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Abstract

Regularization Methods for Canonical Correlation Analysis, Rank Correlation Matrices
and Renyi Correlation Matrices

by

Ying Xu

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Peter J. Bickel, Chair

In multivariate analysis, canonical correlation analysis is a method that enable us to
gain insight into the relationships between the two sets of variables. It determines linear
combinations of variables of each type with maximal correlation between the two linear
combinations. However, in high dimensional data analysis, insufficient sample size may lead
to computational problems, inconsistent estimates of parameters. In Chapter 1, three new
methods of regularization are presented to improve the traditional CCA estimator in high
dimensional settings. Theoretical results have been derived and the methods are evaluated
using simulated data.

While the linear methods are successful in many circumstances, it certainly has some
limitations, especially in cases where strong nonlinear dependencies exist. In Chapter 2, I
investigate some other measures of dependence, including the rank correlation and its exten-
sions, which can capture some non-linear relationship between variables. Finally the Renyi
correlation is considered in Chapter 3. I also complement my analysis with simulations that
demonstrate the theoretical results.

Key words and phrases. High dimension, canonical correlation analysis, banding, thresh-
olding, tapering, l1 regularized, rank correlation, M-correlation, Renyi correlation, conver-
gence rate.
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Chapter 1

Canonical Correlation Analysis in
High dimension

1.1 Introduction

Canonical correlation analysis (CCA) [18] is a method of correlating linear relationships be-
tween two multidimensional variables. By using this method, we can usually gain insight
into the relationships between the two sets of variables.

The goal of this method is to find basis vectors for two sets of variables such that the
correlations between the projections of the variables onto these basis vectors are mutually
maximized.

Given two zero-mean random variables X ∈ Rp1 and Y ∈ Rp2 , CCA finds pairs of
directions wx and wy that maximize the correlation between the projections u = w′xX and
v = w′yY (in the context of CCA, the projections u and v are also referred to as canonical
variates). More formally, CCA maximizes the function:

ρ =
Cov(u, v)√
V ar(u)V ar(v)

=
E(w′xXY

′wy)√
E(w′xXX

′wx)E(w′yY Y
′wy)

CCA has certain maximal properties that are very similar to the principle component
analysis (PCA), which have been studied intensively. However, the biggest difference be-
tween these two methods lies in that CCA considers the relationship between two sets of
variables, while PCA focuses on the interrelationship within only one set of variables,

CCA can be utilized for many purposes. One of the main applications of CCA is to
integrate multiple data sets that are related to the same subject. For example, in [36], the
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authors utilizes CCA to integrate multiple fMRI data sets in the context of predictive fMRI
data analysis.

Another main application of CCA is to reduce the dimensionality of the data by ex-
tracting a small (compared to the superficial dimensionality of the data) number of linear
features, thus alleviating subsequent computations. Previously, PCA has been extensively
utilized to achieve this. However, one has to bear in mind that the goal of PCA is to mini-
mize the reconstruction error; and in particular, PCA-features might not be well suited for
regression tasks. Consider a mapping φ : X → Y , there is no reason to believe that the
features extracted by PCA on the variable x will reflect the functional relation between x
and y in any way. Even worse, it is possible that information vital to establishing this rela-
tion is discarded when projecting the original data onto the PCA-feature space. CCA, along
with partial least squares (PLS) and multivariate linear regression (MLR) may be better
suited for regression tasks since it considers the relation between explanatory variables and
response variables. CCA, in particular, has some very attractive properties, for example, it
is invariant w.r.t. affine transformations, and thus scaling of the input variables.

CCA can be used for purposes far beyond those listed above. It’s a prominent method
whenever we need to establish a relation between two sets of measurements, such as learning
a semantic representation between web images and their associated text [17], studying on
the association of gene expression with multiple phenotypic or genotypic measures [31], etc.

Standard solutions to CCA

The CCA problem can be formulated as a optimization problem,

maxwx,wy E(w′xXY
′wy) (1.1)

s.t. E(w′xXX
′wx) = E(w′yY Y

′wy) = 1

This optimization problem then can be converted into a standard eigen-problem. We
adapted the results from [17] and [26] (chapter 10 ).

• Corresponding Lagrangian of (1.1) is

L(λ,wx, wy) = w′xΣxywy −
λx
2

(w′xΣxxwx − 1)− λy
2

(w′yΣyywy − 1)

• Taking derivatives in respect to wx and wy, and let them equal 0,

Σxywy − λxΣxxwx = 0 Σyxwx − λyΣyywy = 0

•
⇒ w′xΣxywy − λxw′xΣxxwx = w′yΣyxwx − λyw′yΣyywy = 0

together with constrains,
⇒ λx = λy
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• Assume Σyy is invertible, we have wy = Σ−1yy Σyxwx/λ. Finally, we can see that the
solution of (1.1) is to equivalent to ΣxyΣ

−1
yy Σyxwx = λ2Σxxwx, which is a generalized

eigen-problem.

