly selected ball belongs to. Thus, each cell of the partition is a distinct signal

that the structure might generate. The size of any cell visually represents the probability

with which that signal will be realized, and the composition of the balls within each

cell visually represents the posterior probability that the ball is blue or red conditional

4For example, without additional information, the decision-maker guesses the state to be b (since
p > 0.5). This guess is correct with probability p. Similarly, conditional on signal realization s, the
decision-maker guesses the state to be the most likely state. Such a guess is correct with probability
max{ps, 1− ps}.
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on that signal being realized. Presenting information in this way therefore makes the

characteristics of an information structure particularly transparent to subjects.

Figure 2.1 provides an example of an information structure that partitions the 10 balls

into two cells (two possible signals). The first cell (labeled “Group 1”) consists of six blue

balls and two red balls; the second cell (labeled “Group 2”) consists of the remaining

two red balls. This information source provides information about the randomly selected

ball by revealing which cell (Group 1 vs. Group 2) the randomly selected ball belongs

to. Formally, the information structure generates a binary signal. The first (second)

signal—corresponding to Group 1 (Group 2)—is realized with 80 (20) percent probability.

Conditional on the first (second) signal, the posterior probability that the color of the

randomly selected ball is blue is 75 (zero) percent.

We study a total of 16 information structures, depicted in Figure 2.2, which were

selected to independently vary instrumental value and informativeness (as well as other

characteristics). Table B.10 in Appendix B.5 provides a comparison of these information

structures on both of these (and other) measures. For each of these information structures

we (i) study how people make use of these information structures (by eliciting guesses for

each information structure and signal) and (ii) study how people value these information

structures (by eliciting rank preferences over and willingness-to-pay for these structures).

2.3.2 Eliciting Preferences for Information Structures

The main section of the experiment elicits subjects’ preferences for the 16 information

structures depicted in Figure 2.2 (we will call this the “Demand” section). We do this

in two distinct ways, each of which has advantages and disadvantages. Figure 2.3 shows

screenshots of each.

Ranking: Subjects are asked to rank the 16 information structures from most preferred
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Figure 2.2: The 16 Information Structures used in the Experiment Notes: The information structures
are listed lexicographical in order of instrumental value (V as defined in equation 2.2) and entropy informativeness (I as
defined in equation 2.1) . To make the partitions more salient in the experiment, each cell of the partition was labeled as
“Group 1”, “Group 2,” etc. See Appendix B.5 for details on other characteristics of these information structures.

to least preferred. Specifically, the 16 structures are presented to subjects (in an order

randomized on the individual level) and subjects are tasked with reordering them using

a drag-and-drop interface. Subjects are incentivized to place more preferred information

structures above (higher in the list than) less preferred structures: structures that are

placed higher on the list are more likely to be assigned to subjects for a paid guessing

task that occurs at the end of the experiment. The advantage of the Ranking elicitation

is that it is extremely simple and intuitive for subjects, likely providing cleaner evidence

of rank preferences. The disadvantage is that, strictly speaking, this method measures

only a weak preference ordering: subjects who are indifferent between two structures

nonetheless must rank one higher than another.

WTP: After ranking information structures, subjects are given an endowment of $5 and

shown the information structures in the order they ranked them. For each of the 16 in-

formation structures, subjects are then asked to express (using a slider) their (maximum)

willingness to pay (WTP) to receive information from that structure in a guessing task
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Ranking Information Sources

Please drag these information sources on the screen to rank them in order from most
favorite (top of the screen) to least favorite (bottom of the screen). The computer will
randomly pick two information sources, and you will receive information from the one that
you ranked higher before you are asked to make a guess about the color of the randomly
selected ball. As in other parts, you will earn a  $10 BONUS payment if your guess is
correct and $0 if your guess is incorrect.

(a) Ranking

Buy Information Tasks

How much would you be willing to pay to know which of the following Groups the ball is in before guessing, in each of the information
sources below? Click and drag the sliders to let us know (you must set each slider before continuing).

We have ordered the tasks from the set you most prefer (at the top) to the set you least prefer (at the bottom).

$?
$0   $5

$?
$0   $5

$?
$0   $5

$?
$0   $5

$?
$0   $5

$?
$0   $5

$?
$0   $5

$?
$0   $5

$?
$0   $5

$?
$0   $5

$?
$0   $5

$?
$0   $5

$?
$0   $5

$?
$0   $5

$?
$0   $5

$?
$0   $5

(b) WTP

Figure 2.3: Eliciting Demand for Information

that will occur at the end of the experiment. Incentives are provided using the Becker-

Degroot-Marschak (BDM) method (Becker, Degroot & Marschak 1964) and if subjects

do not purchase the information structure, they will receive no information to inform

their guess. The advantage of the WTP elicitation is that it measures strict preferences.

The disadvantage is that elicited WTP (using BDM and related mechanisms) is much

more complicated than Ranking, and is therefore known to be noisy and subject to biases
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(in particular, the pull-to-the-center effect in Danz, Vesterlund & Wilson (2022)).5

We will make use of each of these elicitations in our analysis for robustness, allowing

each method to compensate for weaknesses of the other. In some of our analysis we will do

this in an explicit way. Because of known noisiness in WTP elicitations, when comparing

WTP between different information structures, in addition to reporting aggregate results,

we will also report results for the subset of observations in which WTP comparisons agree

with the ordering elicited in the simpler (and arguably therefore more reliable) Ranking

elicitations.

2.3.3 Eliciting Guesses

In the Guesses section of the experiment, we ask subjects to make a guess of the

ball’s color for each possible signal in each of the information structures depicted in

Figure 2.2. Figure 2.4 shows a screenshot from this task. We remind subjects of the task

and incentives and then show subjects a partition of the blue and red balls, labeling each

element as a “group.” At the bottom, subjects are asked to give their guess of the ball’s

color for each possible group the ball might be in (for each possible signal they might

receive).

The purpose of the Guesses section of the experiment is to study how people make use

of information from information structures and whether subjects use that information in

a suboptimal way. This information is important for interpreting subjects’ demand for

information structures.

5WTP elicitation also gives us quantiative measures of value that can be compared to theoretical
benchmarks. For a risk neutral agent, WTP should be $10 times the increase in guessing accuracy
enabled by each information structure (as captured in Equation 2.2). In Appendix B.1, Figure B.1
shows that the WTP of a reasonably risk averse or loving agent does not deviate much from the WTP of
the risk neutral agent. In much of our analysis we focus on relative comparison of WTP amounts (whether
a subject is willing to pay more for one information structure relative to another). These comparisons
should be determined entirely by instrumental value (as defined by Equation 2.2) independent of risk
preferences, under standard theory.
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Guessing Question 1

There are 6 blue balls, and 4 red balls. One of these balls will be randomly selected
and you earn $10 if you correctly guess the color (blue or red):

You will learn which of the following Groups the ball is in before you guess:

Please tell us what color you will guess if you learn the ball is in each of these possible Groups:

If I learn the ball is in Group 1, I will guess the color to be:  Blue    Red

If I learn the ball is in Group 2, I will guess the color to be:  Blue    Red

If I learn the ball is in Group 3, I will guess the color to be:  Blue    Red

(Remember,these choices determine your actual guess and therefore your payment!)

Figure 2.4: Elicit Guesses

2.3.4 Treatment Variations

In our Baseline treatment (N = 109 subjects), we ask subjects to perform the

Demand section of the experiment (the Ranking and WTP elicitations) first, and the

Guesses section afterwards. To this we add two diagnostic treatments that will help us

to interpret our results.

First, in our Reverse treatment (N = 54 subjects), we reversed the order: subjects

were assigned Guesses first and Demand afterwards. In these sessions, during the Demand

section, subjects were actually shown the guesses they had made earlier, conditional on

each possible signal for that information structure.6 This information was not binding,

but was designed to remind subjects of how different signal realizations are likely to

generate different guessing patterns. The purpose of this treatment was to study whether

having already made use of information structures (and being reminded of how they are

6See Figure B.7 in Appendix B.6 for a screenshot how this was displayed to subjects.
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used) improves subjects’ identification of instrumental value in guiding their demand.

This will be useful for understanding the mechanism behind our results.

Second, in our No Uncertainty treatment (N = 61 subjects), we removed uncer-

tainty from the design using techniques employed by Martinez-Marquina, Niederle &

Vespa (2019) and Oprea (2023). Specifically, instead of drawing only one ball, we in-

formed subjects that we would draw all balls and pay subjects based on the accuracy

of their guess for each of the balls.7,8 Everything else in the experiment remains iden-

tical. Doing this retains much of the information processing involved in evaluating and

interpreting information structures, but removes scope for risk, uncertainty or timing

preferences (e.g., preferences for the timing of the resolution of information). Again, this

data will be useful for understanding the mechanism behind our results.

2.3.5 Incentives and Implementation Details

All sessions were conducted at the LITE laboratory at the University of California,

Santa Barbara between December 2021 and March 2023. We recruited subjects from

across the curriculum to participate in 15 sessions using the ORSEE recruiting software

(Greiner 2015). The experiment was conducted using software programmed by the au-

thors in Qualtrics. Between 8 and 21 subjects participated in each session and sessions

lasted for 30-40 minutes.

All subjects received a show up fee of $7. Subjects’ earnings depended on a randomly

selected section of the experiment. If the Demand section was selected for payment,

we randomized between Ranking and WTP. If Ranking was selected, two information

7In this case, the partition associated with an “information” structure constrains the types of guesses
subjects can make by requiring them to make the same guess for all balls in the same cell of the partition.

8To achieve a clean comparison to the other treatments, subjects received a prize of $1 for each of
the balls for which their guesses were correct. This implies, for example, an information structure that
enables a guessing accuracy of 90 percent will generate the same expected bonus payment in all three
treatments.
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structures (from the set of 16) were randomly selected and the subject was assigned to

receive information from the one that was ranked higher. If WTP was selected, one

information structure (from the set of 16) was randomly selected and whether or not

the subject received information from this source was determined according to the BDM

mechanism. In either case (regardless of whether Ranking or WTP was selected), at the

end of the experiment, the subject was presented with one additional guessing task with

information from the selected information structure and subjects were paid based on this

guess.9 If the Guesses section was selected for payment, a random information structure

was picked and the subject’s guesses for that case were used to determine payment for a

randomly drawn ball. Note that in all cases, whether or not subjects received a bonus

payment of $10 ultimately depended on the accuracy of their guess about the color of a

randomly selected ball.

2.4 Results

2.4.1 Optimality of Guesses

We begin by confirming that our experimental design successfully removes inferential

errors like failures of Bayesian reasoning when subjects use signals from information

structures.10 To do this, we study how subjects make use of the information provided

to them. We focus on two measures. The accuracy of subjects’ guesses is the likelihood

that those guesses match the state (the true color of the randomly selected ball). The

optimality of subjects’ guesses is the likelihood with which subjects’ guesses are optimal

9Note that this could mean the subject receives no information depending on the subject’s WTP if
WTP is selected.

10As we show in Section 2.5, none of our results are impacted by the order with which subjects are
assigned the Guess and Demand tasks. For this reason, throughout this section, we will pool the Baseline
and Reverse treatments; all of our results continue to hold if we instead focus on the Baseline treatment
alone.
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given the signal realization.11

Figure 2.5a presents data on guessing accuracy, and shows how this varies with the

instrumental value of the information structure. Note that subjects start with a prior of

0.6; hence, in the absence of any information, we would expect guessing accuracy to be

equal to this value if guesses are optimal (i.e. if they guess the color of the ball to blue).

We find, indeed, guessing accuracy to be 0.59 in this case. With information structures

that are capable of improving guessing accuracy by 10, 20 or 30 percent, we find that

guessing accuracy increases to 0.69, 0.79 and 0.89. When the information structure is

fully revealing, guessing accuracy goes up to 1. Thus, subjects make near-perfect use of

information structures to inform guessing accuracy.

Figure 2.5b shows the optimality rate of guesses, and depicts the distribution of this

measure— the share of signals for which the subject’s guess is optimal—computed at the

individual level. A vast majority of subjects (86 percent) always make optimal choices.

Overall 98 percent of guesses are optimal conditional on the information available to the

subjects. This near-perfect optimality strongly suggests that our methods for providing

information avoid Bayesian errors (and other errors like confirmation bias), removing a

major barrier to measuring information preferences.

Result 7 Subjects make near optimal use of information. Guesses conditional on signal

are optimal 98% of the time. 86% of subjects make optimal guesses 100% of the time.

2.4.2 Demand for Information

Figure 2.6 provides a first look at how demand for information is shaped by instru-

mental value and informativeness, by examining data from our elicitations. Panel (a) of

the Figure examines all pairwise ranking comparisons between information structures in

11To allow for clean interpretation of this measure, we restrict attention to signals (with Bayesian
posterior different from 0.5) for which there is a unique optimal guess.
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Figure 2.5: Optimality of the Use of Signals Notes: In panel (a) V denotes instrumental value (see Equation
2.2 for formal definition). Gray lines denote 95 percent confidence intervals. In panel (b) optimality of guesses is computed
on the individual level and denotes the share of signals for which guess was optimal.

which the one structure is strictly more instrumentally valuable than the other. The bars

show the likelihood with which the more instrumentally valuable structure was ranked

higher than (as more preferred to) the second. We plot a separate bar for cases in which

the value difference is weakly below the median for the dataset (∆v = 1) or strictly

above the median (∆v > 1). When the value difference is relatively low, the optimal

structure is preferred 72.7 percent of the time. This increases to 85.3 percent when the

value difference is relatively high.

Panel (b) of the same Figure studies how often subjects display a preference for the

more informative information structure, among all of the pairwise comparisons in which

structures can be ranked by informativeness. As in panel (a), the “low” bar represents

pairs of information structures in which the difference in informativeness is relatively

low (weakly below the median difference of 0.24), while high represents the cases where

the difference is high (strictly above the median difference of 0.24). When the difference

in informativeness is low, the more informative structure is preferred 60.2 percent of

the time. This increases to 75.7 percent when difference in entropy informativeness is
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Figure 2.6: Demand for Information by Value and Informativeness Notes: The figures condition on
all pairwise comparisons between information structures where there there is a strict positive difference—on value for (a)
or entropy informativeness for (b)—between the first and the second structure. See Section 2.2 for formal definitions of
value and informativeness. The bars depict the likelihood with which the first structure was ranked as more preferred to
the second. Low (High) represents all pairwise comparisons where the difference is weakly lower (strictly higher) than the
median difference: 1 for value, and 0.24 for entropy informativeness. Gray lines denote 95 percent confidence intervals.

high.12 Thus, in uncontrolled comparisons, subjects tend to prefer more informative to

less informative information structures.

Figure 2.6 confirms that demand for information is strongly predicted by its instru-

mental value. We show the same thing in a more disaggregated way in Figure 2.7 by

plotting the distributions of responses (for both Ranking and WTP) by the instrumental

value of the information structure. The plot shows that 58 percent of subjects treat

information structure 1 (see Figure 2.2), which has zero instrumental value, as the least

preferred information structure and 83 percent of subjects treat information structure

16, which has the highest possible instrumental value (by fully revealing the state), as

the most preferred information structure. Overall, there is first order stochastic domi-

nance between distributions whenever we compare information structures with low value

to high value. Similar patterns are also observed in the distribution of WTP amounts.13

12Here and throughout the results we will focus on measures of “entropy informativeness.” However in
Appendix B.6, we show that these results also hold with alternative ways of comparing informativeness,
including Blackwell ordering and the variance of posterior.

13There are some deviations from this pattern in WTP for information structure 16 with value of 4.
As expected, the WTP data also displays clear compression often seen with BDM elicitations: subjects
on average overpay for information structures of low value and underpay for information structures of
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Figure 2.7: Distribution of Rank and WTP by Value Notes: When subjects order information structures,
each structure is assigned a ranking from 1 (least preferred) to 16 (most preferred). V denotes the value of an information
structure as defined in equation 2.2.

Although these results show that (as expected) instrumental value is a major driver of

information demand, they also reveal significant deviation from payoff maximizing behav-

ior. As Figure 2.6 shows, in 27.3 percent of relevant cases, subjects rank a less intramen-

tally valuable information structure higher (i.e., as more preferred) than a more valuable

information structure when the value difference is relatively low. Even in such cases these

mistakes come at significant cost to subjects. By ranking less valuable structures as more

preferred, conditional on the pairwise comparison being relevant for payment, subjects

reduce their guessing accuracy by 10 percent (22 percent) in Low (High) cases, leaving

approximately $1 ($2.2) on the table.14 Such mistakes are less frequently observed (14.7

percent) when the value difference is higher, but in these cases the mistakes are also twice

as costly.

Result 8 Demand for information is strongly influenced by its instrumental value, but

high value.
14To compute this, we look at subjects’ expected bonus payment conditional on each information

structure for each of these violations.
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there are serious deviations from payoff maximizing behavior. Subjects also tend to prefer

more informative structures to less informative structures in the raw data.

2.4.3 Preferences for Informativeness

We now turn to our main questions, by evaluating the hypotheses posed in Section

2.2.2. In the raw data (e.g., Figure 2.6) subjects show a clear preference for more informa-

tive information structures, but this measure is confounded with instrumental value. To

separate the two notions, we study “excess informativeness”: informativeness that does

not improve instrumental value, measured by examining the effect of informativeness on

information demand in comparisons that hold instrumental value fixed.

Figure 2.8 gives us a first view of the effects of excess informativeness on information

demand. Each data point in the Figure represents a pair of information structures.

Due to symmetry, we focus on pairs in which the “first” information structure in the

pair has a weakly higher value than the “second” one. On the x-axis of both panels

we plot the difference in informativeness between the two structures. On the y-axis we

plot (i) the likelihood that the weakly higher-value structure is ranked higher in the

Ranking elicitation (in the left hand panel) and (ii) the difference in WTP in between

the weakly higher and lower value structures (in the right hand panel).15 We separate

the data points (by color and shape) based on the value difference, ∆v between the

two information structures. We also separate out (and show in faded colors) pairs in

which at least one information structure is visually disordered (i.e. blue and red balls

15WTP data is inconsistent with ranking data in 25 percent of pairwise comparisons. These are
cases where one structure is ranked as more preferred to another, but WTP for the former is strictly
lower than the other. Many features of the data suggest that Ranking data is a better representation
of subjects’ preferences than WTP: (i) Subjects on average spend 50 percent more time on Ranking
than WTP; (ii) in cases where Ranking and WTP data are inconsistent, value difference is predictive
of relative ranking (p < 0.01), but not differences in WTP. This is not surprising given the typical
noisiness of WTP elicitations in the literature. Thus, to facilitate stronger interpretation of the results,
in Appendix B.6 Figure B.6 we re-conduct the analysis of WTP restricting attention to WTPs that are
ranked consistently with the Ranking data. We find very similar results in this analysis.
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are not shown in orderly clusters) in order to account for the higher visual complexity

of these tasks.16 The graphs also depict linear fits: gray lines include all pairs within a

value-difference class, darker lines in the corresponding color restrict attention to pairs

within each class where there is no visual disorder, hence providing us with the cleanest

comparison.

The results show striking evidence in support of Hypothesis 2: demand for informa-

tion decreases with informativeness when we control for instrumental value. Focusing

first on pairs with identical instrumental values (∆v = 0) plotted with green squares, we

find that as an information structure becomes more informative (relative to an alternate

structure) it (i) becomes less likely to be ranked more highly than the alternative infor-

mation structure (left panel) and (ii) has a smaller WTP assigned to it relative to the

alternative structure (right panel). What is even more striking is that the same pattern

is also observed when we look at pairs in which the instrumental value difference between

the two information structures rises to 1 (blue circles). Payoff maximizing behavior here

requires the high value information structure to be preferred to the low value one with

100 percent probability (left panel). While this instrumental value difference clearly in-

creases the likelihood of preference for the higher value structure (blue circles are almost

always above the green squares, conditional on informativeness difference), the likelihood

is substantially below one in most of these cases. Furthermore, the likelihood decreases

(generating more violations of payoff-maximizing behavior) as the informativeness of the

more valuable information structure increases. Similar patterns are observed when we

focus on relative WTP (right panel). Eventually, once the instrumental value difference

between the two information structures increases to 2 or more (purple or gray triangles,

16While this was not anticipated at the design stage, the results clearly reveal subjects to have an
aversion towards information structures that are visually disordered (as seen in regressions reported
in Appendix B.6 Table B.14). This seems consistent with findings on order-preference that cannot be
explained by consumption utility in Evers, Inbar, Loewenstein & Zeelenberg (2014).
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Figure 2.8: Preference for Information Structure by Value and Informativeness Notes: Each dot
denotes a pair of information structures. Green squares denote pairs where there both information structures are of the
same value. Blue dots denote pairs where the value difference between the first and second information structure is 1. The
darker blue (gray) triangles denote pairs where the value difference is equal to (larger than) 2. To account for the potential
impact of visual complexity, pairs with at least one information structure where the blue and red balls are not displayed
in order are depicted in a lighter color. Gray lines depict the best linear fits for each of the first three categories. Darker
lines in the corresponding colors denote the best linear fits where the pairs depicted in a lighter color are not included.

respectively), the pattern disappears for rank preference (left panel) suggesting that in-

strumental value eventually overtakes the negative effect of informativeness in rankings.

While differences in WTP between the two information structures increase substantially

when the value difference increases to 2 or more, we still observe the pattern that dif-

ference in WTP is decreasing as the informativeness of the more valuable information

structure increases (right panel).17

17Another important observation on Figure 2.8 is that the WTP data is much noisier than the ranking
data (although it produces the same qualitative patterns). For example, when the value difference
between two information structures is 2 or higher, subjects rank the more valuable one as more preferred
about 85 percent of the time. While the average WTP for the former one is $1.2 higher than the other
one (p-value<0.001), the aggregate likelihood that the WTP for the former is higher than the other one
(by more than 10 cents when it should be around $2) is only 67 percent.
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Table 2.1: Determinants of Demand for Information

Ranking (Logit) Difference in WTP (OLS)
(1) (2) (3) (1) (2) (3)

Difference in Value 0.800∗∗∗ 1.607∗∗∗ 0.527∗∗∗ 0.924∗∗∗

(0.063) (0.150) (0.046) (0.104)

Difference in Informativeness 2.453∗∗∗ -3.436∗∗∗ 1.812∗∗∗ -1.716∗∗∗

(0.193) (0.487) (0.167) (0.338)

Clusters 163 163 163 163 163 163

Notes: See Section 2.2 for formal definitions of value and entropy informativeness. Regressions control for differences in
visual disorder (whether the blue and the red balls were presented out of order). Detailed results are presented in Appendix
B.6 Table B.14. Standard errors (clustered at the subject level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.

In Table 2.1 we provide statistical support for these results by examining pairs of in-

formation structures and regressing Rankings (using Logit) and WTP differences (using

OLS) on (i) the difference in instrumental value between the two structures and (ii) the

difference in informativeness. When we include these as independent variables individu-

ally, we find exactly what we documented in the previous subsection: that both relative

Ranking and differences in WTP are significantly increasing in both differences in instru-

mental value and informativeness. However, when we include both variables, controlling

for instrumental value, the coefficient on informativeness becomes negative and highly

significant, indicating demand that instead decreases in informativeness. Thus, when we

control for instrumental value, we find strong evidence that informativeness decreases

demand for information as visualized in Figure 2.8. Detailed results are presented in

Appendix B.6 Table B.14.18

To better understand these results, Figure 2.9 shows some especially diagnostically

18Since informativeness and value are necessarily correlated, in Table B.15 of this Appendix, we also
include separate regressions with only differences in entropy informativeness and visual disorder as
right-hand-side variables for different classes of information structure pairs that are separated by value
difference. The regressions further support the main conclusions of this section. In Tables B.16-B.17 of
this Appendix, we also show that these results are not driven by the specific measure of informativeness
used in the analysis: aversion to more information controlling for value is also seen when we com-
pare informativeness of information structures using the Blackwell order or the variance of the induced
posteriors (see Frankel & Kamenica (2019) for further discussions on these alternative comparisons of
informativeness).
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valuable examples from the dataset. Information structures 14 and 15 have the same

instrumental values, inducing guessing accuracy of 80 percent, but 15 is more entropy

informative (it also dominates 14 according to the Blackwell ordering). This is easy to

verify visually. 15 generates the same posterior as 14 for the first five blue balls, but breaks

down the posterior of 20 percent conditional on the remaining balls into two distinct

posteriors: 50 percent with 40 percent probability and zero percent with 60 percent

probability. Subjects, in the aggregate, prefer 14 to 15: 77 percent of subjects rank the

former as more preferred than the latter one.19 The comparison of these information

structures to information structure 10, which is less instrumentally valuable (inducing

guessing accuracy of only 70 percent) reveals that the negative impact of informativeness

on information demand can be large enough to distort valuations relative to instrumental

value. 81 percent of subjects rank 14 as more preferred than 10, making an earnings-

maximizing choice. However, when the more informative 15 is compared to 10, only

40 percent of subject rank 15 higher. In other words, 60 percent of subjects behave

suboptimally when comparing 15 to 10. This suggests that informativeness can distort

subjects’ evaluation of information structures to the degree that it generates violations

in how information structures are ranked relative to instrumental value – a finding that

is mirrored in the aggregate statistics.

We summarize the main result of this section as a third result:

Result 9 Controlling for instrumental value, subjects display a preference for structures

that are less informative. High informativeness decreases demand, and increases the

likelihood of suboptimal demand.

The negative impact of informativeness on information demand is important, be-

19The example suggests that the negative impact of informativeness on information demand might
be due to an aversion to signals that are maximally uncertain (associated with a posterior of 0.5). We
discuss this possibility in relation to other alternative explanations in Section 2.5.1.
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Figure 2.9: Example of Aversion to Informativeness Notes: The percentage of subjects who rank an
information structure as more preferred to the other (shown on the same row) is displayed above the information structure.

cause it generates “mistakes” in valuation relative to instrumental value. Indeed, our

results suggest that informativeness that does not contribute to instrumental value is an

important driver of suboptimal demand in our data.

2.4.4 Heterogeneity

Our results so far have been based on an aggregate analysis. Does demand for in-

formation vary with informativeness and instrumental value similarly for all subjects?

To find out, we examine heterogeneity by classifying subjects into types using cluster-

ing analysis. Since there are many possible factors driving preferences over information

structures in our setting, we take an agnostic approach, using clustering to seek out

“natural” groupings in the data without reliance on labeled examples of what prominent

types might be in the data.20

Specifically, we transform subjects’ rank preference to 120 pairwise comparisons,

recording which information structure was preferred in each possible pair. We then fit a

Bernoulli Mixture Model (BMM) pre-specifying the number of clusters k ∈ {2, 3, 4, 5, 6}.21

20Recently, Charness, Oprea & Yuksel (2021) used a similar approach in an experiment on information
demand (focused on how people interpret biased information structures). They found that heterogeneity
was important for understanding information preferences in their data. In particular, this type of analysis
revealed an important minority cluster of subjects who behaved in a way that was systematically different
than aggregate behavior.

21Choice of the BMM model is natural here as it is developed specifically for clustering of multidimen-
sional binary data. This clustering method first estimates parameters of the subpopulations (mixture
components), each being a multidimensional Bernoulli distribution, and weights of each subpopulation
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Then we select the number of clusters k associated with the lowest BIC (Bayesian infor-

mation criterion). This method partitions our subjects into 4 clusters. In order of size,

the first cluster covers 74 subjects (45% of the data), the second cluster 40 subjects (25%

of the data), the third cluster 35 subjects (21% of the data), and the fourth cluster 14

subjects (9% of the data).

Table B.4 in Appendix B.4 compare subjects in these different clusters in terms of

the optimality of their guesses and their rankings of information structures. The largest

two clusters are very similar, displaying high optimality on both dimensions, matching

central tendencies in our aggregate analysis. While guesses are highly optimal for the

third cluster, optimality of the ranking of information structures weakens significantly for

this group. Finally, the smallest fourth cluster is particularly noisy on both dimensions.

For this reason, we focus our analysis in the main text to the biggest three clusters (91

percent of our subjects) and relegate corresponding analysis of the smallest cluster to

Appendix B.4.

Figure B.2 in Appendix B.4 reproduces Figure 2.8 separately for each of the main

clusters in our data. The most striking observation is the contrast in behavior between

the first two clusters. In the largest cluster, demand for information is decreasing in

informativeness once we control for value, matching our aggregate findings. This is

reflected in both Ranking and WTP data. The second cluster displays the opposite

behavior (at least when focusing on Ranking data): controlling for value, subjects in this

cluster display a preference for more informativeness, however there is weaker evidence

for this in WTP data. Patterns observed in the third cluster are reminiscent of those from

the first cluster (at least with respect to sensitivity to informativeness), but behavior is

noisier and as noted above, there are more deviations from optimal behavior. Table 2.2

(mixture weights). Then, using these estimates, clustering simply becomes a matter of using Bayes’ rule
to classify each observation as belonging to the mixture component most likely to have produced it.
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Table 2.2: Determinants of Demand for Information By Cluster

Ranking (Logit) Difference in WTP (OLS)
C1 C2 C3 C1 C2 C3

Difference in Value 3.744∗∗∗ 0.809∗∗∗ 1.085∗∗∗ 1.425∗∗∗ 0.548∗∗∗ 0.617∗∗

(0.164) (0.182) (0.170) (0.162) (0.115) (0.237)

Difference in Informativeness -9.855∗∗∗ 2.942∗∗∗ -2.843∗∗∗ -3.189∗∗∗ -0.148 -1.332∗

(0.638) (0.755) (0.651) (0.523) (0.439) (0.786)

Clusters 74 40 35 74 40 35

Notes: C1, C2 and C3 refer to Clusters 1, 2 and 3 and represent 45%, 25% and 21% of the data, respectively. See Section
2.2 for formal definitions of value and entropy informativeness. Regressions control for differences in visual disorder
(whether the blue and the red balls were presented out of order). Detailed results are presented in Tables B.5 - B.7 in
Appendix B.4. Standard errors (clustered at the subject level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.

provides further support for these observations using regression analysis (reproducing

Table 2.1 separately for the largest three clusters). We find that relative Ranking and

differences in WTP are both significantly decreasing in informativeness when we control

for instrumental value for the first and the third clusters, but the opposite result is

observed (at least when focusing on relative ranking) for cluster 2.22

Overall, in the first and the third clusters (covering 67 percent of our data) demand

for information is decreasing in informativeness when we control for instrumental value,

while we find no evidence for such a tendency in the second cluster (25 percent of the

data) which shows some evidence of preferences for more informativeness. It is worth

emphasizing that the clustering method does not assume in any way that informativeness

should play a role in how subjects are classified into different types. Thus, these results

strongly reinforce our finding that the influence of informativeness on information demand

plays a key role in organizing heterogeneity in our data.

Result 10 For a majority of subjects, demand for information is decreasing in infor-

mativeness when controlling for its instrumental value.

22Using different clustering methods (such as K-Modes clustering) generates similar results. See Ap-
pendix B.4 for further details.
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2.5 Mechanism

Why is demand for information decreasing in informativeness, ceteris paribus, for a

majority of subjects in our data? In this section we use data from diagnostic treatments

and analysis of auxilary data to answer this question. In Sections 2.5.2 and 2.5.1 we

provide evidence that rules out explanations rooted in subjects’ preferences over tim-

ing of the resolution of uncertainty or risk or misunderstandings of how to make use of

information structures. In Section 2.5.3 we instead present evidence that aversion to in-

formativeness is likely a consequence of the fact that informative information structures

are more costly to evaluate properly (i.e., are more “complex” to value). As a result, sub-

jects avoid these information structures and are instead drawn to less informative ones,

sometimes leaving instrumental value “on the table” in order to avoid these information

processing costs.

