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EPIGRAPH

Chaos is inherent in all compounded things.

Strive on with diligence.
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As far as the laws of mathematics refer to reality,

they are not certain,

and as far as they are certain,

they do not refer to reality.

—Albert Einstein

Its not a race.

—Ryan Verne Inman
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ABSTRACT OF THE THESIS

Solar Forecasting Review

by

Richard Headen Inman, Jr.

Master of Science in Engineering Sciences (Aerospace Engineering)

University of California, San Diego, 2012

Professor Carlos F. M. Coimbra, Chair

There has recently been a global increased interest in expanding the renew-

able energy portfolio of many countries. One of the most promising technologies

is that of solar photovoltaics due to the high solar resource potential. However,

the solar resource at ground level is highly dependent on local meteorological con-

ditions such as aerosol content and most notably cloud fields. This renders the

solar resource inherently variable which poses problems associated with the cost

of dispatchable and ancillary generators and grid reliability. As a result, high ac-

curacy forecasts are required on multiple time horizons. The theory as well as

various examples of applications in the literature are given for a number of fore-

casting methods including stochastic techniques, artificial neural networks, clear

sky models, persistence models, numerical weather predictions as well as satellite

xv



and ground based imaging techniques. The limited range of spatial and temporal

horizon is discussed for each method and the conclusion is drawn that a high fi-

delity solar forecast engine would need to take advantage of a number of different

forecasting methods in order to span all spatial and temporal horizons of interest.

xvi



Part I

Fundamental Considerations
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Chapter 1

Introduction

The increased demand for renewable energy sources has created recent in-

terest in the economic and technical issues associated with growling levels of Pho-

toVoltaic (PV) penetration into the grid. These concerns arise from the variable

nature of the solar resource, seasonal deviations in production and load profiles, the

high cost of energy storage, and the balance between grid flexibility and reliability

[6, 7]. As a result, PV systems are outfitted with ancillary generators for periods of

high variability which increases their associated cost and complexity[8]. Accurate

solar forecasts are necessary if Independent System Operators (ISOs) are to realize

increased levels of operational PV penetration while maintaing relatively low cost

and high reliability of the grid [9, 10, 11]. Solar forecasts on multiple time hori-

zons become increasingly important as PV penetration grows for the purposes of

grid regulation, load-following generation, power scheduling and unit commitment.

To date, accurate solar forecasts have been evasive and the problem proven to be

complex due to the impact of weather patterns on the intensity of solar irradiance;

most notably local cloud fields. Consequently, a number of promising approaches

have beed developed. This paper presents an overview of these methods.

First, some fundamental considerations are addressed including clear sky

modeling, clear sky and clearness indexes, and the suggestion of a standardized

metric for the evaluation of forecasting quality. In part II, time series approaches

are discussed. These methods take as inputs historical time series of irradiance data

which are used to predict future values. Time series approaches include stochastic

2
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methods and artificial neural networks. Part III focuses on image based and physi-

cal methods. Both ground based and satellite remote sensing are covered. Satellite

models may be statistical or physical depending on the approach. The most pop-

ular physical approach, numerical weather predictions are also addressed. Finally,

hybrid systems which incorporate two or more of the methods are investigated.

These methods show the most promise for the future of high fidelity irradiance

forecasting.



Chapter 2

Clear Skies

Before addressing the methods which have been developed to forecast solar

irradiance at the ground level, it will be helpful to review some fundamental solar

engineering concepts such as clear sky models, clear sky and clearness indexes,

persistence models, and the evaluation of forecast quality.

2.1 Clear Sky Models

Many solar irradiance forecasting models require the knowledge of clear sky

conditions. Clear sky models are used for persistence forecasts, discussed in §2.3,

and for normalization in the metric which is described in §2.4. Satellite based

forecasts, covered in §5, also use clear sky models to derive ground solar irradiance

components through normalization of satellite data and are frequently used for

locations where no other measurements exist.

Clear sky models are typically developed using one of several Radiative

Transfer Models (RTMs) and require local meteorological inputs such as ozone

content, water vapor content and/or Linke turbidity in combination with solar

geometry. A comprehensive comparison of eight clear sky models against 16 in-

dependent data banks was published by Ineichen in 2005 [12]. Ineichen concluded

that the input parameters, most notably turbidity, had the highest influence on

model accuracy. In addition, and perhaps more significantly, Ineichen found that

accuracy is not highly dependent on the model itself. Therefore, the model selection

4
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criteria can be tailored to the application and availability of data. If complexity

is an issue, the ESRA or Ineichen model would be appropriate due to the require-

ment of only a single input parameter. If complexity is not an issue or if spectral

resolution is required, Solis would be an appropriate choice as it gives the overall

best results according to [12]. The next section briefly describes ten different clear

sky models, eight of which were included in Ineichen’s comprehensive comparison.

2.1.1 Solis model

The Solis model is a spectrally resolved clear sky transmittance model and

was developed by Mueller et al. [13] in 2004 for the European Heliosat-3 project.

Solis makes use of a RTM, Beer-Lambert functions and integration over the solar

spectrum in order to obtain irradiance components. Necessary inputs include ozone

content, water vapor content and aerosol optical depth at 550nm.

2.1.2 European Solar Radiation Atlas (ESRA)

Model

The European Solar Radiation Atlas (ESRA) model was developed for the

Heliosat-2 project by Rigollier et al. [14] in 2000 and Geiger et al. [15] in 2002.

ESRA was later adapted by Zarzalejo et al. [16] and Badescu [5]. The model

is derived from the Linke turbidity factor and Kasten’s Rayleigh optical depth

paramererization [17]. The only required input parameter is the Linke turbidity

factor at an air mass of 2.

2.1.3 Bird and Hulstrom Model

As the name implies, Bird and Hulstrom [18] developed this model using

RTM schemes based on McClatchey and Selby’s LOWTRAN [19]. The authors

referred to this new scheme as SOLTRAN. Three parameters are required as inputs

including: water vapor column, aerosol optical path (at 380 and 500nm) and the

ozone column. For more information see Refs. [18, 12].
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2.1.4 Molineaux Model

The Molineaux model was developed in 1998 by Molineaux [20] and is based

on a Moderate Resolution model for LOWTRAN (MODTRAN) developed by Berk

et al. [21] and Smarts2 which is a product of Gueymard’s work [22]. Because Mo-

lineaux’s model is based on the equivalence of pyrheliometric and mono-chromatic

aerosol optical depths, it cannot be used to calculate GHI. Two inputs are required:

the aerosol optical depth at 700 nm and the water vapor column.

2.1.5 Ineichen Model

Previous to the development of this model, the Linke turbidity coefficient

had the disadvantage of being dependent on airmass. This widely used clear sky

model was developed by Ineichen and Perez in 2002 [23] to establish the Linke

turbidity coefficient independently of the air mass. The model posses the attractive

property that only the Linke turbidity is required as an input.

2.1.6 CPCR2 Model

The CPCR2 model was developed by Gueymard in 1989 [24] and is a dual

band technique for modeling solar radiation which parameterizes the transmittance

of each extinction layer. The components of solar radiation (DNI and GHI) are

then calculated as functions of the extinction layer transmittances. Inputs to the

model include the Angstrom size coefficient, the Angstrom turbidity coefficient

and the aerosol optical depth.

2.1.7 REST2 Model

This model is another dual-band model developed by Guymard in 2004 [25]

and is essentially a modified version of the CPCR2 model. The REST2 incor-

porates the latest extraterrestrial spectral distribution, solar constant value and

updated versions of the transmittances functions in the CPCR2 model. This model

requires water vapor content, Angstrom turbidity coefficient and reduced NO2 and

O3 vertical path lengths as inputs.
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2.1.8 Kasten Model

This model is based on Kasten’s pyrheliometric formula developed in Ref.

[26]. The model calculates ground irradiance components by considering the ab-

sorption and scattering that takes place at altitudes of 8000 and 2500 m. Like the

Ineichen model, it conveniently only requires the Linke turbidity at air mass 2 as

an input. A full description can be found in Kasten’s 1984 paper [27].

2.1.9 Polynomial Fit

One of the simplest clear sky models is a location specific polynomial of the

cosine of the solar zenith angle cos(θz) given by

Iclr, poly =
N∑
n=0

cn cos(θz). (2.1)

Coimbra and Marquez [1] found that typically a third order polynomial fit (N=3)

is sufficient. The third order polynomial can be written

Iclr, poly = c3 (cos θz)
3 + c2 (cos θz)

2 + c1 (cos θz) + c0, (2.2)

where the coefficients are determined by fitting the polynomial in (2.2) to the clear

sky days in the data set. The limitation of this model is that a historical database of

clear days is required for the specific location. Typically such a historical database

is not available. If this is the case, one of the other clear sky models should be

employed.

2.1.10 ASCE Evapotranspiration Model

The ASCE evapotranspiration model was developed for the University of

California by R. L. Snyder in 2002 and is based on the Penman-Monteith (hourly)

reference Evapotranspiration Equations [28]. The model was originally developed

to estimate reference evapotranspiration, however, calculation of clear sky GHI is

an intermediate step. The difference in this model is that is requires no meteoro-

logical variables as inputs. In fact, only location (latitude, longitude and altitude)

is required as an input.
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2.2 Clear Sky and Clearness Indexes

Two parameters which are frequently used in solar forecasting are the clear

sky index and the clearness index. They are quite similar and differ only in the

normalization factor used in their definition. The previous section covered several

clear sky models, which approximate the irradiance available at the ground level.

However, some applications require knowledge of the available extraterrestrial ir-

radiance which is much easier to model due to the absence of physical atmospheric

fluctuations. A simple extraterrestrial irradiance model can be written as

IEX = I0 cos(θz), (2.3)

where I0 = 1365 W/m2 is the solar constant and θz is the solar zenith angle. In

contrast to the clear sky models, this extraterrestrial irradiance model does not

involve any location specific fitting parameters except for θz which depends on

latitude.

The clear sky index kt is defined as the ratio of the measured irradiance to

the clear sky modeled irradiance

kt =
It
Iclr, t

. (2.4)

On the other hand, the clearness index Kt is similarly defined except normalization

is performed with respect to the extraterrestrial irradiance

Kt =
It

IEX, t

. (2.5)

Because kt and Kt are dependent on Iclr, t and IEX, t respectively, there can be

several clear sky or clearness indexes depending on which clear sky model or ex-

traterrestrial model is used. Figure 2.1 illustrates the relationship between the

clear sky and clearness indexes.

2.3 Persistence Models

Persistence models are some of the most simple forecasts to implement and

are often used as a baseline for the performance evaluation of other forecast engines.
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Figure 2.1: Time series of measured global horizontal irradiance values It, esti-
mated clear-sky irradiance Iclr, t, estimated extraterrestrial irradiance IEX, t with
corresponding clear sky index kt and clearness index Kt. Note that the clearness
index is always less then the clear sky index by definition. The Ineichen model
was used for Iclr, t and equation (2.3) was used for IEX, t. Measured data is for
December 13-15, 2010 at UCSD EBUII in La Jolla, CA (Courtesy of J. Kleissl).
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Persistence models, as the name implies, are defined as having the clear sky or

clearness conditions persist for the next time step. For the clear sky persistence

model we define the following persistence index

kt+∆t =
It
Iclr, t

(2.6)

Similarly, for the clearness persistence model we define a corresponding index

Kt+∆t =
It

IEX, t

(2.7)

From these indexes, the forecast of the solar irradiance at the next time step is

computed as

Îpers, kt = kt+∆tIclr, t+∆t (2.8)

and

Îpers, Kt = Kt+∆tIEX, t+∆t. (2.9)

Since these models rely on the definition of a clear sky or clearness model,

there can be several persistence modes depending on how Iclr and/or IEX is esti-

mated. Two noteworthy properties of the persistence models are shown in Figure

2.2. First, during cloudless periods the persistence model performs quite well, how-

ever, large forecasting errors occur during rapid changes in It which result from

the passing of opaque clouds. Secondly, the persistence model displays an obvious

time delay due to the implied persistence of the clear sky conditions.

2.4 Evaluation of Solar Forecasting

Historically, traditional power generation technologies such as fossil and nu-

clear power which were designed to run in stable output modes, have resulted in

the majority of power grid variability originating from demand fluctuations [9, 1].

However, at times the solar resource exhibits a high degree of variability, see Fig-

ure 2.3 . Recent studies suggest that in order to facilitate higher market and grid

penetration of solar power, ISOs need accurate forecasts of solar irradiance on

multiple time horizons [9, 10, 11]. Despite the large number of forecasting meth-

ods described in this paper, the comparison of results and evaluation of relative
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Figure 2.2: Example of persistence model performance for a clear and cloudy day
(Oct. 11, 2010 and Oct. 13, 2010) at UCSD EBUII in La Jolla, CA (Courtesy of J.
Kleissl). The persistence model performs relatively well on the clear day. However,
large errors which occur during abrupt changes in measured irradiance and a ‘time
delay’ are visible in the persistence model during the cloudy day. Clear sky index
kt and absolute error eabs = |I − Î|/I of the persistence model are shown on the
lower part of the graph for the same time steps.
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advantages between models has been evasive. These difficulties arise from the fact

that solar irradiance is inherently dependent on geographic location, time of year

and climate as well as the different evaluation techniques used by various authors

for the quality assessment of their models. Traditional statistical metrics to char-

acterize model quality include the coefficient of determination which compares the

variance of the errors to the variance of the data which is to be modeled is given

by

R2 = 1− Var(Î − I)

Var(I)
, (2.10)

the Root-Mean Squared Error (RMSE) which is a measure of the average spread

of the errors

RMSE =

√√√√ 1

N

N∑
t=1

(
Ît − It

)2

, (2.11)

the Mean Bias Error (MBE) which is a measure of the average bias of the model

MBE =
1

N

N∑
t=1

(
Ît − It

)
, (2.12)

the Mean Absolute Error (MAE) which considers only the absolute value of the

errors

MAE =
1

N

N∑
t=1

∣∣∣Ît − It∣∣∣ , (2.13)

the Mean Absolute Percentage Error (MAPE)

MAPE =
100%

N

N∑
t=1

∣∣∣∣∣ Ît − ItIt

∣∣∣∣∣ , (2.14)

and the correlation coefficient

ρ =

(
Cov(Î , I)

)2

Var(Î)Var(I)
. (2.15)

However, none of these measures actually quantify the amount of variability present

in the irradiance data itself.

As a solution to these obstacles, Marquez and Coimbra presented a novel

approach for the evaluation of the quality of forecast models based on the compar-

ison of solar resource variability and the forecast uncertainty [1]. This relationship
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between variability and uncertainty provides a consistent metric that is indepen-

dent of the time horizon. However, the metric requires a clear sky model for

normalization purposes. As discussed in §2.1, the accuracy of clear sky models is

not dependent upon the model itself, but rather the selection of input parameters

the model is dependent upon [23]. Assuming that access to accurate input param-

eters for clear sky modeling is available, we now address the two quantities used

to determine the solar forecasting metric.

2.4.1 Solar Variability

Variability of solar irradiance at ground level is affected by a number of

factors, but most importantly solar position and cloud cover [1]. Fluctuations due

to solar position are completely deterministic and are typically calculated through

the use of clear sky or clearness models, see §2.1. Cloud induced fluctuations,

on the other hand, are considered stochastic processes for which accurate models

have been evasive. As a result, the component of solar variability which is of the

most importance to accurate solar irradiance forecasting models is the stochastic

cloud induced portion [11, 29, 30]. Thus, in the definition of solar irradiance vari-

ability, the authors in [1] addressed only the stochastic component and removed

fluctuations due to annual and diurnal changes of solar position. This was accom-

plished by defining solar irradiance variability V as the standard deviation of the

step-changes of the clear sky or clearness index as

V =

√√√√ 1

N

N∑
t=1

(
It
Iclr, t

− It−1

Iclr, t−1

)2

=

√√√√ 1

N

N∑
t=1

(∆kt)
2. (2.16)

The definition of solar variability above is essentially synonymous with those

used by Kleissl and Lave [31] and Hoff [32] except for the refinement to include the

deterministic changes as was performed in [29, 30]. Figure 2.3 shows a sequence

of clear and cloudy days with the associated values of ∆kt. The desired removal

of deterministic variability is apparent during the clear day for which fluctuations

of ∆kt are much smaller than for the cloudy days where large ramps manifest

themselves in the ∆kt signal.
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Figure 2.3: Measured GHI values at 5 minute resolution, Ineichen model clear-
sky irradiance values and the calculated values of step-changes of the clear sky
index ∆kt (Data for Sep. 28-30, 2010 at EBUII in La Jolla, CA; Courtesy of J.
Kleissl). During clear periods the solar variability is near zero. Ramps in the
solar irradiance coincide with ramps in the ∆kt signal. It should be noted that
low ramps in the ∆kt signal may also occur during periods when the measured
irradiance diverges from the clear sky model (see time indexes 275 to 300 and 310
to 350). This illustrates that the use of a clear sky model for normalization does
not bias the definition of variability for periods far enough removed from sunrise
and sunset.
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Figure 2.4: Scatter plot of U and V using ESRA clear sky model. Adapted from
[1].

