
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Investigation of Nb3Sn Based Superconductors Through Hierarchical Models

Permalink
https://escholarship.org/uc/item/7zt314sn

Author
Collins, Brett

Publication Date
2013
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7zt314sn
https://escholarship.org
http://www.cdlib.org/


Investigation of Nb3Sn Based Superconductors Through Hierarchical
Models

by

Brett Charles Collins

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Tarek I. Zohdi, Chair
Professor David J. Steigmann
Professor Per-Olof Persson

Spring 2013



Investigation of Nb3Sn Based Superconductors Through Hierarchical
Models

Copyright 2013
by

Brett Charles Collins



1

Abstract

Investigation of Nb3Sn Based Superconductors Through Hierarchical Models

by

Brett Charles Collins
Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Tarek I. Zohdi, Chair, Chair

The large range of length scales present within accelerator magnets suggests the in-
corporation of a hierarchical structure into computational models. Evaluation of the
strain state present within the superconducting filaments is necessary in order to
determine the critical current of Nb3Sn based magnets. As part of an ongoing in-
vestigation at LBNL, a three-dimensional nonlinear multiscale model is developed
to investigate the behavior of Nb3Sn filaments due to macroscopic loading. The
major building blocks within a superconducting magnet are used to represent each
length scale within the multiscale model: Coil, Rutherford cable, strand, filament,
Nb3Sn crystal lattice. Using the developed model, loads at the coil level due to
precompression, thermal contraction, and Lorenz forces are translated into lattice
strain within the Nb3Sn phase of the composite. Jc can then be calculated through
use of measurements performed on bulk samples of Nb3Sn. In addition, the physi-
cal effects on each scale due to loading is examined. Each level of the hierarchical
model is solved using Finite Element Methods, taking into account effects due to
thermal contraction and plasticity. A conjugate gradient algorithm is coupled with
a Netwon’s method with line search in order to solve resulting systems of equations.

Professor Tarek I. Zohdi, Chair, Chair
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Chapter 1

Introduction

Ideally, in order to reduce laboratory expensess, predictions for the complex be-
haviors of superconducting magnets can be made through numerical simulations.
With the computational power currently available for mathematical modeling and
simulation, modern numerical methods can play a significant role in the analysis of
superconducting magnets. The primary objective of this dissertation is to develop
a numerical framework to model the applications of superconducting magnets, with
emphasis on accelerator magnets.

The ability to obtain a three dimensional strain state in Nb3Sn filaments due
to macro-scale loading is vital in determining the critical current carrying capacity
of an accelerator magnet. However, this task is not trivial due to the variety of
important length scales present in superconducting magnets: magnet, coil, cable,
strand, filaments, and lattice. These scales, shown in detail in 1.1, each play an
important role in the final strain state present in the filaments. Direct numerical
simulation of the macro-scale magnet with the inclusion of all the micro-scale details
is computationally infeasible. Therefore, multi-scale computation can be used to
understand the behavior across various length scales. Due to the vast difference
in these length scales, multiple models must be created to accurately incorporate
the physics present at each scale. In the present work, the main focus is on the
development of models that bridge the strand and filament scales in a rod restack
process (RRP) strand.

The numerical determination fo the strain stae present in Nb3Sn filaments has
previously been explored. Mitchell [55] has developed one and two dimensional models
to simulate thermo-mechanical loads on strands to determine the corresponding strain
state in Nb3Sn filaments. Meanwhile, Boso [12] [13] has developed a multiscale model
to examine the strain state in Nb3Sn based strands for ITER coils. Arbelaez [20]
has developed a multiscale model bridging the strand and cable levels in order to
determine the effective linear, orthotropic properties of Rutherford cables. Chen [41]
has developed an elastic model to characterize the strain of Nb3Sn filaments in a wire.

In the present study, a multiscale model is developed and used to examine the
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Figure 1.1: Illustration of the scales present in Nb3Sn magnets: magnet, cable, strand,
filaments, lattice.

relation between the strand and filmanet scales. As discovered previously [9], the
copper portion of a strand exhibits plasticity, and therefore work hardening, simply
from cooling the system down from room temperature to an operating temperature
of 4.2 K. Therefore, it is necessary that a nonlinear material model is included in the
problem formulation.

The organization of this dissertation is as follows. In chaper 2, the basics of super-
conducting accelerator magnets is discussed. In chapter 3, the governing equations
representing the underlying physics within an accelerator magnet, as well as the ma-
terial models present within the system, are examined. In chapter 4, the numerical
methods used to solve the partial differential equations discussed in chapter 3 are
developed, with particular attention to the finite element method. In chapter 5, the
implementation of a multiscale model is discussed. In chapter 6, the multiscale model
is applied to a superconducting RRP strand and three test cases are examined.
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Chapter 2

The Basics of Superconducting
Accelerator Magnets

2.1 History of Superconductivity

Superconductivity is a phenomenon in which certain materials possess the prop-
erty of zero electrical resistance. The discovery of superconductivity is closely linked
with the development of cryogenics in the late 1800s. Dutch scientist Kamerlingh
Onnes performed research on the resistivity of materials at cryogenic temperatures
in 1911, where electrical resistivity is defined as

ρ = R
A

l
(2.1)

where R is the electrical resistance of a uniform specimen of material, l is the length
of the specimen, and A is the cross-sectional area of the specimen. The resistivity
of platinum and gold were observed to decrease steadily to a constant value as tem-
perature decreased, as shown in figure 2.1 [63]. However, the resistivity of mercury
dropped to an imperceptibly low value at a temperature below 4.2K. Upon repeat-
ing the measurement with greater sensitivity, it was observed that the drop to zero
resistivity occured abruptly, just below the boiling point of helium, as shown in figure
2.2 [14]. Soon after, superconductivity had been found in numerous other elements
and alloys.

2.2 Particle Accelerators

A particle accelerator is a device that uses electromagnetic fields to propel charged
particles to high speeds and to contain them in well-defined beams [49]. In a circular
accelerator, particles move in a circle until they reach a sufficient energy level, at
which their interactions can be observed in high energy collisions. One of these
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particle accelerators, the Large Hadron Collider (LHC), can be seen in figure 2.3.
The particle trajectories are bent into a circle using electromagnets, using dipole
magnets (two magnet coils) to bend the beam, and quadrupoles (four magnet coils)
to focus the beam. A cross-section of the quadrupole used in the LHC can be seen in
figure 2.4.

Figure 2.3: Overhead View of the Large Hadron Collider.

2.3 Critical Temperature, Critical Field and Crit-

ical Current

When a superconductor is cooled below a material specfic critical temperature, Tc,
its restance abruptly drops to zero and it becomes the perfect electrical conductor. To
show that the electrical resistance of a superconducting sample was in fact zero and
not simply within the sensitivity limit of the measuring equipment, in 1914 Onnes
created an electric current flowing in a closed superconducting ring [64]. A decay in
electrical current was not observed, indicating that energy was not being transformed
into Joule heat and therefore that the resistance of the material was exactly zero.

In the precesence of an applied magnetic field H, two types of superconductors
are observed. These superconductors are generally classified as Type I and Type II.
In a Type I superconductor, interior of a bulk superconductor cannot be penetrated
by a weak magnetic field, a phenomenom known as the Meissner effect, which can be
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Figure 2.4: Quadrupole used in the Large Hadron Collider.
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seen in figure 2.5. The magnetic flux, B is completely shielded from the interior of
the superconductor by shielding currents along its surface up until a critical magnetic
field Hc. Type I superconductors have limited practical usefulness because the critical
magnetic fields are small and there is an abrupt change from superconducting state.
This can be visualized in figure 2.6.
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c

Figure 2.6: Applied Magnetic Field vs. Temperature for a Type I Superconductor.

Type II superconductors, which are made from alloys, have two critical fields,
Hc1 and Hc2. At applied fields below Hc1, Type II superconductors exhibit the same
perfect magnetic flux exclusion as Type I superconductors. Above Hc1 and below
Hc2, magnetic flux penetrates the interior in the form of quantized flux vortices, or
flux-lines, and the material exists in a mixed state of normal and superconducting
regions [2], shown in figure 2.7. As the applied magnetic field increases from Hc1

to Hc2, the flux-line density increases from zero until they start to overlap and the
superconductor undergoes a phase transition to the normal state. Due to their much
higher critical magnetic fields, Type II superconductors are preferred in practical
settings.

If a current flows through an ideal Type II superconductor which is exposed to a
magnetic field, the current exerts a Lorentz force on the flux lines and causes them to
move through the specimen in a direction perpendicular to the current and field. This
can be seen in figure 2.8, where B is the macroscopic magnetic field, J is the current
density, and v is the flux-line velocity. The macroscopic magnetic field is defined as

B = µ0 (H+M) (2.2)

where µ0 is the permeability of free space constant and M is the superconductor
magnetization. This is a viscous motion that generates a potential gradient, i.e.



2.3. CRITICAL TEMPERATURE, CRITICAL FIELD AND
CRITICAL CURRENT 8

Temperature

M
a
g
n
et

ic
 F

ie
ld

T
c

Superconducting

Normal

Mix of Normal +
Superconducting

H
c1

H
c2

Figure 2.7: Applied Magnetic Field vs. Temperature for a Type II Superconductor.

B

J

v

Figure 2.8: Scheme of Fluxoid Motion in a Current-Carrying Type II Superconductor.



2.4. RELEVANT SUPERCONDUCTING MATERIALS 9

voltage, which leads to heat generation and therefore destroys the superconducting
state. However, the flux-line lattice can be ”pinned” by lattice imperfections such
as impurities, precipitation of other material phases, grain boundaries, or defects. A
critical current density Jc is defined to be when the Lorrentz force acting on the flux-
line lattice becomes larger than the bulk pinning force Fp, which prevents the flux-lines
from moving [43]. The pinning force, and therefore Jc, depends on the applied field
and temperature and can be written as Jc (H,T ). This function represents a critical
surface bounding the superconducting region, and can be visualized in figure 2.9.

Figure 2.9: Critical Surface Bounding the Superconducting Region.