2.5.1 Timing and Risk Preferences

One natural class of explanation for aversion to informativeness is non-standard pref-

erences over risk, loss or the timing of the resolution of uncertainty. We find that

preference-based mechanisms of this sort cannot explain our data, for two reasons. First,

our data does not seem to fit with the most promising such explanations, given prior em-

pirical findings. Second, we designed our No Uncertainty treatment to shut down scope

for such preferences altogether and we find results that are broadly similar to those from

our main treatments.

Perhaps the most relevant preference-based mechanism given our experiment is that

subjects might have preferences over the timing of the resolution of uncertainty (e.g.,

Kreps & Porteus (1978), Grant, Kajii & Polak (1998)). Prior experimental results

have shown that subjects have seemingly strict preferences for earlier revelation of non-
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instrumental information from information structures (Eliaz & Schotter 2007, 2010,

Nielsen 2020, Falk & Zimmermann 2022). However, our results seem to show the ex-

act opposite: subjects display a preference to avoid non-instrumental information (i.e.,

informative structures that don’t improve choice), which means subjects reveal (if any-

thing) a preference to delay learning about the true payoff state.

Other preference-based explanations seem similarly unlikely to fully account for our

results. For instance, in our setting, loss aversion (Koszegi & Rabin 2009) could pos-

sibly manifest as an aversion towards information structures which generate maximally

uncertain signals (with associated posterior of 0.5) as such signals imply a lower likeli-

hood of winning the prize than the prior.23 Our main results on informativeness aversion

(controlling for instrumental value) remain when we remove such information structures

from the analysis.24 Our results also don’t seem consistent with suspense/surprise pref-

erences, a’la Ely, Frankel & Kamenica (2015a): we find no evidence that ranking or

valuation of information structures can be explained by the amount of suspense or sur-

prise they generate when we control for their instrumental value. Likewise, the results

don’t seem to be driven by preferences over the skewness of information provided by our

information structures: although there is some suggestion in our data (as in some prior

experiments like Masatlioglu, Orhun & Raymond (2023)) that subjects could be drawn

to positively skewed structures, controlling for this does not change our findings on in-

formativeness attitudes. Mechanisms like motivated attention and dissonance avoidance

(Festinger 1957) likewise can’t account for our findings. Curiosity preferences as in Gol-

23Although this seems unlikely given that, by definition, all information structures increase expected
likelihood of winning the prize.

24However, as seen in Appendix B.6 Table B.18, removing these information structures can influence
the degree to which informativeness impacts demand for information controlling for instrumental value.
This suggests that some subjects might indeed particularly dislike information structures generating
maximally uncertain signals. Our experiment is not designed to identify the relative magnitude of
these effects, and this may be difficult in general because increasing informativeness without increasing
instrumental value necessarily involves changing the distribution of induced posterior beliefs to move
closer to extremes of 0.5 and 0 or 1 (as observed in the example of Figure 2.9).
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man & Loewenstein (2018) and Golman, Loewenstein, Molnar & Saccardo (2022) predict

informativeness loving behavior that goes in the opposite direction of our main findings.

Our No Uncertainty treatment allows us to assess the relevance of preference-based

mechanisms for our results in a more comprehensive way. In this treatment, instead of

paying subjects based on their guess for a randomly drawn ball, we paid them based

on the accuracy of their guesses for all ten balls. That is, subjects were told that all

ten balls would be selected, but guesses needed to be the same for all balls in the same

cell of a partition associated with an “information” structure. Thus, the objective (and

certain) value of each “information” structure in this treatment is exactly equal to the

instrumental value of that information structure. Furthermore, information processing

required for guesses and evaluation of each “information” structure in this treatment is

very similar to that required in the other two treatments. But (i) since guesses are known

to apply to all balls, there is no actual information provided to subjects in the experiment

and (ii) there is no objective uncertainty anywhere in the experiment. Because of (i),

preferences related to the timing of information cannot apply in this treatment. Because

of (ii) there is likewise no scope for explanations related to risk preferences since there

is no uncertainty in these tasks. In Appendix B.3 we show that the No Uncertainty

treatment produces broadly similar results to our Baseline treatment. We continue to

find that subjects display an aversion to “informativeness” controlling for value even

though there is no actual learning occurring about an unknown state in this task.25 This

suggests that preferences for timing or risk likely are not a primary driver of our findings.

Result 11 Our results are not consistent with recent findings (from settings where in-

25As documented in Appendix B.3, behavior (particularly WTP) is more noisy in this treatment, likely
attenuating the effect we find clearly in the Ranking data. This noise might be driven by the somewhat
unnatural framing of the problem relative to the other two treatments. Probably due to this attenuation,
the WTP data in aggregate does not display aversion to informativeness controlling for instrumental
value. However, there is evidence suggestive of this pattern when we restrict analysis to WTP data that
is ordinally consistent with ranking data.
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formation has no instrumental value) on preferences for the timing of resolution of un-

certainty. Similar patterns are observed when uncertainty is removed from the task,

suggesting that our results are not an outgrowth of risk or timing preferences.

2.5.2 Biases and Mistakes

A second natural class of explanations for aversion to informativeness is that it derives

from mistakes in how people make use of information.

First, subject might make mistakes in interpreting and optimally making use of infor-

mation, and reveal these mistakes when valuing information structures. There is, after

all, a great deal of evidence in the prior literature that subjects suffer from a range of

judgement errors when evaluating signals in standard prior-signal updating tasks, includ-

ing for example, over- and under-inference, confirmation bias and motivated reasoning.

Thus, one natural hypothesis is that subjects suffer from one or more of these biases

when assessing the information contained in information structures, leading them to fail

to properly value them in ways that spuriously resemble distaste for informativeness.

We can rule out such mistakes by studying behavior in the Guessing section of the

experiment which was specifically designed to evaluate this hypothesis. As we detail in

Section 2.4.1 above, subjects show no evidence of systematic biases in interpreting signals

from information structures, and in fact show little evidence of noise either. Indeed, our

subjects make nearly perfect use of information structures to inform Guessing behavior:

98% of Guessing choices are optimal (expected earnings maximizing) in our dataset

and the vast majority of our subjects always make optimal use of information. This

strongly suggests that subjects are overwhelmingly capable of understanding how to use

the information contained in information structures to inform choice.

A more subtle version of the same class of explanation is that, although subjects are
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74% 26%

Blue Blue Red Blue Red Red

Figure 2.10: Example of Aversion to Informativeness with Information on Signal-Contingent
Guesses Notes: The percentage of subjects who rank an information structure as more preferred to the other is displayed
above the information structure. Text below cells of the partition represent the signal-contingent guesses made in an
identical problem earlier. We restrict attention to subjects in the Reverse treatment whose guesses with the two information
structures are same for each ball (as seen above).

capable of interpreting each piece of information they receive from information structures,

they fail to properly account for this from an ex-ante perspective when valuing and

comparing unfamiliar information structures before they receive information. Perhaps

subjects can make optimal use of information, but fail to foresee how they will do so ex

ante when evaluating information structures. There is now a growing literature showing

that subjects often neglect to “unfold” decision trees, failing to contingently reason about

events in the future (Esponda & Vespa 2014, Martinez-Marquina, Niederle & Vespa 2019).

Perhaps subjects make a similar error here and fail to accurately think through the payoff-

relevant consequences (i.e., guesses induced by each signal) of receiving information from

each information structure producing an apparent aversion to informativeness.

To test this kind of explanation, we ran the Reverse treatment, which has subjects

make guesses for all signals under all 16 information structures before they are asked

to value them. The purpose of this treatment was to minimize the scope for this kind

of error by giving subjects a precise sense of how each information structure impacts

choice. To further strengthen the effect of this treatment, we also reminded subjects

of the guesses they made (contingent on every signal) in these previous guessing tasks

on their elicitation screens, allowing subjects to recall their prior engagement with each

information structure. To provide a concrete example of how subjects experienced this

treatment, Figure 2.10 displays how a subject might have seen information structures

14 and 15 (the example from Figure 2.9).26 In particular, subjects are shown their

26Figure 2.10 displays how these information structures were presented to a subset of the subjects
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signal-contingent guess of the state (red or blue) underneath each possible signal when

evaluating the structure. Under the hypothesis that our main findings are driven by sub-

jects’ failure to contingently reason about how different signals induce different guesses,

we would expect this treatment to eliminate or at least reduce the severity of our results.

Instead, in Appendix B.2, we show that the Reverse treatment has no effect on our results

at all. Even among these subjects, we find a strong preference for less informativeness.

Result 12 Auxiliary tasks and a diagnostic treatment suggest that failures in optimal use

of information or failures in foreseeing how signals will induce guesses cannot explain why

demand for information is decreasing in informativeness when we control for instrumental

value.

2.5.3 Valuation Complexity

A third possibility is that subjects attach less value to informative structures, because

these structures are more costly and difficult (i.e., more complex) to evaluate. Properly

valuing an information structure, after all, requires the decision maker to aggregate a

number of pieces of information about the structure: she has to consider each of the sig-

nals that could be realized, determine the optimal action and compute payoff consequence

for each case, and then aggregate over all of these possibilities. There are strong ex ante

reason to think there is more information to aggregate in more informative relative to

less informative structures. In particular, more informative information structures tend

to have more signals, tend to generate more distinct posteriors and tend to include more

extreme posteriors, all of which plausibly make the aggregation problem more difficult.

Indeed, such aggregation costs have been shown to severely impact valuations in the do-

main of risk (Enke & Graeber 2023, Oprea 2023) and intertemporal choice (Enke, Graeber

(50%) in the Reverse treatment for whom induced guesses (for each ball in the set of ten) is exactly the
same for the two information structures.
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Figure 2.11: Cost of Informativeness: Guessing Time Notes: Figure depicts average guessing time spent on
each of the 16 information structures that are arranged by value and entropy informativeness. The information structures
where the blue and red balls are not displayed in order are depicted in gray rather than black. Vertical lines denote 95
percent confidence intervals.

& Oprea 2023) in recent work, implicating them in some of the most famous anomalies

in behavioral economics such as probability weighting and hyperbolic discounting. Could

aggregation difficulties be similarly driving anomalous valuations here?

Our data and design provide several strands of evidence that seem to directly sup-

port the idea that aggregation costs of this sort drive subjects’ apparent distaste for

informativeness.

First, our data produces direct evidence that evaluating more informative structures

requires more effort for subjects. In particular, controlling for instrumental value, sub-

jects spend more time making signal-by-signal decisions in Guessing tasks involving more

informative information structures. Figure 2.11 shows clear evidence that guessing time—

the number of seconds it takes subjects to make guesses conditional on each possible signal

realization from an information structure— increases with informativeness. For example,

among the non-disordered information structures that have an instrumental value of 2

(the largest class in our design), the average time it takes subjects to make the full set of

signal-contingent guesses is 47% percent higher (p-value<0.001) with the highest entropy
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informative information structure than with the lowest entropy informative structure.27

Decision time (“runtime”) is the most commonly used metric of complexity (information

processing costs) in computer science, supporting the hypothesis that more informative

structures are more complex to evaluate.28

Second, our finding of distaste for informativeness remains even after we remove un-

certainty from the task in our No Uncertainty treatment. With risk and timing removed,

the only possible reason to fail to maximize value in this problem is the difficulty of prop-

erly valuing the descriptive components of the information structure. Indeed, arguably

the only substantive connection between the Baseline treatment and the No Uncertainty

treatment is the similar cognitive processing required to evaluate the structure. Broadly

similar aversion to informativeness in the two settings therefore seems to suggest that

this shared cognitive burden is the driver of this result.

Third, the evident difficulty of valuing more informative structures, seems to be rooted

in the costs of aggregating its components and not in other costs in the choice problem.

In particular (as already discussed) our design rules out the hypothesis that valuation

difficulties stem from difficulties in assessing signal-contingent choices: having subjects

make these choices ahead of time, and showing them to subjects directly during valu-

ation (as we do in the Reverse treatment) has no impact on measured informativeness

aversion. The only other possibility would seem to be that the difficulty (cognitive costs)

of optimally using information is higher for more informative structures, and that sub-

jects anticipate this difficulty when valuing those structures. However, this hypothesis

doesn’t bear scrutiny. To decide how to optimally respond to a signal in our experiment,

27The same pattern in also observed in the Reverse and No Uncertainty treatments.
28The use of decision time as a metric of complexity is controversial in the literature, because subjects

may choose not to expend effort at all on particularly difficult tasks. This will produce a non-monotonic
relationship between complexity and decision time. This is arguably not a concern in our data since we
have clear evidence that subjects virtually never “give up” – almost all subjects make rational choices
in our Guessing tasks.
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a subject simply needs to identify whether there are more red or blue balls in a single

partition subset clearly indicated by the experimental software. This is identically true

for all signals and all information structures. If anything, we might expect this task

to be somewhat easier for more informative structures since partition subsets (signals)

tend to contain fewer balls in these structures. This seems to leave only the difficulty of

aggregation itself as the source of the difficulty of evaluating information structures.

Why do informativeness-driven aggregation difficulties lead to a systematic aversion

to informativeness? The most likely explanation is that decision makers tend to econo-

mize on the costs of precisely calculating instrumental value by imprecisely estimating

value instead – and do so increasingly as information structures grow more informative

and the aggregation task grows more burdensome. Subjects respond to the imperfect or

incomplete understanding of value that results from this decision by cautiously under-

valuing informative structures, shading their valuations towards the experiment’s default

of no information.29 This kind of cautious attenuation has recently been formalized by

“noisy coding” models (Woodford 2020) which have been empirically successful, account-

ing for a wide range of anomalous behaviors including small stakes risk aversion (Khaw,

Li & Woodford 2021), probability weighting (Enke & Graeber 2023, Vieider 2023, Fryd-

man & Jin 2023), Bayesian reasoning failures (Ba, Bohren & Imas 2023) and hyperbolic

discounting (Gabaix & Laibson 2022, Vieider 2021, Enke, Graeber & Oprea 2023).30

Result 13 More informative structures require more cognitive effort to evaluate. This

and several other strands of evidence suggest that distaste for informativeness is driven

by information processing costs of valuing structures, which increase in their informa-

29In our elicitations, especially our WTP elicitations receiving no information is quite literally the
default outcome that the subject is paying to avoid

30An alternative possibility is that subjects simply have a primitive distaste for complex information
structures (independent of difficulties in evaluating them) that leads them to undervalue them. This
seems less plausible to us, but is also consistent with our data.
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tiveness.

2.6 Discussion

In standard economic theory informativeness influences information demand only to

the extent that it produces instrumental value – i.e., to the extent that it is expected to

improve decision making in relevant decision tasks. The results reported in this paper

suggest that this is not the case: informativeness has an independent, first order influ-

ence on information demand. In particular, demand for information sharply decreases in

informativeness, conditional on instrumental value. We find that this aversion to infor-

mativeness is often severe enough to make subjects prefer less instrumentally valuable

information to more valuable alternatives, leading them to leave earnings “on the table.”

Additional evidence from our experiment suggest that this aversion to informativeness

arises because informative structures are more ‘complex’ (i.e. more costly or difficult to

evaluate), leading subjects to undervalue them. Our design allows us to rule out several

alternative explanations for this pattern: they cannot be (i) rationalized as an outgrowth

of subjects’ preferences for the timing of information, (ii) driven by mistakes in optimal

use of information; (iii) arise from failures to reason about information-contingent actions.

These results suggest that even in the simplest possible settings (e.g., our experi-

ment), decision makers face a difficult aggregation problem when evaluating information

structures: they have to consider and weigh all possible signal realizations, determine

the optimal action and compute payoff consequence for each case, and then aggregate

over all these possibilities, condensing this information into a value. The costs and dif-

ficulties of doing this correctly rise with the informativeness of the structure, meaning

the distortions it produces follow a predictable pattern that can be used in modeling and

information design.
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Indeed, our results have policy implications on how information should be provided

to decision makers to most effectively influence behavior. Our results suggest especially

that information should be narrowly targeted to the decision problem the information

is meant to inform. Extraneous or irrelevant information is likely to be treated as an

economic bad in the market for information and makes information less effective as a

policy instrument. Even in contexts (such as that of our experiment) in which decision

makers are able to easily make optimal use of the signals informative structures produce,

they nonetheless should be expected to undervalue and avoid such structures because of

the costs of evaluating their value, ex ante.

These findings reveal a connection between information demand and a growing num-

ber of contexts in which complexity of valuation (which typically involves aggregating

different pieces of information) has been shown to produce first order distortions in choice.

For instance, the difficulty of correctly valuing an information structure is formally sim-

ilar to the problem of evaluating a compound lottery, which decision makers have well-

documented difficulties with (Halevy 2007, Chew, Miao & Zhong 2017). Similarly, recent

research suggests that the complexity of aggregation is a key driver of classical anoma-

lies in risky choice, such as probability weighting (Enke & Graeber 2023, Oprea 2023)

and classical anomalies in intertemporal choice, such as hyperbolic discounting (Enke,

Graeber & Oprea 2023). Thus our findings suggest a parsimonious connection between

anomalies in information demand and anomalies in a number of other canonical choice

settings in economics.

Much of what we know about information demand so far comes from settings in which

information has no instrumental value. A key methodological lesson from our experiment

is that behavior in such settings is likely shaped by a very different reasoning process

and hence influenced by different characteristics of information structures than settings

in which information is required to inform choice. In particular, previous literature (as
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discussed in 2.5.1) often documents information loving behavior when information has

no instrumental value. Our results, which go in the opposite direction, suggest that

the aversion to informativeness documented in our paper is a byproduct of the difficulty

decision makers encounter in assessing the instrumental value of an information structure

– a problem that is lifted in non-instrumental settings. For this reason, our results suggest

that we cannot easily counterfactually project findings from non-instrumental settings to

instrumental settings (or vice versa).

Finally, our results provide a new kind of evidence in support of the central trade-

off at the heart of rational inattention models, one of the most influential and often

used formal theories of bounded rationality. In these models, people acquire information

to maximize utility but suffer information costs that influence this choice (Sims 2003,

Matějka & McKay 2015, Caplin & Dean 2013). Our paper contributes to this literature by

expanding our understanding of when and why agents act as if information is costly. We

show that these information costs need not be limited to costs associated with generating

this information or making use of this information, but can also arise due to the cognitive

effort required to evaluate the ex-ante value of information. Our results therefore suggest

that rational inattention models may also be effective models of complexity (information

processing) aversion, and may therefore have a much wider scope of application than is

typically supposed.
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Chapter 3

Trustworthy by Design

with Sen Geng1

3.1 Introduction

Trust is a crucial ingredient for many social interactions and economic transactions.2

However, foreseeing the risk of being exploited by trustees often discourages trustors

from placing trust. Addressing this social dilemma is a continuing focus of the literature

on trust. Recent work (Brown et al. 2004; Charness & Dufwenberg 2006; Bracht &

Feltovich 2009; Andreoni 2018) has established mechanisms that enhance trusting acts

through reputation, cheap talk, or a marketing strategy with a satisfaction guarantee.3

A novel aspect is to explore voluntary trust-enhancing mechanisms that are applicable

1The content of Chapter 3 and Appendix C was the accepted manuscript of an article published in
Games and Economic Behavior, Vol 141, Sen Geng and Menglong Guan, ‘Trustworthy by design’, Page
70-87, Copyright Elsevier (2023). The article is available at: https://doi.org/10.1016/j.geb.2023.05.009.
The reuse of the content in this dissertation is permitted by the publisher.

2For the positive impact of trust on economic outcomes, see Knack & Keefer (1997), Zak & Knack
(2001), Guiso et al. (2004, 2009), and Gennaioli et al. (2021), among others.

3The implementation of such mechanisms sometimes relies on recurring interactions (Brown et al.
2004), third-party involvement, such as a form of competition (Huck et al. 2012), or binding guarantees
(Andreoni 2018).
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to one-shot interactions and have rational foundations.

In addition, information design, pioneered by Kamenica & Gentzkow (2011), investi-

gates how senders influence receivers’ behavior via provision of information when senders

can commit to an information disclosure policy. The models have been widely applied in

various contexts.4 A novel exploration is to apply information design in trade settings, in

which an allocation of gains from trade may be endogenously determined and enhancing

aggregate welfare is usually a prerequisite for improving individual welfare. For this ap-

plication, the key question is whether information design can be used by self-interested

market players to increase their own benefits through fostering social welfare.

Fitting into the intersection of the two strands of literature, our study explores

whether information design can be used by trustees as a signaling device to boost trust

and consequently realize gains from trade. Empowering trustees to signal their trustwor-

thiness makes it easier for trustors to infer typically invisible behavior; in this sense, it

seems intuitive that outcomes can be improved. However, the endogeneity of providing

information and choosing to be trustworthy complicates the problem, and a key issue is

how much this capability is used.5 Thus, in this article, we ask the following questions:

To what extent and in which way does trustees’ capability to design information improve

trustworthiness and trusting acts? What is the theory underlying such effect or null

effect?

These questions are difficult to address in the field due to the lack of exogenous

variation in trustees’ capability to design information. It is also challenging to induce

such variation in the field. We thus propose two games that characterize two distinct set-

tings: no capability versus full capability to design information, and conduct a laboratory

4See, for example, applications to grading in schools (Boleslavsky & Cotton 2015), entertainment
(Ely et al. 2015b) and financial sector stress tests (Goldstein & Leitner 2018).

5The problem is further complicated when social preferences are involved: trustors may place trust
when signaling trustworthiness is not feasible (See Berg et al. (1995)), but introduction of a signaling
device may backfire when trustees choose an opaque information disclosure policy.
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study.6

In Game 1, a trustee, who partially or fully decides a binary payoff allocation (equiv-

alently a binary state) and has no capability to design information, precedes a trustor,

who decides whether to invest. Game 2 resembles Game 1 except that the trustee is capa-

ble of designing an information structure, which is characterized by two state-dependent

distributions of signal realizations. A binary signal about the underlying state is then

generated according to the trustee’s choice of the state and the information structure.

We explore the changes in trusting acts and trustworthiness between games based on the

equilibrium model and a model of heterogeneity in prosociality and strategic sophisti-

cation. We also employ a within-subjects experiment to explore treatment effects and

systematic behavioral patterns.

We find theoretically and experimentally that introducing information design in-

creases trustworthiness and trusting acts. The experimental results show that, com-

pared to Game 1, trustworthiness and trusting acts increase substantially in Game 2.

We also observe that trustees signal high trustworthiness via high informativeness and

obscure low trustworthiness via low informativeness. Almost all trustors correctly infer

the underlying state (and trustworthiness) from the realized signal when observing a high

informative structure, but some fail to understand that the information structure per se

also conveys a message about trustworthiness and overtrust in low informativeness. Both

models predict that introducing information design, together with its bringing about pre-

liminarity of the trustee’s choice and an increase in the trustee’s power to commit to a

certain level of trustworthiness, fosters trusting acts. Nonetheless, only the second model

predicts all major patterns. Especially, it predicts that some trustees optimally choose

zero trustworthiness with the least Blackwell informative structure, and trustors with

6Given the focus of this study, our games abstract features about trust, trustworthiness and infor-
mation design from the multifaceted features of practices. Karlan (2005) shows that experimental trust
games are directly linked to real-life decisions including financial decisions.

92



Trustworthy by Design Chapter 3

a lower level of strategic sophistication are more likely to place trust than the most

sophisticated trustors.

In terms of implications, our work proposes rational foundations of market practices

involving trust and information design. In business practices involving a seller and buyer

or an investee and investor, trustees often take the initiative, including information de-

sign, to build trust. Our findings show that information design is indeed an effective

mechanism to enhance trusting acts; thus, trustees have a good reason to take such ac-

tions. We also show that signaling high trustworthiness with high informativeness and

obscuring low trustworthiness with low informativeness are optimal approaches for some

trustees given trustors’ strategic sophistication. These results explain why, in practice,

the relevant information is designed at different levels of informativeness. In terms of

policy implications, our results show that there is a potential gain in alerting trustors

to the possible association between low trustworthiness and low informativeness. Since

trustees’ optimal trustworthiness and information structure are responsive to trustors’

strategic sophistication, this intervention is likely to motivate trustees to endogenously

enhance trustworthiness and informativeness.

Our study is related to the literature involving trust: it provides models and experi-

mental evidence showing that information design is a useful signaling device to enhance

trust.7 Existing studies of trust games (mostly variants of Berg et al. (1995)), including

the aforementioned trust-enhancing mechanisms, are based on the paradigm of trustors’

decision to place trust preceding trustees’ decision to allocate payoff. By contrast, we set

up a new paradigm in which trustees take the lead in the strategic interaction. By apply-

ing this innovative perspective, we model the market practice of gaining trust through

information design as a combination of a reverse trust game and an information design

game.

7See Fehr (2009) for a survey of the literature on trust.
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Our study is also related to the literature concerning information design led by Ka-

menica & Gentzkow (2011).8 In terms of applying information design, our study shows

that information design can be used by self-interested market players to foster trust in

trade settings and in turn fulfill welfare-increasing transactions. In terms of extending

the basic model, the information designer in our setting endogenously chooses the state

of the world, which deviates from the common assumption about the exogenously deter-

mined state. This deviation extends the original scope of information design to settings

where the designer decides both a payoff-relevant state and an information structure.9

Our study is additionally related to recent experimental work on information design.

For instance, in Fréchette et al. (2022), senders first commit to an information structure

and then may revise the signal that concerns the realized state depending on the specified

degree of commitment. They focus on the role of commitment and information verifi-

ability and find that overall, subjects react to commitment in the direction predicted

by the theory. Besides different focuses and designs, an important difference is that the

payoff-relevant state is endogenously determined in our setting while it is exogenous in

theirs.

The remainder of this paper proceeds as follows. Section 3.2 introduces the games

and presents the equilibrium outcomes. Section 3.3 presents the experimental design

and procedure, followed by experimental results in Section 3.4. Section 3.5 proposes a

behavioral model that rationalizes the experimental findings. Section 3.6 discusses an

alternative experimental design, the role of risk preference, how our games are related to

classic trust games, and potential causal mechanisms. Section 3.7 concludes. Appendix

8Kamenica (2019) categorizes the existing research about information design into two directions and
reviews the strand of literature that extends the basic model.

9In this sense, our study is related to Asriyan et al. (2023) and Szydlowski (2021). Asriyan et al.
(2023) consider a setting where a designer chooses an action and a factor that affects a receiver’s choice of
information structure. Szydlowski (2021) investigates a setting where an entrepreneur jointly chooses in-
formation disclosure and financing policies. Unlike ours, the state of the world is exogenously determined
in his setting.
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C provides details about the behavioral model, proofs, additional data analysis, and

experimental instructions.

3.2 Games and Equilibrium Analysis

3.2.1 Two games

We introduce two games to study whether trustees’ being capable of designing infor-

mation resolves the social dilemma involving trust. In both games, a trustee first decides

payoff allocation and then a trustor decides whether to invest. This is different from

the decision order in classic trust games, where the trustor typically moves first and the

trustee moves second.10 Trustees’ moving first reflects the fact that trustees take the lead

in some contexts. For example, a seller chooses target customers and makes efforts to

seek customers’ trust in a product. An entrepreneur takes the initiative to gain investors’

trust in a funding proposal. We use a feature of whether the trustee is capable of design-

ing information to differentiate a reverse trust game (Game 1) from a trustworthiness

design game (Game 2).

In Game 1, a trustee (player A) moves first to decide a payoff-relevant state: he

selects a probability p ∈ [0, 1], with which state 1 is to be realized and, correspondingly,

the probability of state 2 being realized is 1− p. Knowing neither the value of p nor the

realized state, a trustor (player B) decides z ∈ {1, 0}, that is, to invest or not invest. If

player B does not invest, player A and player B receive a payoff of vA0 and vB0 , respectively.

If player B invests and the realized state is state 1, player A and player B receive a payoff

of ρ1v and (1 − ρ1)v, respectively. If player B invests and the realized state is state 2,

player A and player B receive a payoff of ρ2v and (1− ρ2)v, respectively.

10Section 3.6 discusses the effect of the reversed decision order: it is likely to make the trust motive
weaker than in classic trust games but still remarkable.
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Game 2 resembles Game 1 except that a stage of information design is introduced.

Specifically, player A moves first to decide a probability p of state 1 being realized and

also decides an information structure, i.e., the conditional likelihoods of signals (q1, q2) ∈

[0, 1]× [0, 1] specifying the probability of generating a binary signal s ∈ {b, w} given the

realized state. When the realized state is state 1 (state 2), signal s = b is realized with the

probability q1 (q2) and signal s = w is realized with the probability 1−q1 (1−q2). Player

B observes neither the value of p nor the realized state. After observing the conditional

likelihoods and a realized signal (q1, q2, s) , player B decides z ∈ {1, 0}.

We assume that v > vA0 + vB0 , v
A
0 < ρ1v < ρ2v and (1 − ρ2)v < vB0 < (1 − ρ1)v.

That is, investing increases the aggregate payoff, state 1 refers to a payoff allocation that

is beneficial to both players, and state 2 refers to a payoff allocation that is beneficial

to player A but harmful to player B. Let ρA0 =
vA0
v

and ρB0 =
vB0
v
. The assumptions

can be rewritten as: ρA0 + ρB0 < 1, ρA0 < ρ1 < ρ2 and 1 − ρ2 < ρB0 < 1 − ρ1. These

assumptions capture a main feature of trust behavior: trust is socially desirable and

potentially beneficial to both parties, but placing trust in others exposes one to the risk

of being betrayed.11

Discussion of Game 2

We discuss the characteristics in Game 2 that player A chooses (p, q1, q2) and player B

observes (q1, q2, s) from two perspectives: its interpretation in two motivating examples

and its usefulness.

Consider first the example of a seller trying to identify a target customer and sell

to the customer a complex financial product such as annuity. There are two states of

11We interpret p as a measure of the level of trustworthiness. p can also be interpreted alternatively:
it reflects player A’s determination on choosing state 1 or reflects player A’s applying a mixed strategy
to choose the payoff-relevant state. In classic trust games, the trustee moves second and decides the
amount to return back to the trustor after being invested, and the ratio of the back-transfer serves as a
measure of the level of trustworthiness.
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the world: The product is suitable or unsuitable for a customer. That is, the state of

the world is customer specific. The customer gets utility vB0 for not buying the product.

When buying the product, she gets utility (1− ρ1)v (> vB0 ) from a suitable product and

gets utility (1 − ρ2)v (< vB0 ) from an unsuitable product. The seller gets utility vA0 for

not selling the product. He gets utility ρ1v (> vA0 ) if he sells to a customer for whom the

product is suitable, and gets utility ρ2v (ρ2 > ρ1) if he sells to a customer for whom the

product is unsuitable.12

We can think of the seller’s decision process as consisting of two interim stages. In

stage one, the seller selects a target customer to whom he markets the product. To do

that, the seller collects information about potential customers’ profiles (e.g., age, gender,

income, likes, and dislikes, etc), becomes knowledgeable of the chances of the product

being suitable for these customers given his expertise, and markets the product to a

customer for whom the product is suitable with probability p.13 In this setting, the seller

chooses a trustworthy, untrustworthy, or intermediate trustworthy action if he markets

the product to a customer for whom the product is suitable with certainty, unsuitable

with certainty, or suitable with a probability strictly between zero and one.