2.4.2 Forecast Uncertainty

Uncertainty of the forecast as defined in [1] is a normalized version of the

RMSE used in [33] which is similar to the relative RMSE used in [34, 35]. The

difference here is that normalization is performed with respect to Iclr rather than

the average irradiance as

U =

√√√√ 1

N

N∑
t=1

(
Ît − It
Iclr, t

)2

. (2.17)

This definition of forecast uncertainty is the second required quantity for the de-

termination of the performance metric described in the next section.

2.4.3 Performance Metric

Now that solar variability V and forecast uncertainty U have been defined,

we can write the performance metric suggested in [1] as the difference between V

and U normalized with respect to V

s =
V − U
V

= 1− U

V
, (2.18)

where it is implied that U and V are calculated using the same data set. The

authors in [1] point out that when s = 1 the forcast performs perfectly due to

the vanishing uncertainty, however, when s = 0 the forecast is dominated by solar
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variability. Close inspection of Equations (2.8), (2.16) and (2.17) reveal that the

persistence model, by definition, should have a performance metric value of s = 0,

see Table 2.1. As a result, the ratio U/V can be thought of as measure of the quality

performance of a forecast with the persistance model as the baseline. If a developed

forecast model produces a performance metric for which s < 0, the model performs

worse than a persistance forecast. This means that a typical forecast model should

be characterized with values ranging from 0 to 1, with values closer to 1 indicating

a higher quality forecast [1].

As a result of U and V being random variables, s is also a random variable.

Thus, the authors in [1] suggest using the average value of the metric 〈s〉 for a

representation of forecasting skill. In order to do this, the data is partitioned into

several time windows of equal length Nw. Values of Uj and Vj are calculated for

each of the j windows and an average value of the metric 〈s〉 is obtained. An

important feature of the performance metric is that periods of low variability do

not positively bias the value of 〈s〉. That is to say, when a time window has

many clear days (low variability) the forecasting error will also be low, therefore

preserving the relative amount of U and V , see Figure 2.2. The opposite is also

true. Events of high variability whcih are completely predictible, such as an eclipse,

will not negatively bias the value of the performance metric because uncertainly is

near zero.

Marquez and Coimbra applied the preceding analysis to two forecasting

models based on ANNs (NAR and NARX) for hourly data collected from Jan. 1

- Oct. 31 of 2010 and found that the metric is essentially a statictical invariant

which is preserved over a wide variety of time horizons [1]. This makes the met-

ric an attractive and robust candidate for the comparison of solar forecast model

performance. Figure 2.4 shows scatter plots of Uj versus Vj computed for each

jth time window for which Nw = 50, 100, 150 and 200 and Table 2.1 gives cor-

responding numerical values of 〈s〉 obtained using Nw = 200. The ESRA clear

sky model was employed for normalization purposes. General trends in the scatter

plots demonstrate that the performance of the NAR forecast model is similar to

the persistence model’s. However, it should be noted that the NARX model shows
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Table 2.1: Forecasting quality metrics for the persistent, NAR, and NARX models
on validation and training data sets from [1].

Training Set

Model R2 RMSE (W/m2) 〈s〉

ÎESRA 0.969 55.5 0

NAR 0.972 53.2 2.27 %

NARX 0.977 48.8 12.02 %

Validation Set

Model R2 RMSE (W/m2) 〈s〉

ÎESRA 0.926 59.5 0

NAR 0.924 60.2 -2.53 %

NARX 0.949 49.4 16.25 %

significant forecasting improvemnt over the persistence as many of the points fall

below the 1:1 reference line.
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Chapter 3

Stochastic Methods

Prior to stochastic techniques, solar radiation models focused on the extrap-

olation of data from long term averages and steady state values, resulting in essen-

tially static models which described only seasonal and diurnal changes. Landsberg

[36] incorporated GHI data from over 300 locations into a world map of average

solar energy available at the earths surface. Whillier [37] derived graphical models

from correlations of measured total solar radiation in several parts of the world, at

latitudes ranging from the equator to 50 degrees north and south. Swartman and

Ogunlade [38, 39] derived relationships correlating solar radiation intensity with

sunshine and relative humidity for tropical conditions and the Toronto area. Lund

[40] correlated nine years of daily radiation data taken at Blue Hill, Massachusetts,

month by month with observations of snow cover, wind, sunshine, sky cover, pres-

sure and precipitation in order to find a linear combination of parameters to best

estimate radiation. These models, whether graphical or mathematical, ignored

the short-term time dependent patterns of solar radiation data which result from

changing local weather conditions and cause fluctuations on timescales ranging

from seconds to days. Forecasting of such fluctuations is essential to the operation

of, for example, concentrating photovoltaic systems due to their relatively small

apertures and strong dependence on direct radiation [41]. Any forecasting model

which ignores the short term stochastic characteristics of solar radiation data is

clearly deficient.

A second shortcoming of the pre-stochastic models was the use of common

19
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regression techniques to develop mathematical relationships. The statistical the-

ory at the foundation of these regression techniques assumes that the individual

observations of solar radiation data change independently [42]. However, changes

due to local weather conditions generate time series of data which are not inde-

pendent but strongly dependent. The correlated nature of solar radiation data is

another essential characteristic which must be addressed by any successful forecast-

ing model. It is evident from the discussion that models which are based on long

term averages and employ independent regression techniques could be improved

through the use of stochastic models which account for short term fluctuations and

the correlated nature of the data.

In the 1920’s G. Udny Yule, the influential British statistician, began to

establish new approaches for the analysis of stationary time series. Yule was

prompted by the quintessential criticism of strict periods which is at the heart

of the hypothesis of the classical methods of Fourier and Schuster [43]. While

these methods are pervasive in almost all areas of the physical sciences, the rigid

nature of strict periods limits the applications for which the methods of Fourier

and Schuster are adequate. In response to the call for a modified method, in

1922, Yule pioneered the first of two new approaches for stationary time series

analysis which he coined the scheme of Moving Averages (MA). The theory orig-

inates from two papers regarding the regular fluctuations of purely random series

which are given, for instance, by throwing dice [44, 45]. The second of Yule’s ap-

proaches, the scheme of linear Auto-Regression (AR), came in 1927 in a well known

paper which discussed the periodicities of disturbed series with special reference

to Wolfers sunspot numbers [46]. Shortly after, in the 1930s, the work of Yule

was furthered by the Norwegian-born economist and statistician H. Wold who,

while working in Sweden, applied the theory to business cycles and econometric

statistics [43]. It wasnt until the 1960s that G. E. P. Box and G. M. Jenkins,

motivated by the principle of parsimony, would popularize what would become

two of the most widely used models in time series analysis [47]. The first, known

as Auto-Regressive Moving Averages (ARMA), advanced from the combination of

the schemes established by Yule and Wold for stationary time series analysis. The
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second, utilized a evolutive component and gave way to a class of models known

as Auto-Regressive Integrated Moving Averages (ARIMA) which are useful for the

analysis of non-stationary processes [43]. The use of ARMA and ARIMA provide a

basis for many problems outside the realm of solar radiation forecasting including:

economic and business planning, production planning, inventory and production

control and optimization of industrial processes [47].

Before beginning a discussion of the various stochastic models it will be

useful to review some simple operators and terminology. One operator which will

be used frequently is the forward shift or advance operator q which, when applied

to a time series {z} at time t, is defined as

qzt = zt+1 (3.1)

The forward shift operator can be applied successively to yield

qkzt = zt+k (3.2)

The inverse of the forward shift operator is the backward shift or delay operator q̂

which, when applied to a time series, is given by

q̂zt = zt−1 (3.3)

which in turn yields

q̂kzt = zt−k (3.4)

The backward shift operator can be used to the construct the backward difference

operator ∇̃ as follows

∇̃zt = zt − zt−1 = (1− q̂) zt (3.5)

which has for its inverse the summation operator S written

Szt = ∇̃−1zt = (1− q̂)−1 zt (3.6)

where ∇̃ is used in order to differentiate it from the gradient operator ∇. The

stochastic models that follow are based on the result from Yule [46] that if a

strong dependency exists between successive terms in a time series, which is, for

example, a characteristic of solar radiation data, it can be effectively generated by
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Figure 3.1: (a) Linear filter model of a time series generated from a white noise
process with transfer function G(q). (b) AR process modeled as a linear filter with
transfer function Φ−1(q). (c) MA process modeled as a linear filter with transfer
function Θ(q).

a series of independent shocks which are assumed not to have permanent effects

and are drawn at random from a stationary distribution having zero mean and

variance σ2
ω. Any series of such random shocks ωt, ωt−1, ωt−2, ... is referred to as a

white noise process. A linear filter can be used to transform the white noise into

the stochastic process zt, which is depicted in Figure 3.1(a). The linear filter is

defined by the following operation

zt = µ+ ωt + g1ωt−1 + g2ωt−2 + ... = µ+G(q)ωt (3.7)

where µ is a parameter which determines the level of the process. The level of a

stationary process can be thought of as the average value about which the series

fluctuates. However, the level of a non-stationary process is time dependent and

varies from section to section, see Figure 3.2. The operator that transforms ωt into

zt is coined the transfer function G(q) of the filter and is given by

G(q) =
∞∑
k=0

gkq̂
k = 1 + g1q̂ + g2q̂

2 + ... (3.8)

It should be noted that we choose the less-obvious q as the argument of G rather

than q̂ for clarity and to remain in agreement with the methods of Fourier. The
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Figure 3.2: (a) An example stationary time series fluctuating about a static level
µ which can be represented by the model Φm(q)z̃t = Θn(q)ωt. (b) An example
time series showing non-stationary behavior in local level can be represented by
the model Φm(q)∇̃zt = Θn(q)ωt. (c) GHI data at 5 minute resolution with night
values removed showing non-stationary behavior in local level and slope which can
be represented by the model Φm(q)∇̃2zt = Θn(q)ωt.

sequence of weights g1, g2, ... may be finite or infinite which gives us an inter-

pretation for the level µ and determines the nature of the process, stationary or

non-stationary.

3.1 Linear Stationary Models

Observational series that describe a changing physical phenomenon with

time can be classified into two main categories; stationary and non-stationary. If

the sequence of weights in Equation (3.8) is finite, or infinite and convergent, the

linear filter is said to be stable and the process zt to be stationary. Stationary

time series are static with respect to their general shape. The fluctuations may

appear ordered or completely random, nonetheless the character of the series is,

on the whole, the same in different segments. In this case, the parameter µ may be

interpreted as the average value about which the series fluctuates, Figure 3.2(a).

Stationary time series find applications in many areas of the physical sciences, for
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instance, observational time series and series involving deviations from a trend are

often stationary [43]. In fact, the stochastic portion a solar radiation data set is

often framed as a stationary process [48].

3.1.1 Auto-Regressive (AR) Models

The so-called auto-regressive models get their name from the fact that the

current value of the process can be expressed as a finite, linear combination of the

previous values of the process and a single shock ωt. Thus, the process is said to

be regressed on the previous values. If we define the stochastic portion of the time

series z̃t, z̃t−1, z̃t−2, ... as deviations from the mean value µ as

z̃t = zt − µ (3.9)

then the Auto-Regressive process of order m can be written as

z̃t + φ1z̃t−1 + φ2z̃t−2 + ...+ φmz̃t−m = ωt (3.10)

We can simplify the previous expression by defining the Auto-Regressive operator

of order m, AR(m), as

Φm(q) =
m∑
k=0

φkq̂
k = 1 + φ1q̂ + φ2q̂

2 + ...+ φmq̂
m (3.11)

then the AR(m) model may be written conveniently as

Φm(q)z̃t = ωt (3.12)

where it is clear that the process is regressed on the previous values of z̃. In

order to implement this model one must determine the m+2 unknown parameters

φ1, φ2, ..., φm, µ and σ2
ω. Typically these are calculated from the data using the

techniques covered in Section 3.1.3. It is illustrative to note that Equation (3.12)

implies

z̃t = Φ−1
m (q)ωt (3.13)

Therefore, it is helpful to think of the AR(m) process as the output of a linear filter

with transfer function Φ−1
m (q) and white noise ωt as the input, see Figure 3.1(b).
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In order for the AR(m) process to be stationary a set of conditions must

be satisfied. In [47] the authors point out that the general AR(m) process has the

inverse transfer function

Φm(q) = (1− Γ1q̂)(1− Γ2q̂)...(1− Γmq̂) (3.14)

which allows expansion of the process in partial fractions,

z̃t = Φ−1
m (q)ωt =

m∑
k=1

κi
(1− Γiq̂)

ωt (3.15)

where it is clear that if Φ−1
m (q) is to be a convergent series for |q̂| ≤ 1, then we

must have |Γ| < 1, where k = 1, 2, ...,m. This is equivalent to saying that the

roots of the equation Φm(q) = 0 must lie outside the unit circle. For a discussion

of stationary conditions of AR(m) processes see [43, 47, 49].

3.1.2 Moving Average (MA) Models

While the AR techniques model the stochastic portion of the time series

z̃t as a weighted sum of previous values z̃t−1, z̃t−2, ..., z̃t−m, Moving Average (MA)

methods model z̃t as a finite sum of n previous shocks ωt, ωt−1, ωt−2, ..., ωt−n. The

Moving Average process of order n, MA(n), is defined as

z̃t = ωt + θ1ωt−1 + θ2ωt−2 + ...+ θnωt−n (3.16)

Let us pause here and note that the terminology moving average can be a bit

mis-leading due to the fact that the weights in Equation (3.16) do not, in general,

need to be positive nor does their sum necessarily equal unity [47]. Nonetheless,

the name is used for historic convention. The MA(n) operator is defined

Θn(q) =
n∑
k=0

θkq̂
k = 1 + θ1q̂ + θ2q̂

2 + ...+ θnq̂
n (3.17)

and as a result we can write the MA model in an economic fashion

z̃t = Θn(q)ωt (3.18)

Hence, the MA process can be thought of as the output z̃t of a linear filter whose

transfer function is Θn(q), with white noise ωt as the input, see Figure 3.1(c).
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Like its counterpart, the MA model contains n + 2 undetermined parameters

θ1, ..., θn, µ, σ
2
ω which must be determined from the data using the techniques de-

scribed in the next section. Unlike AR(m) processes, MA(n) processes do not have

a stability condition and, as a result, are unconditionally stable [43].

3.1.3 Mixed Auto-Regressive Moving Average (ARMA)

Models

Linear processes represented by an infinite or an extraneous number of

parameters are clearly not practical. However, it is possible to introduce parsimony

and still obtain useful models. A well known result in time series analysis is the

relationship between the Θ weights and Φ weights [47]. Operating on both sides

of Equation (3.12) by Θ(q) and making use of Equation (3.18), yields

Θ(q)Φ(q)z̃t = Θ(q)ωt = z̃t (3.19)

which implies

Θ(q)Φ(q) = 1 (3.20)

that is

Φ−1(q) = Θ(q) (3.21)

Equation (3.21) indicates that the Φ weights may be arrived at from knowledge

of the Θ weights, and vice-versa. Thus the finite MA process z̃t = Θ(q)ωt can be

written as an infinite AR process

z̃t = −θ1z̃t−1 − θ2
1 z̃t−2 − ...+ ωt (3.22)

However, if the process were really MA(n), we would arrive at a non-parsimonious

representation in terms of an AR(m) method. By the same reasoning, an AR(m)

method could not be parsimoniously represented using a MA(n) process. There-

fore, in practice, in order to realize a parametrization which is parsimonious, both

AR and MA terms are often used in the model development. Hence,

z̃t + φ1z̃t−1 + ...+ φmz̃t−m = ωt + θ1ωt−1 + ...+ θnωt−n (3.23)
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Figure 3.3: (a) ARMA(n,m) modeled as a linear filter with transfer function
Φ−1
m (q)Θn(q). (b) ARIMA(n,d,m) modeled as a stationary ARMA(m,n) linear

filter in series with a non-stationary summation filter Sd.

or

Φm(q)z̃t = Θn(q)ωt (3.24)

Equation (3.24) is referred to as the mixed Auto-Regressive Moving Average (ARMA)

process of order (m, n). It is illustrative to note that the ARMA(m, n) process

can be written

z̃t =
Θn(q)

Φm(q)
ωt =

1 + θ1q̂ + ...+ θnq̂
n

1 + φ1q̂ + ...+ φmq̂m
ωt (3.25)

and as a result can be thought of as the output z̃t from a linear filter, whose transfer

function is the ratio of two polynomials Θn(q) and Φm(B), with white noise ωt as

the input, Figure 3.3(a).

In practice, it is frequently true that adequate representation of actually

occurring stationary time series can be obtained from models in which n and m

are not greater than two and often less than two [47, 48]. The order of the model,

that is the values of m and n, is determined using the sample auto-correlation

function and partial auto-correlation function of the time series [50]. The model

parameters are estimated by least squares methods and the resulting model is

said to adequately describe the statistical information contained in the series in a

parsimonious manner.
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These techniques have been used since the 1970s to analyze time series

resulting from solar radiation data. Boileau [51] and Guerrier [52] evaluated sev-

eral stochastic models in the field of solar meteorology for 24 hour time steps.