2.4 Relevant Superconducting Materials

A wide variety of metals and alloys display superconductivity, however, only
two are commercially available for large scale magnet production: niobium-titanium,
NbTi, and niobium-tin, Nb3Sn [54]. Typical critical current densities achieved are
plotted in figure 2.10 as a function of field [46].
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2.4.1 NbTi

The most widely used superconductor is the ductile alloy NbTi [48] [27] [85].
Niobium and titanium have similar atomic sizes, with a difference in radii of ap-
proximately 5 pm, and are mutually soluable over a wide composition range [11].
At high temperatures, they form a body-centered cubic phased alloy. When cooled
down to below approximately 9.2K, this alloy becomes superconducting. µ0Hc2 is
approximately 14.5 T at 0 K and approximately 10 T at 4.2 K [34].

Within the NbTi alloy, large amounts of lattice dislocations and well as precipi-
tations of other phases at grain boundaries are present, which have shown to be very
efficient in pinning the fluxoids present in the mixed state of Type II superconductors
[47] [53].

One of the most significant features of NbTi is its extreme ductility, which allows
simple and effective fabrication methods for wires and cables, such as extrusion and
drawing. For this reason, NbTi is widely used in magnets with field strengths up
to 6.5 T. The Tevatron accelertor in Fermilab was the first project where NbTi was
implemented on a large scale, and many other particle accelerators have followed since
[16] [82] [8] [28]. The primary application of NbTi wires today is the manufactoring
of full-body Magnetic Resonance Imaging (MRI) magnets [56].
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2.4.2 Nb3Sn

The alternative superconducting material that is readily available is the compound
Nb3Sn. Niobium-tin is a brittle intermetallic compound of well-defined stoichiometry
which crystallizes in the so-called A15 lattice [48] [27] [85]. The Sn atoms form a
body-centered cubic lattice, and each face is bisected by orthogonal Nb chains, shown
in figure 2.11. Tc is approximately 18 K and µ0Hc2 is approximately 25 T for this
alloy [56] [65] [29].

Figure 2.11: Schematic of the Nb3Sn A15 unit lattice, with red spheres representing
Sn atoms and blue spheres representing Nb atoms.

Similarly to other A15 compounds, the main sources of fluxoid pinning sites in
Nb3Sn are at the grain boundaries. The alloy must therefore be processed to achieve
fine, homogeneous microstructure with grain diameters between 30 and 300 nm to
achieve a high critical current [67].

The main drawbacks to Nb3Sn as a superconductor are its brittleness and its sen-
sitivity to strain [57] [5] [17]. Due to its brittle nature, it is much more cumbersome
to effectively fabricate Nb3Sn wires and cables. As opposed to NbTi, A15 supercon-
ductors cannot be drawn into thin filaments, but instead must be formed in the final
geometry by high temperature heat treatment. Nb3Sn, for example, needs to undergo
reaction at 650− 700 ◦C for many days to achieve full performance [54].

2.4.3 The Effect of Strain on Critical Current

The superconducting properties of all materials are sensitive to lattice strain to
a certain extent, although the effect is small in NbTi. In NbTi, Jc is primarily
determined by the alloy microstructure, and can be optimized through applications
of cold-work cycles and heat treatments. In Nb3Sn, like other A15 compounds, Hc,
Tc and Jc are affected by the lattice strain, and therefore mechanical stress. The
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effect of uni-axial stress on the upper critical magnetic can be seen in figure 2.12
[17] and the effect of uni-axial stress on normalized critical current can be seen in
figure 2.13 [19]. It can be seen that the presence of lattice strain severely degrades

Figure 2.12: Effect of uniaxial strain on the upper critical field of practical A15
superconductors.

the critical properties of A15 superconductors. Therefore, accelerator magnets using
Nb3Sn cannot be wound from the fully reacted cables due to the resulting bending
strains.

2.5 Quenching

A quench is a termination of magnet operation in which the superconducting
material returns to a resistive state. This can occur due to large magnetic fields that
result in eddy currents, defects in the magnet that result in Joule heating, or improper
cooling of the magnet. Local quenches often result in a chain reaction throughout the
magnet, rapidly causing the entire coil to enter a resistive state. Quenches can often
lead catostrophic damages to the magnet. Therefore, quench protection is often built
into the system.
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Figure 2.13: Effect of uniaxial strain on the critical current density of practical A15
superconductors.
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2.6 Multifilament Superconductors

2.6.1 Overview

In practical applications, superconductors are subdivided into fine filaments, which
are twisted together and embedded within a normal metal with low resistivity, such
as copper. This can be visulized in figure 2.14, where the smaller filaments are NbTi
and the matrix is Cu. This composite is referred to as a strand.

Figure 2.14: Cross Section of Superconducting Wire (Courtesy of Fermilab Visual
Media Services).

Having small filaments is necessary in a a practical superconductor in order to
eliminate instabilities known as flux jumps [84]. These flux jumps are caused by
thermal perturbations that arise in type-II superconductors, and are more likely to
arise in bulky superconductors than subdivided ones. There exist numerous methods
developed to estimate critical filament diameters, such as the adiabatic stability cri-
terion and the dynamic stability criterion. In the adiabity stability criterion, a slab
of thickness 2dslab is considered alone in free space. Assuming adiabitic conditions,
it can be shown that a necessary condition to prevent the flux jump instability is
dc,adiabatic < dslab, where

dc,adiabatic =

√
3Csc (T0, B0)

µ0Jc (T0, B0)
∣∣∂Jc
∂T

(T0, B0)
∣∣ , (2.3)
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where Csc is the superconductor specific heat per unit volume.
The dynamic criterion considers composite wire with a circular cross section made

up of superconducting filaments of diameter dfilament in a normal metal matrix. The
necessary condition to prevent the flux jump instability is dc,dynamic < dfilament, where

dc,dynamic =

√
32λwireksc (T0, B0)

ρmatrixJc (RRR, T0, B0) Jc (T0, B0)
∣∣∂Jc
∂T

(T0, B0)
∣∣ , (2.4)

where λwire is the matrix to superconductor ratio, ksc is the thermal conductivity of
the superconductor, ρmatrix is the resistivity of the matrix, and RRR is the residual
resistivity ratio of the matrix. It can be seen that dc is inversly proportional to
Jc, implying that for larger critical currents, smaller superconducting filaments are
required to prevent flux jump instabilities.

Within a strand whose filaments are straight, eddy currents are induced when sub-
jected to a time-varying magnetic flux due to the low resistivity matrix. A schematic
of this process is shown in figure 2.15. Twisting filaments reduces the chance of fila-
ment coupling by limiting the induction loop for the coupling current from the length
of the conductor to a half of the twist pitch [87].

B

Figure 2.15: Interfilament coupling within an untwisted superconducting wire sub-
jected to an applied magnetic field.

A low resistivity matrix is used to limit power dissipation due to Joule heating in
the case of the transition of superconducting filaments to normal conducting filaments.
In the event of a quench, if the resistance of the matrix material is sufficiently low,
there is enough time to shut the system down to prevent permanent damage to the
magnet.
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2.6.2 Wire Fabrication

In the fabrication process of a wire, the separate components are stacked in billets
and then extruded/drawn into wires. Since the A15 phase is brittle, the wires must
be drawn while the components are net yet reacted so that they remain ductile. The
A15 formation reaction occurs after wires are drawn into their final dimensions, and
after coil winding. The A15 reaction occurs at approximately 950 K in a protected
atmoshphere through a solid state diffusion reaction over the course of 10-15 days.
An example heat treatment of a wound superconducting coil can be seen in figure
2.16.

HD2 heat treatment
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Figure 2.16: Heat Treatment of a Superconducitng Coil.

The three present large scale fabrication processes are the bronze process [4],
powder-in-tube process [42], and the internal Sn process [86]. Although all three
fabrication processes have benefits and drawbacks, the primary one considered in this
work will be the internal Sn process, which can be visualized in figure 2.17.

In the internal Tin process, a Sn core srounded by Nb rods embedded withiin Cu
(known as the Rod Restack Process (RRP)). These filamentary regions are surrounded
by a Sn diffusion barrier, typically composed of either Nb or Ta. One advantage of the
internal Sn process is that it exhibits a larger Sn to Cu ratio than other fabrication
processes, resulting in high Sn A15 layers and removing the need for intermediate
annealing steps. The drawback is that the Sn core region does not become an A15
area during the reaction process [19].

2.6.3 Rutherford Cables

A Rutherford cable is made up strands, twisted together, and shaped into a flat,
two-layer cable [85] [69], shown in figure 2.18. This type of cable was developed at
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Cu

Nb

Sn

Diffusion Barrier

Figure 2.17: Schematic of the internal Sn process.

the Rutherford Appleton Laboratory [75], and the main benefit is that it allows for
ease of stacking. It is often given a keystone-shape to allow stacking into an arch,
which is useful for accelerator magnet coils.

Figure 2.18: Rutherford Cable.



18

Chapter 3

Governing Equations and Material
Models

A variety of physics are present during the operation of an accelerator magnet.
These include electromagnetic phenomena due to using current to generate a magnetic
field as well as accelerating a charged particle within a magnetic field, thermodynamic
considerations when using cryogenics to cool the system to operating temperature,
fluid mechanics within the liquid helium used to cool the system, and solid mechanics
within the body of the accelerator magnet. The formulations behind these physical
phenomena are discussed in this chapter, and the numerical implementations are
discussed in later chapters.

3.1 Electromagnetics

Although the effects of electromagnetism are critical to the characterization of
accelerator magnet behavior, the primary focus of this research is the mechanics
within the mesoscales in the system. In this regard, effects due to electromagnetism
can be treated as lumped macroscale loads applied at the largest scale. However, for
a complete understanding of the underlying physics, the electromagnetic equations
relating to accelerator magnets are discussed in the following sections. For a more
indepth examination, the reader is directed to works by Zohdi [89], Purcell [66], and
Ida [39].

3.1.1 Current Density

Electric Current is the rate of transport of electric charge through a point or
surface. The total current through a surface in the body Ω is

I =

∫
A

J · ndA, (3.1)
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where J is the current density, A is the surface in which current is passing through,
and n is the surface normal. This schematic is shown in figure 3.1.