In stage two, the seller helps the target customer to learn about product suitability by

providing product information and employing an appropriateness test, which can be a set

of questions constructed by the seller. It is required by law (e.g., European Union MiFID

II Article (25)) that the seller must truthfully report the test outcome to the customer.

In practice, the set of questions the seller chooses to ask may be fully, partially or little

diagnostic. We thus formalize the seller’s constructing test questions as choosing the

12For example, an insurance product may be unsuitable for a customer who is unlikely to make an
insurance claim and suitable for a customer who is likely to make a claim. Selling the product to the
former seems more profitable than selling it to the latter.

13The seller in this example does not physically choose p as player A does in Game 2, but instead
selects a customer to persuade. Nevertheless, the essence of their such actions is arguably the same:
they choose to be trustworthy, untrustworthy or intermediate trustworthy.
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conditional likelihoods of signals, (q1, q2), and formalize the test outcome as a realized

signal (s) indicating the underlying state.

It is implicitly assumed that in Game 2, player A publicly commits to an information

structure and his commitment to choosing a certain level of trustworthiness relies on the

presence of information design. The first assumption holds naturally in this example be-

cause the customer observes the test questions and the test outcome must be truthfully

reported. The second assumption is also plausible in our example for the reasons below.

How the seller chooses a target customer is typically unobservable and the seller has an

incentive to market the product to a customer for whom the product is suitable with a

lower probability (i.e., undercut p). These make it difficult for the seller to commit to

choosing a certain level of trustworthiness. Supplying product information and conduct-

ing an appropriateness test help a customer learn about product suitability, which in

turn increases the seller’s power to commit to choosing a certain level of trustworthiness.

As another illustrative example, consider the scenario in which a producer decides

on product quality and selects a customer review site that discloses quality informa-

tion through product reviews. Specifically, the producer determines the percentage of

products that have no defect. Depending on the design features of the review system,

including incentives for buyers to post reviews and visibility of posted reviews of different

attitudes, customer review sites differ in their levels of informativeness about revealing

product quality. The producer chooses a customer review site that maximizes the prob-

ability of selling the product to a consumer. Knowing the level of informativeness of the

producer’s selected review site, the consumer makes an informed purchase decision after

reading reviews.14 In this example, the provision of a product without defect incurs more

costs to the producer than the provision of a defective product; purchasing the former

14According to a study by the Spiegel Research Center of Northwestern University, nearly 95% of
shoppers read online reviews before making a purchase.
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is more desirable for the consumer than purchasing the latter. The producer’s choice

of the percentage of products without defect and the specific review site correspond to

player A’s choice of p and (q1, q2). The consumer’s knowledge of the informativeness of

the review site and reading reviews correspond to player B’s observing (q1, q2, s).

Regarding the usefulness of the characteristics, a setting of p ∈ [0, 1] provides a more

flexible measure of trustworthiness than a setting of binary p ∈ {0, 1} does, which is par-

ticularly important given that a main variable of interest in this article is trustworthiness.

This approach also helps to generate both an equilibrium with intermediate trustworthi-

ness and an equilibrium with full trustworthiness. A setting of q1 ∈ [0, 1] and q2 ∈ [0, 1]

is general and enables us to seamlessly incorporate existing knowledge of informativeness

ordering and information design without any distortion.15

3.2.2 Equilibrium Analysis

Game 1’s Nash equilibria include: player A chooses p ≤ ρB0 −(1−ρ2)

ρ2−ρ1
and player B does

not invest. Note that player A has a unique best response, p = 0, once player B invests

with any non-zero probability. Following Simon & Stinchcombe (1995), which extends

the trembling-hand perfection in finite games to perfection in infinite games, we refine

the Nash equilibria of Game 1. This refinement guarantees a unique equilibrium: player

A chooses p = 0 and player B does not invest.

We now explore Game 2’s equilibrium outcomes. Our solution concept is the perfect

Bayesian equilibrium (PBE).16 Note that for information sets (q1 = 1, q2 = 0, s = b) and

15We also investigate two other natural cases of the information structure. In one case, (q1, q2) is
taken from a subset of [0, 1]× [0, 1] such that q1 ≥ q2 (equivalently q1

q2
≥ 1−q1

1−q2
), according to which signal

s = b and signal s = w can be interpreted as favoring state 1 and state 2, respectively. In another case,
(q1, q2) is taken from a subset of [0, 1]× [0, 1] such that q1 ≥ q2 and q1 + q2 = 1, according to which the
conditional probability of generating signal s = b in state 1 is identical to that of generating signal s = w
in state 2. It will be clear from Figure 3.1 that the sets of equilibria are reduced in these two cases,
yet the main predictions that introducing information design increases trustworthiness and trusting acts
remain unchanged.

16Simon & Stinchcombe (1995) state that their trembling-hand perfection does not apply to continuum
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(q1 = 0, q2 = 1, s = w), player B’s posterior belief about state 1 is always one and player

B optimally invests. Then, sequential rationality dictated by PBE implies that player A

can treat player B’s always placing no trust as a non-credible threat. Accordingly, PBE

rules out the no trust equilibria.

We characterize players’ PBE actions in Proposition 1. Players’ actions off the equi-

librium path and player B’s PBE belief system are specified in Appendix C.2.1.17

Proposition 1 In PBEa of Game 2, player A has two types of equilibrium actions. (1)

Full trustworthiness: (q1 = 1, q2 ≤ ρ1−ρA0
ρ2−ρA0

, p = 1) or (q1 = 0, q2 ≥ ρ2−ρ1
ρ2−ρA0

, p = 1). (2)

Intermediate trustworthiness: (q1 = 1, q2 =
ρ1−ρA0
ρ2−ρA0

, p ≤ p < 1) or (q1 = 0, q2 =
ρ2−ρ1
ρ2−ρA0

, p ≤

p < 1), where p ≡ ρB0 −(1−ρ2)

(1−ρ1−ρB0 )
ρ2−ρA0
ρ1−ρA0

+ρB0 −(1−ρ2)
∈ (0, 1). Player B’s equilibrium action is:

z = 1(0) if q1 = 1, q2 ≤ ρ1−ρA0
ρ2−ρA0

and s = b(w), and z = 0(1) if q1 = 0, q2 ≥ ρ2−ρ1
ρ2−ρA0

and

s = b(w).

We provide an intuition of Proposition 1 as follows. Knowing that player B invests

in state 1 and does not invest in state 2, player A uses an information structure (q1, q2)

to “signal” that he does not choose state 2. To make his signaling credible, his choice

of (q1, q2) must be such that given player B’s strategy, his expected payoff from choosing

p = 1 is no less than that from choosing p = 0. Also, player A’s expected payoff from

choosing p = 1 must be at least ρ1v in any PBE because choosing (q1 = 1, q2 = 0, p = 1)

can give him this amount. These necessitate the following conditions: player B invests

in one signal and does not invest in another signal; the likelihood of generating the first

signal in state 1 is sufficiently large and the likelihood of generating the first signal in

state 2 is sufficiently small. It turns out that player B’s following strategy meets the

extensive form games like Game 2 and the extension of their analysis to these games remains an open
issue. So we use a different solution concept for Game 2.

17In Appendix C.2.1, we employ a refinement of PBE in the spirit of In & Wright (2018) and Nguyen
& Tan (2021) to restrict players’ beliefs and actions off the equilibrium path and show that the set of
equilibrium actions according to this refinement equals to the set of PBE actions.
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above requirement: invests only when she observes a certain signal and the chances of

such signal realization in the two states are 100% and not exceeding a threshold value,

respectively. In addition, when player A chooses 100% and the threshold value as the

two likelihoods, his expected payoff from choosing p = 1 equals that from choosing p = 0.

Yet, he still needs to choose a reasonably large p so that player B has no incentive to

deviate from the above strategy (i.e., p ≤ p ≤ 1).

We illustrate both players’ equilibrium strategies and expected payoffs on the equi-

librium paths in Figure 3.1 and Figure 3.2, respectively. Player A’s expected payoff is

a constant value, ρ1v, in all PBEa. The intuition is that player A’s expected payoff in

any PBE cannot exceed ρ1v because his expected payoff function is linear in p: a choice

of p = 0 will lead player B to never invest and in turn player A’s expected payoff is vA0

(< ρ1v ); the highest expected payoff for player A is ρ1v when he optimally chooses a

certain p greater than zero. Recall that player A has an expected payoff of at least ρ1v

in any PBE, so he must have an expected payoff of ρ1v in any PBE. Player B’s expected

payoff is an increasing function of player A’s choice of p ∈ [p, 1], with a minimum of vB0

and a maximum of (1− ρ1)v.
18

Equilibria insights. Proposition 1 suggests that introducing information design in-

creases trustworthiness and trusting acts in two ways. First, player A commits to state 1

and picks a cutoff information structure so that player B invests with certainty. Second,

player A does not commit to a state and constructs a delicate information structure to

ensure that player B invests with positive probability. Player A employs the delicate

information structure to assure his opponent that it is in his best interest to choose a

level of trustworthiness that sustains player B’s optimal investing in a favorable signal.

Compared to Game 1, the insights show that introducing information design, together

18Player B’s expected payoff function on the equilibrium paths: EVB(p) = p[(1−ρ1)v−(1−ρ2)
ρ1−ρA

0

ρ2−ρA
0
v−

ρ2−ρ1

ρ2−ρA
0
vB0 ] + (1− ρ2)

ρ1−ρA
0

ρ2−ρA
0
v + ρ2−ρ1

ρ2−ρA
0
vB0 .
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Figure 3.1: Equilibrium Strategy in Game 2 Notes: In panel (a), player A’s equilibrium actions of full
trustworthiness and intermediate trustworthiness are highlighted in thick lines and circles, respectively. In panel (b),

the dashed and dotted lines are q2
q1

=
ρ1−ρA0
ρ2−ρA0

and 1−q2
1−q1

=
ρ1−ρA0
ρ2−ρA0

, respectively. Player B’s equilibrium strategy can be

characterized by three parts: (1) only invest in a favorable signal when (q1, q2) is on the equilibrium path (the area of thick
lines), (2) always invest in a favorable signal and invest in an unfavorable signal with positive probability when (q1, q2)

is off the equilibrium path and the likelihood ratio q2
q1

or 1−q2
1−q1

falls below a cutoff value (the area above the dotted line or

below the dashed line), and (3) never invest otherwise (the area between the dashed line and the dotted line), where signal

s = b(s = w) is favorable if q1
q2

> 1( 1−q1
1−q2

> 1) and is unfavorable otherwise.

with its bringing about preliminarity of player A’s choice and an increase in his power to

commit to a certain level of trustworthiness, fosters trustworthiness and trusting acts.

Extension from Kamenica & Gentzkow (2011). Their model implies that when p is

exogenous and observable, player A optimally chooses q1 = 1 and q2 such that player

B is indifferent to either investing or not investing given a favorable signal. Therefore,

the optimal q2 is a strictly increasing function of p. However, Proposition 1 reveals that

this implication does not hold when p is endogenous and unobservable. In Game 2, if

q1 = 1 and q2 is excessively large, player A will choose p = 0 given player B’s investing

in a favorable signal; consequently, investing in a favorable signal is no longer player B’s

optimal strategy. To ensure player B’s optimal investing in a favorable signal, player A’s

choice of q2 cannot exceed an upper bound that exactly makes player A indifferent to

either choosing p = 0 or choosing the equilibrium p. Given the current payoff structure,
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Figure 3.2: Expected Payoffs on the Equilibrium Paths in Game 2 Note: On the equilibrium paths,

p ∈ [p, 1], where p ≡ ρB0 −(1−ρ2)

(1−ρ1−ρB0 )
ρ2−ρA0
ρ1−ρA0

+ρB0 −(1−ρ2)

∈ (0, 1).

the upper bound is
ρ1−ρA0
ρ2−ρA0

and when q2 =
ρ1−ρA0
ρ2−ρA0

, p = p exactly makes player B indifferent

to either investing or not investing in a favorable signal. Thus, whichever of p ∈ [p, 1]

player A chooses, the optimal q2 for him remains constant.

Equilibria outcome changes across games. Player A chooses to be trustworthy with

zero probability in Game 1, but he chooses to be trustworthy with up to full probability in

Game 2, that is, p ∈ [p, 1]. Player B does not invest in Game 1, but in Game 2, she invests

on the equilibrium paths (q1 = 1, q2 ≤ ρ1−ρA0
ρ2−ρA0

, s = b) and (q1 = 0, q2 ≥ ρ2−ρ1
ρ2−ρA0

, s = w). In

terms of ex ante expected payoffs, in Game 1, player A and B get vA0 and vB0 , respectively.

In Game 2, player A’s payoff is ρ1v (> vA0 ) and player B’s payoff generally exceeds vB0 ;

thus, the aggregate payoff increases from Game 1 to Game 2.

3.3 Experimental Design and Procedure

Our experiment tests the effect of introducing information design on trustworthiness

and trusting acts, and also the theory predictions on players’ behavioral patterns. To
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isolate the effect of introducing information design from the effect of experience or learn-

ing, this experiment collects subjects’ initial responses to the games. We discuss an

alternative experimental design in Section 3.6.

3.3.1 Experimental Design

We employ a within-subjects design according to which each subject plays both Game

1 and Game 2. We set vA0 = vB0 = 10, (ρ1v, (1 − ρ1)v) = (15, 15) and (ρ2v, (1 − ρ2)v) =

(22, 8). Experimental instructions are provided in Appendix C.4.

The task of deciding the probability p is described to subjects intuitively: (1) player

A picks an integer number P from 0 to 100; (2) if P = 100, then payoff allocation (15, 15)

is realized, and if P = 0, then payoff allocation (22, 8) is realized; (3) if 0 < P < 100,

then payoff allocation (15, 15) is realized with a probability of P% and payoff allocation

(22, 8) is realized with a probability of (100−P )%. The task of deciding the conditional

likelihood qi (i = 1, 2) is also described intuitively: (1) when payoff allocation (15, 15)

((22, 8)) is realized, a ball from urn 1 (urn 2) with 100 balls in total is randomly drawn;

(2) player A picks an integer number Qi from 0 to 100 so that urn i contains Qi black

balls and 100−Qi white balls.

In Game 1, payer A first decides a number P . Then, player B decides whether to

invest in the project without knowing player A’s choice of P and which of the two payoff

allocations is realized. In Game 2, player A first decides the numbers P , Q1, and Q2.

Then, a payoff allocation is realized by a computer server according to the number P ,

and a ball is randomly drawn from the corresponding urn. Finally, player B observes

only the numbers Q1, Q2 and the randomly drawn ball, and decides whether to invest in

the project. In both games, the realized payoff allocation is implemented when player B

invests in the project, and each player keeps the endowment of 10 when player B does
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not invest.

Each subject is randomly assigned a constant role throughout the experiment, either

player A or player B. Each subject plays five rounds of each game,19 and the order of

the two games is varied across sessions to control the game order effect. Each subject

is paired with a new anonymous opponent in each round and receives no feedback.20

The payoff unit in the experiment is tokens and each token can be redeemed for two

Chinese yuan. Subjects are paid according to the tokens they earn in one randomly

selected round, so they have no incentive to play different strategies across rounds to

hedge against risks. Each subject also receives an additional show-up fee of five Chinese

yuan. After the paid rounds, subjects are asked to complete a six-question survey, which

includes belief questions about whether they think player A (B) on average receives a

higher, lower, or identical payoff in Game 2 compared to that in Game 1.

To ensure that subjects understand the two games, we design a practice stage con-

sisting of four rounds before the paid rounds. In the practice stage, a subject plays

each role in each game only once against a computer opponent who always makes ran-

dom choices.21 Subjects are informed of the computer opponent’s strategy and receive

feedback at the end of each practice round.

3.3.2 Discussion of the Design

We discuss below a few aspects of the design.

19Playing multiple rounds of Game 2 is useful for identifying player B’s strategy. The number of
rounds played for Game 1 is set to be the same for comparability.

20This design is standard in the literature on eliciting initial responses. See, for instance, Costa-
Gomes & Crawford (2006) and Alaoui & Penta (2015), among others. This design excludes or suppresses
confounds such as reputation consideration, learning about the opponents’ strategies, and the effect of
past experience.

21The setting of making random choices by a computer opponent ensures that the practice experience
will not produce confounds in the paid experiment. To prevent subjects from misunderstanding their
opponents’ choices in the paid rounds, we make it clear in experimental instructions that their opponents
in practice rounds and paid rounds are different in nature.
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Payoff allocations. The payoff allocations we select satisfy the assumptions in the

theoretical setting. Specifically, ρA0 + ρB0 = 20
30

< 1, ρA0 = 10
30

< ρ1 = 15
30

< ρ2 = 22
30
, and

1 − ρ2 = 8
30

< ρB0 = 10
30

< 1 − ρ1 = 15
30
. Our selection is also for the practical purpose.

Bohnet et al. (2008) also use the payoff allocations (10, 10), (15, 15), and (22, 8) in their

trust game and conduct experiments in a highly diverse set of countries (Brazil, China,

Oman, Switzerland, Turkey, and the United States).

Treatments. First, player A in Game 2 has full flexibility to decide an information

structure: Q1 ∈ {0, 1, · · · , 99, 100} and Q2 ∈ {0, 1, · · · , 99, 100}, which closely matches

the theoretical setting. Alternatively, one may want to make some restrictions on sets of

information structure in lab implementation such as: (1) (Q1, Q2) ∈ {(100, 0), (50, 50)},

(2) Q1 + Q2 = 100, or (3) Q1 ≥ Q2. Each of the first two restrictions will rule out the

possibility of subjects playing according to equilibria with intermediate trustworthiness.

The third restriction designates a black ball as a signal favoring state 1 and is the most

innocent restriction. However, a considerable fraction of A players in our experiment

still prefer using a white ball as a signal favoring state 1. Second, the equilibria val-

ues of p in Games 1 and 2 equal 0 and an interval of [1
7
, 1] given the values of payoff

parameters, respectively. We thus allow P to take any value from {0, 1, · · · , 99, 100},

which corresponds to the set of {0, 0.01, · · · , 0.99, 1} for values of p. Third, we employ

a within-subjects design instead of a between-subjects design. While both designs can

gauge treatment effects, the former additionally makes it possible for us to investigate

subject heterogeneity in the effect of introducing information design.

Constant roles. Burks et al. (2003) show that a subject’s playing both roles in trust

games brings about confounds. Thus, we let each subject play a constant role throughout

the experiment.
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3.3.3 Experimental Procedure

There were twenty participants in each session of our experiment. Ten subjects were

randomly chosen to be player A and the other ten were selected to be player B. Each

subject was paired with an opponent subject exactly once. Each participant was provided

with a hard copy of the experimental instructions. When all participants were seated

and assigned identification numbers, pre-recorded audio of the experimental instructions

was played through loudspeakers to maintain uniformity across sessions. After the audio

was played, an experimental investigator answered any questions about understanding

the experimental instructions. The experiment started when participants’ questions had

all been addressed. The experimental interface was programmed through z-Tree (Fis-

chbacher 2007). At the end of the experiment, each subject’s earnings were displayed

only on her computer screen. Subjects were paid privately and then left the laboratory.

We conducted sixteen sessions at the Finance and Economics Experimental Labora-

tory of Xiamen University, with five sessions on December 6th, eight sessions on December

7th and three sessions on December 8th of 2019. Game 2 preceded Game 1 in the eight

sessions on December 7th and Game 1 preceded Game 2 in the other eight sessions. A

total of 320 student subjects at Xiamen University from different majors were recruited

, each of whom participated in only one session. Each session lasted approximately 35

minutes. Subjects playing role A (B) on average earned 32.6 (26.05) Chinese yuan (about

4.66 and 3.72 US dollars at the contemporaneous exchange rate), compared to a local

minimum hourly wage of 18 Chinese yuan in that year.

3.4 Experimental Results

An observation in our sample refers to the values of variables for a pair of subjects

in one round. The main variables of interest include trustworthiness and information
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Figure 3.3: Choices Across Rounds Notes: Circles or triangles represent sample means; line segments represent
± standard errors that have been adjusted for within-subject correlations.

structure, measured by (p = P
100

, q1 =
Q1

100
, q2 =

Q2

100
), the signal indicated by the color of

the drawn ball (s ∈ {b, w}), trust indicated by the action of investing or not investing

(z ∈ {1, 0}), and a dummy indicating whether the observation is from Game 1 or Game

2. Overall, the experiment collected 1600 observations from 1600 rounds, including 800

observations of each game. In the following analysis, we further cluster the observations

at the subject or session level whenever it is needed.

3.4.1 Treatment effects

Figure 3.3 demonstrates the round-by-round data of trustworthiness (p) and trust

(z). It is clear that trustworthiness and trusting acts increase from Game 1 to Game 2

irrespective of round.

Table 3.1 shows that when we consider the full sample, subsample 1, in which Game

1 is played first, or subsample 2, in which Game 2 is played first, the treatment effects are

qualitatively consistent with the equilibrium analysis. The average of player A’s chosen

probability of state 1, p, nearly doubles from 0.23 to 0.44 (p-value<0.001, Wilcoxon signed

rank test on the averages at the subject level). The fraction of rounds in which player
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B invests increases by 40% from 0.34 to 0.47 (p-value<0.001, Wilcoxon signed rank test

on the averages at the subject level). Since the aggregate payoff for a pair of subjects

is 20 when player B does not invest and is 30 when player B invests, the increase in the

frequency of player B’s investing implies that the aggregate payoff increases.

Table 3.1: Treatment Effects

Game 1 Game 2 Difference

Trustworthiness (p)

0.23 0.44 0.20***
0 ≥ 1

7

0.26 0.42 0.15**
0.2 0.45 0.25***

Trust (z)

0.34 0.47 0.13***
0 ≥ 1

2

0.39 0.45 0.06*
0.28 0.49 0.21***

Notes: For each variable, rows 1-4 represent the full sample, equilibrium prediction, subsample 1 and subsample 2, in
which Game 1 is played first and second, respectively. The used test is Wilcoxon signed rank test on the averages at the
subject level. *, **and *** indicate significance at the 10%, 5% and 1% levels, respectively.

As to each player role’s payoff change, its compliance with the equilibrium anal-

ysis is mixed. No significant difference is observed in player A’s average payoff be-

tween games.22 Player B’s average payoff increases significantly from 9.91 to 11.35 (p-

value<0.001, Wilcoxon signed rank test on the averages at the subject level).23

Figure 3.4 presents the data in a disaggregated form: the distributions of each sub-

ject’s average p, z and payoff. The figure clearly shows that the distributions of player A’s

level of trustworthiness and player B’s average payoff in Game 2 first-order stochastically

22In Appendix C.3.1, we also analyze player A’s average payoff change between games under each
realized state: the average payoff increases significantly under state 1 and decreases significantly under
state 2. This observation indicates that introducing information design benefits only those A players
who choose to be trustworthy.

23According to the post-experiment questionnaire, among three belief options of being higher, lower
and equal, over half of subjects believe that, on average, player A receives a higher payoff in Game 2
than that in Game 1, and more than three-quarters of the subjects believe that player B receives a higher
payoff in Game 2 than that in Game 1.
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dominate those in Game 1, respectively. It also shows that player B trusts more often

in Game 2 than in Game 1, and the distributions of player A’s average payoff in the two

games are not clearly distinguishable.
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Figure 3.4: Distributions of p, z and payoff at the subject level

In Appendix C.3.2, we supplement the above analyses by considering only the first

round play of each game. We still find trustworthiness, trusting act and player B’s payoff

increase significantly from Game 1 to Game 2. In addition, the data in a disaggregated

form exhibits a similar pattern as Figure 3.4 does.
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3.4.2 Measure of Informativeness

Before looking into the observed behavioral patterns, we now introduce a measure of

informativeness of an information structure (q1, q2) ≡ Q, which itself is based on Black-

well’s informativeness order (Blackwell 1953). Information structure Q is (weakly) more

Blackwell informative than information structure Q′ if we can replicate the second infor-

mation structure from the first by randomly drawing a signal after each observation of

a signal in the first information structure. Being strictly more informative, less informa-

tive, identically informative, the most informative, and the least informative can then be

defined.

Blackwell’s order is not complete, so there is no numerical representation in the

standard sense; that is, there does not exist a mapping from information structures to

the real number set that satisfies two properties: (1) if Q is strictly more informative than

(identically informative as) Q′, then the former is assigned a greater number (the same

number); and (2) the converse statement of (1). Nevertheless, an index that satisfies

only the first property is useful for differentiating information structures.24 For such an

index, Q is no less informative than Q′ if the former has an index value no less than that

of the second. Below, we propose a natural definition of such an index.

Definition 1 We define index uQ for Blackwell’s informativeness of Q as the probability

that Q is more informative than any Q′ randomly drawn from [0, 1]× [0, 1] according to a

uniform distribution, that is, uQ ≡ Pr(Q′ ∼ U [0, 1]×[0, 1] : Q is more informative than Q′).25

24Notably, an index that satisfies only the second property is less useful, as can be illustrated by an
example. Consider three information structures (0.3, 0.1), (0.8, 0.6), and (0.2, 0.1). Based on Claim 1 in
the proof of Proposition 2 in Appendix C.2.2, the first two are not comparable and the last two are not
comparable, but (0.3, 0.1) is strictly more informative than (0.2, 0.1). In this example, there is no index
that satisfies the second property and in turn (0.3, 0.1) and (0.2, 0.1) cannot be differentiated.

25One may consider an alternative definition of the index based on a dual perspective: an index of Q
is defined as one minus the probability that any Q′ randomly drawn from [0, 1] × [0, 1] according to a
uniform distribution is more informative than Q. This alternative index satisfies only a weak version of
the first property.
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We show that the index can be characterized by the difference between the two

likelihoods of an information structure, and it indeed satisfies the first property.

Proposition 2 For any Q, uQ = |q1 − q2|. If Q is strictly more Blackwell informative

than (identically informative as) Q′, then uQ > uQ′ (uQ = uQ′).

Note that Q = (1, 0) or (0, 1) is the most informative structure and Q = (q, q) is the

least informative structure. Since uQ = 1 if and only if Q = (1, 0) or (0, 1), and uQ = 0 if

and only if Q = (q, q), we can strengthen the interpretation of uQ = 1(0): Q is the most

(least) informative structure if uQ = 1(0).

3.4.3 Player A’s patterns

We first examine the extent to which player A’s choice at the aggregate level is

in compliance with the equilibrium prediction. The percentages of rounds in which

player A chooses p = 0 (equilibrium strategy), 0 < p ≤ 0.5, 0.5 < p < 1, and p = 1

in Game 1 are 57.75%, 22.25%, 9.5% and 10.5%, respectively. In Game 2, 24.25% of

observations comply with the equilibrium predictions of player A’s actions.26 All belong

to full trustworthiness with the most informative structure: (p = 1, q1 = 1, q2 = 0) (163

observations) and (p = 1, q1 = 0, q2 = 1) (31 observations).27

We now consider player A’s choice of information structure at the aggregate level.

According to the observed distribution of the index uQ, the quartiles of uQ are 0, 0.2, 1

and 1, with a mean value of 0.40. In addition, the fractions of uQ = 0 and uQ = 1 are

28% and 26.38%, respectively. Note that the equilibrium model predicts only the pattern

26We also consider allowing 10% perturbation in the equilibrium predictions and find only slight
improvement: 25.88% of observations comply with the predictions.

27In the subsample in which (q1, q2) is on the equilibrium path, almost all observations (211 out of
213) have the most informative structure. In the subsample in which (q1, q2) is on (off) the equilibrium
path, 91.08% (57.75%) of observations comply with the equilibrium prediction of p.
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of uQ = 1. Therefore, one may attribute the pattern of uQ = 0 to errors or propose an

alternative model to rationalize it.

Pattern 1 (Information structure) More than half of the information structures

that subjects choose are the most (26%) or least (28%) informative.28 Moreover, in almost

all (92%) the observations with the most informative structure, p = 1; in approximately

57% of the observations with the least informative structure, p = 0.

How a player A’s choice of p is associated with his choice of information structure Q

in Game 2 is also of our interest. A correlation test between p and uQ on the averages

at the subject level shows that they are positively related (Pearson’s r = 0.764, p-value

< 0.001).29 We then investigate the association at the subject level. Let p̄ be the average

value of p chosen by a subject in five rounds of a game. We divide p̄ into two categories:

low p̄ if p̄ ≤ 0.5 and high p̄ if p̄ > 0.5. Similarly, let uQ be the average value of uQ

chosen by a subject in five rounds of a game. We label uQ as low (high) informativeness

if uQ ≤ 0.5 (uQ > 0.5). We consider whether a subject with a low or high p̄ chooses a

more informative structure.

Table 3.2 suggests that some subjects signal their high trustworthiness by choosing

high informativeness and other subjects obscure their low trustworthiness by choosing low

informativeness.30 The first case is predicted by the equilibrium model, and the second

case likely reflects subjects’ non-equilibrium strategic reasoning. Additionally, those who

choose low p̄ and high informativeness appear strategically naive and selfish, and those

who choose high p̄ and low informativeness appear strategically naive and prosocial.

Pattern 2 (Association of trustworthiness and information structure)Among

28The fractions of choosing (p = 0, uQ = 0) and (p = 1, uQ = 1) are 16% and 24.25%. When 10%
perturbation of the two choices is allowed, the fractions are 27.25% and 24.88%.

29The positive correlation still holds even if we exclude those A players such that (p̄, uQ) = (1, 1) or
(0, 0) (Pearson’s r = 0.547, p-value < 0.001).

30We also investigate the association at the round level and find a similar result.
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Table 3.2: Association of p and uQ at the Subject Level in Game 2

Low informativeness High informativeness Total

Low p̄ 53.75%(86) 4.38%(7) 58.13%(93)

High p̄ 13.13%(21) 28.75%(46) 41.88%(67)

Total 66.88%(107) 33.13%(53) 100%(160)

Notes: The number of subjects in each category is reported in parentheses. Low (high) informativeness: uQ ≤ 0.5(> 0.5);
low (high) p̄: p̄ ≤ 0.5(> 0.5). Pearson’s chi-square test: p-value<0.001; Fisher’s exact test: p-value<0.001.

those subjects who choose a low p̄, almost all (92%) choose low informativeness. Among

those who choose a high p̄, the majority choose high informativeness (69%). A small

fraction of subjects choose a low p̄ with high informativeness or a high p̄ with low infor-

mativeness.

We finally explore how player A’s choice of p in Game 2 is associated with his choice

of p in Game 1. A correlation test shows that player A’s p̄ in Game 1 and Game 2 are

positively related (Pearson’s r = 0.25, p-value<0.01). We then consider the fractions of

subjects whose p̄ increases, remains unchanged or decreases from Game 1 to Game 2. In

principle, the first group is predicted by the equilibrium model, the second group may be

attributed to a null effect of introducing information design, and the third group may be

attributed to errors or an adverse effect of introducing information design. We find the

fractions are 60.63%, 13.75%, and 25.63% respectively, and the first two groups account

for 74.38% of A players. Moreover, the fraction of subjects whose p̄ exceeds 0.5 in both

games is 13.75%, which may be attributed to social preferences.