Later, Guerrier, Boileau and Bernard [53] would employ seasonal and non-seasonal

stochastic techniques for solar insolation prediction which were originally developed

by Box and Jenkins. Guerier [54] showed the usefulness of small correlations of

consecutive day solar insolation data through an optimization of stochastic tech-

niques. Brinkworth [55] used the simple ARMA processes to model insolation in

cloudy areas of the U.K. in order to predict the output of solar thermal systems.

The synthetic series produced by Brinkworth displayed characteristics equivalent

to the natural insolation only for long periods of time. Benard et al. [56] esti-

mated empirical values for stochastic models from the measurements performed

at the three sites: a temperate site (Trappes, France, 49N), a Mediterranean site

(Carpentras, France, 44) and an equatorial altitude site (Huallao, Peru, 13S, 3km).

Subsequently, these values were used to develop ARMA models for the prediction

of daily solar insolation [57]. Mustacchi et al. [58] compared ARMA models with

factor analysis, Markov transition-matrices, Gaussian mapping and transmittance

transition tensor techniques and concluded that the ARMA(1,0) and ARMA(2,0)

models contained sufficient statistical information for hourly time series analysis.

Boch et al. [59] attempted to predict solar radiation at hourly time steps using

stochastic techniques for locations in France. ARMA processes have also been used

to model hourly GHI for the for the calculation of the optimal control of build-

ings in France and Japan [60, 61, 62]. Aguiar and Collares-Pereira modeled daily

sequences of hourly radiation and clearness index Kt using ARMA techniques,

where Kt was obtained by multiplying a clear-sky value by a non-stationary fluc-

tuation, with probability depending on the hour of the day [63]. Later, Aguiar and

Collares-Pereira used an ARMA(1, 0) model to generate hourly series of solar radi-

ation values which were transformed backwards to generate synthetic sequences of

clearness index Kt values [64]. Al-Awahdi et al. proposed an ARMA model which

used a bilinear time series to generate daily global radiation models for Kuwait

[65]. Mora-Lopez et al. [66] employed a multiplicative ARMA model for global
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radiation time series with regular and seasonal components. The multiplicative

nature of these models enabled the acquisition of two types of relationships ob-

served in recorded hourly series of global irradiation: the relationship between the

value at one hour and the value at the previous hour; and the relationship between

the value at one hour in one day and the value at the same hour in the previous

day. Moreno-Muñoz et al. [67] more recently used multiplicative ARMA models

to generate instantaneous series of global irradiation in southern Spain during a

four year period. Lately, however, ARMA methods typically find applications as

components of a robust hybrid system architecture [68, 69, 70, 71, 72], see Section

8.

3.1.4 Mixed Auto-Regressive Moving Average Models with

Exogenous Variables (ARMAX)

All of the linear stationary stochastic techniques discusses so far have been

univariate; meaning the technique uses previous values of only the time series it

is attempting to model. However, the accuracy of ARMA(m, n) models may be

improved by including information external to the time series under analysis. For

example, in the case of solar forecasting, the error of a forecasting model may be

reduced by including information about the evolution of the local temperature,

relative humidity, cloud cover, wind speed, wind direction, etc. Variables such as

these, which are independent of the models but affect its value, are referred to as

exogenous variables. We can include into the ARMA(m, n) models p exogenous

input terms which allows us to write the ARMAX(m, n, p) process as

z̃t + φ1z̃t−1 + ...+ φmz̃t−m = ωt + θ1ωt−1 + ...+ θnωt−n

+λ1et−1 + ...+ λpet−p (3.26)

The above model contains AR(m) and MA(n) models as well as the last p values

of an exogenous time series et. Defining the exogenous input operator of order p

as

Λp(q) =

p∑
k=0

λkq̂
k = 1 + λ1q̂ + λ2q̂

2 + ...+ λpq̂
p (3.27)
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Table 3.1: Special cases of the generalized linear model (3.29). Polynomials of
the shift operator which are not listed for a model are assumed to equal unity.

Polynomials Model

Λ FIR (Finite Impulse Response)

Φ, (Λ/Ξ = 0) AR (Auto-Regressive)

Θ, (Λ/Ξ = 0) MA (Moving Average)

Θ, Φ, (Λ/Ξ = 0) ARMA (Auto-Regressive Moving

Average)

Φ, Λ ARX (AR-eXogenous)

Θ, Φ, Λ ARMAX (ARMA-eXogenous)

Φ, Θ, Ξ ARARX (Auto-Regressive-ARX)

Φ, Θ, Λ, Ξ ARARMAX (Auto-Regressive

ARMAX)

Θ, Ψ OE (Output Error)

Θ, Ψ, Λ, Ξ BJ (Box-Jenkins)

allows us to write the ARMAX(m, n, p) model conveniently as

Φm(q)z̃t = Θn(q)ωt + Λp(q)et (3.28)

The careful reader might already be aware of the fact that all of the linear

stationary models discussed so far have a similar structure. In fact, many models

in linear system analysis can be considered a special case of the general discrete

time model structure

Φ(q)z̃t =
Θ(q)

Ψ(B)
ωt +

Λ(q)

Ξ(q)
et (3.29)

where Φ(q), Θ(q), Λ(q), Ψ(q) and Ξ(q) are polynomials of the shift operator q

[49, 73]. Table 3.1 summarizes some of the commonly used discrete time models

which can be considered special cases of (3.29), however, the current study only

focuses on the models we have discussed so far.

3.2 Non-Linear Stationary Models

So far we have only considered general classes of linear stationary models.

However, non-linear methods would enable powerful structures with the ability

to accurately describe complex nonlinear behavior such as: chaos, hysteresis and

saturation effects or a combination of several non-linear problems [73]. A step
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towards nonlinear modeling is made by introducing the Non-linear AR-eXogenous

(NARX) model as

z̃t = f(z̃t−1, z̃t−2, ..., z̃t−m, et−1, et−2, ..., et−n) + ωt (3.30)

In much the same way one can also convert the ARMAX model into a Non-linear

ARMAX model (NARMAX) as follows

z̃t = f(z̃t−1, z̃t−2, ..., z̃t−m, et−1, et−2, ..., et−n,

ωt−1, ωt−2, ..., ωt−p) + ωt (3.31)

These non-linear input-output models find many applications in the field of engi-

neering, especially in the parametrization of Artificial Networks which are discussed

in Section 4.1.

3.3 Linear Non-Stationary Models

If the sequence of weights in Equation (3.8) is infinite but not convergent,

the linear filter’s transfer function G(q) is said to be unstable and the process zt

to be non-stationary. In this case, µ has no physical meaning except as a reference

to the level of the process, Figure 3.2. Non-stationary processes are different

in one or more respects throughout the time series due to the time dependent

nature of the level. As a result, in the analysis of non-stationary time series,

time must play a fundamental role, for example, as the independent variable in a

progression function, or as an normalization factor in the analysis of the evolution

of a phenomenon from an initial state [43]. Several observed time series behave as

if they has no specified mean about which they fluctuate, for example, daily stock

prices or hourly readings from a chemical process [47].

3.3.1 Auto-Regressive Integrated Moving Average Models

(ARIMA)

While non-stationary processes do not fluctuate about a static mean, they

still display some level of homogeneity to the extent that, besides a difference in
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local level or trend, different sections of the time series behave in a quite similar

way. These non-stationary processes may be modeled by particularizing an appro-

priate difference, for example, the value of the level or slope, as stationary, Figure

3.2(b)(c). What follows is a description of an important class of models for which

it is assumed that the dth differene is a stationary ARMA(m, n) process.

We have seen that the stationarity condition of an ARMA(m, n) process is

that all roots of Φm(q) = 0 lie outside the unit circle, and when the roots lie inside

the unit circle, the model exhibits non-stationary behavior. However, we have not

discussed the situation for which the roots of Φm(q) = 0 lie on the unit circle. Let

us examine the following ARMA(m, n) model

Φm(q)z̃t = Θn(q)ωt (3.32)

and specify that d of the roots of Φm(q) = 0 lie on the unit circle and the residuum

lie outside. We can then express the model as

Φm(q)z̃t = Θn(q)(1− q̂)dz̃t = Θn(q)ωt (3.33)

where Φm(q) is a stationary and invertible AR(m) operator. Seeing that ∇̃dz̃t =

∇̃dzt when d ≥ 1, we can write

Φm(q)∇̃dzt = Θn(q)ωt (3.34)

Defining yt = ∇̃dzt allows one to express the model in a more illustrative way

Φm(q)yt = Θn(q)ωt (3.35)

where it is clear that the model is in agreement with the assumption that the dth

difference of the time series can be regarded as a stationary ARMA(p, q) process.

If we not invert Equation (3.35) we see that

zt = Sdyt (3.36)

which implies that the process can be arrived at by summing, or integrating,

the stationary process d times. Thus, we refer to (3.34) as the Auto-Regressive

Integrated Moving Average (ARIMA) process. Because the AR operator Φm(q) is
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of order m, the dth difference is taken and the MA operator Θn(q) is of order n in

(3.34) we refer to the process as ARIMA(m, d, n). In practice, d is typically 0, 1

or at most 2 [47]. As mentioned above, the ARIMA(m, d, n) model is equivalent

to representing the process zt as the output of a linear filter with transfer function

Φ−1
n ∇̃−dΘn and takes white noise ωt as an input, see Figure 3.3.

In the past ARIMA models have found applications in many areas of re-

search, however, only recently have they been employed to model problems involv-

ing solar radiation. Craggs et al. [74] made use of ARIMA models to compare

10-min, 20-min, 30min and 1-hour averages of solar irradiance levels for a site in the

UK. Santos et al. [75] used an ARIMA(1, 1, 1) model to calculate synthetic daily

solar radiation values using the monthly average radiation as the input for locations

in Spain. Kärner [76] carried out an ARIMA analysis for satellite-based global tro-

pospheric and stratospheric temperature anomaly and solar irradiance data sets.

Kärner’s results emphasized a dominating role of the solar irradiance variability in

variations of the tropospheric temperature. Yürekli et al. [77] imposed ARIMA

based techniques to generate solar radiation, temperature and relative humidity

forecasts for use in the control strategy of agricultural facilities. Stanhill and Co-

hen [78] used a first order ARIMA model to describe the time course of annual

sunshine duration and global irradiance to study trends and changes in solar forc-

ing at the Earth’s surface and reported a 0.5% increase in solar forcing per decade

durring the 20th century. Kärner [79] later employed ARIMA models to compare

the variability of the total solar irradiance at the top of the atmosphere to sur-

face air temperature series, which he reports are strongly correlated. Reikard [80]

compared ARIMA models with a number of other methods, including: transfer

functions, neural networks and hybrid models, for six data sets at resolutions of

5, 15, 30 and 60 min using the global horizontal component of solar radiation.

Reikard found that, in nearly all the tests, the best results are obtained using the

ARIMA in logs, with time-varying coefficients. In Ref. [81] the authors used daily

solar radiation measurements carried out in Bogotá, Columbia, from 2003 to 2009

as inputs for an ARIMA(1, 0, 0) model for forecasting the mean daily global solar

radiation. Like its stationary counterpart, the ARIMA model has, as of late, also
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found many applications in the construction of hybrid systems [70, 71, 72, 80].

3.3.2 Auto-Regressive Integrated Moving Average Models

with Exogenous Variables (ARIMAX)

In a similar way to the ARMAX(m, d, n) model, the previous p values of

an exogenous time series et may also be included into the ARIMA(m, d, n) model

to yield the ARIMAX process of order (m, d, n, p)

z̃t = φ1∇̃dzt−1 + ...+ φm∇̃dzt−m + ωt

+θ1ωt−1 + ...+ θnωt−n (3.37)

+λ1et−1 + ...+ λpet−p

As we did before, defining yt = ∇̃dzt in terms of the backwards shift operator

allows us to express the model in a more compact form

Φm(q)yt = Θn(q)ωt + Λp(q)et (3.38)

which again looks very similar to Equation (3.29).



Chapter 4

Artificial Intelligence (AI)

Techniques

The development of Artificial Intelligence (AI) techniques began in the early

1950s with a number of experiments conducted by Herbert Simon, Allen Newell

and Cliff Shaw [82]. Simon was consulting at the RAND Corporation when he

saw a printer using customary text and punctuation symbols to produce images

[83]. Motivated by this, Simon recognized that machines could be used to simulate

the decision making process and possibly, if given enough resources, the human

thought process. Simon enlisted the help of Allen Newell, the RAND corporation

logistics scientist who generated the code that printed the images, and Cliff Shaw

to develop a program with the ability to provide proofs to mathematical theo-

rems. The resulting program, called Logic Theorist, used heuristics to draw from

a knowledge base of previously proved axioms to discover new proofs and would

ultimately solve thirty-eight of the fifty-two problems presented by Bertrand Rus-

sell and Alfred Whitehead in their Principia Mathematica [84]. Meanwhile, Claude

Shannon demonstrated how a machine could be used to play a reasonable game

of chess [85]. Shannon’s chess program relied on the optimization of a weighted

function dependent on the position of the chess pieces using a minmax procedure.

Admitting that the work of Simon et al. and Shannon was the earliest in the field

artificial intelligence, the topic’s origin is frequently associated with another event.

The first coordinated undertaking in the field of machine intelligence was

35
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the Artificial Intelligence Conference organised by John McCarthy, Marvin Min-

sky, Nathaniel Rochester and Claude Shannon at Darthmouth College in New

Hampshire in 1956 [82]. It was at this conference that John McCarthy, who would

develop the popular LISP family of computer programming languages two years

later, suggested the term “Artificial Intelligence”, which is still frequently used

today to describe a wide variety of machine learning methods. The AI Conference

of 1956 is commonly viewed as the event responsible for the motivation to exam-

ine computers to solve problems rather than focusing on hardware that simulated

intelligence [86].

Several AI methods were developed in the years following the conference

in New Hampshire. In 1959 Simon et al. developed a General Problem Solver

(GPS) program capable of proving mathematical theorems like Logic Theorist,

playing chess reasonably like Shannon’s algorithm and, in addition, solving elab-

orate geometric puzzles. GPS accomplished this by generating heuristics through

means-ends analysis [87]. However, the predominant criticism of the GPS code

was that it could not learn from problems solved in advance [82]. This paved the

way for McCarthy’s LISP programming language to become the standard in AI

development [88].

In 1960 additional codes were developed that mimicked key aspects of hu-

man thought; such as language and vision processing. Kenneth Colby, an Amer-

ican psychiatrist working at Stanford University, developed a family of computer

programs known as ‘chatterbots’ which were able to simulate intelligent conversa-

tion with people through a process known as Natural Language Processing (NLP).

Soon after, Joseph Weizenbaum wrote a program known as ELIZA which would

become one of the most popular chatterbots [82]. ELIZA used rules correlated

with words like ‘I’, ‘you’, ‘like’ etc., which were prompted if one of these words was

encountered [89]. Bobrow [90] and Winograd [91] also made contributions to the

emerging field of NLP, most notably through the development of programs with

the ability to make assumptions and to learn form previously solved problems [82].

Parallel to this work, Marvin Minsky and his group at MIT developed a computer

program that could perform visual analogies; that is to say if two figures have some
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visual relationship with each other the program could locate another set of figures

with similar relationships from a larger set [92] and supported the idea that AI is

fundamentally a symbol processing exercise [93].

All of the methods mentioned above use a “symbolic” approach to intelligent

systems. This symbol processing architecture focuses on knowledge representation

through the translation of the user’s expert knowledge into a set of formal symbols.

Once a formal encoding is established the system functions in the traditional Von

Neumann computer pattern: INPUT → PROCESS → OUTPUT. The advantage

lies in the enormous representational power of these systems which stems from their

generality. However, the central criticism is that only the user’s own knowledge

comes into effect [94]. In addition, these systems are limited by the fact that all the

responses must be explicitly programmed beforehand. These symbolic approaches

are refereed to as brittle do to the “crashing” that occurs when an unusual set of

circumstances, which were not anticipated in the response coding, occurs. Symbol

processing remained the popular motif in AI systems development well into the

1980s. Even so, there was another school of thought which defended that intelligent

systems should be modeled after living organisms which posses brains and the

ability to adapt.