A

n

J

Ω

Figure 3.1: Current Through a Surface.

3.1.2 Maxwell’s Equations

The fundamental definitions associated with electromagnetic occurences arise from
Maxwell’s equations. Namely: Gauss’ Law, Gauss’ Law of Magnetism, Maxwell-
Faraday’s Law, and Ampere’s Law.

Gauss’ Law

Gauss’ Law is the first of Maxwell’s equations, and dictates how the electric field
behaves around electric charges. It is given in point form as

∇x ·D = ρf , (3.2)

where ∇x is the divergence of a tensor with respect to the current configuration, D is
the electric flux density and ρf is the free charge density. Integrating over the volume
and using the divergence theorem, we obtain the integral form as∮

∂Ω

D · dS = Qf , (3.3)
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where ∂Ω is the boundary of the body, Qf is the net free electric charge within the
body’s volume, and dS is the differential vector element of surface area S, which is
defined as dS = ndA.

Gauss’ Law of Magnetism

The magnetic flux through a surface is defined as

Φ =

∫
A

B · ndA. (3.4)

In an electric field, the electric flux originates at a positive charge and terminates
on a negative charge. However, there are no magnetic charges analogous to electric
charges (citation needed). Therefore, the entirity of magnetic flux entering a closed
surface must also leave the closed surface. This is mathematically expressed by point
form of Gauss’ law of magnetism:

∇x ·B = 0. (3.5)

Integrating over the volume and using the divergence theorem, we obtain the integral
form as ∮

∂Ω

B · dS = 0. (3.6)

Maxwell-Faraday’s Law

Maxwell-Faraday’s Law describes how a time-varying magnetic field induces an
electric field. In point form, it is given as

∇x × E = −∂B

∂t
, (3.7)

where ∇x× is the curl operator, E is the electric field intensity, and t is time. Using
Stoke’s theorem, we can obatin the integral form as∮

∂A

E · dL = − d

dt

∫
A

B · dS, (3.8)

where ∂A is the boundary of a surface and dL is the differential vector element of the
path length tangential to the curve.
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Ampere’s Law

Ampere’s Law states that magnetic fields can be generated by electrical current
as well as changing electric fields. The point form of this equation is given as

∇x ×H = Jf +
∂D

∂t
, (3.9)

where Jf is the free current density. Integrating and using Stoke’s theorem, the
integral form is obtained as∮

∂A

H · dL = If +

∫
A

∂D

∂t
· dS, (3.10)

where If is the net free electrical current passing through the surface A:

If =

∫
A

Jf · ndA. (3.11)

3.2 Mechanics of Materials

In order to obtain the stress-strain configuration within the mesoscales of an accel-
erator magnet, balance laws must be satisfied. Namely, the balance of mass, balance
of momentum, balance of angular momentum, and the balance of energy. Matter
is treated as a continuous material, since the physical problem of interest occurs at
sufficiently larger length and time scales than the characteristic scales. Therefore, a
finite amount of matter within a body has physical properties that are independent
over the size and time in whcih they are measured. For more information, the reader
is directed to Gurtin [31], Chadwick [7], Malvern [51], Marsden [52], and Fung [23].

3.2.1 A Brief Review of Continuum Mechanics

Consider a body B and a configuration of the body R, which is a subset of E3
occupied by B at time t. x is the location of a particle P at time t relative to fixed
origin O. Similarly, a fixed configuration of the body at time t0 can be used as a
reference configuration R0.

A smooth motion, χt is used to map the reference configuration to the current
configuration. Similarly, χt0 maps the point P to reference location X and χt maps
the point P to the current location x. This schematic can be visualized in figure 3.2.

The velocity and acceleration of points on the body can be determined by taking
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X
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Figure 3.2: Diagram of body B, it’s reference configuration R0, and it’s current
configuration R.

time derivatives of the motion χt:

v =
∂χt (X, t)

∂t
, a =

∂χ2
t (X, t)

∂t2
. (3.12)

Similarly, a deformation gradient is defined by taking a spacial derivative of the
motion:

F =
∂χt (X, t)

∂X
=

∂ (X+ û (X, t))

∂X
= I+

∂û

∂X
= I+H, (3.13)

where u is the displacement vector defined as

u = û (X, t) = ũ (x, t) , (3.14)

I is the 3× 3 identity tensor, and H is the relative displacement gradient tensor. The
Jacobian, J is defined to be the determinant of the deformation gradient, and maps
an infinitessimal volume in the reference configuration to the current configuration as
follows:

dv = JdV. (3.15)

Strain is a measure of deformation representing the displacement between particles
in the body at the current state relative to a reference length. The Lagrangian strain
tensor can be defined as

E =
1

2

(
FTF− I

)
. (3.16)
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3.2.2 Mass Balance

Consider a body B and a region within the body S, shown in figure 3.3. The
corresponding regions in the reference configuration and current configuration are P0

and P , respectively. The balance of mass states that mass cannot change within the

B

S

R
0

P
0

R

P

Figure 3.3: Diagram of body B .

subregion S over time. This can be written as∫
P
ρdv =

∫
P0

ρ0dV =

∫
P0

ρJdV. (3.17)

where ρ is the density of the material. Localizing, we obtain

ρ0 = ρJ. (3.18)

Using the Reynolds transport theorem on a scalar f ,

d

dt

∫
P(t)

fdv =

∫
P(t)

(
ḟ + f∇x · v

)
dv, (3.19)

we can obtain an alternative definition of mass balance:

ρ̇+ ρ∇x · v = 0. (3.20)

3.2.3 Alternative Representations of Maxwell’s Equations

Current work with nonlinear electrodynamics of continua has been greatly influ-
enced by Kovetz [45], who has presented postulates concerning the laws of motion,
conservation of energy, and dissipation. The following derviation is detailed in work
by Steigmann [73].



3.2. MECHANICS OF MATERIALS 24

The principle of charge conservation within a material region P can be stated as∫
P

dq

dt
dv +

∫
∂P

qv · nda =

∫
∂P

αda, (3.21)

where q (x, t) is the charge per unit volume and α is the current flux per unit area.
Application of Cauchy’s theorem [31] gives

α = −J · n, (3.22)

where J (x, t) is the conduction current. For fields that are smooth, localization of
the charge-conservation law yields

dq

dt
+∇x · j = 0, (3.23)

where j = qv + J is the net current.
Two of Maxwell’s equations arise through the integration of the local charge-

conservation law as a pair of vector potentials:

q = ∇x · d and j = ∇x × h− dd

dt
, (3.24)

where d (x, t) is the electric displacement field and h (x, t) is the magnetic field. The
second pair of Maxwell’s equations are given in local form by

∇x · b = 0 and ∇x × e− db

dt
, (3.25)

where e (x, t) is the electric field and b (x, t) is the magnetic induction. These local
forms are equivalent to their global counterparts whenever the fields are smooth.

3.2.4 Linear Momentum Balance

The linear momentum of the region P at time t, represented in figure 3.3, can be
written as ∫

P
ρvdv. (3.26)

We admit three types of external forces on P : body forces b̄ (x, t) per unit mass,
surface tractions t̄ (x, t;n) per unit area on the boundary of P , and the force on
charged particles relative to an inertial frame of reference, known as the Lorentz
force. The Lorentz force exerted on a material occupying a region P is

f (P , t) =
∫
P
qEdv, (3.27)
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where E = e+ v × b. The following relation can then be derived[18]:

f (P , t) =
∫
∂P

T̂nda− ε0
d

dt

∫
P
e× bdv, (3.28)

where ∂P is the boundary of P and da is the differential element of surface area and
ε0 is a positive constant such that d = ε0e. In addition,

T̂ = TM + ε0e× b⊗ v, (3.29)

where TM is the Maxwell stress.
The balance of linear momentum then follows as

d

dt

∫
P
ρvdv =

∫
P
ρb̄dv +

∫
∂P

t̄da+ f (P , t) . (3.30)

Noting Cauchy’s theorem,
t̄ = T̄n, (3.31)

the blance of linear momentum can be written as

d

dt

∫
P
ρgdv =

∫
P
ρb̄dv +

∫
∂P

tda, (3.32)

where
g = v +

ε0
ρ
e× b and t = t̄+ T̂n. (3.33)

Through use of the divergence theorem, we can obtain the local form of linear
momentum balance as follows:

∇x ·T+ ρb̄ = ρġ. (3.34)

In the case where electromagnetic effects can be neglected, the local balance of linear
momentum can be reduced to

∇x · T̄+ ρb̄ = ρa. (3.35)

In referential form, this can be written as

∇X ·P+ ρ0b = ρ0a, (3.36)

where P is the first Piola-Kirchhoff stress:

P = JT̄F−T . (3.37)
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3.2.5 Angular Momentum Balance

Angular momentum balance simply results in symmetry of the Cauchy stress
tensor:

T̄ = T̄T . (3.38)

In referential form, this is written as

PFT = FPT . (3.39)

Alternatively, the angular momentum balance can be written in the global form,

d

dt

∫
P
(x− x0)× ρgdv =

∫
∂P

(x− x0)×Tnda+

∫
P
(x− x0)× b̄dv, (3.40)

where x0 is the location of a reference point O.

3.2.6 Energy Balance

Admitting a heat supply per unit mass, r (x, t), heat flux per unit area, h (x, t;n),
and internal energy per unit mass, ε (x, t), we can formulate the local statement of
energy balance as follows[73]:

ρε̇ = ρb̄ · v +∇ ·
(
TTv

)
+ ρr −∇x · (q+ E ×Hf ) , (3.41)

where q is the heat flux vector defined from the relation

h = q · n, (3.42)

and
Hf = (h− v × d)− (m+ v × p) , (3.43)

where p (x, t) and m (x, t) are the polarization and magnetic fields, respectively.

3.2.7 Constitutive Equations

A consitutive relation is the relation between two physical quantities that is specific
to a material and approximates the response of that material to external stimuli.
In the case of solid mechanics, the constitutive relation relates applied stresses or
forces to strains or deformations, which before accounting for possible restrictions or
reductions can be written as

T = T̃
(
x,v,F, Ḟ, ...,∇XF, ..., ρ, ρ̇...