Pattern 3 (Change in trustworthiness) For the majority of subjects, p̄ in Game

2 is no less than that in Game 1. A considerable fraction of subjects choose high p̄ in

both games.
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3.4.4 Player B’s patterns

We first examine player B’s behavioral compliance with the equilibrium prediction.

While the equilibrium model predicts that player B does not invest in Game 1, the

percentage of rounds in which player B invests in Game 1 is 33.63%. Compared to the

equilibrium predictions in Game 2, the consistency ratio of player B’s actions exceeds

96% on the equilibrium path (q1, q2), which is expected given that player A chooses the

most informative structure on the equilibrium path. Player B’s actions are consistent

with predictions approximately 75% of the time off the equilibrium path (q1, q2), partly

due to the equivocal prediction of actions in many off-equilibrium paths.

Note that in Game 2, player B is off the equilibrium path (q1, q2) for most of time

given player A’s low compliance with the equilibrium strategy. Thus, the above simple

description of player B’s binary action off the equilibrium path may not be sufficiently in-

formative. Below, we investigate how player B’s investing decision hinges on her observed

information structure and signal.

We categorize a signal generated from an information structure, s|Q, based on whether

it recommends investing (favorable) or not investing (unfavorable). Note that player B’s

optimal state-dependent action is investing if and only if the underlying state is state 1.

Thus, we say s|Q is a favorable signal if the likelihood of generating the signal in state

1 is higher than that in state 2, that is, (s = b, q1
q2

> 1) or (s = w, 1−q1
1−q2

> 1); otherwise,

s|Q is an unfavorable signal.

We run a probit regression of player B’s investing choice on a dummy indicating a

favorable signal, the interaction between uQ and the dummy, the interaction between uQ

and another dummy indicating an unfavorable signal, the frequency of investing in Game

1 and a dummy indicating Game 1 being played first, with standard errors clustered at

the subject level. The estimated coefficients (standard errors) are 0.170 (0.161), 2.852
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(0.299), -0.462 (0.281), 1.532 (0.281) and -0.304 (0.154), respectively. The results suggest

that the effect of informativeness is positive (negative) for favorable (unfavorable) signals,

and the effect is much larger for favorable signals.

We then consider player B’s investing choice at the subject level. Based on a di-

chotomy of information structure, i.e., low (high) index if uQ ≤ 0.5 (uQ > 0.5), and a

dichotomy of signal (favorable or not), player B’s information set can be classified into

four categories: H1 (H2), unfavorable signal and information structure of low (high) in-

dex; and H3 (H4), favorable signal and information structure of low (high) index. Given

such classification, player B’s strategy space consists of 16 strategies, each of which spec-

ifies a binary action of investing or not investing for each Hi. One can look at the exact

distribution of player B’s strategy, but this information is not very useful.31 We thus

consider the distribution at a coarse level: we investigate actions under each Hi in the

subsample of subjects whose action in that Hi is self-consistent. Take H1 for example, we

consider the subsample in which a subject takes the same action in all rounds in which

she observes H1.

Overall, 158 of 160 subjects have self-consistent actions for at least one Hi. Among

them, 117, 44, 100 and 121 subjects have self-consistent actions for information sets

H1, H2, H3 and H4, respectively, and the corresponding fractions of subjects who invest

are 10.26%, 9.09%, 43% and 98.35%.32 Consistent with the equilibrium prediction, the

31First, a strategy space consisting of 16 strategies is still substantially scattered given the sample of
160 subjects, which leads to a small sample size of subjects who choose each specific strategy. Second,
a subject may observe only some of the four categories of information sets in five rounds and, in turn,
she can be classified as multiple strategy types. For example, a subject who observes only two (one)
categories of information sets can be classified as four (eight) strategy types. Third, when a subject
observes a specific category of information set in more than one round, she may invest in one round and
not invest in another round; consequently, we cannot classify her as any of the 16 strategy types. In
particular, this scenario is likely to occur when observing (q1, q2 = q1, b/w).

32We also investigate the distribution of subject’s action in the subsample in which a subject has
self-consistent actions for any Hi she observes. Overall, 103 of 160 subjects belong to this subsample.
Among them, 101, 27, 73 and 85 subjects choose self-consistent actions in information sets H1, H2, H3

and H4, respectively, and the corresponding fractions of subjects who invest are 10.89%, 11.11%, 39.73%
and 98.82%.
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fraction of subjects who invest is very high (low) when observing a favorable (unfavorable)

signal and an information structure with a high index.

Interestingly, the fraction of subjects who invest is considerable when observing a

favorable signal and an information structure with a low index. Given that an information

structure with a low index is associated with a low level of trustworthiness, strategically

sophisticated subjects would be better not to invest when observing such information

structures. This observation indicates that some subjects may fail to understand that

the information structure per se conveys a message about trustworthiness, which is not

captured by the equilibrium prediction.33 34

Pattern 4 (Distribution of player B’s strategy in Game 2) The fraction of

subjects who invest is the highest (approximately 98%) when observing a favorable signal

and an information structure with a high index. The fraction is the lowest (approximately

9%) when observing an unfavorable signal and an information structure with a high index.

In addition, a considerable fraction of subjects (approximately 43%) invest when observing

a favorable signal and an information structure with a low index.

We finally investigate the association of player B’s strategies in the two games. A

correlation test shows that the numbers of investing rounds in Game 1 and Game 2 of

each player B are positively related (Kendall’s τ = 0.300, p-value<0.001).35 We classify

a subject into the “trusting group” if she invests in at least three rounds of Game 1 and

into the “no trusting group” otherwise: there are 50 subjects in the former group and

33An analysis of subjects’ action patterns contingent on the information set at the aggregate level
conveys a similar message. The fractions of rounds in which subjects invest forH1 toH4 are 21.70%( 79

364 ),
10.20%( 5

49 ), 45.22%( 71
157 ) and 96.09%( 221230 ).

34We rule out the possibility that these subjects mistakenly believe that their opponents make random
choices in both paid rounds and practice rounds: the correlation coefficient between a vector of these
subjects’ actual choices and a vector of their predicted choices under the assumption of their holding
the wrong belief is 0.196, which is typically interpreted as a very weak correlation.

35At the subject level, the fractions of subjects whose frequency of investing in Game 2 is larger, equal
to, and lower than that in Game 1 are 53.1%, 24.4%, and 22.5% respectively. The first two groups
account for 87.5% of B players.
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110 subjects in the latter group. As expected, the distributions of observed information

sets are not statistically different between the two groups (see the detailed analysis in

Appendix C.3.3). However, the frequency of investing in Game 2 of the “trusting group”

is always higher than that of the “no trusting group”, as shown in Table 3.3, indicating

that some subjects seem to be inherently more trusting than others, regardless of the

game setting.

Table 3.3: Player B’s Strategies Across Games

Game 1
Game 2

H1 H2 H3 H4

“Trusting group” 75.60%(189
250

) 39.84%( 49
123

) 25%( 3
12
) 68.63%(35

51
) 98.44%(63

64
)

“No trusting group” 14.55%( 80
550

) 12.45%( 30
241

) 5.41%( 2
37
) 33.96%( 36

106
) 95.18%(158

166
)

Difference 61.05% 27.39% 19.59% 34.67% 3.26%

Notes: “Trusting/no trusting group” refers to subjects who invest in no less than/less than three rounds of Game 1.
The percentage is the frequency of investing. H1 (H2), unfavorable signal and information structure with a low (high)
index; H3 (H4), favorable signal and information structure with a low (high) index. Chi-square test with Donner’s
adjustment on clustered data at the subject level for Game 1 (p-value<0.001), H1 (p-value<0.001), H2 (p-value=0.060),
H3 (p-value<0.001) and H4 (p-value=0.298).

Pattern 5 (Association of player B’s strategies across games) In Game 2, the

“trusting group” is always more likely to invest than the “no trusting group”, especially

when observing an information structure with a low index (H1 or H3).

3.5 Prosociality and Strategic Sophistication

We show that the treatment effects and some behavioral patterns are in line with the

equilibrium analysis. However, there are also a few notable deviations including some A

players’ choosing zero trustworthiness with the least informative structure and some B

players’ seemingly failing to understand that the information structure per se conveys a
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message about trustworthiness. In this section, we propose a model of heterogeneity in

prosociality and strategic sophistication to rationalize the treatment effects and all major

patterns.

We first discuss two alternative modeling approaches: a level-k analysis with the stan-

dard preference and an equilibrium analysis with social preferences. The two approaches

are somewhat appealing in the sense that they deviate from the standard framework

only in one dimension. However, they have limitations in rationalizing the aforemen-

tioned deviations. For example, the level-k model with the standard preference cannot

make a sharp prediction about player A’s optimally choosing (p = 0, q1 = q2): while

the strategy can be optimal if player B of a lower level believes that player A chooses

p = 1, a continuum of other strategies (e.g., p = 0, 0 < q1, q2 < 1) are also optimal

in this situation. The equilibrium model with social preferences cannot make a sharp

prediction about player A’s optimally choosing (p = 0, q1 = q2) either, and requires that

player B correctly understands that the information structure per se conveys a message

about trustworthiness. We thus conduct a level-k analysis with social preferences: this

behavioral model generates sharp predictions about the deviations when retaining the

main predictions based on the standard equilibrium model.

3.5.1 The behavioral model

We provide detailed assumptions and intuitions of the behavioral model in Appendix

C.1. The optimal strategy for each behavioral type is characterized in Proposition 3.

Proposition 3 Given the assumptions about players’ heterogeneity in prosociality, view-

points about prosociality and strategic sophistication, and the assumption about condition-

ally pessimistic posterior belief in zero-probability information sets, the optimal strategy

for each type is summarized in Table 3.4.
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Table 3.4: Optimal Strategy for Each Behavioral Type

Role Type Game 1 Game 2

A

(P,L0/L1) p = 1 p = 1, q1 ∼ U [0, 1], q2 ∼ U [0, 1]

(P,Lk≥2) p = 1 p = 1, (q1, q2) = (1, 0) or (0, 1)

(S, L0/L1) p = 0 p = 0, q1 ∼ U [0, 1], q2 ∼ U [0, 1]

(S, L2/L3) p = 0 p = 0, q1 = q2

(S, Lk≥4) p = 0 p = 1, (q1, q2) = (1, 0) or (0, 1)

B

(P,Lk≥0, π) z = 1 z = 1

(S, L0, π) z = 0 z = 0

(S, L1/L2, π)
z = 1 if π ∈ (

ρB0 −(1−ρ2)

ρ2−ρ1
, π); z = 1 if ( q1

q2
>

ρB0 −(1−ρ2)

1−ρ1−ρB0

1−π
π
, b)

z = 0 if π ∈ (0,
ρB0 −(1−ρ2)

ρ2−ρ1
] or (1−q1

1−q2
>

ρB0 −(1−ρ2)

1−ρ1−ρB0

1−π
π
, w); z = 0 otherwise

(S, Lk≥3, π) same as above
z = 1 if (0 < q1 ≤ 1, q2 = 0, b)

or (0 ≤ q1 < 1, q2 = 1, w); z = 0 otherwise

Notes: P and S index prosocial and selfish players, respectively. Lk refers to a level-k player. π refers to player B’s belief
about the fraction of prosocial A players. The description of π can be found in Appendix C.1.

Similar to the equilibrium model, the behavioral model explains the treatment effects,

the details of which are discussed in Appendix C.1.3. Below, we highlight how the

behavioral model rationalizes those patterns that are not predicted by the equilibrium

model.

Association of trustworthiness and information structure. Type (S, L2/L3) chooses

(p = 0, q1 = q2) and type (S, Lk≥4) chooses (p = 1, q1 = 1, q2 = 0) or (p = 1, q1 = 0, q2 =

1). (q1 = q2) and (q1, q2) = (1, 0)/(0, 1) are the least and the most informative structures,

respectively. This suggests that some A players optimally obscure their zero trustworthi-

ness through the least informative structure and other A players optimally signal their

full trustworthiness through the most informative structure, which rationalizes Patterns

1 and 2.

Trust based on lenient or stringent conditions. L1/L2 selfish B players are more likely
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to be persuaded to invest than Lk≥3 selfish B players. The former can be persuaded

to invest when observing a favorable signal and an information structure with a finite

likelihood ratio. By contrast, the latter invest only when observing a favorable signal and

an information structure with an infinite likelihood ratio. That is, the latter invest only

when the observed signal and information structure perfectly reveal that the underlying

state is state 1. In other words, type (S, L1/L2, π) behaves like an unsophisticated player

who treats the information structure as exogenously given and consequently fails to

understand its association with player A’s choice of p. Type (S, Lk≥3, π) behaves like a

sophisticated player who anticipates the association between player A’s choice of p and

choice of information structure. This result explains Pattern 4 about the distribution of

player B’s strategy in Game 2.

Association of player B’s strategies across games. We categorize player B’s types

into two groups depending on whether the type invests in Game 1. Selfish players with

viewpoint π >
ρB0 −(1−ρ2)

ρ2−ρ1
and prosocial players belong to the first group, who invest in

Game 1, and selfish players with viewpoint π ≤ ρB0 −(1−ρ2)

ρ2−ρ1
belong to the second group,

who do not invest in Game 1. Note that in Game 2, type (S, L1/L2, π >
ρB0 −(1−ρ2)

ρ2−ρ1
) is

more likely to invest than type (S, L1/L2, π ≤ ρB0 −(1−ρ2)

ρ2−ρ1
), and the likelihood that type

(S, Lk≥3, π) invests is a constant value irrespective of π, ceteris paribus. This implies

that the first group also invest more frequently in Game 2 than the second group under

mild conditions,36 which matches Pattern 5.

36For example, one sufficient condition is that the proportion of type (S,Lk≥3, π >
ρB
0 −(1−ρ2)
ρ2−ρ1

) of those

with π >
ρB
0 −(1−ρ2)
ρ2−ρ1

is not greatly larger than the proportion of type (S,Lk≥3, π ≤ ρB
0 −(1−ρ2)
ρ2−ρ1

) of those

with π ≤ ρB
0 −(1−ρ2)
ρ2−ρ1

.
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3.5.2 Estimation of behavioral types

To further understand subjects’ behavior in a disaggregated form, we classify subjects’

types based on complying exactly with the behavioral model prediction (Exact type).

That is, a subject is assigned a certain Exact type if his/her action in each of ten rounds

complies exactly with the prediction and is otherwise treated as unclassified. We also

classify subjects’ types based on the maximum likelihood estimation (MLE type).37 Our

MLE type estimation procedure is similar to that of Crawford & Iriberri (2007b), and the

details are provided in Appendix C.3.4. Table 3.5 summarizes subjects’ type distributions

based on the criteria of Exact type, MLE type, a refinement of MLE type, which treats

subjects for whom the explanation of random choice can not be rejected at the five

percent level as unclassified, and a further refinement, which additionally treats subjects

with assignment of multiple types as unclassified.

One may notice a sharp increase in the number of classified subjects under the MLE

classification compared to under the Exact classification. It is due to the fact that the

Exact classification is very stringent while MLE allows inconsiderable deviations. For

example, while choice variables can take values from intervals, player A is assigned Exact

type (S, L2/L3) only when he chooses p = 0 and (p = 0, q1 = q2) in each of five rounds of

Game 1 and Game 2, respectively. Similarly, player A is assigned Exact type (S, Lk≥4)

only when he chooses p = 0 and (p = 1, |q1 − q2| = 1) in each of five rounds of Game

1 and Game 2, respectively. In contrast, the MLE classification allows errors in action

choices. The assignment of MLE type is reasonable as long as the choices of subjects

who are assigned a MLE type are close to the optimal choices of the corresponding Exact

37We omit type L0 in these classifications because L0 players are assumed to exist only in the mind
of L1 players. Additionally, type L0 is generally not separated from type L1 based on the Exact type
classification. Moreover, given that type L0 chooses an action with certainty in our specification, the
likelihood of this type’s choosing any action is difficult to specify when we apply the MLE method. In
fact, it is typical in the literature that type L0 is econometricially classified only if type L0 is assumed
to make a random action, when its likelihood function can be appropriately determined.
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type. We find that the average and median choices of subjects with a MLE type are

indeed in line with the predicted choices of the corresponding Exact type. For example,

for those subjects who are assigned type (S, L2/L3) under MLE, the averages (medians)

of p in Game 1 and Game 2, and |q1 − q2| are 0.15 (0.07), 0.16 (0.14) and 0.09 (0.07),

respectively; these numbers are 0.14 (0), 0.67 (0.7) and 0.68 (0.69) for those subjects who

are assigned type (S, Lk≥4).

Table 3.5: Summary of Subjects’ Type Distributions

Role Type Exact MLE
MLE, MLE, excluding random

excluding random and multiple types

A

(P,L1) 2 10 4 4
(P,L2/L3) 2

14 10 10
(P,Lk≥4) 12 8 8

(S, L1) 15 25 22 22
(S, L2/L3) 3 51 47 47
(S, Lk≥4) 13 55 53 53

Unclassified 130 0 16 16

B

(P,L1/L2, π ≤ 2
7
)

4

11 8 8
(P,L1/L2, π > 2

7
) 0 0 0

(P,Lk≥3, π ≤ 2
7
) 5 0 0

(P,Lk≥3, π > 2
7
) 0 0 0

(S, L1/L2, π ≤ 2
7
) 47 98 83 50

(S, L1/L2, π > 2
7
) 7 18 11 11

(S, Lk≥3, π ≤ 2
7
) 33 49 43 10

(S, Lk≥3, π > 2
7
) 3 12 8 8

Unclassified 103 0 40 73

Notes: Columns 3-6 report, respectively, the number of subjects for each Exact type, MLE type, and refined MLE type by
treating those subjects for whom the explanation of random choice can not be rejected at the five percent level or/and those
subjects being assigned multiple types as unclassified. For prosocial players, more types are differentiated through the MLE
than through the Exact classification because some types share the same optimal strategy but have different expected payoff
functions. In columns 2-5, the total number of subjects for each role over types may exceed 160 because some subjects can
be assigned multiple types. A comparison between columns 5 and 6 shows that when we focus on those subjects who are
assigned types according to “MLE, excluding random”, each player A is assigned a unique type, and 33 B players can be
classified as both types (S,L1/L2, π ≤ 2

7
) and (S,Lk≥3, π ≤ 2

7
) due to a lack of sufficient variation of their information

sets.

Below, we show from a few perspectives that the MLE results lend empirical support

to the behavioral model.

123



Trustworthy by Design Chapter 3

First, we perform likelihood ratio tests at the subject level on the null hypothesis of

a random choice model. The null hypothesis is rejected at the significance level of five

percent for 90% of A players and for 75% of B players, which suggests that for most

subjects, the proposed model is favored against a random choice model.

Second, the proportions of prosocial players and less sophisticated players are consid-

erable.38 Based on the MLE type classification, the proportion of A players (B players)

who are assigned to be prosocial is 20.63% (10%), and the proportion of A players (B

players) who are less sophisticated is 60.63% (79.38%).

Third, 98 out of 160 A players never choose (p = 1, |q1 − q2| = 1) even though this

choice can give them a payoff of 15 for sure. The MLE type estimates reveal that about

half of them are likely to do so intentionally: 50 out of the 98 subjects are assigned

type (S, L2/L3), who optimally chooses zero trustworthiness with the least informative

structure (i.e., p = 0 and |q1 − q2| = 0)) according to the behavioral model; the averages

(medians) of their choices of p in Game 1 and Game 2 and |q1 − q2| are 0.15 (0.09), 0.16

(0.14) and 0.09 (0.07), respectively.

Fourth, recall that two model predictions rely on mild assumptions about the size of

a certain type’s proportion. The MLE type estimates indeed validate these assumptions.

Specifically, the treatment effect of increasing trusting acts is partly attributed to a small

proportion of selfish B players with π > 2
7
out of all selfish B players. According to the

MLE type estimates, selfish B players with π > 2
7
constitute only one-fifth of selfish

B players. In addition, to predict that the group who invest in Game 1 invest more

frequently in Game 2 than the group who do not invest in Game 1, a mild sufficient

condition is that the proportion of type (S, Lk≥3, π > 2
7
) of those with π > 2

7
is not

greatly larger than the proportion of type (S, Lk≥3, π ≤ 2
7
) of those with π ≤ 2

7
. We

find that the proportions are 40% and 37.69%, respectively, which verifies the sufficient

38We call Lk<4 A players and Lk<3 B players less sophisticated players.
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condition.

3.6 Discussion

Alternative experimental design

We discuss an alternative experimental design, in which feedback is provided at the

end of each round. The merit of such design is that subjects can learn from past expe-

rience and may converge to a stable strategy.39 However, the design has its weakness:

subjects’ learning to play the game and learning about opponents’ trustworthiness or

trust occur simultaneously. The effects of the latter type of learning will entangle with

the effects of introducing information design, making it hard to identify which force is

driving subjects’ behavior. For these reasons, we take a compromised approach: subjects

receive feedback in practice rounds, in which they play against a computer opponent who

always makes random choices, but get no feedback in paid rounds.

The role of risk preference

Subjects are implicitly assumed to be risk neutral in our equilibrium model and

behavioral model. While it is a typical assumption in the literature, we discuss how

subjects’ risk preferences might affect the interpretation of the experimental findings.

First, the treatment effects on trustworthiness and trusting acts are not affected because

we employ a within-subjects design and these effects largely hold at the subject level.

Second, although we can not completely rule out the effect of risk preference, there is

suggestive evidence that our interpretation of behavioral patterns is at least not largely

confounded by it. Subjects’ answers to two post-experiment survey questions reveal

39Note that even in the design with feedback, players’ behavior may still substantially deviate from
the standard equilibrium prediction. For instance, in the experiment of Fréchette et al. (2022), which
features information design, each subject played 25 rounds with complete feedback at the end of each
round. Their analysis of the last ten rounds still finds substantial deviations from the equilibrium
predictions.
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their risk premiums.40 Focusing on subjects who are assigned types according to “MLE,

excluding random and multiple types” in Table 3.5, we find: (1) for A players, the risk

premiums of any two different types are not significantly different at the 10% level (t-test

with Benjamini-Hochberg multiple testing correction); (2) for B players, except that type

(S, L1/L2, π > 2
7
) has a significantly lower risk premium than type (S, L1/L2, π ≤ 2

7
) or

type (S, Lk≥3, π ≤ 2
7
), the risk premiums of any other two types are not significantly

different at the 10% level.41

Relationship with classic trust games

Game 1 resembles classic trust games except for the flipped decision order. The

motive of reciprocating trust is arguably less likely to be triggered in Game 1 than

in classic trust games because, in the former setting, the trustee does not observe the

trusting act when making decisions. The level of trustworthiness and the frequency of

trust in Game 1 are 0.23 and 0.34, respectively. We compare them with the results of

two previous trust game experiments. Bohnet et al. (2008) study a trust game with

the same payoff structure as Game 1. In their game, an investor chooses her minimum

acceptable probability of pairing with a trustworthy trustee that makes her willing to

invest, and a trustee determines final payoffs of either (15, 15) or (8, 22) if being invested

(strategy method). The proportion of trustee subjects who choose (15, 15) is 0.29 in their

sessions run in China. In Bracht & Feltovich (2009), given a payoff allocation of (2, 0)

for not investing, a trustor first decides whether to invest, and conditional on investing, a

trustee decides a binary allocation between (4, 4) and (0, 8). They find that the frequency

40The two questions are: (i) Suppose Plan I pays you 22 with X% chance and 10 with (100 −X)%
chance, and Plan II pays you 15, at least how large X should be so that you would be willing to choose
Plan I? (ii) Suppose Plan I pays you 15 with Y% chance and 8 with (100 − Y )% chance, and Plan II
pays you 10, at least how large Y should be so that you would be willing to choose Plan I? The two
questions resemble player A and B’s decision problems in the experiment and we compute player A and
B’s risk premium based on the player’s answer to question (i) and (ii), respectively.

41Given that subjects with type (S,L1/L2, π > 2
7 ) seem to be less risk-averse than subjects with type

(S,L1/L2, π ≤ 2
7 ) or type (S,Lk≥3, π ≤ 2

7 ), risk preference is also a possible explanation of Pattern 5.
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of investing is 0.567, and the conditional frequency of choosing (4, 4) is 0.376 in the first

five rounds. The comparison shows that trustworthiness and trusting acts in Game 1 are

relatively lower but still remarkable, suggesting that the flipped decision order does not

substantially change subjects’ perception of Game 1 as a trust game.

Direct and indirect effect of information design on trust

The change in trusting acts between Game 1 and Game 2 reflects the total effect of

information design on trust. A natural next step is to assess potential causal mechanisms:

the direct effect and the indirect effect (Robins & Greenland 1992; Pearl 2001). In our

context, the direct effect is represented by the change in trusting acts caused only by the

change in treatment status when fixing the level of trustworthiness in either treatment

status, and the indirect effect is represented by the change in trusting acts caused only by

the change of trustworthiness when keeping the same treatment status. We conduct the

causal mediation analysis following Tingley et al. (2014) and find that the proportions of

the direct and indirect effect of information design are about 60% and 40%, respectively

(see details of the analysis in Appendix C.3.5).

3.7 Conclusion

This article shows that information design can be used as a signaling device to im-

prove trustworthiness and trusting acts and, consequently, increase social welfare. More

precisely, the presence of information design, together with its bringing about prelim-

inarity of the trustee’s choice and an increase in the trustee’s power to commit to a

certain level of trustworthiness, fosters trustworthiness and trusting acts. We create a

laboratory environment that induces exogenous variation in trustees’ capability to de-

sign information. We find that trustworthiness and trusting acts substantially increase

from a control condition of no capability to a treatment condition of full capability. We
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also observe that trustees associate the choice of information structure with the choice

of trustworthiness, but some trustors fail to understand the association. To understand

the underlying mechanism, we explore an equilibrium model and an alternative model

that allows for heterogeneity in prosociality and strategic sophistication. The alterna-

tive model provides a better explanation for the findings; especially, it rationalizes some

trustees’ choice of zero trustworthiness with the least informative structure.

Our study points to several promising topics for future research. First, it proposes

an innovative perspective of letting trustees take the lead in the strategic interaction.

By following this perspective, one can investigate other approaches that trustees may

employ to win trust. Second, no capability and full capability are two boundary cases

of trustees’ capability to design information. One can naturally imagine the cases of in-

termediate capability in the field. Varying levels of limited capability and exploring how

trustees use limited capability is an important task for future research. Third, limited

capability in some field settings may be trustees’ endogenous choice. This endogeneity

is related to, but conceptually different from, the endogeneity of how to use a certain

capability. A comprehensive analysis of such settings will involve explicit modeling of

costs and benefits in both dimensions.
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A.1 Additional Analysis

0.00

0.25

0.50

0.75

−B −NB B −S R S O NB
Cases

Isolated Separated Joined

Choice Likelihood by Case

Figure A.1: Likelihood of Choosing High-Value Information – All Three Settings Notes: The
figure plots the likelihood of choosing σ over σ′ in the Isolated setting, the likelihood of choosing {σ0, σ} over {σ0, σ′}
in the Separated setting, and the likelihood of choosing σ0 ∨ σ over σ0 ∨ σ′ in the Joined setting. R denotes refine,
O denotes reveal-or-refine, S denotes sufficiency, B denotes Blackwell, and NB denotes that two sources can not be
Blackwell ordered. Detailed descriptions of these comparison relationships are in Section 1.2.3. The cases are ordered in
terms of the likelihood of choosing σ over σ′ under them in the Isolated setting. Short vertical lines denote 95 percent
confidence intervals.
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Figure A.2: Value given Guesses or Assessments versus Choices between Information Bundles
Notes: Value given guess denotes the actually realized instrumental value of an information bundle conditional on how it
is used. Assessment denotes the elicited assessments of the instrumental value of information bundles. In both panels, the
y-axis plots the likelihoods of subjects choosing a bundle over another in binary choices under the Separated setting. In the
left (right) panel, the x-axis plots the likelihoods indicated by the value given guesses (subjective assessments) of the pairs
of bundles. If a pair of information bundles have the equal value given guesses (are assigned with equal assessments),
then the choice of the corresponding subject between that pair of bundles is considered to be 0.5 when computing the choice
likelihood indicated by value given guesses (assessments).

Table A.1: Optimality of Decision Making – By Group

Setting Group Guess Choice Assessment Choice Assessment

(instrumental value) (value given guesses)

Separated

Naive 0.71 0.49 0.36 0.61 0.53

In-Between 0.87 0.51 0.50 0.57 0.54

Optimal 1 0.69 0.68 0.69 0.68

Joined

Naive 0.95 0.75 0.63 0.75 0.64

In-Between 0.99 0.76 0.68 0.76 0.67

Optimal 0.99 0.81 0.75 0.82 0.75

Joined - Separated

Naive 0.24 0.26 0.27 0.14 0.11

In-Between 0.12 0.25 0.18 0.19 0.13

Optimal -0.01 0.12 0.07 0.13 0.07

Notes: “Joined-Separated” presents the differences in optimality rates between the Joined and Separated settings.
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Kendall's τ: 0.714
p−value=0.01
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Figure A.3: Combining Mechanisms of Information Bundle Choices Notes: The y-axis plots the
likelihood of choosing bundle {σ0, σ} in the binary choices under the Separated setting. I define a subject’s “Iso-
lated+Assessment” (“Isolated+Joined”) choices as either her choices under the Isolated setting or choices indicated by
her assessments of the instrumental value of bundles (or choices under the Joined setting), depending on which are more
consistent with her choices between information bundles under the Separated setting. In the left panel, the x-axis plots the
predicted likelihood of choosing bundle {σ0, σ} regarding the defined “Isolated+Assessment” choices. In the right panel,
the x-axis plots the predicted likelihood regarding the defined “Isolated+Joined” choices. In each panel, the red dashed line
is the best linear fit, the grey region shows the 95 percent confidence intervals for predictions of the linear fit, and the grey
dashed line is the diagonal line y = x.
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A.2 Information Bundles and Sources

Figure A.4: Studied Information Bundles and Sources Notes: To be continue on next pages.
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Figure A.4-2: Studied Information Bundles and Sources
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Figure A.4-3: Studied Information Bundles and Sources
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B.1 Optimal WTP for an Information Structure

The goal of this section is to study how WTP for an information structure changes

with risk preferences. Given the CRRA (constant relative risk aversion) utility function

u(x) =


x1−r − 1

1− r
, if r ̸= 1

log(x), if r = 1

in which r is the coefficient of relative risk aversion, we consider a relatively wide range

of r ∈ [−1, 3] and compute the optimal WTPs for information structures with value V

(as defined in equation 2.2).1,2

V=0

V=1

V=2

V=3

V=4

0.0

0.5

1.0
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2.0

2.5

3.0

3.5

4.0

4.5

5.0

−1 0 1 2 3
Coefficient of relative risk aversion

W
T

P

Figure B.1: Optimal WTP for Information Structures under CRRA Utility Notes: The optimal
WTP of a risk neutral agent is V , that is, the WTP at the risk aversion coefficient being 0 in the figure. Given the budget
of $5, theoretical WTPs (for the information structure with V = 4) that are higher than 5 are recorded as 5.

1Gandelman & Hernández-Murillo (2015) estimate the coefficient of relative risk aversion of 75 coun-
tries and find the values are between 0 to 3. We add the range [-1,0] so to take into account risk loving
behavior as well.