A seminar paper in the Bulletin of Mathematical Biology in 1943 titled

“A logical calculus of ideas imminent in nervous activity” [95] was the result of

a joint effort between Warren McCulloch and Walter Pitts. In this paper, which

would later be included in Hebb’s famous Orgization of Behavior [96], the authors

purposed the first artificial neuron called the Threshold Logic Unit. In 1958 Frank

Rosenblatt, a computer scientists working at Cornell Aeronautical Labaratories,

published a book titled “Princilples of neurodnamics” [97]. In this book, Rosen-

blatt discussed machines with the ability to learn how to classify information by

adapting weights, which he coined perceptrons. The Pandemonium architecture,

which was proposed by Oliver Selfridge in 1959 [98] and saw success in modeling

human pattern recognition, suggested that the brain works like a collection of dae-

mons, or background processes, which work in parallel and are each responsible for

a single task. Soon after, at Stanford University, Professor Bernard Widrow and
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his graduate student Ted Hoff developed the Adaline (ADAptive LInear NEuron)

and the Least Means Square (LMS) rule for training [99]. This work resulted in the

emergence of a new dicipline of AI techniques known as Artificial Neural Networks

(ANNs). ANNs are essentially attempts to create at an electrical analogue to the

biological neural networks present in the human brain.

Another set of AI techniques that were motivated by a living organism’s

ability to adapt and evolve was developed in the 1970s by John Holland, a profes-

sor of Psychology and Electrical Engineering at the University of Michigan, Ann

Arbor. In his book titled “Adaptation in natural and artificial systems” [100],

Holland, motivated by Darwinian views of evolution, conceptualized an algorithm

which would identify an optimal solution through the reproduction of the strongest

individuals in a solution space. Holland’s work was the first in a branch of AI

techniques known as Genetic Algorithms (GAs). Neural and genetic computing

remained relatively unpopular durring the 1970’s, however, with an increase in

available computing power, the 1980s saw a renewed interest in ANNs and GAs

[86, 101].

In contrast to the symbolic approach, these “evolutionary” approaches em-

phasize learning and adaptation over the representational power of symbolic pro-

cessing. The “intelegence” of these systems is attributed to the ability to distin-

guish between two general classes of patterns without being directly programmed

[94]. For example, a set of solar irradiance measurements in one location forms a

class of patterns which is different from a set at another location, as long as these

sites are far enough away from each other as to not be correlated through local

weather patterns [31]. Evolutionary techniques are much more systematic and it

should be noted that the internal structure of the system itself is critical [94].

So far, we have discussed several AI techniques. It is beneficial to pause

here and take note of the several branches into which these techniques can be

classified.

• Problem Solving and Planning : systematic refinement of goal hierarchy and

plan revision mechanisms, e.g. Shannon’s chess code.

• Expert Systems : uses knowledge-base of previously established rules of thumb
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for well-defined problems for complex decision-making, e.g. Simon’s Logic

Theorist and GPS

• Natural Language Processing : text processing and generation, speech syn-

thesis and analysis, and machine translation; e.g. Weizenbaum’s ELIZA

• Computer Vision: Image understanding, facial recognition, motion deriva-

tion and intelligent visualisation; e.g. Minsky’s visual analogy program.

• Genetic Algorithms : Evolutionary algorithms with an inherent learning ca-

pacity.

• Artificial Neural Networks : Combination of pattern recognition, deductive

reasoning and numerical computations to simulate learning in the human

brain.

• Hybrid Systems : Any number of combinations of the above branches.

The present study, however, focuses mainly on ANNs and their applications in

various Hybrid Systems (HS). For a comprehensive review of AI techniques see

[82, 86]. Before moving on, it should be noted that, while there have been several

attempts to define AI [102, 103, 104, 105], no single definition has been universally

accepted. The authors in [86] suggest that this is likely due to the various defini-

tions references to the word “intelligence”, which is an abstract and immeasurable

quantity.

4.1 Artificial Neural Networks (ANNs)

ANNs were motivated from the observations of a special type of cell known

as a neuron. Neurons are responsible for a number of signal processing tasks in

our bodies such as: responding to touch, sound, light or other external stimuli and

receiving signals from the brain and spinal chord which control muscles, glands

and arteries. Neurons are furnished with a number of antenna-like structures that

stretch out from the cell body, or soma, which allow the cell to send and receive sig-

nals from other cells and the environment. The structures which allow the neuron
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Figure 4.1: (a) Simplified diagram of a biological neuron. Antenna-like structures
which extend from the cell body, or soma, allow the neruon to communicate with
other cells. The structures which allow the neuron to accept input signals are called
dendrites. The structure which carries signals away from the neuron is called an
axon. A neuron may posses numerous dendrites but it never has more than one
axon. (b) Artificial neuron with inputs x1, x2 and x3 weighted by w1, w2 and w3.
The neuron has an embedded net function β +

∑3
i=1 wixi and transfer function

f(·) which are used to calculate output z.

to accept input signals are called dendrites while the structures which carry signals

away from the neuron are called axons. A neuron may posses numerous dendrites

but it never has more than one axon. Nonetheless, the dendrites and axon may

branch hundreds of times before they terminate forming complex tree-like struc-

tures, see Figure 4.1(a). By actively regulating calcium, chloride, potassium and

sodium ion concentrations inside the cell, the neuron is able to maintain electrical

potential gradients across its membrane. When a neuron’s electric potential ex-

ceeds a specific threshold, an all-or-none electro-chemical impulse called an action

potential is generated. The action potential speeds down the neuron’s axon and

triggers synaptic communications at the tips of the axonic tree. This process is

known as the “firing” of a neuron. The rate at which the neuron fires, which can

reach up to 300 Hz, is regulated by adrenaline which acts as a bias for the neuron,

making it much more likely to fire in the presence of a stimulus [106].

Once the architecture of a biological neuron is understood, one can begin

to construct an artificial neuron. Similar to their biological counterparts, artificial
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neurons can be connected to each other to form a network. A simple model of an

artificial neuron which takes inputs x1, x2 and x3 from three other neurons and

processes a corresponding output z is detailed in Figure 4.1(b). The quantity β is

known as the bias and is used to model adrenaline’s ability to lower the threshold.

Because not every input is equally relevant to whether the neuron fires or not,

we assign weights w1, w2 and w3 to each of the inputs. Here we use a linear net

function to sum the inputs which is given by

y = β +
3∑
i=1

wixi (4.1)

The firing rate of the action potential is modeled through the use of a transfer

function f(·). Several different transfer functions have been suggested over the

years, see Figure 4.2. The most commonly used transfer function is the sigmoid

or logistic function due to its attractive mathematical properties such as: mono-

tonicity, continuity and differentiability [86, 106]. Employing the sigmoid transfer

function with the linear net function, the output z of the artificial neuron in Figure

4.1(b) can be written in a very simple manner

z =
1

1 + e(−
∑

i wixi+β)
(4.2)

ANNs offer several advantages over symbolic processing. Conventional com-

puting algorithms apply elaborate sets of equations to solve specific and well de-

fined problems through the programer’s imposed organization. Clearly, this is not

the most parsimonious expression of a solution. When a pesky fly avoids a ded-

icated flyswatter, it has no time to carefully solve complex differential equations

concerning Newton’s laws of motion. Nonetheless, its non-specific decision making

process allows it to consistently stay one step ahead of the flyswatter, in addition

a wide number of other tasks. In order to be as efficient and versatile as possible

biological systems must converge to the simplest algorithmic architecture [107].

The attractiveness of ANNs stem directly from their likeness to their biological

counterpart. Specifically, ANNs allow for very low level programming (net and

transfer functions) to solve a wide variety of complex, non-linear, non-analytic,

non-stationary, stochastic or general mathematically ill-defined problems in a self-

organizing manner that requires little or no interference with the program itself.
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Table 2: Artificial neuron transfer functions

Classification Expression Derivative f (z) f �(z)

Unipolar Step or
Heavyside
(Threshold)

f (z) = H(z) =


1, if z > 0
0, if z < 0

δ(z) =


0, if z � 0
∞, if z = 0

Bipolar Step
(Threshold)

f (z) = sign(z) = 2H(z) − 1 δ(z) =


0, if z � 0
∞, if z = 0

Unipolar Linear f (z) =



0, if z < −1
1
2 (z + 1), if |z| < 1
1, if z > 1

1
2 [H(x + 1) − H(x − 1)]

Bipolar Linear f (z) =



−1, if z < −1
z, if |z| < 1
1, if z > 1

H(x + 1) − H(x − 1)

Unipolar Sigmoid
(Logistic)

f (z) =
1

1 + e−z f (z)(1 − f (z))

Bipolar Sigmoid
(Hyperbolic Tangent)

f (z) = tanh(z) (1 − | f (z)2 |)

Gaussian Radial Basis f (z) = exp(−||x − m||2/σ2) −2(x − m) f (z)/σ2

Table 3: Historic Milestones in ANNs

Number Authors References Year Structure

1 McCulloch & Pitts [60] 1942 Threshold Logic Unit, the first Artificial Neuron (not a network).
2 Hebb & Pitts [61] 1942 First learning rule; an object can be memorized by adapting the weights (not a network).
3 Rosenblatt [62] 1958 Perceptron, which is the earliest ANN.
4 Lee [74] 1959 Artron, which is a statistical switch closely related to Adaline.
5 Widrow and Hoff [64] 1960 Adaline (ADAptive LInear NEuron), an early artificial neuron (not a network) and LMS rule for training.
6 Hopfield [75] 1982 Hopfield Network. Different in many important ways, especially its recurrent feedback between nodes.
7 Widrow and Winter [76] 1988 Madaline (Many Adaline) which is a network formulation of the Adaline neuron.
8 Rumelhart et al. [77] 1986 Back-Propagation network, a multi-layer perceptron based ANN.
9 Hecht-Nielsen [78] 1987 Counter-Propagation network uses Self-Organizing Mapping to accelerate unsupervised learning.
10 Chua & Yang [79] 1988 Cellular networks in which neurons are connected to their nearest neighbors only.

10

Figure 4.2: Artificial neuron transfer functions.
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Now that the basic principles of artificial neurons have been established we

can move on to the primary ANN structures which facilitate distributed comput-

ing. Table 4.1 summarizes the early developments in ANN structure development

which is discussed in the next section. Careful examination of Table 4.1 reveals

a twenty-two year dormant period in ANN development between 1960 and 1982.

This hibernation resulted from the fact that networks with hidden layers were not

considered. These single layer ANNs were unable to solve the popular XOR prob-

lem and researchers lost interest as a result [73]. Despite that, the 1980s saw an

explosion in renewed interest in ANNs with the development of multi-layer percep-

trons and back propagation algorithms. Thus, as one can see, the inner structure

of ANNs is particularly relevant. The inner-structures of ANNs are typically de-

scribed with what is commonly known as a directed graph. Directed graphs consist

of neurons and directed arcs which describe the synaptic links. The following sub-

sections cover the most widely used ANN structures in more detail.

4.1.1 Threshold Logic Unit (TLU)

As mentioned above, the earliest formulation of an artificial neuron was the

TLU developed by McCulloch and Pitts in 1943. The TLU employed, as a transfer

function, the threshold or Heaviside step function, see Table 4.2. In Ref. [95] the

authors stated five assumptions which governed their neuron:

1. The activity of a neuron is an “all-or-none” process.

2. A certain fixed number of synapses must be excited within the period of

latent addition in order to excite a neuron at any time, and this number is

independent of previous activity and position on the neuron.

3. The only significant delay within the neural system is synaptic delay.

4. The activity of any inhibitory synapse absolutely prevents the excitation of

the neuron at that time.

5. The structure of the network does not change with time.
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Table 4.1: Historic Milestones in ANNs

Number Authors References Year Structure

1 McCulloch & Pitts [95] 1942 Threshold Logic Unit, the first Artificial Neuron

(not a network).

2 Hebb & Pitts [96] 1942 First learning rule; an object can be memorized by

adapting the weights (not a network).

3 Rosenblatt [97] 1958 Perceptron, which is the earliest ANN.

4 Lee [108] 1959 Artron, which is a statistical switch closely related

to Adaline.

5 Widrow and Hoff [99] 1960 Adaline (ADAptive LInear NEuron), an early ar-

tificial neuron (not a network) and LMS rule for

training.

6 Hopfield [109] 1982 Hopfield Network. Different in many important

ways, especially its recurrent feedback between

nodes.

7 Widrow and Winter [110] 1988 Madaline (Many Adaline) which is a network for-

mulation of the Adaline neuron.

8 Rumelhart et al. [111] 1986 Back-Propagation network, a multi-layer percep-

tron based ANN.

9 Hecht-Nielsen [112] 1987 Counter-Propagation network uses Self-

Organizing Mapping to accelerate unsupervised

learning.

10 Chua & Yang [113] 1988 Cellular networks in which neurons are connected

to their nearest neighbors only.
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Although these assumptions are some of the earliest in ANN development,

they do not necessarily apply to current ANNs, especially assumption 5 which is

commonly replaced with the Hebbian Learning Law [96], allowing for changes in

the structure of the network.

4.1.2 Simple Preceptron

Arguably one of the first ANNs, simple perceptrons were developed by

Frank Rosenblatt to act as electronic analogs to the human retina. Rosenblatt

connected the input layer of the perceptron to a rectangular array of light sensors.

A directed graph of a simple perceptron network is shown in Figure 4.3. The weight

connecting input node i to output node j is denoted by the matrix component wij.

The goal of Rosenblatt’s system was to trigger the relevant response unit given a

class of given input patterns. The input layer used a unipolar liner transfer function

and the output was passed to the response layer by way of trainable weights.

The simple perceptron is said to use a form a supervised learning due to

the fact that the weights were adjusted when an undesired response was triggered.

The perceptron learning rule begins with a definition of the change made to the

weight matrix component wij during the nth training set

∆w
(n)
ij = α(d

(n)
j − z(n)

j )x
(n)
i = αε(n)x

(n)
i (4.3)

where d
(n)
j is the desired output value for input x

(n)
i , z

(n)
j is the actual output

from the jth neuron with input x
(n)
i , ε(n) is the output error of the nth set and α

is referred to as the learning rate coefficient. Updating of the weight matrix W

proceeds as

W(n+1) = W(n) + ∆W (4.4)

The result after n+ 1 training sets is that each of the weights wij will have

been updated according to the rule outlined in Table 4.2. The perceptron learning

rule can be optimized through the tuning of the learning rate coefficient α. Small α

corresponds to a stable and slow learning scheme. Therefore, in practice, one would

like to make α as large as possible to ensure quick learning without introducing

unstable oscillations about the desired value which result from over-relaxation.
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Table 4.2: Perceptron Learning Rule

w
(n+1)
ij = w

(n)
ij + αx

(n)
i if the output is ZERO and should be ONE

w
(n+1)
ij = w

(n)
ij − αx(n)

i if the output is ONE and should be ZERO

w
(n+1)
ij = w

(n)
ij if the desired output was achieved

In addition to the Perceptron learning rule, Rosenblatt also proved a per-

ceptron convergence theorem which states: given a finite set of inputs xN and

desired output training sets dN , each presented with a positive probability, the

perceptron learning rule provides guaranteed convergence of the weight matrix to

values which give the correct outputs if and only if the said set of weights exits.

For a detailed outline of the proof see [114].

However, there are many tasks for whcih a set of weights do not exits and,

as discussed before, in 1969 Minsky and Pappert published a book concerning

the strengths and limitations of single layer perceptron networks [93]. Included in

this book, and the less popular earlier text by E. B. Carne [115], was a criticism

of the single layer perceptron’s inability to solve the simple two-state EXclusive-

Or (XOR) problem which is described in Table 4.3. Solution of the XOR prob-

lem would require a non-linear partitioning of even parity points from odd parity

points. This is impossible for single layer perceptrons which can only partition

regions into two linearly separable spaces. As a result, researchers lost interest in

neural computing and work on perceptrons was effectively wiped out for almost

two decades.

4.1.3 Adaptive Linear Neuron (ADALINE)

Shortly after the conception of Frank Rosenblatt’s perceptron, Bernard

Widrow and Ted Hoff developed the ADAptive LInear NEuron (ADALINE) while

at Stanford University. Like the TLU, the ADALINE is not a network, but rather

a single logic neuron. Nonetheless, these artificial neurons can be connected in

a single layer in much the same way as perceptrons, Figure 4.3(a). Unlike the

unipolar step transfer function of the perceptron, ADALINEs employed a bipolar
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Figure 4.3: (a) Simple perceptron logic only capable of mapping which require
linear separability. (b) Multi-Layer ANN capable of mapping which require non-
linear separability.
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Table 4.3: XOR State Table

x1

x2
α

(1, 1)
even

β
(0, 1)
odd

γ
(0, 0)
even

δ
(1, 0)
odd

linear
partitioning

inputs output

state quadrant x1 x2 z parity

α 1 1 1 0 even

β 2 0 1 1 odd

γ 3 0 0 0 even

δ 4 1 0 1 odd

(x1 or x2)
⋂

(x1 or x2), where x ≡ not (x)
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step function, see Figure 4.2, which gave an output of -1 or +1. Inputs of ADA-

LINEs are also typically bipolar. The main contribution of Widrow and Hoff was

the Least Mean Square (LMS) training rule in which the weights linked with each

input node are adjusted with an adaptive learning algorithm, which follows.