)
. (3.44)
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Since electromagnetic effects are not considered within the test cases considered in
Chapter 6, these terms are left out of the following constitutive equations.

Linear Elasticity

The fundamental linearizing assumptions of linear elasticity are:

1. Infinitesimal strains, i.e. small deformations

2. Linear relationships between the components of stress and strain

The first assumption reduces equation 3.16 to the infinitessimal strain tensor

ε =
1

2

(
H+HT

)
. (3.45)

The second assumption leads to the following relationship between the stress and
strain tensors:

σ = C · ε, (3.46)

where σ is the infinitessimal stress tensor and C is the fourth-order elasticity tensor
containing constants. In general, this fourth-order elasticity tensor possesses 81 ma-
terial constants. However, due to 3.38 and the symmetry of ε apparent in 3.45, it
follows that

Cijkl = Cjikl = Cijlk = Cjilk, (3.47)

implying that only 36 of the components are independent. Equation 3.46 can then
be reorganized and written as

σ11

σ22

σ33

σ12

σ23

σ31

 =


C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66




ε11
ε22
ε33
2ε12
2ε23
2ε31

 . (3.48)

Two types of linear elastic materials are used in the analysis of accelerator mag-
nets: isotropic and orthotropic materials. In the case of isotropy, the material exhibits
an idential response regardless of orientation. The elasticity tensor is reduced to two
independent components and can be written as

λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 , (3.49)
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where λ and µ are Lamé parameters. The orthotropic elasticity tensor can be written
as 

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 , (3.50)

with 9 independent material constants.

Linear Thermoelasticity

With the inclusion of temperature dependence, the body develops stresses due to
changes in temperature. Equation 3.46 becomes

σij = −βij (θ − θ0) + Cijklεkl, (3.51)

where θ is the current material temperature, θ0 is the refrence material temperature,
and β is a tensor of linear coefficients of thermal expansion. In the case of isotropy,
this reduces to

σij = λεkkδij + 2µεij − β (θ − θ0) δij, (3.52)

where δij is the Kronecker delta.

Plasticity

The primary limitation of elastic constitutive models is that they don’t account
for yielding of materials. Plasticity describes the process of a material undergoing
irreversible changes in deformation in response to applied forces. For further infor-
mation on classical rate-independent plasticity, refer to work by Green and Nagdi [25]
[26] as well as Simo [70]. Consider a yield surface in six-dimensional stress space and
strain space shown in figure 3.4, and given by the equation

f = f̄ (T,q) = f̂ (E,q) = 0, (3.53)

where q represents internal variables. The material is taken to behave elastically
within the yield surface, and plastically when the loading path reaches f . In the case
of small deformations, this reduces to

f = f̄ (σ,q) = f̂ (ε,q) = 0, (3.54)

In classical plasticity, one can assume an additive decomposition of the strain
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f(T,q) = 0
T

f(E,q) = 0
E

^

Figure 3.4: Yield Surfaces in Stress and Strain Space.

tensor:
ε = εe + εp (3.55)

where εe is the elastic part of the strain and εp is the plastic portion. The linear
elastic response is then

σ = −β (θ − θ0) +C · (ε− εp) . (3.56)

and is valid for f̄ (σ,q) < 0.
Now we introduce the idea of irreversibility of plastic flow through the inclusion

of equations of evolution for εp and q, called the flow rule and hardening law, respec-
tively:

ε̇p = γr (σ, q)
q̇ = −γh (σ, q)

(3.57)

where r and h are prescribed functions which define the direction of plastic flow and
the type of hardening. The paramter γ is called the consistency parameter, which is
assumed to obey the following Kuhn-Tucker complementarity condistions [50]:

γ ≥ 0
f̄ (σ,q) ≤ 0
γf̄ (σ,q) = 0

(3.58)

as well as the consistency requirement

γ ˙̄f (σ,q) = 0. (3.59)

A common plasticity model is J2 flow theory with isotropic and kinematic hard-
ening, which is a typical model characterizing metal plasticity. In it

q :=
{
α, β̄

}
, (3.60)
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where β̄ is the back-stress, denoting the center of the yield surface, and α is the
equivalent plastic strain that defines isotropic hardening of the von Mises yield surface.
We denote s and e to be the deviatoric stress and strain tensors:

s = σ − 1
3
(trσ) I, e = ε− 1

3
(trε) I. (3.61)

For rate-independent plasticity with von-Mises pressure insensitive yield conditions,
we have the following yield condition, flow rule, and hardening law:

η := s− β̄, trβ̄ = 0,

f (σ,q) = ∥η∥ −
√

2
3
K (α) ,

ε̇p = γ η
∥η∥ ,

˙̄β = γ 2
3
H ′ (α) η

∥η∥ ,

α̇ = γ
√

2
3
,

(3.62)

where the functions K ′ (α) and H ′ (α) are the isotropic and kinematic hardening
moduli and γ = ∥ε̇p∥. The following form of kinematic and isotropic hardening laws
are widely used in computational implementations [37]:

H ′ (α) =
(
1− θ̄

)
H̄,

K (α) = σy + θ̄H̄α, θ̄ ∈ [0, 1] ,
(3.63)

where H̄ is a constant and σy is the yield stress.
The plastic consistency paramter in the general case takes the explicit form

γ = ⟨n:ε̇⟩
1+H′+K′

3µ

, n := η
∥η∥ . (3.64)

For plastic loading, when γ > 0, the elastoplastic tangulent modulus is

Cep = κ1⊗ 1+ 2µ

[
I− 1

3
1⊗ 1− n⊗ n

1 + H′+K′

3µ

]
, (3.65)

where κ is the bulk modulus, 1 = δijei ⊗ ej, I = 1
2
[δikδjl + δilδjk] ei ⊗ ej ⊗ ek ⊗ el,

and ⊗ is the outer product operator.

3.2.8 Material Properties

The primary materials considered within a model are Nb3Sn, Copper, and Bronze.
The following material responses have been compiled by Mitchell [55] and are plotted
in figures 3.5 through 3.8. Within the plastic range of materials, a power law expres-
sion is used. To enforce continuity of stress-strain curves for elasto-plastic materials,
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the power law is modified as
ε = Aσn + σ/E (3.66)

with

n = ln

(
εu −

σu

Eεy
− σy

E

)
/ln

(
σu

σy

)
, (3.67)

and
A = εu −

σu

Eσn
u

, (3.68)

where σu, εu is the ultimate tensile strain, and εy − σy/E is the 0.002 offset strain.

Nb3Sn

The material is assumed to not yield in compression, and due to it’s brittle behav-
ior assumed to behave elastically. Refences [15] [21] [22] report modulus as a function
of temperature, with the drop in modulous being dependent on the alloying materials.
The modulus is given as

E =


100 GPa T < 35 K

100 + 35 (T − 35) /65 GPa 35 < T < 100 K

135 GPa T > 100 K

. (3.69)

Poissons ratio was taken to be 0.3, due to the lack of data.
The thermal expansion properties for Nb3Sn are given by [88] as

∆L/L = −0.187 + 5.490× 10−4T + 3.296× 10−7T 2 − 8.261× 10−11T 3 (3.70)

for temperatures from 0 to 1300 K, where ∆L is the change relative to the length at
293 K.

Copper

The mechanical properties for copper comes from [60] and are

σu = 315− 0.5625T + 2.925× 10−4T 2 MPa,
σy = 86.8− 0.154T + 0.805× 10−4T 2 MPa,

E = 137− 1.270× 10−4T 2 + 8.00× 10−8T 3 GPa,
εu = 58.4− 0.0553T − 15 (1000− T ) /1000 + 1.0× 10−5T 2 %.

(3.71)

The thermal expansion properties for copper are given by [88] as

∆L/L = −0.33549 + 0.44671× 10−3T + 2.9777× 10−6T 2

−2.6684× 10−9T 3 + 9.4064× 10−13T 4 (3.72)
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and are valid from 1 K to 1300 K.

Bronze

From reference [88], the differences between the expansion of pure copper and
bronze in the range of 300−775 K are small and the thermal expansion of copper can
be used as a replacement. Due to uncertain Tin compositions within the accelerator
magnets, the material properties for copper are used in place of bronze as well.

0 200 400 600 800 1000
90

100

110

120

130

140

Temperature (K)

E
 (

G
P

a)

 

 

Nb
3
Sn

Cu

Figure 3.5: Young’s Modulus for Nb3Sn and Copper.
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Figure 3.6: Ultimate Stress and Yield Stress for Copper.
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Figure 3.7: Ultimate Tensile Strain for Copper.
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Figure 3.8: Thermal Expansion for Nb3Sn and Copper.
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Chapter 4

Numerical Methods and
Algorithms

In this section, the methods necessary to numerically implement previous govern-
ing equations are discussed with the exception of multiscale modeling, which will be
examined in closer detail in the following chapter.

Due to the complex geometry, loading conditions, and material behavior that
arises within a superconducting accelerator magnet, it would be infeasible to attempt
a closed form solution to the governing equations. Instead, approximate numerical
methods are needed, with the finite element method being implemented in the present
work. A Lagrangian mesh, where nodal points are fixed to material points on the
body, is used for the discretization of bodies. This causes the mass balance equation,
3.18, to be satisfied implicitly.