2The optimal WTP is solved by finding out y that makes pu(22) + (1− p)u(12) = psu(22− y) + (1−
ps)u(12−y), where p and ps are guessing accuracies without or with information, respectively. Note that
a subject who guesses correctly (incorrectly) and pays $y for an information structure receives $22− y
($12− y) at the end of the experiment.
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B.2 Varying the order of Guess versus Elicitation of

Demand for Information

B.2.1 Baseline Treatment

Table B.1: Determinants of Demand for Information (Elicitation of Demand First)

Ranking (Logit) Difference in WTP (OLS)

(1) (2) (3) (1) (2) (3) (4)

Difference in Value 0.880∗∗∗ 1.678∗∗∗ 0.565∗∗∗ 0.975∗∗∗ 1.289∗∗∗

(0.075) (0.183) (0.056) (0.119) (0.110)

Difference in Informativeness 2.710∗∗∗ -3.395∗∗∗ 1.954∗∗∗ -1.766∗∗∗ -2.400∗∗∗

(0.219) (0.587) (0.204) (0.386) (0.390)

Difference in Disorder -0.304∗∗∗ -0.155∗ -0.658∗∗∗ 0.057 0.182∗∗ -0.124∗ -0.242∗∗∗

(0.087) (0.081) (0.105) (0.066) (0.071) (0.075) (0.077)

Clusters 109 109 109 109 109 109 108

Notes: Value denotes instrumental value as defined in equation 2.2. Informativeness denotes entropy informativeness as

defined in equation 2.1. Disorder denotes whether an information structure has a visual disorder, i.e., whether the blue

and the red balls were presented out of order. OLS regression (4) includes only pairwise comparisons in which WTP data

is ordinally consistent with Ranking data. Standard errors (clustered at the subject level) in parentheses. ∗∗∗1%, ∗∗5%,

∗10% significance.
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B.2.2 Reverse Treatment

Table B.2: Determinants of Demand for Information (Elicitation of Guesses First)

Ranking (Logit) Difference in WTP (OLS)

(1) (2) (3) (1) (2) (3) (4)

Difference in Value 0.658∗∗∗ 1.486∗∗∗ 0.448∗∗∗ 0.823∗∗∗ 1.169∗∗∗

(0.111) (0.262) (0.082) (0.204) (0.210)

Difference in Informativeness 1.981∗∗∗ -3.528∗∗∗ 1.525∗∗∗ -1.615∗∗ -2.378∗∗∗

(0.358) (0.881) (0.287) (0.663) (0.691)

Difference in Disorder -0.340∗∗∗ -0.245∗∗ -0.711∗∗∗ 0.002 0.095 -0.164 -0.315∗∗

(0.129) (0.123) (0.163) (0.095) (0.096) (0.120) (0.133)

Clusters 54 54 54 54 54 54 54

Notes: Value denotes instrumental value as defined in equation 2.2. Informativeness denotes entropy informativeness as

defined in equation 2.1. Disorder denotes whether an information structure has a visual disorder, i.e., whether the blue

and the red balls were presented out of order. OLS regression (4) includes only pairwise comparisons in which WTP data

is ordinally consistent with Ranking data. Standard errors (clustered at the subject level) in parentheses. ∗∗∗1%, ∗∗5%,

∗10% significance.
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B.3 The No Uncertainty Treatment

Table B.3: Determinants of Demand for Information (No Uncertainty)

Ranking (Logit) Difference in WTP (OLS)

(1) (2) (3) (1) (2) (3) (4)

Difference in Value 0.735∗∗∗ 1.143∗∗∗ 0.387∗∗∗ 0.362∗∗∗ 0.704∗∗∗

(0.109) (0.206) (0.069) (0.134) (0.134)

Difference in Informativeness 2.478∗∗∗ -1.759∗∗ 1.489∗∗∗ 0.106 -0.760∗

(0.381) (0.719) (0.251) (0.399) (0.422)

Difference in Disorder -0.541∗∗∗ -0.368∗∗∗ -0.725∗∗∗ -0.033 0.092 -0.022 -0.244∗∗

(0.094) (0.088) (0.111) (0.085) (0.091) (0.107) (0.100)

Clusters 61 61 61 61 61 61 61

Notes: Value denotes instrumental value as defined in equation 2.2. Informativeness denotes entropy informativeness as

defined in equation 2.1. Disorder denotes whether an information structure has a visual disorder, i.e., whether the blue

and the red balls were presented out of order. OLS regression (4) includes only pairwise comparisons in which WTP data

is ordinally consistent with Ranking data. Standard errors (clustered at the subject level) in parentheses. ∗∗∗1%, ∗∗5%,

∗10% significance.
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B.4 Further Analysis on Clusters

B.4.1 Comparison of Clusters

Table B.4: Optimality of Guesses and Demand by Cluster

Share Opt. of Guesses Opt. of Demand Opt. of Demand
(Rank) (WTP)

Cluster 1 45 99 85 63
Cluster 2 25 99 89 61
Cluster 3 21 98 64 48
Cluster 4 9 94 36 42

Notes: Numbers denote percentages. Here we focus on cases with strict value difference. Demand is coded as optimal
given WTP data if subjects pay more (by more than 10 cents) for the more optimal information structure.

B.4.2 Analysis on the Largest Three Clusters

Table B.5: Determinants of Demand for Information (Cluster 1)

Ranking (Logit) Difference in WTP (OLS)

(1) (2) (3) (1) (2) (3)

Difference in Value 1.292∗∗∗ 3.744∗∗∗ 0.686∗∗∗ 1.425∗∗∗

(0.066) (0.164) (0.065) (0.162)

Difference in Informativeness 3.099∗∗∗ -9.855∗∗∗ 2.252∗∗∗ -3.189∗∗∗

(0.182) (0.638) (0.229) (0.523)

Difference in Disorder -0.266∗∗∗ -0.194∗∗ -1.328∗∗∗ 0.053 0.173∗∗ -0.275∗∗∗

(0.096) (0.082) (0.132) (0.077) (0.084) (0.097)

Clusters 74 74 74 74 74 74

Notes: Only Cluster 1 (45% of the subjects) are included. Value denotes instrumental value as defined in equation 2.2.

Informativeness denotes entropy informativeness as defined in equation 2.1. Disorder denotes whether an information

structure has a visual disorder, i.e., whether the blue and the red balls were presented out of order. Standard errors

(clustered at the subject level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.
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Table B.6: Determinants of Demand for Information (Cluster 2)

Ranking (Logit) Difference in WTP (OLS)

(1) (2) (3) (1) (2) (3)

Difference in Value 1.454∗∗∗ 0.809∗∗∗ 0.514∗∗∗ 0.548∗∗∗

(0.136) (0.182) (0.093) (0.115)

Difference in Informativeness 5.855∗∗∗ 2.942∗∗∗ 1.945∗∗∗ -0.148

(0.538) (0.755) (0.372) (0.439)

Difference in Disorder -1.123∗∗∗ -0.606∗∗∗ -0.837∗∗∗ -0.090 0.067 -0.105

(0.158) (0.165) (0.171) (0.118) (0.118) (0.115)

Clusters 40 40 40 40 40 40

Notes: Only Cluster 2 (25% of the subjects) are included. Value denotes instrumental value as defined in equation 2.2.

Informativeness denotes entropy informativeness as defined in equation 2.1. Disorder denotes whether an information

structure has a visual disorder, i.e., whether the blue and the red balls were presented out of order. Standard errors

(clustered at the subject level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.

Table B.7: Determinants of Demand for Information (Cluster 3)

Ranking (Logit) Difference in WTP (OLS)

(1) (2) (3) (1) (2) (3)

Difference in Value 0.421∗∗∗ 1.085∗∗∗ 0.309∗∗∗ 0.617∗∗

(0.059) (0.170) (0.090) (0.237)

Difference in Informativeness 1.237∗∗∗ -2.843∗∗∗ 1.025∗∗∗ -1.332∗

(0.213) (0.651) (0.311) (0.786)

Difference in Disorder -0.081 -0.039 -0.374∗∗ 0.041 0.098 -0.096

(0.156) (0.161) (0.167) (0.119) (0.124) (0.136)

Clusters 35 35 35 35 35 35

Notes: Only Cluster 3 (21% of the subjects) are included. Value denotes instrumental value as defined in equation 2.2.

Informativeness denotes entropy informativeness as defined in equation 2.1. Disorder denotes whether an information

structure has a visual disorder, i.e., whether the blue and the red balls were presented out of order. Standard errors

(clustered at the subject level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.

142



Appendix for “Too Much Information” Chapter B

B.4.3 Analysis on the Smallest Cluster
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Figure B.3: Preference for Information by Value and Informativeness (Cluster 4) Notes: Each dot
denotes a pair of information structures. Green squares denote pairs where both information structures are of the same
value. Blue dots denote pairs where the value difference between the first and second information structure is 1. The
darker blue (gray) triangles denote pairs where the value difference is equal to (larger than) 2. To account for the potential
impact of visual complexity, pairs with at least one information structure where the blue and red balls are not displayed
in order are depicted in a lighter color. Gray lines depict the best linear fits for each of the first three categories. Darker
lines in the corresponding colors denote the best linear fits where the pairs depicted in a lighter color are not included.
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Table B.8: Determinants of Demand for Information (Cluster 4)

Ranking (Logit) Difference in WTP (OLS)

(1) (2) (3) (1) (2) (3)

Difference in Value -0.309∗∗ -0.633 0.264 0.117

(0.146) (0.459) (0.180) (0.339)

Difference in Informativeness -1.005∗ 1.397 1.080 0.632

(0.528) (1.725) (0.642) (0.919)

Difference in Disorder 0.349 0.292 0.493 0.326∗ 0.428∗∗ 0.391∗

(0.295) (0.322) (0.372) (0.180) (0.194) (0.215)

Clusters 14 14 14 14 14 14

Notes: Only Cluster 4 (9% of the subjects) are included. Value denotes instrumental value as defined in equation 2.2.

Informativeness denotes entropy informativeness as defined in equation 2.1. Disorder denotes whether an information

structure has a visual disorder, i.e., whether the blue and the red balls were presented out of order. Standard errors

(clustered at the subject level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.
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B.4.4 Alternative Clustering method: K-Modes

Table B.9: Determinants of Demand for Information (By K-Modes Cluster)

Ranking (Logit) Difference in WTP (OLS)

C1 C2 C3 C1 C2 C3

Difference in Value 2.746∗∗∗ 0.956∗∗∗ 2.591∗∗∗ 1.254∗∗∗ 0.567∗∗∗ 1.115∗∗∗

(0.217) (0.169) (0.310) (0.157) (0.112) (0.305)

Difference in Informativeness -7.337∗∗∗ 1.670∗∗∗ -8.109∗∗∗ -2.655∗∗∗ -0.212 -2.981∗∗∗

(0.633) (0.564) (1.071) (0.469) (0.401) (1.035)

Difference in Disorder -1.394∗∗∗ -0.664∗∗∗ -0.385∗∗ -0.288∗∗ 0.004 -0.126

(0.137) (0.132) (0.193) (0.110) (0.098) (0.144)

Clusters 64 54 35 64 54 35

Notes: C1, C2 and C3 refer to Clusters 1, 2, and 3 under the K-Modes clustering and represent 39%, 33%, and 21%

of the data, respectively. Value denotes instrumental value as defined in equation 2.2. Informativeness denotes entropy

informativeness as defined in equation 2.1. Disorder denotes whether an information structure has a visual disorder,

i.e., whether the blue and the red balls were presented out of order. Standard errors (clustered at the subject level) in

parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.
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Figure B.2: Preference for Information Structure by Value and Informativeness Separated by
Cluster Notes: Each dot denotes a pair of information structures. Green squares denote pairs where both information
structures are of the same value. Blue dots denote pairs where the value difference between the first and second information
structure is 1. The darker blue (gray) triangles denote pairs where the value difference is equal to (larger than) 2. To
account for the potential impact of visual complexity, pairs with at least one information structure where the blue and red
balls are not displayed in order are depicted in a lighter color. Gray lines depict the best linear fits for each of the first
three categories. Darker lines in the corresponding colors denote the best linear fits where the pairs depicted in a lighter
color are not included.
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B.5 Characteristics of Information Structures

Table B.10: Characteristics of Information Structures

Information value informativeness disorder varpost nsignal ndistinctpost uncertain certain skewness
1 0 0 0 0 1 1 0 0
2 1 0.09 1 0.03 2 2 0 0 -0.873
3 1 0.13 1 0.04 2 2 0 0 0
4 2 0.26 1 0.082 2 2 0 0 -0.408
5 2 0.32 0 0.09 2 2 0 0.2 -1.5
6 2 0.33 1 0.093 3 3 0 0.2 -1.372
7 2 0.42 0 0.107 2 2 0 0.4 0.408
8 2 0.42 1 0.107 4 3 0 0.4 -0.868
9 2 0.42 0 0.107 3 3 0 0.4 -0.868
10 2 0.42 0 0.107 3 2 0 0.4 0.408
11 2 0.49 0 0.12 3 3 0 0.5 -0.577
12 2 0.57 0 0.14 3 3 0.4 0.6 -0.344
13 3 0.56 0 0.154 2 2 0 0.3 -0.873
14 3 0.61 0 0.16 3 2 0 0.5 0
15 3 0.77 0 0.19 3 3 0.2 0.8 -0.398
16 4 0.97 0 0.24 2 2 0 1 -0.408

Notes: Information denotes the information structures shown in Figure 2.2; value is instrumental value as defined in
equation 2.2; informativeness is entropy informativeness as defined in equation 2.1; disorder denotes whether an infor-
mation structure has a visual disorder, i.e., whether the blue and the red balls are presented out of order; varpost denotes
the variance of P (b|s), i.e., the variance of Bayesian posterior of the drawn ball being blue given signal s; nsignal denotes
the number of distinct signals that an information structure can generate; ndistinctpost denotes the number of distinct
posteriors that an information structure can induce; uncertain denotes the probability of generating maximally certain
signals (i.e., signals induce posterior of 1 or 0); certain denotes the probability of generating maximally uncertain signals
(i.e., signals induce posterior of 0.5); skewness denotes the third normalized moment of Bayesian posterior P (b|s).
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Table B.11: Blackwell Ordering

Information 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

2 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

3 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

4 0 -1 -1 -1 -1 -1

5 0 -1 -1 -1 -1 -1 -1 -1 -1

6 0 -1 -1 -1 -1 -1 -1 -1

7 0 0 -1 -1 -1 -1

8 0 0 -1 -1 -1 -1

9 0 -1 -1 -1 -1

10 0 -1 -1 -1 -1

11 0 -1 -1 -1

12 0 -1 -1

13 0 -1 -1

14 0 -1 -1

15 0 -1

16 0

Notes: Information denotes the information structures shown in Figure 2.2. The Blackwell ordering takes values 1, 0,

-1 when the row information structure is more, equally or less Blackwell informative than the column one. The value is

missing if Blackwell comparison cannot be made.
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Table B.12: Determinants of Demand for Information (Ranking)

Ranking (Logit)

(1) (2) (3) (4) (5) (6)

Difference in Value 1.607∗∗∗ 1.210∗∗∗ 1.532∗∗∗ 1.367∗∗∗ 1.674∗∗∗ 1.107∗∗∗

(0.150) (0.137) (0.144) (0.136) (0.150) (0.126)

Difference in Informativeness -3.436∗∗∗ -1.577∗∗∗ -3.000∗∗∗ -2.142∗∗∗ -3.896∗∗∗ -1.064∗∗

(0.487) (0.478) (0.451) (0.441) (0.473) (0.474)

Difference in Disorder -0.677∗∗∗ -0.589∗∗∗ -0.615∗∗∗ -0.488∗∗∗ -0.674∗∗∗ -0.422∗∗∗

(0.088) (0.086) (0.090) (0.087) (0.089) (0.087)

Difference in Uncertain -0.624∗∗∗ -0.544∗∗∗

(0.096) (0.101)

Difference in # Signals -0.129∗∗ 0.018

(0.055) (0.062)

Difference in # Distinct Posteriors -0.326∗∗∗ -0.312∗∗∗

(0.066) (0.075)

Difference in Certain 0.102∗∗ 0.098∗∗∗

(0.046) (0.035)

Clusters 163 163 163 163 163 163

Notes: Value denotes instrumental value as defined in equation 2.2. Informativeness denotes entropy informativeness as

defined in equation 2.1. Descriptions of the other characteristic measures can be found in Table B.10. Except for Value

and Informativeness, the other differences in characteristic measures are defined as follows: 1 if the first information

structure has a higher characteristic measure than the other in a pairwise comparison, -1 if the opposite, and 0 otherwise.

Standard errors (clustered at the subject level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.
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Table B.13: Determinants of Demand for Information (WTP)

Difference in WTP (OLS)

(1) (2) (3) (4) (5) (6)

Difference in Value 0.924∗∗∗ 0.951∗∗∗ 0.987∗∗∗ 1.027∗∗∗ 0.999∗∗∗ 1.067∗∗∗

(0.104) (0.105) (0.104) (0.106) (0.105) (0.110)

Difference in Informativeness -1.716∗∗∗ -1.840∗∗∗ -2.103∗∗∗ -2.282∗∗∗ -2.246∗∗∗ -2.591∗∗∗

(0.338) (0.355) (0.337) (0.353) (0.346) (0.402)

Difference in Disorder -0.137∗∗ -0.143∗∗ -0.197∗∗∗ -0.229∗∗∗ -0.132∗∗ -0.216∗∗∗

(0.064) (0.062) (0.062) (0.062) (0.064) (0.062)

Difference in Uncertain 0.043 0.007

(0.060) (0.057)

Difference in # Signals 0.128∗∗∗ 0.046

(0.045) (0.039)

Difference in # Distinct Posteriors 0.155∗∗∗ 0.102∗∗

(0.053) (0.048)

Difference in Certain 0.128∗∗∗ 0.083∗∗∗

(0.027) (0.013)

Clusters 163 163 163 163 163 163

Notes: Value denotes instrumental value as defined in equation 2.2. Informativeness denotes entropy informativeness as

defined in equation 2.1. Descriptions of the other characteristic measures can be found in Table B.10. Except for Value

and Informativeness, the other differences in characteristic measures are defined as follows: 1 if the first information

structure has a higher characteristic measure than the other in a pairwise comparison, -1 if the opposite, and 0 otherwise.

Standard errors (clustered at the subject level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.
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B.6 Additional Plots and Tables
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Figure B.4: Median Rank and WTP by Information Structure Notes: Information structures are the
ones as shown in Figure 2.2. V denotes the instrumental value of an information structure as defined in equation 2.2.
Vertical lines are 95 percent confidence intervals that are derived from the exact sign test.
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Figure B.5: Demand for Information by Blackwell Ordering and Posterior Variance Notes: The
figures condition on all pairwise comparisons between information structures where there is a strict positive difference—on
Blackwell Ordering for (a) or variance of posterior for (b)—between the first and the second structure. The bars depict
the likelihood with which the first structure was ranked as more preferred to the second. In (a), High represents the
first structure is strictly more Blackwell informative. In (b), Low (High) represents all pairwise comparisons where the
difference is weakly lower (strictly higher) than the median difference of variance of posterior (i.e., 0.0635).

Table B.14: Determinants of Demand for Information

Ranking (Logit) Difference in WTP (OLS)

(1) (2) (3) (1) (2) (3)

Difference in Value 0.800∗∗∗ 1.607∗∗∗ 0.527∗∗∗ 0.924∗∗∗

(0.063) (0.150) (0.046) (0.104)

Difference in Informativeness 2.453∗∗∗ -3.436∗∗∗ 1.812∗∗∗ -1.716∗∗∗

(0.193) (0.487) (0.167) (0.338)

Difference in Disorder -0.317∗∗∗ -0.186∗∗∗ -0.677∗∗∗ 0.039 0.153∗∗∗ -0.137∗∗

(0.072) (0.067) (0.088) (0.054) (0.057) (0.064)

Clusters 163 163 163 163 163 163

Notes: Value denotes instrumental value as defined in equation 2.2. Informativeness denotes entropy informativeness as

defined in equation 2.1. Disorder denotes whether an information structure has a visual disorder, i.e., whether the blue

and the red balls were presented out of order. Standard errors (clustered at the subject level) are in parentheses. ∗∗∗1%,

∗∗5%, ∗10% significance.
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Figure B.6: Preference for Information Structure by Value and Informativeness Notes: This is the
same as Figure 2.8 except that pairwise comparisons with WTPs ranked inconsistently with the Ranking data are dropped
in the right panel.

Table B.15: Determinants of Demand for Information (By Value Difference)

Ranking (Logit) Difference in WTP (OLS)

∆V = 0 ∆V = 1 ∆V = 2 ∆V > 2 ∆V = 0 ∆V = 1 ∆V = 2 ∆V > 2

Difference in Informativeness -4.638∗∗∗ -4.023∗∗∗ -0.959∗∗ -0.210 -1.845∗∗∗ -1.543∗∗∗ -2.541∗∗∗ 0.443∗∗

(0.573) (0.536) (0.468) (0.395) (0.400) (0.363) (0.391) (0.200)

Difference in Disorder -0.876∗∗∗ -0.494∗∗∗ -0.234∗∗ -0.534∗∗ -0.368∗∗∗ -0.169∗∗∗ 0.064 0.961∗∗∗

(0.103) (0.086) (0.111) (0.233) (0.071) (0.064) (0.069) (0.139)

Constant 0.178∗∗∗ 1.876∗∗∗ 2.123∗∗∗ 2.051∗∗∗ 0.048∗∗ 0.761∗∗∗ 2.366∗∗∗ 1.755∗∗∗

(0.051) (0.166) (0.281) (0.353) (0.019) (0.105) (0.241) (0.202)

Clusters 163 163 163 163 163 163 163 163

Notes: ∆V denotes the value (as defined in equation 2.2) difference between two structures in a pairwise comparison.

Informativeness denotes entropy informativeness as defined in equation 2.1. Disorder denotes whether an information

structure has a visual disorder, i.e., whether the blue and the red balls were presented out of order. Standard errors

(clustered at the subject level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.
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Table B.16: Determinants of Demand for Information (Value and Blackwell)

Ranking (Logit) Difference in WTP (OLS)

(1) (2) (3) (1) (2) (3)

Difference in Value 0.800∗∗∗ 0.904∗∗∗ 0.527∗∗∗ 0.612∗∗∗

(0.063) (0.080) (0.046) (0.055)

Blackwell 0.720∗∗∗ -0.256∗∗∗ 0.591∗∗∗ -0.147∗∗∗

(0.055) (0.066) (0.054) (0.037)

Difference in Disorder -0.317∗∗∗ -0.309∗∗∗ -0.312∗∗∗ 0.039 0.072 0.079

(0.072) (0.065) (0.072) (0.054) (0.058) (0.058)

Clusters 163 163 163 163 163 163

Notes: Value denotes instrumental value as defined in equation 2.2. Blackwell denotes whether the first structure is strictly

more Blackwell informative than the other in a pairwise comparison. Details can be found in Table B.11. Disorder denotes

whether an information structure has a visual disorder, i.e., whether the blue and the red balls were presented out of order.

Standard errors (clustered at the subject level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.

Table B.17: Determinants of Demand for Information (Value and Posterior Variance)

Ranking (Logit) Difference in WTP (OLS)

(1) (2) (3) (1) (2) (3)

Difference in Value 0.800∗∗∗ 1.954∗∗∗ 0.527∗∗∗ 1.104∗∗∗

(0.063) (0.193) (0.046) (0.133)

Difference in Variance of P (b|s) 10.833∗∗∗ -19.396∗∗∗ 7.763∗∗∗ -9.827∗∗∗

(0.840) (2.683) (0.702) (1.845)

Difference in Disorder -0.317∗∗∗ -0.200∗∗∗ -0.683∗∗∗ 0.039 0.137∗∗ -0.145∗∗

(0.072) (0.068) (0.089) (0.054) (0.056) (0.064)

Clusters 163 163 163 163 163 163

Notes: Value denotes instrumental value as defined in equation 2.2. Variance of P (b|s) denotes the variance of the

Bayesian posterior of the drawn ball being blue given signal s. It is a valid measure of uncertainty reduction (informative-

ness) according to Frankel & Kamenica (2019). Disorder denotes whether an information structure has a visual disorder,

i.e., whether the blue and the red balls were presented out of order. Standard errors (clustered at the subject level) in

parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.
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Table B.18: Determinants of Demand for Information (Removing Maximal Uncertainty)

Ranking (Logit) Difference in WTP (OLS)

(1) (2) (3) (1) (2) (3)

Difference in Value 0.914∗∗∗ 1.281∗∗∗ 0.550∗∗∗ 0.978∗∗∗

(0.078) (0.148) (0.048) (0.107)

Difference in Informativeness 3.488∗∗∗ -1.636∗∗∗ 2.076∗∗∗ -1.883∗∗∗

(0.293) (0.498) (0.188) (0.360)

Difference in Disorder -0.459∗∗∗ -0.242∗∗∗ -0.589∗∗∗ 0.013 0.131∗∗ -0.139∗∗

(0.077) (0.072) (0.087) (0.056) (0.058) (0.062)

Clusters 163 163 163 163 163 163

Notes: Value denotes instrumental value as defined in equation 2.2. Informativeness denotes entropy informativeness as

defined in equation 2.1. Disorder denotes whether an information structure has a visual disorder, i.e., whether the blue

and the red balls were presented out of order. Pairwise comparisons that include either of the two information structures

that may generate maximally uncertain signals (i.e., information structures 12 and 15 as shown in Figure 2.2) are not

included. Standard errors (clustered at the subject level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.
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Powered by Qualtrics A

Ranking Information Sources



Please drag these information sources on the screen to rank them in order from most
favorite (top of the screen) to least favorite (bottom of the screen). The computer will
randomly pick two information sources, and you will receive information from the one that
you ranked higher before you are asked to make a guess about the color of the randomly
selected ball. As in other parts, you will earn a  $10 BONUS payment if your guess is
correct and $0 if your guess is incorrect.



(To help with your decision, for each Information Source, we include below each Group the
guess you made for that Group earlier in a corresponding Guessing Question.) 


Figure B.7: Ranking with Elicited Guesses

156



Appendix C

Appendix for “Trustworthy by

Design”

157



Appendix for “Trustworthy by Design” Chapter C

This supplement contains four parts. Appendix C.1 provides details about the be-

havioral model. Appendix C.2 contains proofs. Appendix C.3 reports additional data

analysis. Appendix C.4 provides an English translation of the experimental instructions

presented to the subjects.

C.1 Details about the behavioral model

C.1.1 Assumptions

Heterogeneity in prosociality and viewpoint of opponents’ prosociality

Charness & Rabin (2002) formulate a model of social preferences that embeds dif-

ference aversion (Fehr & Schmidt 1999; Bolton & Ockenfels 2000), social-welfare, and

reciprocity models. When modeling social preferences in our games, we consider the

relevance of each of the above motives and trade off a parsimonious model against a

complete characterization of different driving forces. First, unlike the standard trust

games, in which the trustee moves after observing the trustor’s offer and reciprocity is

thus likely motivated, reciprocity is arguably less likely motivated in our games because

of the reverse decision order. Second, player A chooses between allocation plans with an

identical social surplus, and thus difference aversion should be the most prominent one

if any of the above motives is aroused. Third, player B determines whether to invest

in a social-welfare increasing project. Formulating a motive of increasing social welfare

is useful for understanding player B’s potential deviation from the standard framework

with the pure selfishness assumption.1

Therefore, we formulate social preferences by highlighting player A’s difference aver-

1A motive of increasing social welfare can lead player B to invest in the project even if she may
sacrifice. In contrast, the directional effect of difference aversion on player B’s investing decision hinges
on the specific values of monetary payoff parameters.
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sion and player B’s increasing social welfare, respectively, and view this formulation as

a simple proxy for comprehensive social preferences. Specifically, we assume that player

A’s social preference is captured by θA that relies on the payoff allocation and player B’s

social preference is captured by θB that relies on the social surplus. We also assume that

social preferences are additively separable from the monetary payoff.2

We consider two types of each player in terms of social preferences: selfish player

A (A1), prosocial player A (A2), selfish player B (B1) and prosocial player B (B2).

We assume the following properties on θA and θB: (1) θA1 ≡ 0 and θB1 ≡ 0; (2) vA0 +

θA2(v
A
0 , v

B
0 ) < min{ρ1v+θA2(ρ1v, v−ρ1v), ρ2v+θA2(ρ2v, v−ρ2v)} and θA2(ρ2v, v−ρ2v)−

θA2(ρ1v, v−ρ1v) < (ρ1−ρ2)v;
3 and (3) vB0 + θB2(v

A
0 +vB0 ) < min{(1−ρ1)v+ θB2(v), (1−

ρ2)v + θB2(v)}.4 Thus, a prosocial player A prefers (ρ1v, v − ρ1v) to (ρ2v, v − ρ2v) and

a prosocial player B prefers investing to not investing regardless of player A’s choice.

Without loss of generality, we simplify the formulation by the following normalization:

θA2(v
A
0 , v

B
0 ) = θA2(ρ1v, v − ρ1v) = 0 and θB2(v

A
0 + vB0 ) = 0. We then need only two

parameters θA2 ≡ θA2(ρ2v, v − ρ2v) < (ρ1 − ρ2)v and θB2 ≡ θB2(v) > vB0 − (1− ρ2)v.

Given the assumption about players’ heterogeneity in prosociality, it is natural to

expect that they may hold heterogeneous viewpoints of the opponents’ prosociality. It

is also clear that player B’s viewpoint of the opponent’s prosociality affects her decision

2In Charness & Rabin (2002)’s formulation, a player’s preference is a weighted average of his monetary
payoff and his opponent’s monetary payoff, with the weight depending on whether he has higher or lower
monetary payoff than his opponent has. Our formulation is essentially similar to theirs in the sense that
our assumed properties on θA and θB are implications of their specific formulation.

3The first part of this property requires that player A’s difference aversion does not overturn his
preference for the project being invested. Since (ρ1 − ρ2)v < 0, the second part of this property requires
that θA2(ρ2v, v − ρ2v) < θA2(ρ1v, v − ρ1v). Given player A’s difference aversion, this is a natural
requirement as long as (ρ2v, v − ρ2v) is a more unequal allocation than (ρ1v, v − ρ1v), which holds
for ρ1 ≥ 1

2 as an example. This part also requires that the degree of difference aversion outweighs
the difference in monetary payoffs, which is demonstrated in existing experimental studies where many
subjects sacrifice to choose more equal payoffs.

4This property requires that prosocial player B is willing to sacrifice to increase social surplus, which
is demonstrated in Charness & Rabin (2002) that: “...in our data that about half of subjects make
inequality-increasing sacrifices when these sacrifices are efficient and inexpensive.”
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substantially. We assume that player B holds different viewpoints on the fraction of

prosocial A players in the population. Specifically, player B with viewpoint π believes

that the fraction of prosocial A players is π or she is playing with a prosocial player

A with a probability of π. We assume that π follows a uniform distribution over (0, π),

where π ∈ (1−(
1−ρ1−ρB0
ρ2−ρ1

)2, 1).5 We could also assume that A players are heterogeneous in

their viewpoints of player B’s prosociality, but this assumption is not useful for generat-

ing new predictions. For simplicity, we assume that all A players think that the fraction

of prosocial B players is a constant α ∈ (0,
ρ1−ρA0
ρ2−ρA0

).6

Heterogeneity in strategic sophistication

In contexts involving initial responses, the level-k models pioneered by Nagel (1995)

and Stahl &Wilson (1994, 1995) provide a structure for analyzing players’ non-equilibrium

strategic thinking. We assume that players’ heterogeneous strategic thinking follows level-

k reasoning. Specifically, a Lk player A believes that: his opponent is a Lk−1 prosocial or

selfish player B with viewpoint π, the chance that he encounters a prosocial player B is

α, and the probability density of his encountering a player B with viewpoint π ∈ (0, π)

is 1
π
. For a Lk player B with viewpoint π, she believes that: her opponent is a Lk−1

prosocial or selfish player A with viewpoint α, and the chance that she encounters with

a prosocial player A is π.