Given a finite number N of training sets x1,x2, ...,xN and desired outputs

d1, d2, ..., dN , Widrow and Hoff defined a training cost given by

J(w) = E[ε2
n] ∼= 1

N

N∑
n=1

ε2
n (4.5)

where E[·] indicates the expectation and εn denotes the training error at the nth

set which again is simply dn − zn. Combining the definitions E[xd] = p and

E[〈x,x〉] = R, where 〈·, ·〉 denotes the inner product, with the notation from

above yields

E[ε2
n] = E[d2

n] + wTRw − 2wTp (4.6)

Combining this result with (4.5), gives a gradient ∇J which is used to minimize

the cost function as

∇J =
∂J(w)

∂w
= 2Rw − 2p = 0 (4.7)

Thus, the optimal Least Mean Square (LMS) setting of w is given by

wLMS =
1

R
p (4.8)

Because the LMS rule for training makes use of expectations, the sample

averages tend to be erroneous for a small number of N training sets. True con-

vergence requires N → ∞. The simple ADALINE processing element has found

applications in many engineering problems such as: adaptive filtering, echo sup-

pression, pattern recognition and prediction, see [114].

4.1.4 MADALINE

In the 1980s, almost twenty years after Minsky and Pappert’s criticism

of the simple perceptron’s inability to solve the XOR problem, Bernard Widrow
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and Rodney Winter considered a new multilayer network which consisted of Many

ADALINEs (MADALINE) [110]. In addition to the input and output layers of

simple ANN structures in Figure 4.3(a), the MADALINE architecture included

addition layers, see Figure 4.3(b). These additional neural layers are termed hidden

due to the fact that no partial outputs are available for the training of these nodes.

The use of multiple layers is one way of circumventing the problem of computing

mappings which require nonlinear separability. It is the introduction of hidden

layers that enabled the MADALINE architecture to solve the XOR problem and

renew interest in neural computing.

However, the history of the application of multilayer ANNs to mappings

which require non-linear separability in fact began in 1900 with Hilbert’s formula-

tion of his famous 23 problems for the coming century [116]. In particular, Hilbert’s

13th problem came in the form of the following supposition; there exist analytic

functions of three variables that cannot be represented by a finite superposition

of continuous functions of only two variables. This supposition was discredited by

Kolmogorov in 1957 [117] whose reasoning was later refined by Sprecher in 1965

[118] who provided the following theorem [73].

For each integer n ≥ 2, there exists a real, monotonically increasing function

ψ(x) which is dependent on n and possesses the property: for each pre-allocated

number δ > 0 there exists a rational number ε, 0 < ε < δ, such that every real

continuous function of n variables f(x), can be represented by

f(x) =
2n+1∑
j=1

χ

[
n∑
i=1

λiψ (xi + ε (j − 1)) + j − 1

]
(4.9)

where the function χ is real and continuous and λ is a constant which is independent

of f .

The coupling of the previous theorem and multilayer ANNs was pointed

out by Hecht-Nielsen in 1987 [118] when he demonstrated that, as a result of the

Sprecher theorem, any continuous mapping f can be regarded as a from of mul-

tilyer ANN with two hidden layers. The output function of the first and second

layers are given by ψ and χ respectively [118, 119]. In addition to the work of

Sprecher, Hornik et al. [120], Funahashi [119] and Cybenko [121] independently
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demonstrated that a general multilayer ANN with sufficient hidden layers is ade-

quate for the approximation of a continuous nonlinear function on a finite closed

interval.

Widrow and Winter also developed a training algorithm known as the

MADALINE adaptaion Rule (MR). Widrow reasoned that the weights should be

modified at each training set to reduce the error with as little disturbance to the

representations learned by the previous training sets which he coined the principle

of minimal disturbance [110, 114]. The MR training algorithm has beed refined

several times yeilding procedures labeled MR, MRII, MRIII etc. The procedure

oulined below is MRIII.

The decision wheteher or not the weights for a given layer should be adjusted

requires an input vector x and the appropriate target output d in order to calculate

the sum of the squared output errors. Widrow changed the input to the kth neuron

by some small amount ∆s and investigated the change in the sum squared output

error given by

∆ε2 = ∆

(∑
k

ε2
k

)
(4.10)

The gradient of the sum squared output error term with respect to its weight vector

is estimated through the use of finite differences as

∇k =
∂(ε2

k)

∂sk
xk ∼=

∆(ε2
k)

∆s
xk (4.11)

which is subsequently used to reduce the error in a direction directly opposite of

the gradient

wk+1 = wk − α
∆(ε2

k)

∆s
xk (4.12)

Finally, defining f ′ = f(1− f) as the derivative of the sigmoid function (see Table

4.2), the MRIII training rule given by

wk+1 = wk + 2αεkf
′(sk)xk (4.13)
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where α is again the learning rate coefficient. It should be noted that this training

algorithm is similar to the back-propagation training algorithm discussed in the

next section. MADALINEs have found applications in many areas outside of solar

irradiance modeling and forecasting such as: invariant pattern recognition, mis-

sile guidance and detonation and general computations of well behaved functions

[114].

4.1.5 Multi-Layer Perceptron

Multi-Layer Perceptrons (MLPs) with Back-Propagation Learning (BPL)

are some of the most established ANN architectures due to their ability to perform

arbitrary non-linear mappings. MLPs are also sometimes referred to as Multi-Layer

Feed-Forward (MLFF) networks to emphasize the forward flow of information with

respect the backward direction of weight adjustment used in BPL algorithm. The

structure of MLPs are similar to MADALINEs, with layered neurons possessing

only forward connections to successive layers, see Figure 4.3(b). However, MLPs

differ from MADALINEs in the derivation of the popular BPL algorithm which is

outlined next. As we have seen before, the LMS and Perceptron Learning rules

perform in very similar ways. Nonetheless, neither of these learning rules can be

applied to MLPs because these methods do not identify how to make adjustments

to weights associated with hidden-layers. As a result, a new method, which uses

upstream variables is developed.

Several authors independently derived the BPL method in the 1970’s and

1980’s. Paul J. Werbos proposed the BPL method first in his 1974 Harvard Uni-

versity doctoral dissertation [122]. Almost ten years later, in 1985, D. B. Parker

re-derived the BPL method in his MIT technical report [123]. Even so, credit for

developing the BPL algorithm into an realizable procedure is typically assigned to

David Rummelhart and the other members of his distributed processing group at

the University of California, San Diego, in 1985 [124].

In order to begin a discussion of BPL, we consider a MPL with a single

hidden layer which has been modified for the BPL algorithm as shown in Figure

4.4. The results can then be generalized to a MLP with an arbitrary number of
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Figure 4.4: Modification of a MLP network for BPL.

hidden layers. As before, we adopt the following convention for weight indexing.

The synaptic weight connecting input neuron i to hidden layer neuron j as wij and

the weight connecting hidden layer neuron j to output neuron k by wjk. We will

also define the net input to the hidden and output layer as neurons as

Hj =
∑
i

wijxi, (4.14)

Ok =
∑
j

wjkzj. (4.15)

where xi is the input pattern and zj is the output from the hidden layer. This is

similar to an unbiased version of equation 4.1. Using the above notation we can

write the outputs of node j of the hidden layer and unit k of the output layer as

zj = f(Hj) (4.16)

zk = f(Ok) (4.17)

In order to begin training one must have differentiable transfer functions,

such as the sigmoid function, and access to a training data set consisting of N pairs

of input patterns. As usual, a training method is developed in order to reduce the

toatal system error for all training patterns through an adjustment of the weights.

The total system error Esys is defined as the average of the output errors over all

training patterns as,

Esys =
1

N

N∑
n=1

En. (4.18)
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As has been done before, weights are adjusted on each successive pattern presen-

tation proportional to the negative of the error gradient. Therefore, at the k+1

step we can write

∆W (k+1) = −α ∂En
∂W(k)

(4.19)

where α is the familiar learning rate coefficient. The total system can be written

error as
∂Esys

∂W
=

1

N

N∑
n=1

∂En
∂W

. (4.20)

Here we define En as the mean square error,

En =
1

2

N∑
n=1

(dn − zn)2 . (4.21)

In order to express the update rule in terms of the system parameters, we must

successively apply the chain rule. Since we know for output unit k

∂E

∂zk
= − (dk − zk) (4.22)

and
∂zk
∂Ik

= f ′(Ik), (4.23)

we can write
∂E

∂Ik
=
∂E

∂zk

∂zk
∂Ik

= − (dk − zk) f ′(Ik). (4.24)

By defining the previous operation as a generalized delta term,

δk = (dk − zk) f ′(Ik), (4.25)

we can now write an update rule for the output units as

∆wjk = −α ∂E

∂wjk
= αδkyj. (4.26)

The same reasoning is applied to the hidden layer weights. We want an

expression for the update rule given by

∆wij = −α ∂E

∂wij
= −α ∂E

∂Hj

∂Hj

∂wij
. (4.27)



55

Examination of the first term reveals that another application of the chain rule is

required,
∂E

∂Hj

=
∂E

∂zj

∂zj
∂Hj

=
∂E

∂zj
f ′(Hj), (4.28)

while the second term can be written explicitly from equation (4.14) as,

∂Hj

∂wij
=
∑
i

∂

∂wij
(wijxi) = xi. (4.29)

Using the fact that we can express the output from node zk for a given input

pattern as

zk = f(Ik) = f

(∑
j

wjkzj

)
= f

(∑
j

wjkf(Hj)

)

= f

(∑
j

wjkf

(∑
i

wijxi

))
(4.30)

along with the error defined in equation (4.21), we are able to directly differentiate

the ∂E/∂zj term in equation (4.28), obtaining

∂E

∂zj
=

1

2

∑
k

∂
(
dk − f

(∑
j wjkzj

))2

∂zj
(4.31)

= −
∑
k

(dk − zk) f ′(Ik)wjk. (4.32)

As done before, the previous expression may be conveniently written as a general

delta operator

δj = f ′(Hj)
∑
k

δkwjk, (4.33)

and the update rule for the hidden layer can be written as

∆wij = αδjxi. (4.34)

The results for the BPL learning rule are summarized in Table 4.4.

It is useful here to pause and more closely examine the previous result. For

a given input pattern xn, the information flows forward through the network until

it reached the output layer where node k calculates its output zk. Subsequently,
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Table 4.4: Back Propagation Learning Rule

Output units ∆wjk = αδkzj where δk = (dk − zk) f ′(Ik)
Hidden units ∆wij = αδjxi where δj = f ′(Hj)

∑
k δkwjk

errors are calculated from knowledge of the desired output pattern dn and weights

wjk are adjusted according to Equation (4.26) as

w
(n+1)
jk = w

(n)
jk + ∆w

(n)
jk (4.35)

which is very similar to the Perceptron learning rule summarized in Table 4.2.

Turning our interest to the hidden layer nodes, we do not have target values to use

in the computation of an error like we did with the output layers. As a result, in

this case, we must distribute the output errors in some way in order to adjust the

weights connecting input node i to hidden node j. This is accomplished through

the use of δj

w
(n+1)
ij = w

(n)
ij + ∆wij (4.36)

which was discussed earlier. Thus, one can see that the BPL algorithm takes

partial derivatives of errors with respect to the weights upstream, which allows

it to overcome the inaccessibility of hidden layer data. The resulting errors are

then propagated “backwards” through the network every time a training pattern

is presented. For a detailed derivation of the BPL algorithm see Ref. [73, 107, 114].

4.2 Applications of ANNs

Since the late 1990’s ANNs have seen increased application in the field of

solar forecasting. Al-Alawi and Al-Hinai used climatological variables as inputs to

an ANN to predict monthly values of GHI over a year [125]. Sfetsos and Coonick

developed forecast model for mean hourly GHI based on several AI-based tech-

niques including linear, feed-forward, recurrent and radial basis ANNs alongside

an adaptive neuro-fuzzy inference scheme which showed improvements over tradi-

tional linear methods [69]. Cao and Cao combined a recurrent ANN with wavelet
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analysis for the forecast of daily solar irradiance [126, 127]. Hontoria et al. used

supervised RNNs for the generation of synthetic hourly GHI time series [128].

Sözen et al. used meteorological data from 4 years (2000-2003) from twelve cities

spread over Turkey as training (nine stations) and testing (three stations) data for

ANNs used to predict mean monthly solar irradiance [129]. Cao and Lin combined

Recurrent Neural Network (RNN) with a Wavelet Neural Network (WNN) to de-

velop a Diagonal Recurrent Wavelet Neural Network (DRWNN) for hourly GHI

forecasting [130, 131]. Yona et al. used MLPs, RNNs, and RBNNs for 24-hour-

ahead generating power forecasting for PV power systems [132]. Chaouachi et al.

presented the applicability of an ensemble ANN for 24 hour ahead solar power gen-

eration forecasting of a 20 kW photovoltaic system [133]. Paoli et al. recently used

MLPs for the prediction of daily GHI [134, 135]. Azadeh et al. also used MLPs

for forecasts, however their analysis was based on monthly average meteorologi-

cal data from six cities in Iran [136]. Mellit and Pavin proposed a MLP-model

to forecast the solar irradiance on a base of 24hours using the current values of

the mean daily solar irradiance and air temperature for the operation of a grid

connected PV plant in Italy [137]. Mellit et al. employed a Field Programmable

Gate Array (FPGA) and MLP to predict daily GHI over a year [138]. Chen et

al. made use of past power measurements and meteorological forecasts of relative

humidity and temperature with an ANN to provide online 24 hour ahead forecasts

of GHI appropriate for operational planning of transmission system operator [139].

Fiorin et al. recently presented the use of ANNs for the solar energy assessment

in Brazil using data collected at SONDA sites operated by the Center for Earth

System Science of the Brazilian Institute for Space Research [140]. ANN have also

been used in many other areas of energy science including modeling of solar steam-

generators, solar water heating systems, Heating Ventilating and Air Conditioning

(HVAC) systems, wind speed predictions, control in power generation systems,

load forecasting and refrigeration [141]. For more information on ANN and solar

engineering applications see [86, 33].
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Chapter 5

Satellite Models

The solar forecasting methods discussed so far all require accurate mea-

surement of the solar resource. Solar forecasts are also utilized in engineering

applications such as the design and operation of solar power plants and the model-

ing of agricultural variables including vegetation and crop growth, crop yield, soil

moisture, surface energy and moisture balance [41, 5, 142, 143, 144, 145]. Dissat-

isfyingly, precise pyranometer measurements have historically been rangebound to

scattered weather stations and universities due to the expense and labor required

to procure, maintain and quality check instruments and data. In this past, when

no data was available for a given location it was common to extrapolate data from

the nearest ground measurement station [146]. This approach is appropriate for

sites in proximity to measurement stations as to constitute strong micro-climatic

and environmental correlation. Having said that, it is a well known result that

the error of this method increases with extrapolation distance and temporal re-

finement [146, 147] thereby limiting its application. An alternative to a national or

global scale ground sourced monitoring network is provided though satellite based

irradiance measurements of the Earth and its atmosphere.

Origins of the meteorological satellite can be traced back to a paper pub-

lished in 1919 by Robert H. Goddard titled “A Method of Reaching Extreme

Altitudes” [148]. A decade later, in 1929, Goddard launched a liquid fueled rocket

carrying instrumentation which included a thermometer, a barometer and a cam-

era [149]. Advancements in rocket technology over the two decades following God-
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Figure 5.1: Illustration of a Sun-Synchronous Polar Low Earth Orbit (SSPLEO)
satellite and a GeoStationary Orbit (GSO) satellite. The SSPLEO satellite has an
altitude which is nearly 50 times lower than the GSO and an inclination of nearly
90◦ with respect to the GSO and equatorial plane. As a result, the SSPLEO
satellite completes approximately fifteen orbits per day tracing out the disk shown
in the image while the GSO satellite remains fixed above a single point on the
equator. The SSPLEO satellite is able to conduct high resolution imagery and
radiometry of a location of interest only a finite number of times per day. On the
other hand, the GSO satellite can provide continuous full disk observations, but
at a substantially reduced resolution.

dard’s work led to the first images of clouds from high altitudes [150, 151] and

eventually the launch of Sputnik-1; the first artifical satellite to be put into Earth’s

orbit by the Soviet Space Program. Shortly after, in 1958, the U.S. formed the

National Aeronautics and Space Administration (NASA) which would launch a

number of meteorological satellite missions.

5.1 Orbits

Before discussing the assortment of satellite based methods it will be useful

to address some fundamental considerations. There are two basic types of orbits

which a meteorological satellite may occupy: Low Earth Orbit (LEO) and Geo-
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Stationary Orbit (GSO). Each type of orbit presents its own set of advantages and

disadvantages. LEOs get their name from their relatively low altitude of approxi-

mately 750 to 850 km or about 10% of the radius of the Earth. This low orbiting

altitude implies a short period, typically on the order of 90 to 100 minutes, which

leads to about 15 orbits per day. Satellites in a LEO can be used to measure ozone

concentrations or atmospheric temperatures among many other quantities.