4.1 Radial Return Mapping Algorithm

To address the plastic material behavior present, a procedure for implementing
the formulation in the previous chapter, called return mapping [70] [71], is employed.
The algorithm, developed by Simo and Taylor, which addresses associative J2 flow
rules with general nonlinear kinematic and isotropic hardening rules is given in the
following list.
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Box 1: Radial return algorithm:
1. Compute trial elastic stress.

en+1 = εn+1 −
1

3
trεn+11

strialn+1 = 2µ (en+1 − epn)

ξtrialn+1 = strialn+1 − β̄n

2. Check yield condition:

f trial
n+1 :=

∥∥ξtrialn+1

∥∥−√
2

3
K (αn)

IF f trial
n+1 ≤ 0 THEN :

SET (·)n+1 = (·)trialn+1 AND EXIT

ENDIF

3. Compute nn+1 and find ∆γ from Box 2. Set:

nn+1 :=
ξtrialn+1∥∥ξtrialn+1

∥∥ ,
αn+1 := αn +

√
2

3
∆γ

4. Update back stress, plastic strain and stress

β̄n+1 = β̄n +

√
2

3
(H (αn+1)−H (αn))nn+1

epn+1 = epn +∆γnn+1]

σn+1 = κtrεn+11+ strialn+1 − 2µ∆γnn+1

5. Compute consistent elastoplastic tangent moduli

Cn+1 = κ1⊗ 1+ 2µθn+1

[
I− 1

3
1⊗ 1

]
− 2µθ̄n+1nn+1

θn+1 := 1− 2µ∆γ∥∥ξtrialn+1

∥∥
θ̄n+1 :=

1

1 +
[K′+H′]n+1

3µ

− (1− θn+1)
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Box 2: Consistency condition:
1. Initialize.

∆γ(0) = 0

α
(0)
n+1 = αn

2. Iterate.
DO UNTIL :

∣∣g (∆γ(k)
)∣∣ < TOL,

k ← k + 1

(a) Compute iterate ∆γ(k+1):

g
(
∆γ(k)

)
:=−

√
2

3
K

(
α
(k)
n+1

)
+
∥∥ξtrialn+1

∥∥−{
2µ∆γ(k) +

√
2

3

[
H

(
α
(k)
n+1

)
−H (αn)

]}

Dg
(
∆γ(k)

)
:=− 2µ

1 +
H ′

[
α
(k)
n+1

]
+K ′

[
α
(k)
n+1

]
3µ


∆γ(k+1) =∆γ(k) −

g
[
∆γ(k)

]
Dg [∆γ(k)]

(b) Update equivalent plastic strain.

α
(k+1)
n+1 = αn +

√
2
3
∆γ(k+1)

4.2 Finite Element Method

In this section we examine the finite element formulation of boundary-value prob-
lems. For a more in depth description, see Hughes [38], Oden [62], and Zienkiewicz
[61]. Consider the infinitessimal elastoplastic boundary-value problem [30] [72] [76],
where a body Ω, shown in figure 4.1, with boundary Γ is subjected to body forces f ,
prescribed boundary displacements qi on Γqi , and prescribed boundary tractions hi

on Γhi
. A formal statement of the strong form of the boundary-value problem is

σij,j + fi = 0 on Ω
ui = qi on Γqi

σijnj = hi on Γhi

(4.1)

where u is the displacement of a material point.
Let Si denote the trial solution space and Vi the variation space. Each member

ui ∈ Si satisfies ui = qi on Γqi , whereas each trial function wi ∈ Vi satisfies wi = 0 on
Γqi . The weak form in three-dimensional space can be written as follows: Given f , q,
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Ω

Γ
q

Γ
h

Figure 4.1: Body Ω.

and h, find u ∈ S such that for all w ∈ V

a (w,u) = (w, f) + (w,h)Γ , (4.2)

where
a (w,u) =

∫
Ω
w(i,j)σijdΩ

(w, f) =
∫
Ω
wifidΩ

(w,h)Γ =
∑3

i=1

(∫
Γhi

wihidΓ
) (4.3)

4.2.1 Galerkin Formulation

We first discretize the body Ω into finite elements, shown in figure 4.2. Let Sh and
Vh be finite-dimensional approximations to S and V , respectively. Assume members
w ∈ V result in approximate satisfaction of the boundary condition wi = 0 on Γqi .

Ωe

Γ
q

Γ
h

Γe

Figure 4.2: Body Ω Discretized Into Elements Ωe.

The Galerkin formulation [38] [70] of the elastoplastic problem is as follows: Given
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f , q, and h, find uh ∈ Sh such that for all wh ∈ Vh

a
(
wh,uh

)
=

(
wh, f

)
+
(
wh,h

)
Γ
. (4.4)

Define

f inte

(
σh

)
:=

∫
Ωe

BT
e σ

hdΩ, (4.5)

and

f exte := −
∫
Ωe

BT
e σ̄

hdΩ, (4.6)

where σ̄h are applied stresses and Be for a local node takes the form

Ba =


Na,1 0 0
0 Na,2 0
0 0 Na,3

0 Na,3 Na,2

Na,3 0 Na,1

Na,2 Na,1 0

 . (4.7)

Neglecting body forces and using the divergence thereom, one arrives at the dis-
crete system of nonlinear differential equations:

Fint
(
σh

)
− Fext = 0, (4.8)

where

Fint
(
σh

)
=

nel

A
e=1

f inte

(
σh

)
,

Fext =
nel

A
e=1

f exte ,
(4.9)

where
nel

A
e=1

is the assembly operator and nel is the number of elements.

4.2.2 Incremental Solution Procedure

The associated displacement field at a given load increment is uh
n. Consider an

incrememntal load ∆σ̄n so that

σ̄n+1 = σ̄n +∆σ̄n (4.10)

is the loading at n + 1, which defines the discrete external load vector Fext
n+1. The

problem can be defined as follows:
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Box 3: Incremental solution procedure: Find ∆uh
n ∈ Sh, the updated

nodal displacement field uh
n+1 = uh

n + ∆uh
n+1, the updated internal variables{

εpn+1, αn+1, qn+1

}
, and the stress field σh

n+1 such that

1. Fint
(
σh

)
− Fext = 0 and

2. The discrete constitutive equations in boxes 1 and 2 hold.

1. Let

u
(k)
n+1 := un +∆u

(k)
n+1 (4.11)

be the total nodal displacement at the kth iteration. The strain field is computed
as

εkn+1|Ωe = Beue|(k)n+1. (4.12)

2. Given the strain field, compute the stress σ
(k)
n+1 at each quadrature point using

box 1 and 2.

3. Evaluate internal force fector f inte

(
σh

n+1

)
and assemble as in equation 4.9.

4. Check convergence: if 4.8 is satisfied then exit; otherwise continue.

5. Determine ∆u
(k)
n+1, set k ← k + 1 and go back to the first step.

The determination of ∆u
(k)
n+1 is performed using the following formula, which is

equivalent to the classical Newtonian scheme:

∆u
(k+1)
n+1 = −

[
K

(k)
n+1

]−1 [
Fint

(
σ

(k)
n+1

)
− Fext

n+1

]
, (4.13)

where

K
(k)
n+1 =

nel

A
e=1

ke|(k)n+1, ke|(k)n+1 =
∫
Ωe BT

e

[
∂σ

(k)
n+1

∂ε
(k)
n+1

]
BedΩ. (4.14)

We can then note that
∂σ

(k)
n+1

∂ε
(k)
n+1

= C
(k)
n+1, (4.15)

as given in box 1.

4.2.3 Enforcement of Displacement Boundary Conditions

The displacement boundary conditions are enforced through the use of a penalty
method [90]. Consider the constraint equations

t = Cu− q, (4.16)
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where C is a diagonal matrix containing a value of one at a degree of freedom where
a constraint is imposed and zero elsewhere, and q is a vector containing nodal dis-
placement constraints.

When solving a system of equations

Ku = F, (4.17)

with constraint t = 0, the resulting system is[
K+CTP ∗C

]
u = F+CTP ∗q, (4.18)

where P ∗ is a user defined penalty number that is sufficiently large to enforce the con-
straint, but not large enough to cause an ill-conditioned stiffness matrix. Otherwise,
the diagonal entries are zero.

Using this methodology on the current problem, equation 4.6 is modified to

f exte := −
∫
Ωe

BT
e σ̄

hdΩ+

∫
Γe
q

P ∗NT
e Ne (q− ue) dΓ, (4.19)

where q are element displacement boundary conditions, ue are element nodal dis-
placements, and Ne is a matrix of size 3× 24 whose value for a given node is

Na
e =

Na 0 0
0 Na 0
0 0 Na

 . (4.20)

The local stiffness matrix given in equation 4.14 is modified to

ke|(k)n+1 =

∫
Ωe

BT
e

[
∂σ

(k)
n+1

∂ε
(k)
n+1

]
BedΩ+

∫
Γe
q

NT
e P

∗NedΓ. (4.21)

4.2.4 Elements and Integration

The type of isoparametric element used in the discretization process is an 8-
node bilinear brick element shown in figure 4.3, with nodal locations at (ξ, η, ζ) =
(±1,±1,±1). The shape functions, or interpolation functions, have the form

Na (ξ, η, ζ) =
1

8
(1 + ξaξ) (1 + ηaη) (1 + ζaζ) , (4.22)
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ζ

η
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4
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8

Figure 4.3: Eight Node Brick Element.

where ξa,ηa, and ζa are nodal coordinates in isoparametric space. The value of an
arbitrary variable f̄ within the element is then

f̄ (ξ, η, ζ) =
8∑

a=1

Na (ξ, η, ζ) f̄a, (4.23)

where f̄a are nodal values of f̄ .
To determine the values of the stiffness matrix and load vector, we need to nu-

merically compute integrals of the form∫
Ωe

f (x) dΩ. (4.24)

Evaluating this integral in three-dimensional space over the isoparametric element,
we have∫

Ωe

f (x, y, z) dΩ =

∫ 1

−1

∫ 1

−1

∫ 1

−1

f (x (ξ, η, ζ) , y (ξ, η, ζ) , z (ξ, η, ζ)) j (ξ, η, ζ) dξdηdζ,

(4.25)
where

j = det (∂x/∂ξ) (4.26)

is the Jacobian determinant.
Gaussian quadrature is used to numerically evaluate integrals, which takes the
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following form in three-dimensional space:∫ 1

−1

∫ 1

−1

∫ 1

−1

g (ξ, η, ζ) ≈
nint∑
l=1

g
(
ξ̃l, η̃l, ζ̃l

)
Wl, (4.27)

where nint is the number of integration points, ξ̃l, η̃l and ζ̃l are the location of inte-
gration points, and Wl are weights. In the present work, eight integration points are
used in each element.