We assume that L0 players make non-strategic decisions. Specifically, for L0 players

in both games, a prosocial (selfish) player A chooses p = 1 (p = 0) and a prosocial

5Note that selfish B players with π > (<)
ρB
0 −(1−ρ2)
ρ2−ρ1

invest (do not invest) in Game 1. So the

assumption of a range of (0, π) instead of (0, 1) is useful for generating the frequency of investing in

Game 1 with greater flexibility. The assumption that π > 1 − (
1−ρ1−ρB

0

ρ2−ρ1
)2 is necessary for some A

players to optimally choose the least informative structure in Game 2.
6The assumption that α <

ρ1−ρA
0

ρ2−ρA
0
is necessary for player A to be incentivized to choose an information

structure strategically. If α is very large, that is, player A believes that almost all B players are prosocial
and investing, then he will have no incentive to make decisions strategically.
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(selfish) player B invests (does not invest).7 In Game 2, a L0 player A is also assumed to

choose q1 and q2 independently according to a uniform distribution over [0, 1]. As in the

literature, our assumption about L0 players does not mean that there exist L0 players.

It serves to anchor the initial belief of strategic reasoning and exists in the mind of L1

players. Moreover, in Game 2, L1 player A’s optimal response puts no discipline on his

choice of q1 and q2. So we additionally assume that L1 player A also chooses q1 and q2

independently according to a uniform distribution over [0, 1]. The assumption of uniform

distribution about L0/L1 player A’s choice of q1 and q2 is for the sake of simplicity. In

fact, the model predictions remain the same as long as L0/L1 player A chooses q1 and q2

independently according to a distribution with a support of [0, 1].

Conditionally pessimistic posterior in zero-probability information sets

We assume that player B forms a posterior belief based on Bayes’ rule when appli-

cable. We assume that player B holds a conditionally pessimistic posterior belief in a

zero-probability information set in the sense that she uses the “worst” posterior belief

among all posteriors that are consistent with that information set.8 We illustrate the

assumption via two examples below. Suppose (q1 = 0.8, q2 = 0.4, s = b) is a zero-

probability information set for player B. Her conditionally pessimistic posterior belief

about state 1 is zero because any posterior belief from [0, 1] is consistent with the infor-

mation set and a posterior belief of zero is the “worst”. Suppose (q1 = 0.8, q2 = 0, s = b)

is a zero-probability information set for player B. Her conditionally pessimistic posterior

7We also investigate two other natural specifications of L0 players: (1) L0 selfish player B’s action de-

pends on her viewpoint π, that is, invests for π ∈ (
ρB
0 −(1−ρ2)
ρ2−ρ1

, π) and does not invest for π ∈ (0,
ρB
0 −(1−ρ2)
ρ2−ρ1

],

and other L0 players’ actions remain the same as the present specification; (2) player A chooses p, q1
and q2 independently according to a uniform distribution over [0, 1], and player B invests or does not
invest with an equal probability. The optimal strategies for higher-level players under these alternative
specifications are similar to the present ones. Moreover, the optimal strategies converge to the same
outcomes under the three specifications.

8In our equilibrium analysis, we apply PBE in subgames to specify a belief of p off the equilibrium
path. The approach is not applicable for the level-k model.
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belief about state 1 is one because only a posterior belief of one is consistent with the

information set.

The optimal action based on such a posterior belief is similar to that prescribed by a

maximin strategy, which achieves the best outcome in the worst scenario. Our assump-

tion makes only a slight modification: the support of the worst situation is restricted to

situations that are consistent with the observed information set. Given that player B has

a conflicting interest with her opponent in payoff allocation, it seems plausible for her to

choose such a conservative strategy when reacting to information to which she assigns

probability zero.

Proposition 3 is based on the assumptions about players’ heterogeneity in prosociality,

viewpoints about prosociality and strategic sophistication, and the assumption about

conditionally pessimistic posterior belief in zero-probability information sets. In addition,

a sufficient condition that guarantees the optimality of (p = 0, q1 = q2) for type (S, L2/L3)

is that π > max{1 − (
1−ρ1−ρB0
ρ2−ρ1

)2, (1 − α)
ρ2−ρA0
ρ2−ρ1

ρ0B−(1−ρ2)
ρ2−ρ1

}. His optimal strategy is p =

1, (q1, q2) = (1, 0) or (0, 1) when π < (1− α)
ρ2−ρA0
ρ2−ρ1

ρ0B−(1−ρ2)
ρ2−ρ1

.

C.1.2 Intuitions

We briefly discuss the roles of these assumptions in the proof of the proposition. In

Game 1, prosocial player A chooses p = 1 and prosocial player B invests. In Game 2,

prosocial player A chooses p = 1, and he also chooses (q1, q2) strategically to persuade

selfish player B to invest. Selfish player A prefers a choice of p = 0 conditional on player

B’s investing, and it is in his best interest to mimic prosocial player A’s choice of (q1, q2).

This mimicking prevents selfish player B from separating p = 0 from p = 1, which in turn

is harmful for prosocial player A. Thus, sophisticated prosocial player A chooses a more
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informative (q1, q2) so that selfish player A finds it is in his best interest to choose p = 1

as well when he mimics prosocial player A’s choice of (q1, q2). The assumption about the

conditionally pessimistic posterior belief in zero-probability information sets guarantees

that the most sophisticated selfish player B invests only when the underlying state is

clearly state 1, and in turn the most sophisticated player A chooses full trustworthiness

with the most informative structure.

Now, consider the role of the assumption about player B’s heterogeneity in viewpoint.

In short, it helps to predict player A’s choosing zero trustworthiness with the least in-

formative structure, i.e., (p = 0, q1 = q2), which is opposite to the prediction of player

A’s choosing full trustworthiness with the most informative structure. The general intu-

ition is that when player B is not aware of the association between trustworthiness and

information structure, the probability of player B’s investing is continuously responsive

to player A’s choice of information structure given heterogeneity in viewpoint.9 Then,

player A has an incentive to obfuscate his choice of p = 0 using an information structure

of q1 = q2.

The intuition is elaborated below. When observing (q1, q2, b), a selfish player B who

is not aware of the association invests if her posterior belief about the underlying state

exceeds a cutoff value. Her posterior belief is increasing in her prior belief, which itself

is increasing in her viewpoint π. Therefore, a player B with π exceeding a cutoff value

invests. Moreover, player B’s posterior belief, in this case, is also increasing in q1
q2
. As

q1
q2

increases, those B players with a lower π begin to invest, i.e., the cutoff value of π

decreases. Given the assumption about π, this result implies that a higher q1
q2

increases

the probability of investing. Similarly, a higher 1−q1
1−q2

increases the probability of investing

9If player B’s viewpoint is homogeneous, then the effect of information structure on the probability
of player B’s investing takes a stepwise form: all selfish B players who are not aware of the association
invest when observing an information structure with q1

q2
( 1−q1
1−q2

) exceeding a cutoff value; otherwise, none
of them invest.
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for an information set (q1, q2, w). Based on this reasoning, a player A who chooses p = 0

trades off choosing a high q1
q2

(1−q1
1−q2

) against choosing a high probability of generating a

black (white) signal, the latter of which is equivalent to choosing a high (low) q2. Thus,

the assumption about π makes the probability of investing continuously responsive to

the change in information structure and creates a trade-off problem.

We also provide an intuition for L1 selfish player B’s different behavior in Game 1

and Game 2. This difference is interesting given that L0 player A cannot signal his trust-

worthiness in Game 1, and he chooses q1 and q2 independently according to a uniform

distribution over [0, 1] in Game 2. While (q1, q2) per se is uninformative in this case, a

realized signal generated according to such an information structure does provide infor-

mation about the underlying state. L1 selfish player B observes the realized signal and

updates her belief about the underlying state in Game 2. In contrast, she has no belief

updating in Game 1. This difference in belief updating causes L1 selfish player B to play

differently in Game 1 and Game 2.

C.1.3 Explaining the treatment effects

Below, we highlight how the behavioral model rationalizes the treatment effects and

behavioral patterns that are also predicted by the equilibrium model.

Increasing trustworthiness. Player A, depending on his type, chooses p = 1 or p = 0

in both games or chooses p = 0 in Game 1 and p = 1 in Game 2. Thus, the overall

trustworthiness increases from Game 1 to Game 2 as long as type (S, Lk≥4) has posi-

tive mass.10 These predictions match Pattern 3 and the treatment effect of increasing

trustworthiness from Game 1 to Game 2.

10While earlier level-k studies find that levels higher than L3 are rare, some recent level-k studies show
that the fraction of levels Lk≥4 is considerable, e.g., about 20% (Crawford & Iriberri 2007a; Kawagoe &
Takizawa 2012; Jin 2021). Also note that the strategy of type (S,Lk≥4) coincides with the equilibrium
strategy, and the equilibrium type is specified and found in many level-k studies.
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Increasing trusting acts. The probability of trusting acts remains constant from

Game 1 to Game 2 for types (P,Lk≥0, π) and (S, L0, π). The probability increases for

types (S, Lk≥1, π ≤ ρB0 −(1−ρ2)

ρ2−ρ1
), who do not invest in Game 1, and decreases for types

(S, Lk≥1, π >
ρB0 −(1−ρ2)

ρ2−ρ1
), who invest in Game 1. Therefore, whether introducing infor-

mation design boosts trusting acts depends on the proportion of selfish B players who

invest in Game 1. Specifically, trusting acts increase under a plausible assumption that

a small proportion of selfish B players invest in Game 1.

Increasing expected payoff. We work out each player type’s ex ante expected payoff

according to the player’s expected payoff function and the optimal strategies of the player

and her/his opponent. The ex ante expected payoff increases from Game 1 to Game 2

for player A with type (P,Lk≥2) and (S, Lk≥4), and player B with type (P,Lk≥5, π)

and (S, Lk≥1, π). The ex ante expected payoff remains the same across games for the

remaining player types.

C.2 Proofs

C.2.1 Proof of Proposition 1

Proof:

We first introduce a refinement of PBE and work out equilibrium strategy profiles

and belief systems based on this refinement. Then, we show that the set of equilibrium

actions according to this refinement equals to the set of equilibrium actions according to

PBE.

In & Wright (2018) propose an equilibrium refinement in the form of reordering a

class of endogenous signaling games, in which a sender’s actions are partially observed.

They note that when a sender makes choices of unobserved action and observed action
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without gaining any new payoff-relevant information in between, the order in which the

choices are made does not matter. Adopting this idea, we reorder Game 2 as follows:

player A first chooses (q1, q2); then player A chooses p and player B decides whether to

invest based on her information (q1, q2, s).

The reordering of Game 2 creates proper subgames {Γ(q1,q2)}(q1,q2)∈[0,1]×[0,1]. At each

proper subgame Γ(q1,q2), PBE specifies player A’s choice of p and player B’s actions at

(q1, q2, s = b) and (q1, q2, s = w) given her posterior beliefs, which are consistent with

player A’s choice of p and updated using Bayes’ rule when applicable. At the initial

node of the entire game, player A chooses (q1, q2) that maximizes his expected payoffs,

assuming that the PBE he prefers is played in each Γ(q1,q2). We dub this notion of

equilibrium refinement player-A-preferred PBE.11

Let p(q̃1, q̃2) be player A’s choice of p at his information set (q̃1, q̃2) ∈ [0, 1] × [0, 1]

and let (q1, q2, p(q̃1, q̃2)) be player A’s strategy. Player B’s information set is denoted by

H = (q̃1, q̃2, s) ∈ [0, 1]× [0, 1]×{b, w}/{(1, 1, w), (0, 0, b)}. Player B’s strategy is denoted

by σ with σ(H) ∈ [0, 1] specifying her probability of investing given information set H.12

Let σb and σw refer to σ(q̃1, q̃2, b) and σ(q̃1, q̃2, w), respectively, when the reference is clear.

Player B’s optimal strategy

Given Game 2’s payoff structure, player B’s optimal choice when observing H =

(q1, q2, s) is: σ(H) = 1 if her posterior belief about state 1 is µH >
ρB0 −(1−ρ2)

ρ2−ρ1
≡ µ∗,

σ(H) = 0 if µH < µ∗, and σ(H) ∈ [0, 1] if µH = µ∗13. Note that µ∗ ∈ (0, 1).

Let µ0 be player B’s interim belief about state 1 in Γ(q1,q2). At information set H =

11In a Bayesian persuasion game with costly messages, Nguyen & Tan (2021) use a solution concept
called the sender-preferred equilibrium, according to which the strategies restricted to each subgame
form a PBE that the sender prefers in that subgame.

12Note that player A and player B cannot benefit from using mixed strategies. We allow for player B’s
mixed strategy because in subgames with 0 < q1 < 1, q2 = 0 or q2 = 1, there exists only a mixed-strategy
equilibrium. We show that player B uses a pure strategy on the equilibrium path.

13Player B chooses to invest if µH(1− ρ1)v + (1− µH)(1− ρ2)v > vB0 , which is µH >
ρB
0 −(1−ρ2)
ρ2−ρ1

.
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(q1, q2, b), her posterior belief about state 1 (when Bayes’ rule applies) is µ(q1,q2,b) =

µ0q1
µ0q1+(1−µ0)q2

. Accordingly, her optimal choice at H = (q1, q2, b) is: σ(H) ≡ σb = 1 if

µ(q1,q2,b) > µ∗ or µ0 >
ρB0 −(1−ρ2)

(1−ρ1−ρB0 )
q1
q2

+ρB0 −(1−ρ2)
≡ µ0b, σb = 0 if µ0 < µ0b and σb ∈ [0, 1] if µ0 =

µ0b. Similarly, her posterior belief at H = (q1, q2, w) is µ(q1,q2,w) =
µ0(1−q1)

µ0(1−q1)+(1−µ0)(1−q2)
and

her optimal choice is: σ(H) ≡ σw = 1 if µ0 >
ρB0 −(1−ρ2)

(1−ρ1−ρB0 )
1−q1
1−q2

+ρB0 −(1−ρ2)
≡ µ0w, σw = 0 if

µ0 < µ0w and σw ∈ [0, 1] if µ0 = µ0w.

Note that Bayes’ rule cannot be used to calculate the posterior belief in the following

situations: (1) µ0 = 0 and H = (0 ≤ q1 < 1, q2 = 1, s = w) or H = (0 < q1 ≤

1, q2 = 0, s = b), and (2) µ0 = 1 and H = (q1 = 0, 0 < q2 ≤ 1, s = b) or H =

(q1 = 1, 0 ≤ q2 < 1, s = w). We assume that her posterior beliefs about state 1 in

the two situations are respectively one and zero based on intuition, which can also be

justified by allowing for an ϵ perturbation of µ0, applying Bayes’ rule, and then letting

ϵ approach zero. Then, player B’s optimal actions in these information sets are: σw = 1

at H = (0 ≤ q1 < 1, q2 = 1, s = w), σb = 1 at H = (0 < q1 ≤ 1, q2 = 0, s = b), σb = 0 at

H = (q1 = 0, 0 < q2 ≤ 1, s = b) and σw = 0 at H = (q1 = 1, 0 ≤ q2 < 1, s = w).

Based on the above analysis, it is obvious that player B’s optimal choices do not

depend on her interim belief µ0 when (q1, q2) = (1, 0)/(0, 1). That is, regardless of µ0,

σb = 1 and σw = 0 in Γ(q1=1,q2=0), and σw = 1 and σb = 0 in Γ(q1=0,q2=1).

Player A’s optimal strategy

Player A’s decision problem is to choose (p, q1, q2) that maximizes his expected payoff

given player B’s optimal strategy. Player A’s expected payoff function is: EVA = p ∗

[q1(ρ1vσb + vA0 (1 − σb)) + (1 − q1)(ρ1vσw + vA0 (1 − σw))] + (1 − p) ∗ [q2(ρ2vσb + vA0 (1 −

σb)) + (1 − q2)(ρ2vσw + vA0 (1 − σw))] = vA0 + (ρ1v − vA0 )p ∗ [q1σb + (1 − q1)σw] + (ρ2v −

vA0 )(1− p) ∗ [q2σb + (1− q2)σw].

Clearly, he should optimally choose p(q1, q2) = 1 if (ρ1v − vA0 )[q1σb + (1 − q1)σw] >
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(ρ2v − vA0 )[q2σb + (1 − q2)σw], or equivalently σb[(ρ1 − ρA0 )q1 − (ρ2 − ρA0 )q2] > σw[(ρ2 −

ρA0 )(1− q2)− (ρ1 − ρA0 )(1− q1)].

Let α = (ρ1−ρA0 )q1−(ρ2−ρA0 )q2 and β = (ρ2−ρA0 )(1−q2)−(ρ1−ρA0 )(1−q1) = α+ρ2−ρ1.

Note that β > α. Thus, his optimal choice of p for any given (q1, q2) can be written as:

p(q1, q2) = 1 if σbα > σwβ, p(q1, q2) = 0 if σbα < σwβ, and p(q1, q2) ∈ [0, 1] if σbα = σwβ.

Let EVA(q1, q2) be the corresponding optimal expected payoff in Γ(q1,q2).

PBE strategy profile and beliefs

We now solve PBE in Γ(q1,q2). Note that in any PBE in Γ(q1,q2), player B’s posterior

beliefs µ(q1,q2,b) and µ(q1,q2,w) must be consistent with player A’s choice of p and updated

using Bayes’ rule when applicable. Since player A’s choice of p determines the probability

of the realization of state 1 and µ0 is player B’s interim belief about state 1 in Γ(q1,q2),

this belief consistency requirement implies that µ0 = p in any PBE.

Note that α > 0 if and only if q1
q2

>
ρ2−ρA0
ρ1−ρA0

, and β > 0 if and only if 1−q1
1−q2

<
ρ2−ρA0
ρ1−ρA0

. In

addition, as shown above, σb and σw depend on q1
q2

and 1−q1
1−q2

, respectively. We categorize

Γ(q1,q2) into 18 cases as shown in Table C.2.1. It is clear that α > 0 in cases (1), (8), (17)

and (18), and β < 0 in cases (7), (9), (13) and (14). We work out PBEa player A prefers

in each Γ(q1,q2) as follows.

Consider a PBE with µ0 = p(q1, q2). First, it is straightforward to establish that in all

cases except (8), (9), (14) and (18), there is a PBE with µ0 = p(q1, q2) = 0, σb = σw = 0

and EVA(q1, q2) = vA0 . We now show that there is no PBE with µ0 = p(q1, q2) = 0 in these

four cases. Specifically, if assuming µ0 = 0: in cases (8) and (18), i.e., (0 < q1 ≤ 1, q2 = 0),

we know α > 0, σb = 1 and σw = 0, and thus player A should choose p(q1, q2) = 1; in

cases (9) and (14), i.e., (0 ≤ q1 < 1, q2 = 1), we know β < 0, σb = 0 and σw = 1, and

thus player A should also choose p(q1, q2) = 1.

Second, we show that there is no PBE with µ0 = p(q1, q2) = 1 in cases (1)-(10), (11)
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Table C.2.1: PBEa Player A Prefers in Γ(q1,q2)

Case Γ(q1,q2) PBEa player A prefers EVA(q1, q2)

(1) 0 < q2 < q1 < 1, q1
q2

>
ρ2−ρA0
ρ1−ρA0

p = µ0w, σb = 1, σw = α
β

vA0 + (ρ1v − vA0 )(q1 + (1− q1) ∗ α
β
)

(2) 0 < q2 < q1 < 1, q1
q2

=
ρ2−ρA0
ρ1−ρA0

p ∈ [µ0b, µ0w], σb = 1, σw = 0 vA0 + (ρ1v − vA0 )q1

(3) 0 < q2 < q1 < 1, q1
q2

<
ρ2−ρA0
ρ1−ρA0

p ∈ [0, µ0b], σb = σw = 0 vA0

(4) 0 < q1 = q2 < 1 p ∈ [0, µ0b], σb = σw = 0 vA0

(5) 0 < q1 < q2 < 1, 1−q1
1−q2

<
ρ2−ρA0
ρ1−ρA0

p ∈ [0, µ0w], σb = σw = 0 vA0

(6) 0 < q1 < q2 < 1, 1−q1
1−q2

=
ρ2−ρA0
ρ1−ρA0

p ∈ [µ0w, µ0b], σb = 0, σw = 1 vA0 + (ρ1v − vA0 )(1− q1)

(7) 0 < q1 < q2 < 1, 1−q1
1−q2

>
ρ2−ρA0
ρ1−ρA0

p = µ0b, σb =
β
α
, σw = 1 vA0 + (ρ1v − vA0 )(q1

β
α
+ 1− q1)

(8) 0 < q1 < 1, q2 = 0 p = µ0w, σb = 1, σw = α
β

vA0 + (ρ1v − vA0 )(q1 + (1− q1) ∗ α
β
)

(9) 0 < q1 < 1, q2 = 1 p = µ0b, σb =
β
α
, σw = 1 vA0 + (ρ1v − vA0 )(q1

β
α
+ (1− q1))

(10) q1 = q2 = 0 (q1 = q2 = 1) p ∈ [0, µ0w], σw = 0 (p ∈ [0, µ0b], σb = 0) vA0

(11) q1 = 0, 0 < q2 <
ρ2−ρ1
ρ2−ρA0

p ∈ [0, µ0w], σb = σw = 0 vA0

(12) q1 = 0, q2 =
ρ2−ρ1
ρ2−ρA0

p ∈ [µ0w, 1], σb = 0, σw = 1 ρ1v

(13) q1 = 0, ρ2−ρ1
ρ2−ρA0

< q2 < 1 p = 1, σb = 0, σw = 1 ρ1v

(14) q1 = 0, q2 = 1 p = 1, σb = 0, σw = 1 ρ1v

(15) q1 = 1,
ρ1−ρA0
ρ2−ρA0

< q2 < 1 p ∈ [0, µ0b], σb = σw = 0 vA0

(16) q1 = 1, q2 =
ρ1−ρA0
ρ2−ρA0

p ∈ [µ0b, 1], σb = 1, σw = 0 ρ1v

(17) q1 = 1, 0 < q2 <
ρ1−ρA0
ρ2−ρA0

p = 1, σb = 1, σw = 0 ρ1v

(18) q1 = 1, q2 = 0 p = 1, σb = 1, σw = 0 ρ1v

Notes: µ0b ≡ ρB0 −(1−ρ2)

(1−ρ1−ρB0 )
q1
q2

+ρB0 −(1−ρ2)
, µ0w ≡ ρB0 −(1−ρ2)

(1−ρ1−ρB0 )
1−q1
1−q2

+ρB0 −(1−ρ2)
, α = (ρ1 − ρA0 )q1 − (ρ2 − ρA0 )q2, and β =

(ρ2 − ρA0 )(1− q2)− (ρ1 − ρA0 )(1− q1).

and (15). In cases (1)-(10) if µ0 = p(q1, q2) = 1, then σb = σw = 1, which implies that

σbα < σwβ and in turn p(q1, q2) = 0. Consider µ0 = 1. In cases (1)-(10), σb = σw = 1,

implying σbα < σwβ and in turn p(q1, q2) = 0; in case (11), σb = 0, β > 0 and σw = 1,

implying σbα < σwβ and in turn p(q1, q2) = 0; in case (15), σw = 0, α < 0 and σb = 1,

implying σbα < σwβ and in turn p(q1, q2) = 0.

Third, we show that there is a PBE with µ0 = p(q1, q2) = 1 and EVA(q1, q2) = ρ1v

in cases (12)-(14) and (16)-(18). In cases (12)-(14), σb = 0, α < 0 and β ≤ 0. µ0 =

p(q1, q2) = 1 and σw = 1 satisfy both players’ optimality conditions. Similarly, in cases

(16)-(18), σw = 0, α ≥ 0 and β > 0. µ0 = p(q1, q2) = 1 and σb = 1 satisfy both players’
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optimality conditions.

In the above, we have explored the PBEa with µ0 = p(q1, q2) = 1 or µ0 = p(q1, q2) = 0.

We now investigate whether there is any PBE with µ0 = p(q1, q2) ∈ (0, 1) and characterize

the PBE player A prefers for each of the 18 cases. Note that given p(q1, q2) ∈ (0, 1), it

must be that σbα = σwβ.

Case (1): (q1, q2) ∈ (0, 1) × (0, 1) and q1
q2

>
ρ2−ρA0
ρ1−ρA0

. In this case, α > 0, β > 0, and

0 < µ0b < µ0w < 1 since q1
q2

>
ρ2−ρA0
ρ1−ρA0

> 1 > 1−q1
1−q2

. σbα = σwβ implies σb = σw = 0 and µ0 ∈

(0, µ0b], or σb = 1, σw = α
β
and µ0 = µ0w. So in PBE of this situation, EVA(q1, q2) = vA0 or

= vA0 +(ρ1v−vA0 )[q1+(1−q1)
α
β
] < ρ1v. Therefore, σb = 1, σw = α

β
and p = µ0w constitute

the PBE player A prefers in Γ(q1,q2) with EVA(q1, q2) = vA0 + (ρ1v − vA0 )[q1 + (1− q1)
α
β
].

Case (2): (q1, q2) ∈ (0, 1) × (0, 1) and q1
q2

=
ρ2−ρA0
ρ1−ρA0

. In this case, α = 0, β > 0, and

0 < µ0b < µ0w < 1. σbα = σwβ implies that σb ∈ [0, 1], σw = 0 and µ0 ∈ (0, µ0w].

So in PBE of this situation, EVA(q1, q2) = vA0 + (ρ1v − vA0 )σbq1 ≤ vA0 + (ρ1v − vA0 )q1,

where the equality holds when σb = 1 and µ0 ∈ [µ0b, µ0w]. Therefore, σb = 1, σw = 0

and p ∈ [µ0b, µ0w] constitute the PBEa player A prefers in Γ(q1,q2) with EVA(q1, q2) =

vA0 + (ρ1v − vA0 )q1.

Case (3): (q1, q2) ∈ (0, 1)× (0, 1) and q1
q2

∈ (1,
ρ2−ρA0
ρ1−ρA0

). In this case, α < 0, β > 0, and

0 < µ0b < µ0w < 1. σbα = σwβ implies that σb = 0, σw = 0 and µ0 ∈ (0, µ0b]. So in PBE

of this situation, EVA(q1, q2) = vA0 . Therefore, σb = 0, σw = 0 and p ∈ [0, µ0b] constitute

the PBEa player A prefers in Γ(q1,q2) with EVA(q1, q2) = vA0 .

Case (4): (q1, q2) ∈ (0, 1) × (0, 1) and q1
q2

= 1. In this case, α < 0, β > 0, and

0 < µ0b = µ0w < 1. σbα = σwβ implies that σb = 0, σw = 0 and µ0 ∈ (0, µ0b]. So in PBE

of this situation, EVA(q1, q2) = vA0 . Therefore, σb = 0, σw = 0 and p ∈ [0, µ0b] constitute

the PBEa player A prefers in Γ(q1,q2) with EVA(q1, q2) = vA0 .

Note that case (5) is symmetric to case (3), case (6) is symmetric to case (2) and case

(7) is symmetric to case (1). A similar analysis shows that in case (5), σb = 0, σw = 0 and
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p ∈ [0, µ0w] constitute the PBEa player A prefers in Γ(q1,q2) with EVA(q1, q2) = vA0 . In case

(6), σb = 0, σw = 1 and p ∈ [µ0w, µ0b] constitute the PBE player A prefers in Γ(q1,q2) with

EVA(q1, q2) = vA0 +(ρ1v− vA0 )(1− q1). In case (7), σw = 1, σb =
β
α
and p = µ0b constitute

the PBE player A prefers in Γ(q1,q2) with EVA(q1, q2) = vA0 + (ρ1v − vA0 )(q1
β
α
+ 1− q1).

Case (8): (0 < q1 < 1, q2 = 0). In this case, α > 0, β > 0, σb = 1, and 0 = µ0b < µ0w <

1. σbα = σwβ implies that σb = 1, σw = α
β
and µ0 = µ0w. So in PBE of this situation,

EVA(q1, q2) = vA0 + (ρ1v− vA0 )[q1 + (1− q1)
α
β
] ∈ (vA0 , ρ1v). Therefore, σb = 1, σw = α

β
and

p = µ0w constitute the PBE player A prefers in Γ(q1,q2) with EVA(q1, q2) = vA0 + (ρ1v −

vA0 )[q1 + (1− q1)
α
β
].

Case (9): (0 < q1 < 1, q2 = 1). In this case, α < β < 0, σw = 1, and 0 = µ0w < µ0b <

1. σbα = σwβ implies that σw = 1, σb =
β
α
and µ0 = µ0b. So in PBE of this situation,

EVA(q1, q2) = vA0 +(ρ1v− vA0 )[q1σb +(1− q1)] ∈ (vA0 , ρ1v). Therefore, σb =
β
α
, σw = 1 and

p = µ0b constitute the PBE player A prefers in Γ(q1,q2) with EVA(q1, q2) = vA0 + (ρ1v −

vA0 )[q1
β
α
+ (1− q1)].

Case (10): (q1 = 0, q2 = 0) or (q1 = 1, q2 = 1). Note that in the case of (q1 = 0, q2 =

0), α = 0 and β > 0. In the case of (q1 = 1, q2 = 1), α < 0 and β = 0. Additionally, her

posterior is equal to her interim belief µ0. σbα = σwβ implies that σw = 0 (σb = 0) in

the first (second) situation, which implies that µ0 ∈ (0, µ0w] (µ0 ∈ (0, µ0b]). Therefore,

σw = 0 (σb = 0) and p ∈ [0, µ0w] (p ∈ [0, µ0b]) constitute the PBE player A prefers in

Γ(q1,q2) with EVA(q1, q2) = vA0 .

Case (11): (q1 = 0, 0 < q2 < ρ2−ρ1
ρ2−ρA0

). In this case, α < 0, β > 0, σb = 0, and

0 < µ0w < µ0b = 1. σbα = σwβ implies that σw = 0 and µ0 ∈ (0, µ0w]. So in PBE of

this situation, EVA(q1, q2) = vA0 . Therefore, σb = σw = 0 and p ∈ [0, µ0w] constitute the

PBEa player A prefers in Γ(q1,q2) with EVA(q1, q2) = vA0 .

Case (12): (q1 = 0, q2 = ρ2−ρ1
ρ2−ρA0

). In this case, α < 0, β = 0, σb = 0, and 0 <

µ0w < µ0b = 1. σbα = σwβ implies that σw ∈ [0, 1]. So in PBE of this situation,
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EVA(q1, q2) = vA0 + (ρ1v − vA0 )σw ≤ ρ1v, in which the equality holds when σw = 1 and

µ0 ∈ [µ0w, 1). Therefore, σb = 0, σw = 1 and p ∈ [µ0w, 1] constitute the PBEa player A

prefers in Γ(q1,q2) with EVA(q1, q2) = ρ1v.