LEOs may be further classified as sun-synchronous, polar or both. A satel-

lite in a Sun-Synchronous Low Earth Orbit (SSLEO) integrates altitude and incli-

nation in such a way that the satellite passes over a given location on the earth at

the same local solar time. For example, a satellite in a SSLEO might cross over

the equator fifteen times a day each time at 11:00 a.m. local time. Satellites in

a SSLEO also need to process approximately one degree per day to keep up with

the revolution of the Earth around the sun. SSLEOs are used for satellites which

require constant illumination for imagery. Satellites that make use of visible band

radiation are placed in SSLEOs with bright sunlight while satellites which measure

long-wave radiation are placed in darkness.

A satellite in a Polar Low Earth Orbit (PLEO) has an inclination of al-

most 90◦ and passes over (or near) the planet’s poles on each revolution. PLEOs

remain fixed with respect the to rotation of the Earth which will cause the satel-

lite to pass over the equator at a different longitude on successive orbits. This

allows the satellite to image many different parts of the Earth’s surface as the

it rotates underneath the satellite. The shortcoming of these orbits is that they

image different parts of the Earth at different times making observation of one

location difficult. The exception to this is if the satellite is in what is known as a

Polar Sun-Synchronous Low Earth Orbit (PSSLEO). Satellites in a PSSLEO may

be used to conduct high resolution imagery and radiometry of a single location a

finite number of times per day.

GSOs are orbits in which the satellite circles the Earth at the same rate as

the Earth spins which places them at an altitude of approximately 36,000 km or

about one tenth of the distance to the moon. Satellites in GSO are located near

the equator since there is a constant force of gravity due to the bulging of the Earth



62

at this latitude. Consequently, the satellite appears stationary over a certain point

on the equatorial plane which allows frequent full disk observations. However,

because the satellites are almost fifty times farther than their LEO counterparts

the image resolution is typically much lower; on the order of 3 to 5 km. Figure 5.1

illustrates some of the fundamental differences between LEOs and GSOs. Once

the various types of meteorological satellite orbits are understoond we can move

on to a discussion of the specific satellite missions.

5.2 Satellites

NASA launched its first LEO meteorological satellite, the Television In-

fraRed Observation Satellite (TIROS-1), on the first of April, 1960. TIROS-1 was

equipped with a five-channel radiometer designed by Hanel [152]. The radiometer’s

third channel measured solar radiation reflected by Earth and its atmosphere in a

spectral range of 0.2 to 6 µm. TIROS-1 would be succeeded by nine other similar

satellites (TIROS 2-10) launched between 1960 and 1966.

Shortly after the initial TIROS program, NASA developed the Environ-

mental Science Services Administration (ESSA) satellite program which lasted

four years and included the launch of nine satellites. ESSA was essentially an

extension of the mission objectives from TIROS; namely to provide cloud-cover

photography to national meteorological centers. Resolution was improved over the

TIROS program and ESSA satellites included a “cartwheel” feature initially tested

on TIROS-9. This cartwheel configuration combined with two cameras mounted

180◦ opposite each other and a SSPLEO allowed the ESSA series to image a given

point on the surface every time the satellite rotated about its axis. However,

Radiometers were only deployed only on ESSA-7 and ESSA-9.

As a result of the sucess of the early ESSA missions the NIMBUS program

was initiated in 1964 and included seven satellites. The NIMBUS satellites were

launched into SSLEO and used a new automatic picture transmission to more

than 60 low-cost data acquisition stations on the ground. The Advanced Vidicon

Camera System (AVCS), which was used for daylight imaging, and the infrared
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Flat Plate Radiometer (FPR), which was employed to monitor night time cloud

cover conditions, were contributed to the ESSA-9 mission. In addition, the NIM-

BUS program allowed for the first global radiation budget which permitted the

refinement and validation of climatological models. Other LEO satellites include

NASA’s Aqua and Terra series used to monotor the Earth’s water cycle and chang-

ing climate respectively [153].

Current operational LEO satellites include the U.S. National Oceanic and

Atmospheric Administration (NOAA) series, also known as the Advanced TIROS-

N (ATN), and the European Organization for the Exploration of Meteorological

Satellites (EUMETSAT) MetOp series [153]. The NOAA series was initially de-

veloped as the Improved TIROS Operational System (ITOS) and then the Next

generation TIROS (TIROS-N) programs which were launched between 1970 and

1994. Both the NOAA and MetOp series of LEO satellites are equipped with the

third generation of the visible/infrared Advanced Very High Resolution Radiome-

ter (AVHRR) and the Advanced Microwave Sounding Unit (AMSU) [153]. Other

LEO satellite programs include Russia’s Meteor satellite series and China’s Feng

Yun satellites. In October 2011 NASA’s Suomi National Polar-observing Part-

nership (NPP) launched a new satellite which carried five instruments: the Ad-

vanced Technology Microwave Sounder (ATMS), the Cross-track Infrared Sounder

(CrIS), the Ozone Mapping and Profiler Suite (OMPS), the Visible Infrared Imag-

ing Radiometer Suite (VIIRS) and Clouds and the Earth’s Radiant Energy System

(CERES).

While LEO satellites are well suited for the high resolution monitoring of

specific locations at finite intervals, continuous full disk observations were required

for applications of weather analyses. Accordingly interest shifted from PLEO to

GSO satellites. In 1966 and 1967 two experimental Applications Technology Satel-

lites (ATS-1 and ATS-3) were launched by NASA in order to examine the practi-

cality of placing a satellite into a GSO. The ATS series was primarily intended for

communications, however also carried meteorological related equipment including

a spin-scan cloud camera. Shortly after, in 1974 and 1975, two more GSO satel-

lites were launched by NASA and operated by NOAA; Synchronous Meteorological
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Figure 5.2: Radiation budget at the foundation of satellite based forecasting
methods.

Satellites (SMS -1 and SMS-2). The SMS series carried a visible infrared spin-scan

radiometer (VISSR) for day/night measurements of cloud cover and temperatures

of the earth and atmosphere.

The high-altitude GSO techniques developed during the ATS and SMS

programs paved the way for current operational GSO satellites which include the

NOAA Geostationary Operational Environmental Satellite (GOES), the European

Meteosat series and the Japanese Multifunctional Transport Satellites (MTS) [153].

The instrumentation on these operational GSO satellites tend to vary by operator,

however the capabilities of the instrumentation share a number of characteristics

including the ability to measure visible and infrared radiation. Typically images are

acquired every 30 minutes, although the Meteosat’s Spinning Enhanced Visible and

Infrared Imager (SEVIRI) possesses a nominal sampling frequency of 15 minutes

[153, 154] and the GOES imager can scan small areas of interest in as little as 30

seconds [153, 155].
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5.3 Radiation Budget

Prior to the launch of TIROS-1 it was impossible to make direct measure-

ments of the radiation that originated from the sun and was subsequently scattered

back into space by the earth and its atmosphere [147, 156]. This scattered fraction

is referred to as the planetary albedo (not to be confused with the atmospheric

or terrestrial albedo discussed later). Previous attempts to quantify planetary

albedo made use of indirect measurements of the dark side of the moon, which was

consequently illuminated by a fraction of the sunlit earth [157, 158, 159]. Other

approaches involved the estimation of cloud distribution over the planet and the

assignment of specific reflectivities to various could types [160, 161, 162].

Dispite these efforts, satellites equipped with radiometers allow the direct

measurements of the planetary albedo. Figure 5.2 illustrates the fundamental

relationship between satellite observation of planetary albedo and and ground level

irradiance. By the conservation principle, the difference between the net irradiance

at the top of the atmosphere ITOA
in and the net irradiance at the ground level Ig

in is

equal to the flux lost (either reflected, scattered or absorbed) in the volume joining

the two,

ITOA
in − Ig

in = Ia
in + ITOA

out . (5.1)

In the previous equation Ia
in is the flux lost due to absorption in the atmosphere

and ITOA
out is the total irradiance reflected (or scattered) back out of the atmosphere

into space; it is a combination of the irradiance reflected from the ground Ig
out and

and the irradiance reflected from the atmosphere Ia
out. That is to say,

ITOA
out = Ig

out + Ia
out. (5.2)

Substution of (5.2) into (5.1) combined with normalization with respect to ITOA
in

and a separation of atmospheric and terrestrial terms yields,

Ig
in

ITOA
in

+
Ig

out

ITOA
in

= 1− Ia
in

ITOA
in

− Ia
out

ITOA
in

. (5.3)

The left hand side of previous equation can be written as,

Ig
in

ITOA
in

+
Ig

out

ITOA
in

=

(
1 +

Ig
out

Ig
in

)
Ig

in

ITOA
in

, (5.4)
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which given the following relationship

Ig
in

ITOA
in

=
1− Iain

ITOA
in
− Iaout

ITOA
in

1 +
Igout
Igin

. (5.5)

The observant reader may recognize the clearness index Kt on the left hand side

of the equation along with the atmospheric absorption coefficient,

αa =
Ia

in

ITOA
in

; (5.6)

the atmospheric albedo,

ρa =
Ia

out

ITOA
in

; (5.7)

and the terrestrial albedo,

ρt =
Ig

out

Ig
in

. (5.8)

Employing the previous definitions reveals the relationship between clearness index

and quantities which can be measured by the satellite’s radiometers in a compact

form,

Kt =
1− αa − ρa

1 + ρg
. (5.9)

As one would expect, the atmospheric albedo intensifies with increasing atmo-

spheric turbidity and cloudiness. In addition, heightened atmospheric albedo also

implies the attenuation of the radiation reaching the ground. If we are able to

estimate the atmospheric absorption coefficient and know the terrestrial albedo, a

priori, we would be able to approximate the clearness index Kt from the measured

satellite data using equation (5.9).

The method used to approximate the aforementioned parameters typically

varies by author. Nonetheless, the relationship between clearness index and the

atmospheric and terrestrial parameters in equation (5.9) is at the foundation of all

satellite based irradiance forecasting models. Measurement of ITOA
out combined with

an approximation of Ia
in (through the knowledge of the Linke turbidity coefficient

for example) and a priori knowledge of Ig
out (from historical measurements of clear

day planetary albedo) allows for the estimation of ground level irradiance from

information regarding the clearness index Kt.
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Depending on the treatment on the interaction of solar irradiance and the

atmosphere satellite models may be classified into two categories: physical models

and statistical models [163, 164]. The benefits of physical models include their gen-

erality and the elimination of the requirement of ground data through the use of

RTMs. Correspondingly, RTMs introduce the requirement of precise and compre-

hensive measurement of the atmospheric morphology as well as careful calibration

of the satellite data. Statistical models, on the other hand, rely on straightforward

statistical regressions between satellite and ground measurements. As a result

these statistical models are much simper due to their independence of the precise

measurement of the composition of the atmosphere, however they suffer from their

loss of generality and requirement of ground data.

5.4 Physical Satellite Models

Physical satellite models for solar irradiance forecasting are based on the in-

teractions between solar radiation and participating atmospheric components such

as gasses (CO2, H2O, N2, O2, O3, etc.) and aerosols. Similar to a number of

the clear sky models covered in Section 2.1, the physical interactions are typically

modeled by way of RTMs. Thus, physical satellite models can be thought of as

an improvement upon RTM based clear sky models through the addition of in-

formation regarding current atmospheric conditions. Atmospheric conditions are

accounted for through the measurement of local meteorological data. This elim-

inates the need for solar irradiance data at the surface, however, because these

models need to convert digital counts from satellite based radiometers into a cor-

responding flux densities, accurate and frequent calibration of the instrument is

required [164].

5.4.1 Gautier-Diak-Masse Model

One of the earliest physical models was developed by Gautier, Diak and

Masse (GDM) in 1980 [165]. The GDM model considered clear and cloudy condi-

tions separately. The determination of whether a given pixel was clear or cloudy
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was accomplished by selecting a brightness threshold obtained through the selec-

tion of the minimum value at every pixel for every hour from the past several

days . One shortcoming of the original GDM model was the absence of variations

in terrestrial albedo with changing solar zenith angle. Raphael and Hay [166, 3]

included the T-minimum brightness determination [163] in order to correct for the

previous consideration.

The GDM clear sky RTM included several input parameters: reflection

coefficient for diffuse radiation; atmospheric transmissivity as a function of the

reflection coefficient for DNI; the absorption coefficient for slant water vapor path

and the solar zenith angle; the atmospheric albedo as a function of the irradiance

received by the satellite and a second absorption coefficient for slant water vapor

path for the satellite zenith angle. Reflection coefficients were calculated using

the results from Coulson [167, 168] while the absorption coefficients made use of

the expressions from Paltridge [169]. Improvements to GDM model include the

absorption of ozone and aerosols by Gautier and Frouin [170] in addition to multiple

reflections by Tanrè et al. [171].

The cloudy sky RTM allowed for the simple treatment of stratiform low

and middle altitude clouds [165]. Absorption above and below the clouds were

considered separately and further classified as either upwelling or downwelling.

Similar inputs for the cloudy sky RTM were considered: cloud albedo as a function

of the absorption of short wave radiation above and below the cloud and cloud

absorption coefficient estimated on the basis of the satellite’s measurement of the

visible brightness of the cloud. The authors assumed a simple linear relationship

between measured visible brightness and absorption ranging from zero for no cloud

to a maximum of 0.2 for very bright clouds [165].

5.4.2 Marullo-Dalu-Viola Model

Marullo, Dalu and Viola (MDV) re-evaluated the GDM model in 1987 using

data for the METEOSAT data for the Italian peninsula [172]. Like its predecessor,

the MDV model also considered clear sky and cloudy conditions separately. How-

ever,the terminology “standard atmosphere” and “real atmosphere” were used in
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place of clear sky and cloudy sky respectively.

The MDV “standard atmosphere” model was similar to the GDM clear sky

model except for the addition of a reflecting non-absorbing layer which accounted

for the presence of aerosols in the atmospheric column. The MDV RTM was

adapted from Schmetz [173] and required information regarding the temperature

profile of the atmosphere, water vapor content and a three-layer aerosol column

which describes regional clear sky conditions. However, like the GDM model the

MDV model did not account for the variation of surface albedo with solar zenith

angle. Planetary albedo for a standard atmosphere was approximated though the

use of regional clear sky data and assumed to be uniform for the region and varied

only with solar zenith angle.

Any significant deviation from the standard atmosphere model was assumed

to be a consequence of atmospheric particle loading. The atmospheric loading in

the real atmosphere was resolved by a thin reflecting non-absorbing layer assumed

to be higher than the particles responsible for scattering in the standard atmo-

sphere.

5.4.3 Möser-Raschke Model

Möser and Raschke (MR) also used METEOSAT images to estimate ground

level irradiance [174], however the authors used the RTM developed by Kerschgens

[175] which was more complex than the previous models. Improvements to the MR

method include the addition of more parameters to accurately describe the sate of

the atmosphere and infrared data which is used to estimate the cloud top height.

Input parameters include the solar zenith angle, cloud top height, optical

depth of the clouds, terrestrial albedo, boundary layer structure, climatological

profiles of temperature, pressure, humidity, ozone concentration and cloud droplet

size distribution. One significant result of this model was the demonstration that

clouds, rather than aerosols, have a the greatest impact on irradiance reaching

ground level.
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5.4.4 Dedieu-Deschamps-Kerr Model

Unlike the previous modes, the model developed by Dedieu, Deschamps and

Kerr (DDK) in 1987 [176] used a single equation valid for both clear and cloudy

conditions. This was accomplished by considering a clear sky model in conjunction

with a model which considered only the effect of clouds on solar irradiance. The

assumption was made that the other effects, such as aerosol loading was constant.

Input parameters include a sky transmissivity factor, which accounted for

Mie and Rayleigh scattering as well as gaseous absorption using the formulae of

Lacis and Hansen [177] together with the RTM of Tanrè [171], and planetary

and terrestrial albedo determined from with the METEOSAT radiometer data.

Multiple reflections between the cloud base and the ground were assumed to behave

isotropically. It should be noted that as a consequence of uniformity of the aerosol

content in both the clear sky and cloudy conditions the model treats an unusually

strong concentration of aerosols as a cloud [163].

5.5 Statistical Satellite Models

Statistical satellite models are based on regressions between solar irradiance

measured by pyranometers at the ground level and simultaneous digital counts

provided by satellite based instrumentation. Rather than use RTMs, a number of

independent parameters are included in various regression equations: solar zenith

angle, cloud cover index, atmospheric transmissivity, along with current bright-

ness, minimum brightness and maximum brightness of each pixel. As pointed out

in [163] there are two main difficulties which arise when comparing satellite and

ground data. The first is given by the errors associated with the localization of the

ground based pyranometer sites on the satellite images. The second arises from the

fundamental difference in the measurement technique; Satellite data are instanta-

neous“snapshots” over a small solid viewing angle while ground data have been

historically integrated over time (typically an hour) and a large solid viewing an-

gle (2π). Several authors have suggested solutions to these problems including the

incorporation of more pixels in the definition of target areas as well as enhancing



71

satellite resolution [12,20,12,16].