4.2.5 Periodic Boundary Conditions

It is necessary, for reasons discussed in the following chapter, for the boundary
conditions to be periodic. This means that opposing faces of a body are required to
have identical features and displacements throughout the deformation process. For a
portion of the boundary Γ1 periodic to Γ2, we have

u|Γ1 = u|Γ2 . (4.28)

A body with periodic boundary conditions can be visualized in figure 4.4. During

Figure 4.4: A body with periodic boundary conditions in the deformed and unde-
formed configuration.

the discretization process of a body, enforcement of element and node periodicty is
necessary.

Similarly to before, a penalty method is applied to alter the local stiffness matrix
and load vector as follows:

ke|(k)n+1 =
∫
Ωe BT

e

[
∂σ

(k)
n+1

∂ε
(k)
n+1

]
BedΩ+

∫
Γe
q
NT

e P
∗NedΓ,

f exte := −
∫
Ωe BT

e σ̄
hdΩ+

∫
Γe
q
P ∗NT

e (Neq− (Neue −Nepuep)) dΓ,
(4.29)

where Nep is the shape function matrix for the periodic element and uep is the nodal
displacements of the periodic element. Also, define the contribution to the periodic
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element’s stiffness matrix as

kep|(k)n+1 =

∫
Γe
q

NT
e P

∗NepdΓ. (4.30)

The new global stiffness matrix takes the form

K
(k)
n+1 =

nel

A
e=1

ke|(k)n+1 +
nel

A
e=1

kep|(k)n+1. (4.31)

4.3 Conjugate Gradient

The determination of ∆u
(k+1)
n+1 in equation 4.13 requires the solution to a system

of equations. To do this, a conjugate gradient algorithm is employed as seen in [3]
and [90]. The solution steps for solving a system of the form given in equation 4.17
are:

Box 4: Conjugate Gradient :
1. For i = 1 Select intial guess u1 ⇒ r = F−Ku1 = z1

2. Compute (with z1 = r1)

λ1 =
zT1 r1
zT1 Kz1

3. Compute u2 = u1 + λ1z1

4. For i > 1 compute ri = F−Kui

θi = −
rTi Kzi−1

zTi−1Kzi−1

zi = ri + θizi−1

λi =
zTi ri
zTi Kzi

5. Compute ui+1 = ui + λizi

6. Compute err :=
∥ui+1−ui∥K

∥ui∥K
=

|λi|∥zi∥K
∥ui∥K

If err < tol⇒ Stop
If err ≥ tol⇒ Go to step 4.

where ∥{·}∥ =
√
{·}T K {·}.

4.4 Newton-Raphson Method

In the applications section of this work, it is often necessary to find approximations
of a real valued function

f (x) = 0 (4.32)
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that is dependent on x. The Newton-Raphson method is used for finding successively
better approximations to the roots of the function f (x) and has quadratic convergence
for non-repeated roots. Starting with an initial guess x0, the updated guess is

xn+1 = xn −
[
∂f (x)

∂x

]−1

n

f (xn) (4.33)

and the solution is considered to converge when ∥xn+1 − xn∥ < tol. Further informa-
tion can be found in [40] and [6].
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Chapter 5

Multiscale Modeling

Consider a heterogeneous body with two length scales, shown in 5.1, such that
H >> h. If one were to attempt to perform a direct numerical simulation of a macro-
scopic response while incorporating all of the microscale details, an extremely fine
spatial discretization would be needed. The resulting system of equations would con-
tain a vast number of unknowns and be beyond the capacity of computing machines
for the forseeable future.

Rather than discretizing every detail of the microstructure within the macro prob-
lem, the use of a homegnized material model is employed. For a complete account
of the subject, refer to Zohdi [90], Aboudi [1], Hashin [32], Mura [58], Nemat-Nasser
[59], and Galvanetto [24].

The problem is resolved into two separate scales: the macro-scale and a Rep-
resentative Volume Element (RVE), which characterizes the micro-scale at a single
point. Most practical computational homogenization approaches make an assumption

hH hH

Figure 5.1: Illustration of a heterogeneous body being approximated by a Represen-
tative Volume Element (RVE).

of local periodicity on the RVE instead of global periodicity, which allows the model-
ing of effects of a non-uniform distribution of the microstructure on the macroscopic
response.
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The purpose of this scheme is to use the RVE as a way to obtain the material
tangent at every location in the macrostructure. This tangent is used to solve the
macro problem, obtaining stresses and strains point-wise. The resulting deformation
gradient can then be mapped back onto the RVE in order to obtain a solution at the
micro level. This scheme can be visualized in 5.2. A potential drawback of this model
is that the use of an orthotropic RVE will introduce orthotropic tendencies into the
material response. However, isotropic unit cells such as a three dimensional hexagon
is often cumbersome to implement.

Figure 5.2: Computational homogenization scheme.

5.1 Linear Elasticity

Consider the case of lienar elasticity. For microheterogeneous materials, the me-
chanical properties are characterized by a spatially variable tensor C, referred to as
the elasticity tensor. In order to characterize the homogized effective macroscopic
response, we seek the fourth order tensor C∗, referred to as the effective elasticity
tensor over the RVE, which fulfills the relation

⟨σ⟩Ω = C∗ : ⟨ε⟩Ω , (5.1)
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where : is an inner product operator and

⟨·⟩Ω :=
1

|Ω|

∫
Ω

· dΩ, (5.2)

where Ω represents the domain of the RVE and |Ω| is the volume of the domain. It
should be noted that the effective quantityC∗ is not a material property, but instead a
relation between averages. In the case where heterogeneties are randomly distributed
and randomly oriented, the effective response C∗ is assumed to be isotropic and there
are only two independent constants in C∗, having the following relation:

C∗⟨ε⟩Ω = 3κ∗⟨trε
3
⟩Ω1+ 2µ∗⟨ε′⟩Ω, (5.3)

where the effective bulk and shear moduli are given by 3κ∗ := ⟨ trσ
3
⟩Ω/⟨ trε3 ⟩Ω and

2µ∗ :=
√
⟨σ′⟩Ω : ⟨σ′⟩Ω/⟨ε′⟩Ω : ⟨ε′⟩Ω, where trε = εii and ε′ = ε − 1

3
(trε)1 is the

deviatoric strain and similarly σ′ is the deviatoric stress. The reader is directed to
the additional works of Torquato [77, 78, 79, 80, 81] for additional details on effective
properties.

Classical approaches have sought to bound effective responses. The initial analysis
of the effective mechanical properties of microheterogeneous solds was performed by
Voigt [83], where he assumed that the strain field within a sample of the heterogeneous
material was uniform, leading to ⟨C⟩Ω as the approximate effective property of an
RVE. Reuss [68] later approximated the stress fields within the heterogeneous material
as uniform, leading to ⟨C−1⟩−1

Ω as the approximation of the effective property. A
fundamental result, shown by Hill [35], is⟨

C−1
⟩−1

Ω
≤ C∗ ≤ ⟨C⟩Ω , (5.4)

which means that the Voight and Reuss fields provide two microfield extremes. In
the case of a two-phase microstructure with each phase being isotropic, equation 5.4
reduces to

1
v2
κ2

+ 1−v2
κ1

≤ κ∗ ≤ v2κ2 + (1− v2)κ1, (5.5)

and
1

v2
µ2

+ 1−v2
µ1

≤ µ∗ ≤ v2µ2 + (1− v2)µ1, (5.6)

where κ is the bulk modulus, µ is the shear modulus, v2 is the phase 2 volume fraction.
Hashin and Shtrikman [32] [33] introduced the tighter bounds

κ1 +
v2

1
κ2−κ1

+ 3(1−v2)
3κ1+4µ1

≤ κ∗ ≤ κ2 +
1− v2

1
κ1−κ2

+ 3v2
3κ2+4µ2

, (5.7)
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and

µ1 +
v2

1
µ2−µ1

+ 6(1−v2)(κ1+2µ1)
5µ1(3κ1+4µ1)

≤ µ∗ ≤ µ2 +
1− v2

1
µ1−µ2

+ 6v2(κ2+2µ2)
5µ2(3κ2+4µ2)

, (5.8)

where κ2 ≥ κ1 and µ2 ≥ µ1.

5.1.1 Concetration Tensors

The load carried by each phase in the microstructure can be characterized through
use of concentration tensors, which provide a measure of the deviation away from the
mean fields throughout the material. The averages of an arbitrary quantity can be
decomposed over Ω into averages over each of the phases in the following manner:

⟨·⟩Ω =
1

|Ω|

n∑
i=1

∫
Ωi

·dΩ =
n∑

i=1

vi ⟨·⟩Ωi
(5.9)

where Ωi represents the domain of the i-th phase. For the case with a single particle
phase and a matrix phase, this equation becomes

⟨·⟩Ω = v1 ⟨·⟩Ω1
+ v2 ⟨·⟩Ω2

. (5.10)

Using this this decomposition, the average stress over the entire domain can be
written as

⟨σ⟩Ω = v1⟨σ⟩Ω1 + v2⟨σ⟩Ω2

= v1C1 : ⟨ε⟩Ω1 + v2C2 : ⟨ε⟩Ω2

= C1 : (⟨ε⟩Ω − v2⟨ε⟩Ω2) + v2C2 : ⟨ε⟩Ω2

= (C1 + v2(C2 −C1) : c) : ⟨ε⟩Ω, (5.11)

where the strain concentration tensor c :=
(

1
v2
(C2 −C1)

−1 : (C∗ −C1)
)
, with c :

⟨ε⟩Ω = ⟨ε⟩Ω2 . The strain concentration tensor c relates the average strain over the
particle phase to the average strain over all phases.