Case (13): (q1 = 0, ρ2−ρ1
ρ2−ρA0

< q2 < 1). In this case, α < 0, β < 0, σb = 0, and

0 < µ0w < µ0b = 1. σbα = σwβ implies that σw = 0 and µ0 ∈ (0, µ0w]. So in PBE of

this situation, EVA(q1, q2) = vA0 . Recall that in case (13), there exists another PBE in

which σb = 0, σw = 1, p = 1 and EVA(q1, q2) = ρ1v. Therefore, σb = 0, σw = 1 and p = 1

constitute the PBE player A prefers in Γ(q1,q2) with EVA(q1, q2) = ρ1v.

Case (14): (q1 = 0, q2 = 1). In this case, α < 0, β < 0, σb = 0, σw = 1, and

0 = µ0w < µ0b = 1. σbα = σwβ cannot hold, which implies that there is no PBE of this

situation. But recall that in case (14), there exists a PBE in which σb = 0, σw = 1, p = 1

and EVA(q1, q2) = ρ1v. Hence, σb = 0, σw = 1 and p = 1 constitute the PBE player A

prefers in Γ(q1,q2) with EVA(q1, q2) = ρ1v.

Note that case (15) is symmetric to case (11), case (16) is symmetric to case (12),

case (17) is symmetric to case (13) and case (18) is symmetric to case (14). A similar

analysis shows that in case (15), σb = σw = 0 and p ∈ [0, µ0b] constitute the PBEa player

A prefers in Γ(q1,q2) with EVA(q1, q2) = vA0 . In case (16), σb = 1, σw = 0 and p ∈ [µ0b, 1]

constitute the PBEa player A prefers in Γ(q1,q2) with EVA(q1, q2) = ρ1v. In cases (17)

and (18), σb = 1, σw = 0 and p = 1 constitute the PBE player A prefers in Γ(q1,q2) with

EVA(q1, q2) = ρ1v.

We summarize in Table C.2.1 the PBEa player A prefers in Γ(q1,q2).

Finally, player A’s decision problem at the initial node is to find (q1, q2) that max-

imizes EVA(q1, q2), that is, max(q1,q2)∈[0,1]×[0,1]EVA(q1, q2). According to Table C.2.1,

player A optimally chooses (q1 = 0, q2 ≥ ρ2−ρ1
ρ2−ρA0

) or (q1 = 1, q2 ≤ ρ1−ρA0
ρ2−ρA0

) with an ex-

pected payoff of ρ1v. Therefore, in player-A-preferred PBEa, player A has two types
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of equilibrium actions. (1) Full trustworthiness: (q1 = 1, q2 ≤ ρ1−ρA0
ρ2−ρA0

, p = 1) or (q1 =

0, q2 ≥ ρ2−ρ1
ρ2−ρA0

, p = 1). (2) Intermediate trustworthiness: (q1 = 1, q2 =
ρ1−ρA0
ρ2−ρA0

, p ≤

p < 1) or (q1 = 0, q2 = ρ2−ρ1
ρ2−ρA0

, p ≤ p < 1), where p ≡ ρB0 −(1−ρ2)

(1−ρ1−ρB0 )
ρ2−ρA0
ρ1−ρA0

+ρB0 −(1−ρ2)
∈

(0, 1). And (p(q̃1, q̃2), σ(q̃1, q̃2, b), σ(q̃1, q̃2, w)) off the equilibrium paths is specified in Ta-

ble C.2.1. And player B’s belief system is: µ(q̃1,q̃2,b) =
p(q̃1,q̃2)q̃1

p(q̃1,q̃2)q̃1+(1−p(q̃1,q̃2))q̃2
and µ(q̃1,q̃2,w) =

p(q̃1,q̃2)(1−q̃1)
p(q̃1,q̃2)(1−q̃1)+(1−p(q̃1,q̃2))(1−q̃2)

when Bayes’ rule applies, and µH = 0 when H = (q̃1 = 0, q̃2 ≥
ρ2−ρ1
ρ2−ρA0

, s = b) or H = (q̃1 = 1, q̃2 ≤ ρ1−ρA0
ρ2−ρA0

, s = w).

Set of equilibrium actions according to PBE

It is straightforward to show that any player-A-preferred PBE must also be a PBE.

Thus, the set of equilibrium actions according to player-A-preferred PBE is a subset of

the set of equilibrium actions according to PBE.

Next, consider an arbitrary PBE with the following strategy profile: Player A chooses

(p, q1, q2) and player B’s strategy specifies her action (investing or not investing) at

each possible information set (q̃1, q̃2, s). Clearly, given (q1, q2) and player B’s actions at

(q1, q2, s = b) and (q1, q2, s = w), p is optimal for player A. Given (p, q1, q2), player B’s ac-

tions at (q1, q2, s = b) and (q1, q2, s = w) are optimal for player B. We also know from the

text that player A has an expected payoff of ρ1v in any PBE. So, EVA(p, q1, q2) = ρ1v.

This shows that player A’s choosing p and player B’s actions at (q1, q2, s = b) and

(q1, q2, s = w) constitute a PBE strategy profile in Γ(q1,q2) such that player A’s PBE ex-

pected payoff is ρ1v. Then, we know from Table C.2.1 that player A’s choosing (p, q1, q2)

and player B’s actions at (q1, q2, s = b) and (q1, q2, s = w) constitute equilibrium ac-

tions on a certain player-A-preferred PBE. This shows that the set of equilibrium actions

according to PBE is a subset of the set of equilibrium actions according to player-A-

preferred PBE, and in turn the two sets are equal.
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C.2.2 Proof of Proposition 2

Proof:

We first establish two claims.

Claim 1 Q is more informative than Q′ if and only if [min{ q
′
1

q
′
2

,
1−q

′
1

1−q
′
2

},max{ q
′
1

q
′
2

,
1−q

′
1

1−q
′
2

}] ⊆

[min{ q1
q2
, 1−q1
1−q2

},max{ q1
q2
, 1−q1
1−q2

}].

Claim 2 Q and Q′ are identically informative if and only if Q+Q′ = (1, 1) or both are

the least informative.

By definition, Q is more informative than Q′ if and only if the linear system of

four equations with two unknown variables has a solution (α, β) ∈ [0, 1] × [0, 1]: αq1 +

β(1 − q1) = q
′
1; (1 − α)q1 + (1 − β)(1 − q1) = 1 − q

′
1; αq2 + β(1 − q2) = q

′
2; and

(1−α)q2+(1−β)(1−q2) = 1−q
′
2. It is clear that two of the four equations are redundant:

The linear system with two equations αq1 + β(1 − q1) = q
′
1 and αq2 + β(1 − q2) = q

′
2 is

equivalent to the original system.

First, consider the case of q1 > q2. In this case, the linear system has a unique

solution: α =
q
′
1−q

′
2+q1q

′
2−q2q

′
1

q1−q2
and β =

q1q
′
2−q2q

′
1

q1−q2
. α ≥ 0 if and only if

q
′
1

q
′
2

≥ 1−q1
1−q2

. α ≤ 1

if and only if (q1 − q2) − (q
′
1 − q

′
2) ≥ q1q

′
2 − q2q

′
1, which is equivalent to

1−q
′
1

1−q
′
2

≥ 1−q1
1−q2

.

β ≥ 0 if and only if q1
q2

≥ q
′
1

q
′
2

. β ≤ 1 if and only if q1
q2

≥ 1−q
′
1

1−q
′
2

. Second, consider

the case of q1 < q2. A similar analysis shows that the linear system has a solution

(α, β) ∈ [0, 1]× [0, 1] if and only if max{ q
′
1

q
′
2

,
1−q

′
1

1−q
′
2

} ≤ 1−q1
1−q2

and min{ q
′
1

q
′
2

,
1−q

′
1

1−q
′
2

} ≥ q1
q2
. Finally,

consider the case of q1 = q2 = q. In this case, the linear system becomes αq+β(1−q) = q
′
1

and αq + β(1− q) = q
′
2, which has a solution (α, β) ∈ [0, 1]× [0, 1] if and only if q

′
1 = q

′
2.

Then, [min{ q
′
1

q
′
2

,
1−q

′
1

1−q
′
2

},max{ q
′
1

q
′
2

,
1−q

′
1

1−q
′
2

}] = [min{ q1
q2
, 1−q1
1−q2

},max{ q1
q2
, 1−q1
1−q2

}]. The converse of

the statement in this case is straightforward.

Claim 2 is an implication of Claim 1. Suppose that Q is more informative than
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Q′( ̸= Q) and Q′ is more informative than Q. Claim 1 implies that max{ q1
q2
, 1−q1
1−q2

} =

max{ q
′
1

q
′
2

,
1−q

′
1

1−q
′
2

} and min{ q1
q2
, 1−q1
1−q2

} = min{ q
′
1

q
′
2

,
1−q

′
1

1−q
′
2

}, which implies that q1
q2

=
q
′
1

q
′
2

and 1−q1
1−q2

=

1−q
′
1

1−q
′
2

or that q1
q2

=
1−q

′
1

1−q
′
2

and 1−q1
1−q2

=
q
′
1

q
′
2

. In the first case, we can establish that q1 = q2 and

q
′
1 = q

′
2. In the second case, we can establish that q1 = q2 and q

′
1 = q

′
2 or that q

′
1 + q1 = 1

and q
′
2 + q2 = 1. It is straightforward to establish the converse of the statement.

We then show that uQ = |q1 − q2|. Suppose now (q1, q2) is more informative than

(x, y), which is randomly drawn from [0, 1] × [0, 1] according to the uniform distri-

bution. We derive the conditions that (x, y) must satisfy and compute Pr((x, y) :

(q1, q2) is more informative than (x, y)). It is clear from the definition that uQ = 0 when

q1 = q2. For notation simplicity, let t = q1
q2

and t
′
= 1−q1

1−q2
.

First, consider the case of q1 > q2. In this case, t > 1 > t
′
. Claim 1 implies that

(x, y) satisfies the following inequalities: x
y
≤ t, 1−x

1−y
≤ t, x

y
≥ t

′
, and y ≥ x

t′
+ 1 − 1

t′
.

These inequalities are equivalent to max{x
t
, x
t
′ + 1− 1

t
′ } ≤ y ≤ min{ x

t
′ , xt + 1− 1

t
} and it

is straightforward to establish that max{x
t
, x
t′
+ 1− 1

t′
} ≤ min{ x

t′
, x
t
+ 1− 1

t
}. Note that

x
t
≥ x

t′
+ 1− 1

t′
if and only if x ≤ t−tt

′

t−t′
≡ x1. Note also that x

t′
≥ x

t
+ 1− 1

t
if and only if

x ≥ tt
′−t

′

t−t′
≡ x2. Clearly, x1 > x2 if and only if t+ t

′
> 2tt

′
, i.e., q1

q2
+ 1−q1

1−q2
> 2 q1

q2

1−q1
1−q2

.

In the sub-case of q1
q2
+ 1−q1

1−q2
> 2 q1

q2

1−q1
1−q2

,

uQ =

∫ x2

0

Pr(
x

t
≤ y ≤ x

t′
) dx+

∫ x1

x2

Pr(
x

t
≤ y ≤ x

t
+ 1− 1

t
) dx

+

∫ 1

x1

Pr(
x

t′
+ 1− 1

t′
≤ y ≤ x

t
+ 1− 1

t
) dx

= (
1

t′
− 1

t
) ∗ 1

2
x2|x2

0 + (1− 1

t
)x|x1

x2
+ (

1

t
− 1

t′
) ∗ 1

2
x2|1x1

+ (
1

t′
− 1

t
)x|1x1

=
1

2
[
t− t

′

tt′
− t(1− t

′
)2

t′(t− t′)
− t

′
(1− t)2

t(t− t′)
]

=
(1− t

′
)(t− 1)

t− t′

= q1 − q2
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In the sub-case of q1
q2
+ 1−q1

1−q2
< 2 q1

q2

1−q1
1−q2

,

uQ =

∫ x1

0

Pr(
x

t
≤ y ≤ x

t′
) dx+

∫ x2

x1

Pr(
x

t′
+ 1− 1

t′
≤ y ≤ x

t′
) dx

+

∫ 1

x2

Pr(
x

t′
+ 1− 1

t′
≤ y ≤ x

t
+ 1− 1

t
) dx

= (
1

t′
− 1

t
) ∗ 1

2
x2|x1

0 + (
1

t′
− 1)x|x2

x1
+ (

1

t
− 1

t′
) ∗ 1

2
x2|1x2

+ (
1

t′
− 1

t
)x|1x2

=
1

2
(
1

t′
− 1

t
)[
t2(1− t

′
)2

(t− t′)2
+

(t
′
)2(1− t)2

(t− t′)2
+ 1]− t(1− t

′
)2

t′(t− t′)
− t

′
(1− t)2

t(t− t′)

= q1 − q2

Now consider the sub-case of q1
q2
+ 1−q1

1−q2
= 2 q1

q2

1−q1
1−q2

. The equality implies that (q1−q2)(2q1−

1) = 0, which implies that q1 =
1
2
. Then,

uQ =

∫ x1

0

Pr(
x

t
≤ y ≤ x

t′
) dx+

∫ 1

x1

Pr(
x

t′
+ 1− 1

t′
≤ y ≤ x

t
+ 1− 1

t
) dx

= (
1

t′
− 1

t
) ∗ 1

2
x2|x1

0 + (
1

t
− 1

t′
) ∗ 1

2
x2|1x1

+ (
1

t′
− 1

t
)x|1x1

=
t(1− t

′
)2

t′(t− t′)
− 1

2
(
1

t′
+

1

t
) + 1

=
1

2
− 1

2t

=
1

2
− q2

where the second to last equality comes from the fact that t + t
′
= 2tt

′
in the case of

x1 = x2 and in turn t
′−1
t−t′

= − 1
2t
.

Therefore, uQ = q1 − q2 in the case of q1 > q2.

Second, consider the case of q1 < q2. In this case, t < 1 and t
′
> 1. Claim 1 implies

that (x, y) satisfies the following inequalities: x
y
≥ t, 1−x

1−y
≥ t, x

y
≤ t

′
, and y ≤ x

t′
+ 1− 1

t′
.

These inequalities are equivalent to max{ty, t′y+ 1− t
′} ≤ x ≤ min{t′y, ty+ 1− t} and

it is straightforward to establish that max{ty, t′y + 1 − t
′} ≤ min{t′y, ty + 1 − t}. A
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similar analysis shows that uQ = 1
2
[ t

′−t
tt′

− t
′
(1−t)2

t(t′−t)
− t(1−t

′
)2

t′ (t′−t)
] = q2 − q1.

We now show that if Q is strictly more informative than (identically informative as)

Q′, then uQ > uQ′ (uQ = uQ′). Claim 2 and uQ = |q1 − q2| imply that if Q is identically

informative as Q′, then uQ = uQ′ . Suppose now that Q is strictly more informative than

Q′. It is without loss of generality to assume that q1
q2

> 1 and
q
′
1

q
′
2

≥ 1. Then, Claim 1 im-

plies that [min{ q
′
1

q
′
2

,
1−q

′
1

1−q
′
2

},max{ q
′
1

q
′
2

,
1−q

′
1

1−q
′
2

}] = [
1−q

′
1

1−q
′
2

,
q
′
1

q
′
2

] ⊂ [min{ q1
q2
, 1−q1
1−q2

},max{ q1
q2
, 1−q1
1−q2

}] =

[1−q1
1−q2

, q1
q2
], that is,

1−q
′
1

1−q
′
2

≥ 1−q1
1−q2

and
q
′
1

q
′
2

< q1
q2
or

1−q
′
1

1−q
′
2

> 1−q1
1−q2

and
q
′
1

q
′
2

≤ q1
q2
. It is straightforward

to establish that in both cases q1 − q2 > q
′
1 − q

′
2, i.e., uQ > uQ′ .

C.2.3 Proof of Proposition 3

Proof:

We first formulate player B’s prior belief and posterior belief about state 1 based

on the assumptions about heterogeneity. We assume that player B forms a prior belief

before she observes any information set, and forms a posterior belief after observing

information set (if any) and right before making her choice. Consider a player B whose

type is specified by (θB, Lk, π). Let E denote the event of state 1 and correspondingly

Ec denote the event of state 2. Given (Lk, π), her prior belief can be characterized as:

Pr(E) = (1− π) ∗ Pr(Lk−1 selfish A’s choice of p) + π ∗ Pr(Lk−1 prosocial A’s choice of p)

≡ (1− π) ∗ pA1 + π ∗ pA2

In Game 1, player B observes no information set and in turn her posterior belief is

identical to her prior belief Pr(E). In Game 2, her posterior belief after observing an
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information set H = (q1, q2, s) is updated according to Bayes’ rule:

Pr(E|H) = Pr(E,A1|H) + Pr(E,A2|H)

=
Pr(A1)Pr(E|A1)Pr(H|E,A1) + Pr(A2)Pr(E|A2)Pr(H|E,A2)

Pr(H)

=
(1− π)pA1Pr(H|E,A1) + πpA2Pr(H|E,A2)

Pr(H)

where Pr(H) can be explicitly written as,

Pr(H) = Pr(E,A1, H) + Pr(E,A2, H) + Pr(Ec, A1, H) + Pr(Ec, A2, H)

= (1− π)pA1Pr(H|E,A1) + πpA2Pr(H|E,A2)

+ (1− π)(1− pA1)Pr(H|Ec, A1) + π(1− pA2)Pr(H|Ec, A2)

= [(1− π)pA1Pr(q1, q2|A1) + πpA2Pr(q1, q2|A2)]Pr(s|E, q1, q2)

+ [(1− π)(1− pA1)Pr(q1, q2|A1) + π(1− pA2)Pr(q1, q2|A2)]Pr(s|Ec, q1, q2).

When Bayes’ rule is not defined, i.e., Pr(H) = 0, her posterior belief is specified by the

assumption about conditionally pessimistic posterior belief.

The specification for L0 players is as follows. Selfish and prosocial A players choose

p = 0 and p = 1 respectively in both games. In Game 2, they also choose q1 and q2

independently according to a uniform distribution over [0, 1]. Selfish and prosocial B

players choose z = 0 and z = 1 respectively in both games.

In Game 1, p = 0 (p = 1) is the dominant strategy for selfish (prosocial) player A

irrespective of his level of strategic sophitication. Additionally, Lk≥1 prosocial player

B and (Lk≥1, π >
ρB0 −(1−ρ2)

ρ2−ρ1
) selfish player B optimally choose z = 1, and (Lk≥1, π <

ρB0 −(1−ρ2)

ρ2−ρ1
) selfish player B optimally chooses z = 0.14

14Since π is assumed to have a continuous support, the assumption about the optimal action of selfish

B players with π =
ρB
0 −(1−ρ2)
ρ2−ρ1

and the assumption about the tie-breaking rule for player B’s action
generally will not affect optimal strategies of players of higher levels. For this reason, we skip the tie
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We now investigate Lk≥1 players’ optimal strategies in Game 2. For Lk≥1 prosocial

player B, her optimal strategy is always the same: chooses z = 1 regardless of the

information set she observes.

L1 player’s optimal strategy

L1 selfish player A’s expected payoff function is p ∗ [ρ1vα + vA0 (1 − α)]] + (1 − p) ∗

[ρ2vα+vA0 (1−α)]. So he should optimally choose p = 0. L1 prosocial player A’s expected

payoff function is p∗ [ρ1v∗α+vA0 (1−α)]+(1−p)∗ [(ρ2v+θA2)α+vA0 (1−α)]. So he should

optimally choose p = 1. We assume that L1 player A chooses q1 and q2 independently

according to a uniform distribution over [0, 1]. In short, L1 player A has the same optimal

response as L0 player A.

For L1 selfish player B with viewpoint π, her prior belief about state 1 is π (=

π ∗ 1 + (1 − π) ∗ 0). Her posterior beliefs about state 1 after observing (q1, q2, b) and

(q1, q2, w) are p̂b = πq1
πq1+(1−π)q2

and p̂w = π(1−q1)
π(1−q1)+(1−π)(1−q2)

respectively. Similar to the

proof of Proposition 1, the threshold value of her posterior belief about state 1 is still µ∗ =

ρB0 −(1−ρ2)

ρ2−ρ1
. Therefore, conditional on (q1, q2), when observing a black ball those selfish B

players with viewpoint π >
ρB0 −(1−ρ2)

(1−ρ1−ρB0 )
q1
q2

+ρB0 −(1−ρ2)
≡ πb invest, and when observing a

white ball those selfish B players with viewpoint π >
ρB0 −(1−ρ2)

(1−ρ1−ρB0 )
1−q1
1−q2

+ρB0 −(1−ρ2)
≡ πw invest.

From the perspective of L1 selfish player B with viewpoint π, when observing a black

ball she invests if q1
q2

>
ρB0 −(1−ρ2)

1−ρ1−ρB0

1−π
π
, and when observing a black ball she invests if

1−q1
1−q2

>
ρB0 −(1−ρ2)

1−ρ1−ρB0

1−π
π
.15

L2 player’s optimal strategy

L2 selfish player A’s expected payoff function from choosing p = 1 is ρ1vα + (1 −

α)q1[ρ1vPr(π > πb)+vA0 Pr(π < πb)]+(1−α)(1−q1)[ρ1vPr(π > πw)+vA0 Pr(π < πw)] =

case in all the analysis below.
15Note that the prediction remains the same as long as L0 player A chooses q1 and q2 independently

according to a distribution with a support of [0, 1]. We can make a similar assumption about L1 player
A. The assumption of uniform distribution is for the sake of simplicity.
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vA0 + (ρ1v − vA0 )α + (ρ1v − vA0 )(1 − α)[q1Pr(π > πb) + (1 − q1)Pr(π > πw)] ≡ vA0 + V1.

His expected payoff from choosing p = 0 is ρ2vα+ (1− α)q2[ρ2vPr(π > πb) + vA0 Pr(π <

πb)] + (1 − α)(1 − q2)[ρ2vPr(π > πw) + vA0 Pr(π < πw)] = vA0 + (ρ2v − vA0 )α + (ρ2v −

vA0 )(1− α)[q2Pr(π > πb) + (1− q2)Pr(π > πw)] ≡ vA0 + V2.

Let S1 = {(q1, q2) ∈ [0, 1]× [0, 1] : V1 > V2}, S2 = {(q1, q2) ∈ [0, 1]× [0, 1] : V1 < V2},

and S0 = {(q1, q2) ∈ [0, 1]× [0, 1] : V1 = V2}. To solve player A’s optimization problem ,

we first solve his optimization problem in the following four constraint sets about (q1, q2):

(1) S1 and q1 ≥ q2, (2) S1 and q1 ≤ q2, (3) S2 , (4) S0.

(1) S1 and q1 ≥ q2.

In this constraint set, he should optimally choose p = 1. His objective then is to

choose (q1, q2) to maximizes V1 in the constraint set S1 ∩ {q1 ≥ q2} . We apply the

following method to solve this problem: maximize V1 with the constraint q1 ≥ q2 and

then verify that the solution lies in S1.

When q1 ≥ q2,
q1
q2

≥ 1 ≥ 1−q1
1−q2

. In this case, πb ≤ ρB0 −(1−ρ2)

ρ2−ρ1
≤ πw. Pr(π >

πw) ≤ Pr(π >
ρB0 −(1−ρ2)

ρ2−ρ1
) ≤ Pr(π > πb). Note that Pr(π > πb) > 0 because π ≥

1 − (
1−ρ1−ρB0
ρ2−ρ1

)2 >
ρB0 −(1−ρ2)

ρ2−ρ1
. So V1 ≤ (ρ1v − vA0 )α + (ρ1v − vA0 )(1 − α)Pr(π > πb), and

the equality holds only when q1 = q2 or q1 = 1. Additionally, Pr(π > πb) achieves the

highest value of 1 only when q1
q2

= ∞. Therefore, V1 is maximized at (q1 = 1, q2 = 0) with

the value of ρ1v − vA0 . Note that at (q1 = 1, q2 = 0), V2 = (ρ2v − vA0 )α < V1 = ρ1v − vA0

since α <
ρ1−ρA0
ρ2−ρA0

.

(2) S1 and q1 ≤ q2.

In this constraint set, he should optimally choose p = 1. His objective then is to choose

(q1, q2) in the constraint set such that it maximizes V1. We apply a similar method as in

case (1) and establish that V1 is maximized at (q1 = 0, q2 = 1) with the value of ρ1v−vA0 .

Similarly, at (q1 = 0, q2 = 1), V2 = (ρ2v − vA0 )α < V1 = ρ1v − vA0 since α <
ρ1−ρA0
ρ2−ρA0

.

(3) S2.
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In this constraint set, he should optimally choose p = 0. His objective then is to

choose (q1, q2) in the constraint set such that it maximizes V2. Recall that π is uniformly

distributed over the interval (0, π).

We first consider the case of max{πb, πw} ≤ π. In this case, q1
q2

≥ ρB0 −(1−ρ2)

1−ρ1−ρB0

1−π
π

and

1−q1
1−q2

≥ ρB0 −(1−ρ2)

1−ρ1−ρB0

1−π
π
, where

ρB0 −(1−ρ2)

1−ρ1−ρB0

1−π
π

< 1 because π >
ρB0 −(1−ρ2)

ρ2−ρ1
. Then,

V2 = (ρ2v − vA0 )α + (ρ2v − vA0 )(1− α)[q2 ∗ (1−
πb

π
) + (1− q2) ∗ (1−

πw

π
)]

= (ρ2v − vA0 )−
(ρ2v − vA0 )(1− α)

π
[

ρB0 −(1−ρ2)

1−ρ1−ρB0
q2

ρB0 −(1−ρ2)

1−ρ1−ρB0
+ q1

q2

+

ρB0 −(1−ρ2)

1−ρ1−ρB0
(1− q2)

ρB0 −(1−ρ2)

1−ρ1−ρB0
+ 1−q1

1−q2

]

Let f(q1, q2) =

ρB0 −(1−ρ2)

1−ρ1−ρB0

q2

ρB0 −(1−ρ2)

1−ρ1−ρB0

+
q1
q2

+

ρB0 −(1−ρ2)

1−ρ1−ρB0

(1−q2)

ρB0 −(1−ρ2)

1−ρ1−ρB0

+
1−q1
1−q2

. When q1 = q2, f(q1, q2) =
ρB0 −(1−ρ2)

ρ2−ρ1
.16 Then,

f(q1, q2)− f(q1, q1) =

ρB0 −(1−ρ2)

1−ρ1−ρB0
q2

ρB0 −(1−ρ2)

1−ρ1−ρB0
+ q1

q2

+

ρB0 −(1−ρ2)

1−ρ1−ρB0
(1− q2)

ρB0 −(1−ρ2)

1−ρ1−ρB0
+ 1−q1

1−q2

− ρB0 − (1− ρ2)

ρ2 − ρ1

=
ρB0 − (1− ρ2)

ρ2 − ρ1
∗ 1

(
ρB0 −(1−ρ2)

1−ρ1−ρB0
+ q1

q2
)(

ρB0 −(1−ρ2)

1−ρ1−ρB0
+ 1−q1

1−q2
)q2(1− q2)

∗ F

where F = { ρ2−ρ1
1−ρ1−ρB0

[
ρB0 −(1−ρ2)

1−ρ1−ρB0
∗ q22(1− q2)+ (1− q1)q

2
2] +

ρ2−ρ1
1−ρ1−ρB0

[
ρB0 −(1−ρ2)

1−ρ1−ρB0
∗ q2(1− q2)

2+

(1− q2)
2q1]− q2(1− q2)∗ (ρ

B
0 −(1−ρ2)

1−ρ1−ρB0
+ q1

q2
)(

ρB0 −(1−ρ2)

1−ρ1−ρB0
+ 1−q1

1−q2
)}. We then show F = (q1− q2)

2

16When q1 = q2 ̸= 0 or 1 the result can be attained through working on the formula about f(q1, q2);
when q1 = q2 = 0 or 1 we can get the same result by tracing back to the definition about V2.
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below:

F =
ρ2 − ρ1

1− ρ1 − ρB0

ρB0 − (1− ρ2)

1− ρ1 − ρB0
q2(1− q2) +

ρ2 − ρ1
1− ρ1 − ρB0

(q22 + q1 − 2q1q2)

− q2(1− q2)[(
ρB0 − (1− ρ2)

1− ρ1 − ρB0
)2 +

ρB0 − (1− ρ2)

1− ρ1 − ρB0

1− q1
1− q2

+
ρB0 − (1− ρ2)

1− ρ1 − ρB0

q1
q2

+
q1
q2

1− q1
1− q2

]

=
ρB0 − (1− ρ2)

1− ρ1 − ρB0
(q2 − q22) +

ρ2 − ρ1
1− ρ1 − ρB0

(q22 + q1 − 2q1q2)

− ρB0 − (1− ρ2)

1− ρ1 − ρB0
(q2 − q1q2)−

ρB0 − (1− ρ2)

1− ρ1 − ρB0
(q1 − q1q2)− (q1 − q21)

= q22 −
ρB0 − (1− ρ2)

1− ρ1 − ρB0
(q1 − 2q1q2) +

ρ2 − ρ1
1− ρ1 − ρB0

(q1 − 2q1q2)− (q1 − q21)

= (q1 − q2)
2.

Therefore, f(q1, q2) − f(q1, q1) ≥ 0, where the equality holds only when q1 = q2.

Since f(q1, q2) is minimized at q1 = q2, V2 is maximized at q1 = q2 with a value of

ρ2v − vA0 − (ρ2v−vA0 )(1−α)

π
∗ ρB0 −(1−ρ2)

ρ2−ρ1
.

Next, we consider the case of πb > π. In this case, q1
q2

<
ρB0 −(1−ρ2)

1−ρ1−ρB0

1−π
π

< 1, which

implies that 1−q1
1−q2

> 1 and in turn πw <
ρB0 −(1−ρ2)

ρ2−ρ1
< π. Then,

V2 = (ρ2v − vA0 )α + (ρ2v − vA0 )(1− α)[q2 ∗ 0 + (1− q2) ∗ (1−
πw

π
)]

= (ρ2v − vA0 )α +
(ρ2v − vA0 )(1− α)

π
{(1− q2)π − (ρB0 − (1− ρ2))(1− q2)

(1− ρ1 − ρB0 )
1−q1
1−q2

+ ρB0 − (1− ρ2)
}

≤ (ρ2v − vA0 )α

+
(ρ2v − vA0 )(1− α)

π
∗ {(1− q2)π − (ρB0 − (1− ρ2)) ∗ (1− q2)

2

1− ρ1 − ρB0 + (ρB0 − (1− ρ2)) ∗ (1− q2)
}

where the equality holds if 1 − q1 = 1. Let x = 1 − q2 and we refer to the term in the

curly bracket as g(x) = πx− (ρB0 −(1−ρ2))x2

1−ρ1−ρB0 +(ρB0 −(1−ρ2))x
.
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Given x ∈ [0, 1], we show that g(x) is maximized at x = 1. Note that

g′(x) = π − [
(ρB0 − (1− ρ2))x

1− ρ1 − ρB0 + (ρB0 − (1− ρ2))x
+

(1− ρ1 − ρB0 )(ρ
B
0 − (1− ρ2))x

(1− ρ1 − ρB0 + (ρB0 − (1− ρ2))x)2
]

which is strictly decreasing in x. Then, g′(x) is minimized at x = 1 with a value of

π− [1− (
1−ρ1−ρB0

1−ρ1−ρB0 +ρB0 −(1−ρ2)
)2] = π− [1− (

1−ρ1−ρB0
ρ2−ρ1

)2]. Since π ≥ 1− (
1−ρ1−ρB0
ρ2−ρ1

)2, g′(x) ≥ 0

with the equality holding at x = 1. Therefore, g(x) is maximized at x = 1 with a value of

π− ρB0 −(1−ρ2)

ρ2−ρ1
. This shows that in the case of πb > π, V2 < ρ2v−vA0 −

(ρ2v−vA0 )(1−α)

π
∗ ρB0 −(1−ρ2)

ρ2−ρ1

because 1−q1
1−q2

> 1. Similarly, we show that V2 < ρ2v− vA0 − (ρ2v−vA0 )(1−α)

π
∗ ρB0 −(1−ρ2)

ρ2−ρ1
in the

case of πw > π.