5.5.1 Hay-Hanson model

One of the simplest statistical satellite models was developed by Hay and

Hanson (HH) in 1978 [178]. The model was developed for the Global Atmospheric

Research Program’s Atlantic Tropical Experiment to generate maps of the short-

wave radiation (0.55 - 0.75 µm) reaching the surface of the ocean. The HH model

is based of a statistical linear regression of the clearness index and atmospheric

albedo:

Kt = a− bαa. (5.10)

Substituting equation (5.10) into equation (2.3), this becomes

I = KtI0 cos(θz). (5.11)

Hay and Hanson [178] originally determined regression coefficients a and b as

a ' 0.79 b ' 0.71

These values were later re-evaluated by Raphael and Hay [3] to be

a ' 0.788 b ' 1.078

which gives a better agreement with their dataset.

It has been pointed out [163] that this relationship fails under unusually

high surface albedo which results from a snow- or ice-covered surface. In addi-

tion, despite what has been mentioned about statistical methods, this approach

requires the calibration of reported digital satellite counts i order to determine

visible radiance.

5.5.2 Tarpley & Justus-Paris-Tarpley Models

Tarpley used a set of coincident satellite and ground pyranometer data sets

taken by the National Environmental Satellite Data and Informations Services

(NESDIS) and the Great Planes Agricultural Council over the central U.S. in late
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Table 5.1: Top: Regression coefficients for the Tarpley model as determined
by Tarpley [2] and Raphael and Hay [3], in parenthesis. Bottom: Regression
coefficients for the Justus-Paris-Tarpley model as determined by Justus et al. [4].

Model a b c d e

Tarpley (n < 0.4) -809.54 3646.91 1155.10 -438.90 -266.78

(-195.67) (3722.93) (85.98) (151.10) (-90.86)

Tarpley (0.4 ≤ n < 1) -400.79 3959.34 -319.13 - -

(-199.30) (4047.97) (-329.30) (-) (-)

Tarpley (n = 1) -274.73 3672.04 -314.10 - -

(-49.80) (2187.16) (-168.80) (-) (-)

Justus-Paris-Tarpley 0.4147 0.7165 -0.3909 -1.630 -

1970s [2]. This study made use of statistical regressions against measurements

from GOES VISSR. Three separate cases were considered based on the value of

the cloud index defined by Tarpley as,

n =
0.5N2 +N3

N
, (5.12)

where N is the total number of pixels included in the target area, and N2 and N3

are the number of pixels in partly cloudy and cloudy conditions respectively. The

Tarpley regression model was defined as,

I =



a+ b cos(θz) + cKt + dn+ e

(
Bm

B0

)2

if n ≤ 0.4

a+ b cos(θz) + cn

(
Bcld

Bn

)2

if 0.4 < n < 1,

a+ b cos(θz) + c

(
Bcld

Bn

)
if n = 1

where Bm is the mean target brightens, defined as the mean brightness of a 7 x 6

pixel array; Bcld is the mean cloud brightness, estimated through an average of the

brightness values of all the pixels in the target area brighter than a specified thresh-

old; and Bn = B0(θz = 45◦, φs = 105◦) is the normalized clear brightness which
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is a special case of the clear brightness B0 which is obtained from the following

regression,

B0 = a+ b cos(θz) + c sin(θz) cos(φs) + d sin(θz) cos2(φs).

Raphael and Hay [3] also estimated their own regression coefficients for this

model which are different from Tarpley’s treatment, see Table 5.1.

This model was later refined by Jutus, Paris and Tarpley (JPT) [4] for part

of the Agriculture and Resources Inventory Surveys through Aerospace Remote

Sensing (AgRISTARS) program. This new model replaced the three equations of

Tarpley’s model with the following single equation,

I = I0

(r0

r

)2

cos(θz)
[
a+ b cos(thetaz) + c cos2(θz)

]
+d
(
B2
m −B2

0

)
, (5.13)

where Bm is again the mean observed target brightness and B0 is defined by the

following relationship,

B0 =



B′0 if Bm ≥ Bmax

w1B + 0′ + (1− w1)Bm if B′0 < Bm < Bmax

Bm if B′0 − 2 < Bm ≤ B′0 .

w2B + 0′ + (1− w1)Bm if Bmin ≤ Bm < B′0 − 2

B′0 if Bm < Bmin

As before, the authors in [4] assumed that the brightness for clear sky

conditions B′0 and the measured target mean brightness Bm were known. The

weights w1 and w2 are values between 0 and 1 which were empirically determined.

Each of the cases above approximates various conditions of the atmosphere. The

first and fifth cases correspond to the likely presence of clouds and the insufficient

scene illumination for radiation forecasts respectively; each of these cases leaves

the clear brightness unaltered. The second case allows for seasonal variation in the

clear brightness due to snow- or ice-cover. The third case is to account for clearer

than normal days while the fourth case allows for the removal of erroneous effects

from the satellite image on B0 [163] . Regression coefficients for both the Tarpley

model and the JPT model can be found in Table 5.1.
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5.5.3 Cano-HELIOSAT Model

Cano developed a model for the French HELIOSAT project in 1982 which

used visible band METEOSAT data [179]. The Cano-HELIOSAT model proposes

a simple linear relationship between the clearness index Kt and the cloud index

nt at the same point in time and space. This is accomplished by considering local

values of Kt and nt at each pixel as,

Kt(i, j) = A(i, j)nt(i, j) +B(i, j), (5.14)

where A and B are matrices of regression coefficients [14]. The cloud cover index

was defined as,

nt(i, j) =
ρt(i, j)− ρ0(i, j)

ρc − ρ(i, j)
, (5.15)

where ρt is the measured ground albedo, ρ0 is the reference ground albedo and ρc

is the average albedo of the top of the clouds. The reference ground albedo was

calculated using Bourges model [180] and a recursive procedure which minimized

the variance of the errors of the clear sky model.

Refinements to the Cano-HELIOSAT model include use of the ESRA clear

sky model to correct the estimation of the terrestrial and atmospheric albedos

by Rigollier et al. [181]. These corrections were subsequently used to derive the

following relationship between the cloud index nt and a clear sky index kt,

kt =



1.2 if nt < −0.2

1− nt if − 0.2 ≤ nt < 0.8

2.0667− 3.6667nt + 1.6667n2
t if 0.8 ≤ nt < 1.1

0.05 if n ≥ 1.

More recent developments of the Cano-HELIOSAT model include consider-

ation of the three dimensional structure of cloud in the determination of the cloud

index [182], modification of the previous kt-nt relationship to include moments of

the cloud index distribution [183], corrections for non-Lambertian reflectivity and

the backscattering of clouds [184] and integration of the SOLIS-RTM platform

[185].
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Table 5.2: Regression coefficients for the Perez Operational Satellite Model [5].

a b

0.0001 0.9

c0 c1 c2 c3 c4 c5

1 -0.58 -2.36 6.22 -6.2 2.36

5.5.4 Perez Operational Model

One of the most widely used statistical satellite models is the operational

model of Perez [186]. The Perez model uses a modified version of Kasten’s clear sky

model (see section 2.1.8) which defines a Linke turbidity coefficient independent

of airmass [23]. The model also allows for the modification of the algorithm based

on real time measurements of snow- or ice-cover as well as the correction of sun-

satellite angle effects for each pixel [5].

The model relates hourly global irradiance It and cloud index nt through a

simple regression:

It = Iclr, tf(nt)[aIclr, t + b], (5.16)

where f(nt) is a fifth order polynomial of the cloud index given by,

f(nt) = c5n
5
t + c4n

4
t + c3n

3
t + c2n

2
t + c1nt + c0. (5.17)

Values of the coefficients as calculated by Perez in are given in Table 5.2. This

model was also modified by Perez and Ineichen to forecast DNI from GHI forecasts

provided by the operational model as well as corrections for locations presenting

complex arid terrain [187].



Chapter 6

Ground Based Imaging

6.1 Total Sky Imagers (TSI)

Both NWPs and satellite imaging techniques lack the spatial and tempo-

ral resolution to provide information regarding high frequency fluctuations of solar

irradiance. An alternative is provided through ground based imaging of local mete-

orological conditions. One instrument which has seen increased application lately

is the Total Sky Imager (TSI) manufactured by Yankee Environmental Systems

[188] which is shown in Figure 6.1. An example TSI image from the University of

California Merced is shown in Figure 10.2.

Typically the methodology for ground based images is similar to satellite

based techniques. Projections of observed solar radiation conditions based on

immediate measured history while the position and impact of clouds is deduced

from their motion. In the case of TSIs the CCD image is digitally processed

in order to detect locations of the sky covered by clouds. The could image is

then propagated forward in time resulting in a forecast. Recently, Kleissl et al

used images from a TSI to produce intra-hour forecasting of GHI of a distributed

network of point sensors located at the University of Californa, Sand Diego [189].

Cloud fields were propagated forward in time using matching errors between the

future image and the current image translated in the direction of the computed

velocity vector. Kleissl’s study suggests that TSI images are useful for prediction

of GHI on time horizons up to 15 minutes.
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Figure 6.1: TSI-880 from Yankee Environmental Systems. The instrument con-
sists of a hemispherical mirror with a CCD camera located above it. The mirror
contains a sun tracking shadow-band in order to protect the camera from the sun’s
reflection.

! !

!"#$%&'()*$+,!%-../0 !"#1'& !231'&

Figure 6.2: Image from TSI taken at the University of California Merced on June
1, 2011.
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Coimbra and Marquez also made use of a TSI for intra-hour forecasts,

however their study focused on DNI forecasting rather than GHI [190]. The work

in [190] focused on detailed image processing procedures along with Particle Image

Velocimetry (PIV) to deterime grid cloud fractions in an area of interest. In

agreement with the work of Kleissl, Coimbra and Marquez showed that TSIs show

promise for forecasting horizons up to 15 minutes with the lowest error associated

with time horizons of 5-6 minutes.

It should be noted that while these TSI based provide local meteorological

information enabling intra-hour forecasts, their time horizon is restricted to ap-

proximately 30 minutes do to their limited range of view. One possible approach

to extend the time horizon of ground based measurements is to distribute an ar-

ray of imagers so that more information regarding local cloud fields is obtained.

However, the relative cost associated with the TSI (∼$2,000) and the dynamic

nature of local cloud fields which may limit the correlation of successive images

poses difficulties for current ground based imaging methodologies. In addition to

an upper bound on the time horizon of the TSI, a lower band is also imposed.

The lower bound is a result of circum-solar scattering of light as well as limitations

introduced by the shadow-band which currently renders time horizons shorter than

2 minutes inaccessible [189, 190].

6.2 Wireless Network Systems

None of the methods discussed so far posses intra-minute time horizons.

Satellite and NWP models typically posses time horizons on the order of 30 minutes

while stochastic and AI methods have not been widely applied to time horizons less

than 15 minutes. TSIs are limited by the circum-solar scattering of light and the

shadow-band to time horizons no longer than 3 minutes [189, 190]. Semiconductor

point sensors are capable of very high sampling frequencies but fail to correctly

characterize the distributed nature of an operational scale PV plant [191]. An

alternative has been suggested by Coimbra and coworkers at the University of

California, Merced [192]. A 1MW PV array was outfitted with with 40 TelosB
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Figure 7. Birds-eye view of solar array deployment site with relative node locations. Maximum distance between
successive nodes is 21 meters. The solar array covers roughly 10 acres.

4 Spatial Propagation Model
This section describes a proposed forecasting algorithm

that utilizes the solar sensor network deployment to motivate
the forecast algorithm. Because the sensor nodes cover a
spatio-temporal region where cloud properties such as veloc-
ities, opacity, etc. can, to a good approximation, be regarded
as uniform, the model under consideration is motivated by
spatially propagating currently measured information to the
appropriate neighboring sensor(s) so that a forecast is pro-
duced. Ideally, this model should be tested to produce total
PV power output for the entire power plant, however, time-
resolved data was not made available during the time of the
writing. Therefore, this work is limited to examining a criti-
cal step in the forecast model by analyzing the spatial cross-
correlations between selected pairs of sensor nodes. The
cross-correlations will thus demonstrate the forecast poten-
tial of the sensor deployment as described next.

4.1 PV System Forecast Model
Let I(i, t) denote the irradiance measured at the sensor

at node i, P(t) the total power output of the PV farm, and
α(t) a known proportionality constant between P(t) and the
spatial averaged irradiance Ī(t) = 1/N∑N

i=1 I(i, t) which is
time-varying due to the single-axis tracking orientation of
the PV system. The proportionality constant, for example,
can be determined empirically by estimating clear-sky irra-
diance and power output,

α(t) =
Pclr(t)

Iclr(t)
. (1)

From the above definitions, predicting future values of P(t)
can be accomplished using

Pf (t+T ) = α(t+T )Ī f (t +T), (2)

where Pf is the forecasted power output at time horizon T ,
and Ī f is the forecasted average irradiance level which is cal-
culated directly from forecasted irradiance I f (i, t), i. e.,

Ī f (t +T) =
1

N

N

∑
i=1

I f (i, t +T ). (3)

The route taken by the this model is to first makes solar irra-
diance predictions for each sensor node, then directly com-
pute the forecasted power output using Eqns. (2) and (3).

4.2 Irradiance Sensor Forecasts
Here we discuss the procedure for computing the fore-

casts of the irradiance at each sensor node location. In order
to make a forecast of each of the sensors we use the current
information of each sensor node and information of the cloud
propagation field obtained from a nearby sky imager which
is located approximately 1-km from the PV farm. At time
scales of less than a minute, a cloud can be considered in the
frozen states including shape, opacity, speed, flow direction.
Therefore, the measurement of each solar sensor can be used
to make a prediction of the future measurement of a neigh-
boring solar sensor. Denoting the bulk velocity of the clouds
as V(t), and the L(i, j) as the spatial vector connecting the
pair of nodes (i, j) (see Fig. 8), we forecast the irradiance at
node i as follows,

I f (i, t+T ) = I( j∗(t), t) (4)

where

j∗(t) = argmin
j

‖V(t)×T −L(i, j)‖ (5)

The above algorithm uses the actual solar reading at node
j∗ to forecast some future at time t + T at node i. Node
j∗ is the optimal for making the prediction at node i after
taking into account the bulk cloud motion and the relative

Figure 6.3: Birds-eye view of solar array deployment site with relative node
locations. Maximum distance between successive nodes is 21 meters. The solar
array covers roughly 10 acres.

nodes equipped with low cost solar irradiance sensors, see Figure 10.3. The authors

in [192] proposed a forecasting algorithm which utilized multiple readings from the

spatially distributed network of sensors to compute future values of the distributed

power output. The forecasting approach utilized spatial cross-correlations between

sensor nodes which provided forecasts in the range of 20-50 seconds. Calculated

velocities agreed with TSI calculated cloud velocity field over 70% of the time [192].

This work demonstrates the potential of wireless sensor networks as low cost and

highly accurate approaches for intra-minute solar forecasting.



Chapter 7

Numerical Weather Predictions

(NWPs)

As discussed in the introduction to Chapter 5, the sparse nature of ground

based pyranometer measurement stations limits the coverage and applicability of

traditional time series based forecasting models. Numerical Weather Predictions

(NWPs) provide yet another alternative to a national or global scale ground based

monitoring network. The foundation of NWP methods is illustrated in Figure 7.1.

First a physical domain is chosen. The domain is subsequently discretized into a

desired resolution. Physical laws of motion and thermodynamics are then numer-

ically solved on the discrete spatial grid. It is the time marching of solutions to

the physical and thermodynamic equations which provide the basis of NWP fore-

casts. NWP models may be divided into two main categories: global or regional,

depending on the domain which is used, see figure 9.2.

At the current stage in their development, NWPs are unable to predict the

precise position and extent of cloud fields. Their relatively coarse spatial resolution

(typically on the order of 1 - 20km, see Table 7.1) renders NWP models unable

to resolve the micro-scale physics that are associated with cloud formation. As

a result, cloud prediction inaccuracy is among the largest sources of error is a

NWP based solar forecast. Therefore, examination of fields explicitly predicted

by the NWP are used for the diagnoses of atmospheric features such as clouds

and precipitation. For example, saturation (or near-saturation) of the atmosphere
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Figure 7.1: Basis of all Numerical Weather Prediction (NWP models). First
a domain is defined. Secondly, the domain is spatially discretized to a desired
resolution. Finally, the NWP predicts desired information by solving equations of
motion and thermodynamic laws.
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is typically required for the formation of clouds. During post-processing of the

NWP’s solution field, locations near atmospheric saturation are associated with

cloud formation. This results in a cloud formation probability at best, which is

inherently problematic for solar forecasts.

Nonetheless, NWP provide many benefits over previously discussed fore-

casting methods. Among these is a relatively long time horizon (15 to 240 hours,

see Table 7.1). Information about the propagation of large scale weather patters is

obtained though the regional and global modeling of atmospheric physics. It has

been shown that NWPs provide more accurate forecasts than satellite based meth-

ods for time horizons exceeding 4 hours [193, 194]. Accordingly, NWPs provide

the most attractive option for medium to long term atmospheric forecasting.