Similarly, for the variation in the stress, c : C∗−1 : ⟨σ⟩Ω = C−1
2 : ⟨σ⟩Ω2 , which

reduces to C2 : c : C∗−1 : ⟨σ⟩Ω := c : ⟨σ⟩Ω = ⟨σ⟩Ω2 . c is known as the stress
concentration tensor, and relates the average stress in the particle phase to the average
stress over all phases. In the case of isotropy,

cκ :=
1

v2

κ2

κ∗
κ∗ − κ1

κ2 − κ1

and cµ :=
1

v2

µ2

µ∗
µ∗ − µ1

µ2 − µ1

, (5.12)

where cκ⟨ trσ3 ⟩Ω = ⟨ trσ
3
⟩Ω2 and cµ⟨σ′⟩Ω = ⟨σ′⟩Ω2 . The microstress fields are min-

imally distorted when cκ = cµ = 1 since there are no stress concentrations in a
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homogeneous material. For the matrix,

⟨σ⟩Ω1 =
⟨σ⟩Ω − v2⟨σ⟩Ω2

v1
=
⟨σ⟩Ω − v2c : ⟨σ⟩Ω

v1
=

(1− v2c) : ⟨σ⟩Ω
v1

:= c : ⟨σ⟩Ω.
(5.13)

In the case of isotropy,

cκ :=
1

v1
(1− v2cκ) and cµ :=

1

v1
(1− v2cµ). (5.14)

5.1.2 Direct Evaluation of Effective Properties

As computational ability progresses, the direct determination of the effective prop-
erties becomes more realistic. In order to compute these properties, six different load-
ing conditions can be applied to determine the effective elasticity tensor. The linear
stress-strain elastic relation can be written as

σx

σy

σz

τxy
τyz
τzx

 =


C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66




ϵx
ϵy
ϵz
γxy
γyz
γzx

 (5.15)

where the left column represents the three-dimensional stress state of a material point,
the right column represents the strain state of a material point, and an elasticity
tensor with thirty six constants connects the two. It can be seen that if only one
non-zero value of the strain components is imposed, computation of the stress state
will determine the corresponding column of the elasticity tensor. To extract the
effective properties of the RVE, six different average strain states over the domain are
imposed, and the corresponding average stress states are calculated using the finite
element scheme described in chapter 4 to construct the effective elasticity tensor.
Note that for the linear case the properties of the RVE only need to be determined
once since the material behavior is independent of the stress and strain state.

Once the effective material properties of the RVE are obtained, they can be used
to solve the macro-scale model directly, resulting in a stress-strain distribution at the
macro level. This resulting stress state can then be applied back onto the RVE in
order to obtain the stress and strain distribution present in the micro-scale.

5.2 Infinitessimal Plasticity

When considering nonlinear multi-scale models, the material behavior at a point
is dependent on its corresponding stress and strain (or strain increment) states. In
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order to account for this behavior in the hierarchical model, the effective properties
of the RVE can be determined point-wise at the current stress and strain state.
In the current model, the effective properties are not actually calculated. Instead,
the deforming body is updated according to its elasto-plastic constitutive behavior
described in chapter 4.

When using a finite element model to analyze the macroscale, the effective prop-
erties need to be determined at every integration point. Performing a finite element
analysis at every integration point in the body can be computationally expensive;
therefore, material points with near equal stress states are approximated by a single
RVE. Consider the body in figure 5.3, subdivided into smaller domains. The effective
properties can be calculated once within each subdomain, and determined elsewhere
through interpolation.

h
H

1

2

3

4

1

2

3

4

Figure 5.3: Illustration of a heterogeneous body being subdivided into domains ap-
proximated by their own RVEs.

An additional complication in the nonlinear case is that since the effective prop-
erties are dependent on the stress state of the macro level, effective properties need
to be recomputed for every load increment, whereas they can be reused in when the
behavior is linear and temperature is fixed.

5.3 Morphology of Microstructure

It has been established that the effective properties of a heterogeneous material are
dependent on both the properties of each phase as well as the microstructural layout
[36] [74]. In addition, these effective material properties are dependent on complex
interactions between phases, which is determined by the microstructural information,
as well as the volume fraction of each phase [80] [44].

5.3.1 Non-Periodic Microstructure

Heterogeneous microstructures are typically non-periodic, and therefore the cho-
sen size of the RVE is critical in regards to the accuracy of the RVE’s characterization
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of the microstructure as well as the computation time needed to evaluate the RVE’s
effective properties. For a RVE to be considered a suitable representation of the
microstructure, it must statistically characterize the behavior of the material.

In order to obtain an accurate description of the morphology of a heterogenous
microstructure, n-point probability functions can be employed to determine the mi-
crostructure characterization of an m-phased composite. A detailed description of
n-point probability functions for two-phased spherical composites can be found in
[80]. For these composites, a sample size of roughly 100 particles are needed for an
accurate statisical representation of the microstructure. A lower sample size would
result in inaccurate effective properties, but a much larger sample size would require
many more degrees of freedom during the numerical evaulation of the RVE’s effective
properties.

Figure 5.4: Original material sample of a trimodal particle pack at 40% packing
fraction and reconstructed periodic unit cell.

Collins and Matouš [10] have developed a process to construct optimally sized
RVEs for particulate composites based on using a genetic algorithm to match 1- and
2-point probability functions between the original material sample and the RVE. In
figure 5.4, a trimodal material sample consisting of 50,000 particles at a 40% packing
fraction is considered. It would be computationally infeasible to use the entire sample
as a RVE, but after using the algorithm developed, only 381 particles are necessary
for the sample to be considered statistically representative.

This method of creating periodic unit cells (PUCs) can be applied in a similar
fasion for a variety of heterogeneous microstructures, including non-ellipsoidal phases
and voids.
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5.3.2 Periodic Microstructure

In the case where the heterogeneities within a microstructure are in an array, the
choice of RVE is often obvious and it becomes unnecessary to go through the proceses
described above. For example, consider the fibrous composite in figure 5.5. It is clear
that the proper choice of RVE is a single hexagon, although it is often simpler to
choose a rectangular domain. It should be noted that accuracy within a multiscale
model decreases as the difference in lengthscales between the macro and micro levels
diminishes.

Figure 5.5: A fibrous composite and two simple choices for a RVE.
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Chapter 6

Application in a Magnet

6.1 A Simple RRP Strand

The multiscale method described in the chapter 5 can be applied to a single
strand, as shown in figure 6.1. In this model, the filaments are replaced by a single
homogeneous material, whose roperties will be determined by an RVE composed of
Nb3Sn filaments surrounded by copper with bronze cores. This RVE is taken to be a
3D periodic unit cell (PUC), indicating that the X, Y, and Z boundary faces remain
periodic throughout the deformation process, although it should be noted that this
approximation is not exact.

Cu

Nb
3
Sn

Original Homogenized

Bronze

Figure 6.1: Homogenization of a RRP Strand.

As a simplification, the homogenized strand is treated as axisymmetric. The rea-
soning for this treatment is that if the strand is subjected to a change in temperature
or an axisymmmetric load, the resulting stress inside the homogenized core will be
uniform, requiring only one RVE to compute the effective behavior. In addition, it is
assumed that there is no twist along the axial direction of the strand.
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6.2 Test Case 1: Cooldown from 300 K to 4.2 K

6.2.1 Implementation

The macroscale solution is found by decomposing the outer portions of the strand
into two seperate problems and then enforcing continuity in the displacements. This
process can be visualized in figure 6.2, where p is a radial pressure, σ is the axial
stress, and δ is the displacement.

+ =
p

p
r

outer inner

z

=

Figure 6.2: Decomposition of Strand in Radial and Axial Directions for Macroscale
Solution.

At every loading step, continuity will be enforced by finding the pressures p and
σinner such that the resulting gaps δr and δz approach zero. This is done numerically
using a Newton-Raphson method described in 4.4, and the update is given by{

pn+1

σn+1
inner

}
=

{
pn

σn
inner

}
−

[∂δr
∂p

∂δr
∂σinner

∂δz
∂p

∂δz
∂σinner

]−1

n

{
δr
δz

}
n

(6.1)

The stress tensor in the inner homogenized region of the strand takes the form

σinner =

−p 0 0
0 −p 0
0 0 σinner

 , (6.2)

and by enforcing equilibrium in the axial direction and assuming that the outer copper
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region is thin walled, the corresoponding outer stress tensor is

σinner =

0 0 0

0 pR
t

0
0 0 −Ainner

Aouter
σinner

 , (6.3)

where R is the radius of the strand, t is the thickness of the copper region, and A is
the cross sectional area.

Figure 6.3: A Sample RVE Mesh.

The strain in the inner region of the strand is computed by discretizing the RVE
into finite elements and numerically calculating the average strain using the method-
ology given in previous chapters, whereas the strain in the outer region can be de-
termined directly. A sample RVE mesh can be seen in figure 6.3, where red elements
represent Nb3Sn and blue elements represent copper.

Since the average strain is being computed within the RVE due to an applied
average stress, equilibrium over the RVE is enforced using the following Newton-
Raphson method:

f (ε̄) = 1
V

∫
Ω
σ (ε̄) dΩ− σ̄ = 0,

ε̄n+1 = ε̄n −
[
Df(ε̄)
Dε̄

]−1

n
f (ε̄n) ,

(6.4)
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where σ̄ is the average stress tensor applied over the RVE and ε̄ is the resulting
average strain tensor.

Deformations are taken to be infinitesimal and the initial residual stress at 300 K
will be taken as zero. Ten temperature loading steps are used to bring the strand to
4.2 K. The volume fraction of Nb3Sn in the RVE is 50

6.2.2 Results

The strain and stress in the inner and outer regions of the strand can be seen in
figure 6.4 and 6.5 respectively.
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Figure 6.4: Strain Present in Macro-level of Strand Due to a Cooldown from 300 K
to 4.2 K.

It can be seen that at 4.2 K there is a decrease in length of the strand correspond-
ing to -0.293 % strain. Similarly, there is a decrease in the azimuthal strain, and
therefore radial strain, at 4.2 K corresponding to -0.277 %. These changes in length
are noticeably nonlinear, indicating that there is plastic deformation occuring in the
outer copper sleeve.

The stress in the outer copper region is tensile, whereas the inner homogenized
region experiences an average compressive stress. The average radial and axial stresses
in the homogenized region at 4.2 K are -8.0 MPa and -17.8 MPa, respectively.