This shows V2 is maximized at q1 = q2 with a value of ρ2v−vA0 −
(ρ2v−vA0 )(1−α)

π
∗ρB0 −(1−ρ2)

ρ2−ρ1
.

Note that at q1 = q2, V1 = ρ1v−vA0 −(ρ1v−vA0 )(1−α)
ρB0 −(1−ρ2)

ρ2−ρ1
1
π
< ρ2v−vA0 −

(ρ2v−vA0 )(1−α)

π
∗

ρB0 −(1−ρ2)

ρ2−ρ1
= V2 since π ≥ 1− (

1−ρ1−ρB0
ρ2−ρ1

)2 >
ρB0 −(1−ρ2)

ρ2−ρ1
.

(4) S0.

In this constraint set, we show that V1 = V2 implies that V1 < ρ1v − vA0 . We have

shown that V1 achieves the highest value ρ1v − vA0 only when (q1, q2) = (1, 0) or when

(q1, q2) = (0, 1). In both cases, V2 = (ρ2v − vA0 )α < V1 since α <
ρ1−ρA0
ρ2−ρA0

. This shows

that if V1 = V2, then V1 ̸= ρ1v − vA0 , i.e., V1 < ρ1v − vA0 . So player A’s problem is not

maximized in the set S0.

Therefore, the solution to player A’s optimization problem comes from cases (1)-(3).

Specifically, he should optimally choose (p = 0, q1 = q2) if ρ2v − vA0 − (ρ2v−vA0 )(1−α)

π
∗

ρB0 −(1−ρ2)

ρ2−ρ1
> ρ1v − vA0 , i.e., if π > (1 − α)

ρ2−ρA0
ρ2−ρ1

ρ0B−(1−ρ2)
ρ2−ρ1

. Note that 1 − (
1−ρ1−ρB0
ρ2−ρ1

)2 >

(1 − α)
ρ2−ρA0
ρ2−ρ1

ρ0B−(1−ρ2)
ρ2−ρ1

if and only if ρ2 − ρB0 + 1 − 2ρ1 > (1 − α)(ρ2 − ρA0 ). Therefore,

he should optimally choose (p = 0, q1 = q2) if ρ2 − ρB0 + 1− 2ρ1 > (1− α)(ρ2 − ρA0 ) or if

ρ2−ρB0 +1−2ρ1 ≤ (1−α)(ρ2−ρA0 ) and π > (1−α)
ρ2−ρA0
ρ2−ρ1

ρ0B−(1−ρ2)
ρ2−ρ1

. He should optimally

choose (p = 1, q1 = 1, q2 = 0) or (p = 1, q1 = 0, q2 = 1) if π < (1− α)
ρ2−ρA0
ρ2−ρ1

ρ0B−(1−ρ2)
ρ2−ρ1

.
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L2 prosocial player A’s expected payoff from choosing p = 1 is the same as L2 selfish

player A’s expected payoff from choosing p = 1. Thus, it is maximized at (q1, q2) = (1, 0)

or (q1, q2) = (0, 1) with a value of ρ1v. His expected payoff from choosing p = 0 is no more

than ρ2v+ θA2 (< ρ1v). Therefore, he should optimally choose p = 1 and (q1, q2) = (1, 0)

or (q1, q2) = (0, 1).

L2 selfish player B with viewpoint π has the same optimal response as L1 selfish player

B with viewpoint π because L1 player A has the same optimal response as L0 player A.

L3 player’s optimal strategy

L3 player A has the same optimal response as L2 player A because L2 player B has

the same optimal response as L1 player B.

Now consider L3 selfish player B with viewpoint π. According to her belief, L2 selfish

player A optimally chooses (q1 = q2, p = 0) and L2 prosocial player A optimally chooses

(q1 = 1, q2 = 0, p = 1) or (q1 = 0, q2 = 1, p = 1). So Pr(E|A1) = Pr(Ec|A2) = 0 and

Pr(E|A2) = Pr(Ec|A1) = 1, i.e., pA1 = 0 and pA2 = 1, and in turn her prior belief about

state 1 is Pr(E) = π ∗ 1 + (1 − π) ∗ 0 = π.17 Then, consider all possible Hs she may

observe.

(1) H = (q1 = 1, q2 = 0, b) or (q1 = 0, q2 = 1, w). Consider only the case of H =

(q1 = 1, q2 = 0, b). In this case, Pr(q1, q2|A1) = Pr(s|Ec, q1, q2) = 0 and Pr(q1, q2|A2) =

Pr(s|E, q1, q2) = 1. Thus, Pr(H) = π and Pr(E|H) = π
π
= 1. So she should optimally

invest. Similarly, she should optimally invest in information set H = (q1 = 0, q2 = 1, w).

(2) H = (q1 = 1, q2 = 0, w) or (q1 = 0, q2 = 1, b). In this case, Pr(H) = 0 and

Bayes’ rule is not defined. Only a posterior belief of zero is consistent with the disclosed

17If π < (1 − α)
ρ2−ρA

0

ρ2−ρ1

ρ0B−(1−ρ2)
ρ2−ρ1

, both prosocial and selfish player A of level 2 optimally choose

(p = 1, q1 = 1, q2 = 0) or (p = 1, q1 = 0, q2 = 1). In this case, L3 selfish player B’s prior belief about
state 1 becomes one and she should observe (q1 = 1, q2 = 0) or (q1 = 0, q2 = 1). A similar analysis
suggests that her optimal strategy remains the same: invests only when (0 < q1 ≤ 1, q2 = 0, b) or
(0 ≤ q1 < 1, q2 = 1, w).
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information and in turn under the assumption about conditionally pessimistic posterior

belief she should optimally not invest.

(3) H = (0 < q1 = q2 < 1, b/w), (q1 = q2 = 0, w) or (q1 = q2 = 1, b). In this

information Pr(E|H) = 0 and she should optimally not invest.

(4) H = (0 < q2 ̸= q1 < 1, b/w), (0 = q2 < q1 < 1, w), (0 < q1 < q2 = 1, b),

(0 < q2 < q1 = 1, b) or (q1 = 0 < q2 < 1, w). In this case, Pr(H) = 0 and Bayes’ rule

is not defined. Any posterior belief of from zero to one is consistent with the disclosed

information and in turn under the assumption about conditionally pessimistic posterior

belief she should optimally not invest.

(5) H = (0 < q2 < q1 = 1, w) or (q1 = 0 < q2 < 1, b). In this case, Pr(H) = 0 and

Bayes’ rule is not defined. Only a posterior belief of zero is consistent with the disclosed

information and in turn under the assumption about conditionally pessimistic posterior

belief she should optimally not invest.

(6) H = (0 = q2 < q1 < 1, b) or (0 < q1 < q2 = 1, w). In this case, Pr(H) = 0 and

Bayes’ rule is not defined. Only a posterior belief of one is consistent with the disclosed

information and in turn under the assumption about conditionally pessimistic posterior

belief she should optimally invest.

To sum up, L3 selfish player B with viewpoint π should optimally invest only when:

(0 < q1 ≤ 1, q2 = 0, s = b) or (0 ≤ q1 < 1, q2 = 1, s = w).

L4 player’s optimal strategy

L4 selfish player A’s expected payoff from choosing p = 1 is (1 − α)q1 ∗ (ρ1v ∗

10<q1≤1,q2=0+vA0 (1−10<q1≤1,q2=0))+(1−α)(1−q1)∗(ρ1v∗10≤q1<1,q2=1+vA0 (1−10≤q1<1,q2=1))+

ρ1vα, which is maximized at (q1 = 1, q2 = 0) or (q1 = 0, q2 = 1) with a value of

ρ1v. His expected payoff from choosing p = 0 is vA0 (1 − α) + ρ2vα, which is less

than ρ1v since α <
ρ1−ρA0
ρ2−ρA0

. Therefore, his optimal choice is (p = 1, q1 = 1, q2 = 0)

185



Appendix for “Trustworthy by Design” Chapter C

or (p = 1, q1 = 0, q2 = 1). For L4 prosocial player A, his optimal choice is also

(p = 1, q1 = 1, q2 = 0) or (p = 1, q1 = 0, q2 = 1).

Since L3 player A has the same optimal response as L2 player A, L4 selfish player B has

the same optimal strategy as L3 selfish player B: invest only when (0 < q1 ≤ 1, q2 = 0, b)

or (0 ≤ q1 < 1, q2 = 1, w).

It is straightforward to establish that Lk>4 player has the same optimal strategy as

L4 player.

C.3 Additional Data Analysis

C.3.1 Change in the Payoff of Player A

We do not observe significant difference in player A’s average payoff between games.

However, under state 1, the average payoff increases significantly from 11.75 to 13.73 (p-

value<0.001, paired permutation test on the averages at the session level), while under

state 2, the average payoff decreases significantly from 13.98 to 13.05 (p-value=0.023,

paired permutation test on the averages at the session level). This observation indicates

that introducing information design benefits only those A players who choose to be

trustworthy.

We also look at trusting acts across states and games. The numbers of rounds with

state 1 being realized in Game 1 and Game 2 are 191 and 351, respectively. Among these

rounds, the numbers of trusting acts are 67 and 262, respectively (frequency: 35.1% and

74.6%). The increase in the frequency of trusting acts from Game 1 to Game 2 accounts

for player A’s payoff increase under state 1. The numbers of rounds with state 2 being

realized in Game 1 and Game 2 are 609 and 449, respectively. Among these rounds, the

numbers of trusting acts are 202 and 114, respectively (frequency: 33.2% and 25.4%).
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The decrease in the frequency of trusting acts from Game 1 to Game 2 accounts for

player A’s payoff decrease under state 2. Note also that the frequency of trusting acts in

Game 1 is similar between under state 1 and state 2, which is expected due to player A’s

no capability to signal trustworthiness in Game 1. In addition, the frequency in Game

2 is substantially larger under state 1 than that under state 2, which is expected due to

player A’s full capability to signal trustworthiness in Game 2.

C.3.2 Treatment Effects (Round 1 Data Only)

Table C.3.1 shows that when we consider round 1 data of each game, subsample 1

of round 1 data, in which Game 1 is played first, or subsample 2 of round 1 data, in

which Game 2 is played first, the treatment effects are qualitatively consistent with the

equilibrium predictions.

Table C.3.1: Treatment Effects (Round 1 Data Only)

Game 1 Game 2 Difference

Trustworthiness (p)

0.28 0.46 0.18***
0 ≥ 1

7

0.32 0.45 0.13**
0.23 0.46 0.23***

Trust (z)

0.34 0.48 0.14***
0 ≥ 1

2

0.43 0.50 0.07
0.25 0.45 0.20***

Notes: For each variable, rows 1-4 represent the data of round 1, equilibrium prediction, subsample 1 of round 1 data
and subsample 2 of round 1 data, in which Game 1 is played first and second, respectively. The used tests are Wilcoxon
signed rank test for p and paired permutation test for z. *, **and *** indicate significance at the 10%, 5% and 1% levels,
respectively.

The average aggregate payoff increases from 23.38 to 24.8 (p-value=0.013, paired

permutation test on the averages at the session level). As for player A, the average

payoff increases from 13.35 to 13.43 (p-value=0.619, Wilcoxon signed rank test). We
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then check the change in player A’s payoff conditional on the realized state. Under state

1, the average payoff increases significantly from 11.82 to 13.82 (p-value<0.001, paired

permutation test on the averages at the session level), while under state 2, the average

payoff decreases from 13.93 to 13.13 (p-value=0.321, paired permutation test on the

averages at the session level). As for player B, the average payoff increases from 10.03 to

11.33 (p-value<0.001, Wilcoxon signed rank test).

Figure C.1 presents the data in a disaggregated form: the distributions of subjects’

choices of p and z and payoff in the first round of each game.
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Figure C.1: Distributions of p, z and payoff in Round 1

C.3.3 Distribution of Information Sets

Since information sets that a subject observes in Game 2 are determined by her

opponent, it is expected that the distribution of four categories of information sets that

subjects observe in Game 2 is similar for the “trusting group” and “no trusting group”,

which is indeed the case according to Table C.3.2.
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Table C.3.2: Distribution of Information Sets for the “trusting/no trusting group” in Game 1

H1 H2 H3 H4

“Trusting group” in Game 1
count 123 12 51 64

expected 113.75 15.31 49.06 71.87

“No trusting group” in Game 1
count 241 37 106 166

expected 250.25 33.69 107.94 158.13

Notes: H1 (H2), unfavorable signal and information structure with a low (high) index; H3 (H4), favorable signal and
information structure with a low (high) index. Count in each cell reports the number of the corresponding information
sets that are observed. “Trusting/no trusting group”: subjects who invest in no less than/less than three rounds of Game
1. Person’s chi-squared test: p-value= 0.32; Fisher’s exact test: p-value= 0.33.

C.3.4 Estimation Procedure

We assume that each subject of a certain type follows the predicted action subject

to standard logistic errors with precision λ. The subject’s choice approaches uniform

randomness as λ → 0 and approaches the predicted action as λ → ∞. Let y index a

generic value of parameters related to prosociality and strategic sophistication. Player

A’s type and player B’s type can be represented by y and (y, π), respectively. Let Ω index

the action space.18 Let V(y,g)(cg) index player A’s expected payoff from choosing action cg

in Game g, and let V(y,π,g)(cg|H) index player B’s expected payoff from choosing action

cg when observing an information set H in Game g.19 For a certain type, the choice

probability or density is specified below.

PA
(y,g)(cg) =

exp[λV(y,g)(cg)]∫
Ω
exp[λV(y,g)(c̃)] dc̃

, for player A. (C.1)

PB
(y,π,g)(cg|H) =

exp[λV(y,π,g)(cg|H)]∑
Ω exp[λV(y,π,g)(c̃|H)]

, for player B. (C.2)

Let ci (or ci|H i) index subject i’s sample, which consists of ten observations, where

ci = {cigr}g∈{1,2},r∈{1,··· ,5} and H i = {H i
gr}g∈{1,2},r∈{1,··· ,5}. With the assumption that a

18For player A, Ω = {p : p ∈ [0, 1]} in Game 1 and Ω = {(p, q1, q2) : p ∈ [0, 1], q1 ∈ [0, 1], q2 ∈ [0, 1]}
in Game 2. For player B, Ω = {1, 0} in both games. H ∈ ∅ in Game 1, and H = (q1, q2, s) ∈
[0, 1]× [0, 1]× {b, w}/{(1, 1, w), (0, 0, b)} in Game 2.

19The expected payoff function of each type is presented in Table C.3.3.
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subject’s errors are independent across rounds, the likelihood of observing a subject’s

sample conditional on his/her type can be specified as:

LA
y (c

i) =
2∏

g=1

5∏
r=1

PA
(y,g)(c

i
gr) =

2∏
g=1

5∏
r=1

exp[λV(y,g)(c
i
gr)]∫

Ω
exp[λV(y,g)(c̃)] dc̃

, (C.3)

LB
(y,π)(c

i|H i) =
2∏

g=1

5∏
r=1

PB
(y,π,g)(c

i
gr|H i) =

2∏
g=1

5∏
r=1

exp[λV(y,π,g)(c
i
gr|H i)]∑

Ω exp[λV(y,π,g)(c̃|H i)]
. (C.4)

Let βy be the prior probability of player A being type y, and let β(y,π) be the prior

probability density of player B being type (y, π). According to the type classification

based on the expected payoff function, player A may be classified as one of six categories

and player B with viewpoint π may be classified as one of four categories. Thus, we

have
∑6

y=1 βy = 1 and
∑4

y=1

∫ π̄

0
β(y,π) dπ = 1. Then, the likelihood of observing a sub-

ject’s sample unconditional on type can be formulated as: LA(ci) =
∑6

y=1 βyL
A
y (c

i) and

LB(ci|H i) =
∑4

y=1

∫ π̄

0
β(y,π)L

B
(y,π)(c

i|H i) dπ.

We assume that the precision parameter λ is subject-specific and game-specific:

{λg}2g=1. For each subject, we jointly estimate his/her game-specific λg and type prob-

abilities. Since the likelihood function LA(ci) is linear in βy, the maximum likelihood

estimate of player A’s type probabilities sets βy = 1 for the (generically unique) y that

yields the highest LA
y (c

i), which is obtained by maximizing LA
y (c

i) over {λg}2g=1 given

type y. For a similar reason, the maximum likelihood estimate of player B’s type density

assigns (y, π) a probability of one for the (generically unique) (y, π) that yields the high-

est LB
(y,π)(c

i|H i), which is obtained by maximizing LB
(y,π)(c

i|H i) over {λg}2g=1 given type

(y, π).

How we use the estimation procedure

It is a prerequisite to specify the values of background parameters (θA2, θB2, α, π̄) be-

fore conducting MLE. Given the values of monetary payoff parameters in our experiment,
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the behavioral model only requires that θA2 < −7, θB2 > 2, α < 5
12

and π̄ > 24
49
. We

assume that the background parameters are role specific and apply the spirit of MLE

to pick their values. Specifically, for each value of (θA2, θB2, α, π̄) taken from a range,

we estimate each subject’s type and precision parameters using MLE. Then, we sum up

the obtained likelihoods over all A players (B players), and the value of (θA2, θB2, α, π̄)

that maximizes the sum of likelihoods is chosen as player A’s (player B’s) background

parameters.20

In practice, our estimation procedure proceeds as follows. We first specify a dis-

cretized range of background parameters, e.g., (θA2, θB2, α, π̄) ∈ {−8,−7.5} × {2.5, 3} ×

{0.1, 0.2, 0.3, 0.4} × {0.5, 0.6, 0.7, 0.8, 0.9}. Then for each (θA2, θB2, α, π̄) taken from this

range, we conduct the subject-by-subject analysis and maximize lnLA(ci) and lnLB(ci|H i)

over type and precision parameter. The value of (θA2, θB2, α, π̄) is picked for A players

and B players respectively in a maximum likelihood fashion. Finally, each subject’s type

is estimated through MLE given the picked value of (θA2, θB2, α, π̄).

The procedure pins down (θA2 = −7.5, θB2 = 2.5, α = 0.3, π̄ = 0.6) for player A

and (θA2 = −7.5, θB2 = 2.5, α = 0.3, π̄ = 0.5) for player B.21 Note that θB2 does not

affect player A’s type estimation, and θA2 and α do not affect player B’s type estimation

because they do not enter into the corresponding player’s expected payoff function.

Given the selected value of background parameters (θA2, θB2, α, π̄), we determine each

subject’s type in the following way. For subject i as player A, we find a (λ∗
1, λ

∗
2) ∈

[0, 100]× [0, 100] that maximizes the likelihood LA
y (c

i) and then find a y∗ that maximizes

20Alternatively, one may want to use a common set of values of background parameters for both
players. The issue is that compared to player B, player A’s action space is large and thus have extremely
large absolute log-likelihood value, which in turn dominates the procedure of specifying background
parameters. In other words, the value of (θA2, θB2, α, π̄) that maximizes the sum of likelihoods over all
A players also maximizes the sum of likelihoods over all A players and all B players.

21As a robust check, we also vary the values of background parameters from the picked one. We find
that the proportions of types remain similar, which indicates that a subject’s estimated type roughly
remains unchanged when the values of background parameters deviate from the picked ones. The details
of the robust check are available upon request.
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the maximum of the likelihood, that is, y∗ ∈ argmaxy max(λ1,λ2) L
A
y (c

i). For subject j as

player B, we find a (λ∗
1, λ

∗
2, π

∗) ∈ [0, 100]×[0, 100]×[0.01, π̄] that maximizes the likelihood

LB
(y,π)(c

j|Hj) and then find a y∗ that maximizes the maximum of the likelihood, that is,

y∗ ∈ argmaxy max(λ1,λ2,π) L
B
(y,π)(c

j|Hj). When the maximizer for a subject, y∗ or (y∗, π∗),

is unique, the subject is assigned a unique type; when the maximizer for a subject admits

multiple values, the subject is assigned multiple types.

Table C.3.3: Expected Payoff Function of Different Types

Role Type Game 1 Game 2

A

(P,L1) 10 + [5p+ (12 + θA2)(1− p)] ∗ α 10 + [5p+ (12 + θA2)(1− p)] ∗ α

(P,L2/L3) 10 + [5p+ (12 + θA2)(1− p)] ∗ [α + (1− α)Pr(π > 2
7
)]

10 + 5p{α + (1− α)[q1Pr(π > 0.4
0.4+

q1
q2

) + (1− q1)Pr(π > 0.4

0.4+
1−q1
1−q2

)]}

+(12 + θA2)(1− p){α + (1− α)[q2Pr(π > 0.4
0.4+

q1
q2

) + (1− q2)Pr(π > 0.4

0.4+
1−q1
1−q2

)]}

(P,Lk≥4) 10 + [5p+ (12 + θA2)(1− p)] ∗ [α + (1− α)Pr(π > 2
7
)]

10 + 5p[α + (1− α)q1] + (12 + θA2)(1− p)α if (q1, q2) ∈ ϕ1;
10 + 5p[α + (1− α)(1− q1)] + (12 + θA2)(1− p)α if (q1, q2) ∈ ϕ2;

10 + [5p+ (12 + θA2)(1− p)] ∗ α otherwise

(S, L1) 10 + (12− 7p) ∗ α 10 + (12− 7p) ∗ α

(S, L2/L3) 10 + (12− 7p) ∗ [α + (1− α)Pr(π > 2
7
)]

10 + 5p{α + (1− α)[q1Pr(π > 0.4
0.4+

q1
q2

) + (1− q1)Pr(π > 0.4

0.4+
1−q1
1−q2

)]}

+12(1− p){α + (1− α)[q2Pr(π > 0.4
0.4+

q1
q2

) + (1− q2)Pr(π > 0.4

0.4+
1−q1
1−q2

)]}

(S, Lk≥4) 10 + (12− 7p) ∗ [α + (1− α)Pr(π > 2
7
)]

10 + 5p[α + (1− α)q1] + 12(1− p)α if (q1, q2) ∈ ϕ1;
10 + 5p[α + (1− α)(1− q1)] + 12(1− p)α if (q1, q2) ∈ ϕ2;

10 + (12− 7p) ∗ α otherwise

B

(P,L1/L2, π) 8 + θB2 + 7π if z = 1; 10 if z = 0
8 + θB2 + 7 πq1

πq1+(1−π)q2
if (s = b, z = 1);

8 + θB2 + 7 π(1−q1)
π(1−q1)+(1−π)(1−q2)

if (s = w, z = 1);

10 if z = 0

(P,Lk≥3, π) 8 + θB2 + 7π if z = 1; 10 if z = 0
15 + θB2 if (q1, q2, s) ∈ Ĥ &z = 1; 8 + θB2 if (q1, q2, s) /∈ Ĥ&z = 1;

10 if z = 0

(S, L1/L2, π) 8 + 7π if z=1; 10 if z=0
8 + 7 πq1

πq1+(1−π)q2
if (s = b, z = 1); 8 + 7 π(1−q1)

π(1−q1)+(1−π)(1−q2)
if (s = w, z = 1);

10 if z = 0

(S, Lk≥3, π) 8 + 7π if z=1; 10 if z=0
15 if (q1, q2, s) ∈ Ĥ &z = 1; 8 if (q1, q2, s) /∈ Ĥ&z = 1;

10 if z = 0

Notes: ϕ1 ≡ (0 < q1 ≤ 1, q2 = 0); ϕ2 ≡ (0 ≤ q1 < 1, q2 = 1); Ĥ ≡ {(ϕ1, s = b)} ∪ {(ϕ2, s = w)}.

C.3.5 Causal Mediation Analysis

We follow four basic steps for the mediation analysis. First, we run a probit regression

of trusting act on the treatment dummy (i.e., 1 if Game 2 and 0 if Game 1). The
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regression result shows that the total treatment effect on trusting act is significantly

positive. Second, we run a linear regression of trustworthiness (i.e., the mediator in our

setting) on the treatment dummy and verify that the treatment effect on trustworthiness

is significant. Third, we run a probit regression of trusting act on the treatment dummy,

trustworthiness and their interaction term. The regression result shows that there exists

both direct and indirect effects, and the indirect effect depends on the treatment status.

Given the results of the latter two regressions, we use the R package mediation to conduct

the causal mediation analysis. Table C.3.4 shows that the proportion of the indirect effect

is 38.9% and correspondingly the proportion of the direct effect is 61.1%.

Table C.3.4: Causal Mediation Analysis

Estimate 95% CI p-value

Total Effect 0.148 [0.091, 0.190] < 0.0001
ACME 0.057 [0.043, 0.070] < 0.0001
ADE 0.091 [0.035, 0.130] < 0.001
Prop. Mediated 0.389 [0.279, 0.630] < 0.0001

Notes: ACME denotes average causal mediation effects, that is, the indirect effect of information design on trusting act
that goes through trustworthiness. ADE denotes average direct effects, that is, the direct effect of information design on
trusting act. Prop. Mediated describes the proportion of the indirect effect. All the estimated effects are expressed as the
increase in the probability of player B’s trusting act. Point estimates and 95% confidence intervals are all computed by
Bootstrap.
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C.4 Experimental Instructions

Welcome to today’s experiment of economic decision making.22 You will earn a con-

siderable amount of money as long as you read experimental instructions carefully and

make wise decisions.

In the paid part of the experiment, each participant is assigned a constant role, either

player A or player B. Player A is paired with player B to play five rounds of Game 1

and five rounds of Game 2.

In each of ten rounds, each player is paired with an anonymously new opponent

and each player has an endowment of 10 tokens. If both player A and player B agree

to spend their 10 tokens on an investment project, the project will be conducted and

its total payoffs will be 30 tokens. The total payoffs will be allocated between player

A and player B according to either plan (15, 15) or plan (22, 8). The payoff table is

demonstrated below.

Table C.4.1: Payoffs Table

Both invest Allocation plan A’s payoff B’s payoff

No endowment 10 10

Yes
(15, 15) 15 15

(22, 8) 22 8

Game 123

In Game 1, player A moves first and decides the chance of plan (15, 15) that

will be chosen. Specifically, playerA chooses an integer number P from {0,1,2,· · · ,99,100

}. If P = 0, then the chance of plan (15, 15) is 0% and correspondingly the chance of

plan (22, 8) is 100%. In other words, a computer will choose plan (22, 8) to allocate the

22The experiment was conducted in Chinese. This is an English translation of the instructions.
23In sessions with the trustworthiness design game preceding the reverse trust game, Games 1 and 2

here are labeled as Games 2 and 1, respectively.
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payoffs of the project. If 0 < P < 100, then the chance of plan (15, 15) is P% and

correspondingly the chance of plan (22, 8) is (100−P )%. In other words, a computer will

choose plan (15, 15) with the chance of P% and choose plan (22, 8) with the chance of

(100− P )%, and then the total payoffs of the project will be allocated according to the

chosen plan. If P = 100, then the chance of plan (15, 15) is 100% and correspondingly

the chance of plan (22, 8) is 0%. In other words, a computer will choose plan (15, 15) to

allocate the payoffs of the project.

After player A moves and the allocation plan is determined, player B

decides whether or not to spend his/her 10 tokens on the project without

knowing the allocation plan and player A’s choice of P . If player B chooses not

to spend 10 tokens on the project, the project will not be conducted and both players

keep their endowment of 10 tokens. If player B chooses to spend 10 tokens on the project,

player A’s 10 tokens will also be spent on the project and both players receive payoffs

according to the determined allocation plan.

Game 2

In Game 2, player A moves first and decides the chance of plan (15, 15).

Specifically, player A chooses an integer number P from {0, 1, 2, · · · , 99, 100}, which will

determine the allocation plan in the same way as in Game 1. In addition, player A

decides the composition of black balls and white balls in urn 1 and urn 2.

Specifically, both urns contain 100 balls of either black or white. Player A chooses

an integer number Q1 from {0, 1, 2, · · · , 99, 100} that determines the number of

black balls in urn 1. In other words, the numbers of black balls and white balls in

urn 1 are chosen to be Q1 and 100 − Q1 respectively. Player A chooses an integer

number Q2 from {0, 1, 2, · · · , 99, 100} that determines the number of black balls

in urn 2. In other words, the numbers of black balls and white balls in urn 2 are chosen

to be Q2 and 100−Q2 respectively.
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After player A’s move, a computer chooses the allocation plan according

to P in the same way as in Game 1. When the determined plan is (15, 15),

urn 1 will be used. When the determined plan is (22, 8), urn 2 will be used.

A ball is then randomly drawn from the used urn.

Player B is neither told of the allocation plan and the used urn nor told

of player A’s choice of P , but observes player A’s choice of Q1 and Q2, and

also the color of the drawn ball. Based on this observation, player B decides

whether or not to spend his/her 10 tokens on the investment project. If player

B chooses not to spend 10 tokens on the project, the project will not be conducted and

both players keep their endowment of 10 tokens. If player B chooses to spend 10 tokens

on the project, player A’s 10 tokens will also be spent on the project and both players

receive payoffs according to the determined allocation plan.

Payoffs

Neither of both players receives feedback at the end of each round. In other words,

player A is not told whether player B chooses to spend 10 tokens on the project, and

player B is not told of the determined allocation plan and player A’s choice of P . At the

end of the experiment, one round is randomly selected out of ten rounds by the computer

as a paid round. Your final payoffs are equal to your earned tokens in the paid round.

Each token is equivalent to two Chinese yuan. In addition, you also receive a show-up fee

of five Chinese yuan for completing the paid experiment and a six-question questionnaire

after the paid experiment.

Practice

To help you become familiar with the two games in the paid experiment, we ask each

participant to practice playing four rounds of games before the paid experiment starts.

In the first and second rounds, you are assigned the role of player A and a computer

is assigned the role of player B to play Game 1 and Game 2 respectively. In the third
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and fourth rounds, you are assigned the role of player B and a computer is assigned the

role of player A to play Game 1 and Game 2 respectively. Unlike a human opponent in

the paid experiment, your computer opponent always makes a random decision in the

practice rounds. In other words, your computer opponent as player B always randomly

chooses whether or not to spend 10 tokens on the project; and your computer opponent

as player A always randomly picks P in Game 1 and randomly picks P,Q1, Q2 in Game 2.

Another difference in the practice rounds is that you are told of the determined allocation

plan and your payoff at the end of each round. Your payoffs in the four practice rounds

will not affect your earnings in the paid experiment.

Rules

If you have any questions during the experiment, please raise your hand. During the

experiment, you must turn off your cell phone, you are neither allowed to talk with each

other nor allowed to leave without permission from the investigator.

Please raise your hand now if you have any questions with the experimental instruc-

tions! We will proceed to the practice rounds after answering your questions.
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