7.0.1 North American Mesoscale (NAM) Model

The North American Mesoscale (NAM) model is the NCEP’s primary mesoscale

environmental modeling tool. NAM produces 12km x 12km horizontally resolved

forecasts with 60 atmospheric layers out to a time horizon of 96 hours over North

America and is updated four times daily. The NAM model loop time steps are

6 hours from the time of analysis out to 84 hours (3.5 days). The NAM model

used predicted water vapor concentrations, seasonally varying but zonally constant

O3 concentrations and constant CO2 concentrations. Aerosols are not explicitly

considered except for a top of the atmoshpere adjustment, which is not particu-

larly troublesome with the exception of regions with high levels of time varying

aerosol concentrations. Wavelength specific attenuation of both upwelling and

downwelling fluxes is accounted for.

7.0.2 High Resolution Rapid Refresh (HRRR) Model

The High Resolution Rapid Refresh (HRRR) model is an NOAA operated,

experimental, hourly updated, 3km x 3km resolution atmospheric model. The

HRRR was previously only nested over the eastern 2/3 of the continental United

States, however as of June 2009 coverage was expanded to the CONUS region
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similar to the former RUC, see figure 7.2.1. The RHHH models uses the 13km

resolution RUC/RAP for its initial conditions and is updated hourly. Benefits of

the HRRR include the increased resolution and frequent updates which allow for

shorter timescale predictions.

7.0.3 Weather Research and Forecasting (WRF) Model

Many of the NWPs discussed are based on a version of the WRF which was

created thought a partnership between NOAA and the National Center for At-

mospheric Research (NCAR) in 2004. The WRF has, since its introduction, seen

increased applicability in both research and operational communities. WRF soft-

ware is supported ongoing efforts including workshops and on-line documentation.

One of the main goals of the WRF model is to advance mesoscale atmospheric

prediction by promoting closer ties between research and operational forecasting

communities. The WRF is flexible by design and intended for a wide variety of

forecasting applications with a priority on spatial resolutions ranging from 1 to 10

km.

7.1 Global Forecast System (GFS)

One of the most well known global NWP models is the Global Forecast

System (GFS). The GFS model is run by NOAA every six hours and produces

forecasts up to 384 hours (16 days) in advance on a 28km x 28km grid for the

global domain [195]. The GFS loop time steps are 6 hours out to 180 hours (7.5

days), then change to 12-hour time steps out to 384 hours (16 days). In addition

to the 28km x 28km horizontal discretization, the GFS models 64 vertical layers

of the atmosphere. The RTM of the GFS accepts as inputs: predicted values

of a fully three dimensional aerosol concentration field, predicted values of a two

dimensional (horizontal) H2O, O2 and O3 concentration field as well as a constant

two dimensional (horizontal) CO2 field. The GFS model also calculates wavelength

specific attenuation of both upwelling and downwelling diffuse irradiances through

a sophisticated scattering/absorbing scheme [196]. It should be noted that the
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Table 7.1: Comparison of various NWP models.

Name Resolution Layers Update Period Time Horizon Time Step

GFS 28km 64 6 hours 180 hours 6 hours

- - - - 384 hours 12 hours

RUC/RAP 13km 50 1 hour 18 hours 1 hour

NAM 12km 60 6 hours 96 hours 6 hours

HRRR 3km 50 1 hour 15 hours 15 minutes

WRF ≥1km User Specific User Specific User Specific User Specific

radiant flux attenuation is dependent on H2O phase, temperature and particle size

which makes the GFS sensitive to temperature errors.

7.2 Regional NWP Model

Unlike global NWP models, regional NWP model only a a sub-domain of

the global space, see figure 7.2.1 . Regional models in the U.S. include the Rapid

Update Cycle (RUC), RAPid refresh (RAP), North American Mesoscale (NAM)

model, High Resolution Rapid Refresh (HRRR) and the Weather Research and

Forecasting (WRF) model. Details of each are discussed in the following sections.

7.2.1 Rapid Update Cycle (RUC)/ RAPid refresh (RAP)

Models

The RUC was a NOAA/NCEP (National Centers for Environmental Pre-

diction) operational NWP model until May, 2012. RUC produced hourly updated

13km x 13km horizontally resolved forecasts with 50 atmospheric layers out to

a time horizon of 18 hours. The RUC loop time steps are 1 hour from time of

analysis out to 18 hours. The RUC possessed a wavelength independent model

for the absorption/scattering of radiation by water vapor only. Other atmospheric

gasses and aerosols were neglected. The RUC also assumed Rayleigh scattering

which failed to capture the inversely proportional relationship between intensity of

scattering and wavelength of radiation. In addition, only downwelling irradiances

were attenuated which sometimes lead to the underestimation of diffuse irradiance
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RAP
RUC

GFS

Figure 7.2: Domains of the Global Forecast System (GFS), RAPid refresh (RAP)
and Rapid Update Cycle (RUC) models.

due to backscattering [197].

As of May 1, 2012 the RUC was replaced with the RApid Refresh (RAP)

model as the next-generation version of the NCEP hourly cycle system. The RAP

model posses the same spatial and atmospheric resolution (12km x 12km, 50 layers)

but it based on a new rapid update configuration of the WRF model (see §7.0.3).

As a result, the RAP benefited from the ongoing community improvements to

the WRF. The domain of the RAP is also significantly larger than the previous

RUC and was expanded from the CONtinental United States (CONUS) region to

include Alaska as well, see Figure 9.2.



Part IV

Hybrid Systems & Conclusion
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Chapter 8

HybridSystems

As of late, several HSs have been used to produce high quality forecasts. A

HS is characterized by a combination of any two or more of the methods described

in this paper.

Sfetsos and Coonick introduced a new approach for the forecasting of mean

hourly GHI using traditional linear stochastic methods, several artificial-intelligence-

based techniques alongside the adaptive neuro-fuzzy inference scheme [69]. Zarza-

lejo et al. used ANN in conjunction with satellite-derived cloud indexes for the

forecasting of hourly mean GHI [183]. Mellit et al. developed a hybrid model which

was used to predict the daily GHI by combining an ANN and a library of Markov

transition matrices [72]. Chaabene and Ammar introduced a medium term dy-

namic forecasting model for irradiance and ambient temperature which consisted

of a neuro-fuzzy estimator based on the meteorological parameters behaviors dur-

ing the days before as well as a short term forecast for a 5 minutes ahead based on

stochastic models and Kalman filtering [68]. Reikard preformed forecasting tests

using regressions in logs, ARIMA, and unobserved components models, transfer

functions, neural networks and hybrid models [80]. Reikard claimed that the best

results were obtained using the ARIMA in logs, with time-varying coefficients.

Mart́ın et al tested AR, ANNs and fuzzy-logic models for application to solar ther-

mal power plants energy production planning [35]. Mellit et al. also developed an

adaptive model for predicting hourly GHI and DNI using a dataset of measured

air temperature, relative humidity, direct, diffuse and global horizontal irradiance
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[198]. The adaptive model’s performance was compared agains a MLP ANN. Ji

and Chee [199] recently developed a new approach that contained two phases used

to predict the hourly solar radiation series. In the detrending phase, several models

are applied to remove the non-stationary trend lying in the solar radiation series.

In the prediction phase, the Autoregressive and Moving Average (ARMA) model

is used to predict the stationary residual series and a time delay neural network

is applied also applied. Voyant et al. [71] proposes a study of the contribution of

exogenous meteorological data as time series to their optimized MLP. comparisons

with different forecasting methods including a persistence model, ARIMA refer-

ence predictor, an ANN with preprocessing using only endogenous inputs and an

ANN with preprocessing using endogenous and exogenous inputs.

More recently, Marquez and Coimbra [200] developed and validated a

merdium-term solar irradiance forecast for both GHI and DNI based on stochastic

learning methods, ground experiments and the NWS database. A genetic algo-

rithm was used as in input selector to their ANN in order to select the most

relevant input patters. Voyant et al. used a hybrid ARMA/ANN with NWPs

to predict hourly mean GHI [201]. Marquez et al. [202] also used cloud indexes

obtained from a TSI as well as cloud indexes derived from infrared radiometric

measurements in order to improve result for hourly forecasts of GHI. Marquez,

Pedro and Coimbra have developed a forecast based on satellite images and ANNs

for time series predictions of GHI up to 2 hours ahead [203].



Chapter 9

Conclusion

Several methods for solar irradiance forecasting have been covered in this

paper. From the description of the numerous approaches presented, it can be seen

that several successful forecasts have been developed for a number of different

spatial and temporal resolutions.

Stochastic methods which take advantage of the correlated nature of the

irradiance observations tend to work well in both data-poor and data-rich environ-

ments. In data poor environments one might only have access to historical point

sensor or power output data, in which case endogenous stochastic methods can

be utilized such as AR, MA, ARMA and/or ARIMA. On the other hand, in a

data rich environment one may have access to a wide number of additional data

such as the time evolution of observations of physical quantities in which case ex-

ogenous inputs can be included with models like the ARMAX and/or ARIMAX.

These methods have been applied to a wide variety of time horizons ranging from

intra-hour to yearly averages, see Chapter 3.

ANNs offer improved performance and provide an alternative approach to

physical modeling of irradiance data. ANNs no not require knowledge of the in-

ternal system parameters and present compact solutions for several non-linear,

stochastic and multivariate problems. Like the stochastic methods, ANNs are not

typically temporally limited and successfully modeled irradiance on intra-hour to

yearly time horizons, see Chapter 4.

Satellite imaging provides an alternative to expensive ground based pyra-

89



90

nometer networks and allows the forecasting of irradiance in environments where

no other data is available. Elaborate physical RTMs or straightforward regression

techniques may be used in conjunction with satellite data to provide irradiance

forecasts on time horizons ranging from intra-hour to intra-day, see Chapter 5.

NWPs also allow the prediction of irradiance data in locations were no

data is available. NWPs are scaleable due to their discrete nature and can model

regional or global atmospheric evolution. As a result of the large scale modeling

of the atmosphere, NWP offer the most attractive option for long term forecasting

with time-horizons ranging from intra-hour out to a week or more, see Chapter 7.

For shorter time horizons, ground based imaging or wireless network sys-

tems have seen rather limited application, put appear very promising. The use of

TSIs allows for the acquisition of local meteorological conditions which provides

information on higher frequency fluctuations of irradiance with time horizons rang-

ing from 3 - 30 minutes. Intra-minute forecasting is difficult for the TSI due to

circum-solar scattering of light and the use of shadow-bands. A solution to intra-

minute forecasting is provided thought the distribution of low-cost light sensors

throughout the PV plant in order to determine the effect of passing local clouds

fields on power output, see Chapter 6. Recently, various HSs have been presented.

These offer increased coverage in the spatial and temporal coverage of forecasting

techniques. Integration of NWP/satellite models with stochastic/AI techniques re-

sults in higher accuracy long-term forecasts. By the same reasoning, assimilating

local meteorological information from TSIs and WNSs with stochastic/AI methods

allows higher fidelity access to intra-hour time horizons.

Thus, one can see that if a high fidelity and robust solar irradiance forecast

engine that span the entire spectrum of temporal and spatial horizons, from intra-

minute to multiple days and from single point radiometers to continental regions,

a wide variety of methods must be used. Figure 9 shows a comparison of time

horizon and spatial resolution where the time horizon is plotted in seconds and the

spatial resolution is given in 1/m2. Solid lines indicate current span of respective

technologies while dashed lines indicate the future coverage based on the potential

of current work.
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Figure 9.1: Comparison of time horizon and spatial resolution. Solid lines indicate
current limits of techniques while the dashed lines and arrows indicate the future
progress of work. AI techniques will continue to include local, mesoscale and
global meteorological data which will allow for both shorter time horizons and
greater areas of interest. In addition, recent trends in NWP suggest that shorter
time horizons will be available through the development of the WRF models.



Bibliography

[1] R. Marquez and C. F. M. Coimbra, “A Proposed Metric for Evaluation of
Solar Forecasting Models,” ASME Journal of Solar Energy Engineering (in
press), 2012.

[2] J. D. Tarpley, “Estimating incident solar radiation at the surface from geo-
stationary satellite data,” Journal of Applied Meteorology, vol. 18, no. 9,
pp. 1172–1181, 1979.

[3] C. Raphael and J. E. Hay, “An assessment of models which use satellite data
to estimate solar irradiance at the earth’s surface,” Joural of Climate and
Applied Meteorology, vol. 23, no. 5, pp. 832–844, 1984.

[4] C. G. Justus, M. V. Paris, and J. D. Tarpley, “Satellite-measured insola-
tion in the united states, mexico, and south america,” Remote Sensing of
Environment, vol. 20, pp. 57–83, 1986.

[5] V. Badescu, Modeling Solar Radiation at the Earth Surface. Berlin Heidel-
berg: Springer-Verlag, 2008.

[6] P. Denholm and R. M. Margolis, “Evaluating the limits of solar photovoltaics
(PV) in traditional electric power systems,” Energy Policy, vol. 35, no. 5,
pp. 2852 – 2861, 2007.

[7] P. Denholm and R. M. Margolis, “Evaluating the limits of solar photovoltaics
(PV) in electric power systems utilizing energy storage and other enabling
technologies,” Energy Policy, vol. 35, no. 9, pp. 4424 – 4433, 2007.

[8] C. ISO, “Flexible ramping constraint.” Feb. 2010.

[9] D. Lew and R. Piwko, “Western wind and solar integration study,” tech.
rep., National Renewable Energy Labratories, 2010.

[10] V. Sundar, “Integration of renewable resources: Operational requirements
and feneration fleet capability at 20 percent rps,” tech. rep., California In-
dependent System Operator (CAISO), 2010.

92



93

[11] G. D. Rodriguez, “A utility perspective of the role of energy storage in the
smart grid,” in Power and Energy Society General Meeting, IEEE, pp. 1–2,
2010.

[12] P. Ineichen, “Comparison of eight clear sky broadband models against 16
independent data banks,” Solar Energy, vol. 80, no. 4, pp. 468–478, 2006.

[13] R. Mueller, K. Dagestad, P. Ineichen, M. Schroedter-Homscheidt, S. Cros,
D. Dumortier, R. Kuhlemann, J. Olseth, G. Piernavieja, C. Reise, L. Wald,
and D. Heinemann, “Rethinking satellite-based solar irradiance modelling
- The SOLIS clear-sky module,” Remote Sensing of Environment, vol. 91,
pp. 160–174, MAY 30 2004.

[14] C. Rigollier, O. Bauer, and L. Wald, “On the clear sky model of the ESRA
- European Solar Radiation Atlas - With respect to the Heliosat method,”
Solar Energy, vol. 68, pp. 33–48, JAN 2000.

[15] M. Geiger, L. Diabate, L. Menard, and L. Wald, “A web service for control-
ling the quality of measurements of global solar irradiation,” Solar Energy,
vol. 73, no. 6, pp. 475–480, 2002.

[16] L. F. Zarzalejo, J. Polo, and L. Ramirez, “Gc model5 irradiance,” 2004.
(Matlab Computer Program) CD-ROM accompanying [5].

[17] F. Kasten, “The Linke turbidity factor based on improved values of the
integral Rayleigh optical thickness,” Solar Energy, vol. 56, pp. 239–244, MAR
1996.

[18] R. E. Bird and R. L. Huldstrom, “Direct insolation models,” Trans. ASME
J. Sol. Energy Eng., vol. 103, pp. 182–192, 1980.

[19] R. A. McClatchey and J. E. Selby, “Atmospheric transmittance from 0.25
to 28.5 µm: computer code lowtran2,” environ. res. paper no. 427, Airforce
Cambridge Research Labratories, 1972.

[20] B. Molineaux, P. Ineichen, and N. O’Neill, “Equivalence of pyrheliometric
and monochromatic aerosol optical depths at a single key wavelength,” Ap-
plied Optics, vol. 37, pp. 7008–7018, OCT 20 1998.

[21] A. Berk, L. S. Berntein, and D. C. Robertson, “Modtran: a moderate reso-
lution model for lowtran 7. gl-tr-89-0122.” updated and commercialized by
Ontar Crp, 1996, 1989.

[22] C. Gueymard, “Smarts2, a simple model for atmospheric radiative transfer of
sunshine: algorithms and performance assessment. Rep. FSEC-PF-270-95,”
tech. rep., Florida Solar Energy Center, Cape Canaveral, Florida, 1995.



94

[23] P. Ineichen and R. Perez, “A new airmass independent formulation for the
Linke turbidity coefficient,” Solar Energy, vol. 73, no. 3, pp. 151–157, 2002.

[24] C. Gueymard, “A 2-band model for the calculation of clear sky solar irra-
diance, illuminance, and photosynthetically active radiation at the earths
surface,” Solar Energy, vol. 43, no. 5, pp. 253–265, 1989.

[25] C. Gueymard, “High performance model for clear sky irradiance and illumi-
nance,” in ASES Conference, pp. 251–258, 2004.

[26] F. Kasten, “A simple parameterization of two pyrheliometric formulae for
determining the linke turbidity factor,” Meteorol. Rundsch., vol. 33, pp. 124–
127, 1980.

[27] F. Kasten, “Parametrisierung der globaslstrahlung durch bedekungsgrad und
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