Determination of the stress in the Nb3Sn filaments can be accomplished by exam-
ining the FEM solution of the RVE at 4.2 K. This model uses 8,526 degrees of freedom.
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Figure 6.5: Average Stress Present in Inner and Outer Regions of the Strand at the
Macro-level Due to a Cooldown from 300 K to 4.2 K.

The von Mises stress in the RVE is shown on the left in figure 6.6. The magnitude of
the stress in the individual phases is much larger than the average values calculated
at the macro level, with a peak stress of 209 MPa occuring in the Nb3Sn phase. The
elastic strains in the axial direction iside the RVE are shown in the middle of figure
6.6. The copper is in tension, whereas the Nb3Sn experiences an axial compression
of -0.1 %. The plastic strain in the RVE is shown on the right in figure 6.6. Material
flow only occurs in the regions surrounding the filaments. The bronze cores do not
deform plastically, however, since they are being loaded hydrostatically.

6.2.3 Numerical Simulation of Full Strand

In order to guage the validity of the multiscale model, a cooldown is performed
numerically on the fully discretized model of a strand using ANSYS R⃝Mechanical,
Release 14.0. This model contains 173,382 degrees of freedom, approximately 20
times more than used in the multiscale model. Von Mises stress contours of the
strand are shown in figure 6.7.

Although the maximum and minimum values are different than those computed
by the multiscale process, these values are located in the outermost filaments. To
get an accurate comparison, the inner region of the strand is examined. When the
outermost filaments are taken out of consideration, the maximum value of the stress
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Figure 6.6: Von Mises Stress, Axial Elastic Strain, and Plastic Strain in RVE Due to
a Cooldown from 300 K to 4.2 K.

Figure 6.7: Von Mises Stress in Strand Due to a Cooldown from 300 K to 4.2 K.
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in the Nb3Sn phase is 217 MPa, which is similar to the solution found using the
hierarchical model.

6.3 Alternative Model of the Macroscale

Although it is convenient to use a thin-walled pressure vessel like model at the
macroscale, not all strand configurations share this trait. An alternative implemen-
tation is described below.

6.3.1 RVE

The RVE is again modeled as a 3D periodic cell. However, instead of applying an
average stress to the RVE, finding the average strain and iterating using a Newton-
Raphson method, we instead apply the average strain tensor to the RVE. The material
tangent is obtained numerically about the current strain state by performing addi-
tional infinitesimal deformations in each direction and computing the corresponding
change in stress. Solutions within the unit cell are again determined through use of
the finite element procedure discussed in chapter 4.

6.3.2 Macrostructure

Taking into account that future work will incorporate higher hierarchical levels,
the strand level is treated as a periodic unit cell as well. The mesh of a general homog-
enized strand is shown in figure 6.8, where blue is copper, salmon is the homogenized
material, and red is a soft, fictitious material.

In order to create a periodic structure at the mesh level, a soft material is added
to the exterior of the strand body. In the current work this material is soft enough to
provide neglible effects on the strand, but in the future the properties can be altered
to represent the epoxy present within impregnated Rutherford cables.

Since periodic boundary conditions are used on the macrostructure as well as the
microstructure, equilibrium must be enforced over the macro domain using equation
6.4.

6.4 Test Case 2: Cooldown from 480 K to 4.2 K

During the heat treatment process of Nb3Sn based strands, the temperature is
gradually reduced from reaction temperature at 920 K to room temperature. Since
annealing occures at approximately 480 K, the individual RRP strand is assumed to
be in a stress free configuration at this temperature. The same geometry from the
previous example is used.



6.4. TEST CASE 2: COOLDOWN FROM 480 K TO 4.2 K 61

Figure 6.8: Mesh of a Homogenized Strand.
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6.4.1 Results

Plots of the axial strain and stress of the homogenized strand at 4.2 K can be seen
in figure 6.9. When compared to the previous case, it can be seen that the strand

Figure 6.9: Axial Strain and Stress of a Homogenized Strand at 4.2 K.

shortened by an additional -.23 %. Similarly, the axial stress in the homogenized
region approximately doubled. It can be noted, that although axisymmetric, use of
periodic boundary conditions has introduced orthotropy into the system.

The von Mises stress, the Axial Elastic strain, and the Plastic strain in the RVE
is shown in figure 6.10. Compared to the previous case, it can be seen that the
magnitude of all values have increased drastically, indicating that the temperature in
which the strand has a stress free configuration is critical.

6.5 A More Complicated RRP Strand

In this section, a strand containing a copper core is considered, as shown in figure
6.11. This geometry, although more complicated, is more representative of a strand
used within an accelerator magnet.

6.5.1 Strand Geometry

The strand used in the simulation is a 0.9 mm diameter 45 % Cu 108/127 RRP
strand shown in figure 6.12. The corresponding macroscale and RVE are shown in
figure 6.13. The axisymmetric geometry in the macroscale model is produced by
enforcing that the cross sectional area of the subelements is equal to the coaxial
hoogenized region.
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Figure 6.10: Von Mises Stress, Axial Elastic Strain, and Plastic Strain in RVE Due
to a Cooldown from 300 K to 4.2 K.
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Figure 6.11: Homogenization of a RRP Strand with a Copper Core.
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Figure 6.12: Cross Section of a 108/127 RRP Strand.

Figure 6.13: Mesh of Macroscale and RVE.
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6.6 Test Case 3: Cooldown from 480 K to 4.2 K

This strand differs from the previous example in that it contains a copper core
in the center of the strand, meaning that the stress state will vary throughout the
homogenized region. To determine the material tangent at every integration point in
the macrostructure, a finite element problem must be solved over the RVE at each of
these points. Due to the large computational costs associated with these solutions, the
axisymmetric geometry of the strand is exploited. Instead of solving for the material
tangent at every integration point, the tangent is instead determine at three equally
spaced radial points within the homogenized region, and linear interpolation is used
to find the tangent elsewhere.

6.6.1 Results

Due to the nonlinearity present in the model, loading steps are taken in 10 K
increments in order to aid convergence. The axial strain and axial stress of the
homogenized strand at 4.2 K can be seen in figure 6.14, and the strain in the outer
copper ring as a function of temperature can be seen in figure 6.15.

Figure 6.14: Axial Strain and Stress of a Homogenized Strand at 4.2 K.

Again, it can be seen that even though the geometry is axisymmetric, the use of
a non-isotropic PUC introduces slight orthotropy into the solution. These errors can
be addrssed by either using a higher penalty parameter (at the risk of creating an
ill-conditioned stiffness matrix) when enforcing periodic boundary conditions, or by
imposing the periodic contraints via Langrian methods. Furthermore, it is observed
that the strain in the radial direction is larger than in the axial direction, indicating
that during cooldown, transverse dimension changes in the strand have more impact
than axial changes.
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Figure 6.15: Strain in Outer Copper Ring.

It can be seen that the strand contracts by approximately half a percent simply
by cooling it down to operating temperature. The copepr experiences a maximum
tensile axial stress of 123 MPa, whereas the homogenized material experiences a
maximum compressive stress of 98 MPa. This makes sense because since the strand
is approximately 45 % Cu, the homogenized superconductor experiences less of an
axial load to maintain equilibrium.

Due to the non-uniform deformation of the macrostructure, the solution over the
RVE is dependent on its location within the strand. Therefore, the solution over the
innermost and outermost RVEs within the homogenized region of the strand will be
examined, labeled RVE 1 and RVE 2 respectively.

Figure 6.16 shows the elastic strain at 4.2 K at the RVE level. It can bee seen
that the axial elastic strain in the Nb3Sn is similar in the inner and outer RVEs at
approximately -0.16 %. However, the axial stress in the Nb3Sn differs between the
two RVEs by approximately 34 MPa, as shown in figure 6.17. This behavior can be
seen in thick-walled pressure vessels, where stress decreases in the radial direction.

Plots of the plastic strain in the RVE are shown in figure 6.18. The outer RVE
exhibits higher maximum plastic strains than the inner RVE, at approximately 0.13
%, but since the volume over which plasticity occurs is small, the effects of plasticity
between the subelements are small.



6.6. TEST CASE 3: COOLDOWN FROM 480 K TO 4.2 K 67

Figure 6.16: Axial Elastic Strain in RVE1 and RVE2 at 4.2 K, Respectively.

Figure 6.17: Axial Stress in RVE1 and RVE2 at 4.2 K, Respectively.
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Figure 6.18: Axial Plastic Strain in RVE1 and RVE2 at 4.2 K, Respectively.
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Chapter 7

Concluding Remarks

In this work, a multiscale model for superconducting accelerator magnets was
developed. The model accounts for nonlinear effects, such as plasticity, as well as
temperature dependence. The link between various lengthscales present within an
accelerator magnet was established through homogenization techniques, and the de-
termination of the effective properties of an RVE was performed by developing a
nonlinear finite element code. Two treatments of the macroscale were implemented;
the first being an approximation of the strand to a thin walled pressure vessel and the
second being a finite element discritization. Simulations were performed on a strand
in order to study the strain effects of cooling a magnet to an operation temperature
of 4.2 K.

It was observed that the location to start the simulation is critical, as assuming
a stress free configuration at 300 K versus 480 K gave a large discrepency between
the strain states within the Nb3Sn phase. Additionaly, it may be possible that after
the reaction of wires and cables, there is no stress free configuration, in which case a
model of the reaction is required.

To address the introduction of orthotropy into the system through use of periodic
boundary conditions, one can implement a hexogonal structure to the RVE, which
behaves isotropically. Another possibility is to use other means of imposing the
periodic constraints instead of penalty methods.

The inclusion of a copper core to the strand model increases the complexity of the
model, requiring the effective properties of multiple filament RVEs to be computed
every load step. Examination of the RVE behavior at the inner and outer portions of
the homogenized region reveals that although the axial elastic strain is similar, other
quantities such as axial stress don’t match.

The addition of the cable scale into the multiscale model requires the strand to be
treated as an RVE. However, if the RVE of the filament level behaves approximately
linear, then it is possible to skip the strand scale and use the filament scale as an
RVE to the cable.

Other considerations for future work include the necessity of a finitely deformed
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Rutherford cable geometry, inclusion of voids and defects in the model, and a Sn
distribution within the Nb3Sn phase.
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