If Σxx is also invertible, the vectors wx and wy are the eigenvectors corresponding to the
largest eigenvalue of the matrices

Σ−1xxΣxyΣ
−1
yy Σyx, Σ−1yy ΣyxΣ

−1
xxΣxy. (1.2)

Both of the above matrices have the same positive eigenvalues and the largest one equals
the first canonical correlation.

In practice, one typically computes the sample covariance matrix out of the data set
(x1, y1), · · · , (xn, yn) ∈ Rp1 × Rp2 . Computing eigenvectors/values of the empirical counter-
parts of the matrices results then immediately in estimates of the canonical variates and
correlations.

Potential problems in the high-dimensional setting

Nowadays, people face some serious problems when dealing with the high dimensional data
sets using traditional methods. Major advances in network and measurement technologies
allow people to collect, store, analyze, and transport massive amounts of data. Applications
in various domains often lead to very high dimensional data, for example, gene arrays, fMRI,
image processing, various kinds of spectroscopy, climate studies, · · · . In many situations,
the data dimension p is comparable to or even larger than the sample size n.

In the meantime, recent advances in random matrix theory allowed an in-depth theoret-
ical study on the traditional estimator - the sample (empirical) covariance matrix. And it
is shown that without regularization the traditional estimator performs poorly in high di-
mensions. The empirical eigenvectors and eigenvalues are inconsistent in terms of estimating
the corresponding population quantities, if p/n → c, 0 < c ≤ ∞ ( Wigner (1955), Wachter
(1978), Johnstone (2001), Johnstone & Lu (2006), Paul (2005), Bair et al. (2006), Tracy
and Widom (1996) and etc.).

It is generally believed that it is almost impossible to give estimation in the high-
dimensional settings without additional structural constraints. The sparsity assumption
is one of most popular remedies for this situation. The notion of sparsity is often referred to
as that only a few variables have large effects on the quantities that people are interested in,
while most of the others are negligible. This is often a reasonable assumption in many ap-
plications and is now widespread in high-dimensional statistical inference. These structural
constraints not only make estimation feasible, but also may enhance the interpretability of
the estimators.
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Sparse CCA has also been proposed in recent studies. Parkhomenko et al. (2007) [30],
Waaijenborg et al. (2008)[44], Parkhomenko et al. (2009) [31], Le Cao et al. (2008) [23], and
Witten et al. (2009)[45] and many others have proposed methods for penalized CCA and
utilized the methods in various areas. Although their regularization methods and algorithms
may differ from each other, they share one thing in common, which is that they all put the
sparsity assumption on the coefficients of canonical variates, i.e. wx and wy.

This assumption is certainly reasonable in many applications, but one can not tell from
the data itself whether the assumption can be applicable or not. Instead, we propose to add
sparsity assumptions directly onto the covariance matrices and the cross-covariance matrices,
which can be easily checked from the data.

In the following sections, we’ll present three methods of regularization to improve the
traditional CCA estimator in high dimensional settings.

1.2 Problem Set-up

We will assume throughout this paper that we observe X1, · · · , Xn ∈ Rp1 i.i.d. random
variables with mean 0 and covariance matrix Σ11; as well as Y1, · · · , Yn ∈ Rp2 i.i.d. random
variables with mean 0 and covariance matrix Σ22. And we write

Xi = (Xi1, · · · , Xip1)
>, Yi = (Yi1, · · · , Yip2)>.

Furthermore, E(X>i Yi) = Σ12.

It’s well known that the usual MLE of Σ..’s are

Σ̂11 =
1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)>

Σ̂22 =
1

n

n∑
i=1

(Yi − Ȳ )(Yi − Ȳ )>

Σ̂12 =
1

n

n∑
i=1

(Xi − X̄)(Yi − Ȳ )>

Notations:

• Denote Ωi = Σ−1ii , i = 1, 2 to be the true concentration matrix.

• For any matrix M = [mij], write M+ = diag(M) for a diagonal matrix with the same
diagonal as M , and M− = M −M+.



CHAPTER 1. CANONICAL CORRELATION ANALYSIS IN HIGH DIMENSION 5

• | · |1 for the l1 norm of a vector or matrix vectorized

• Define the operator norm of a n× p matrix M as

‖M‖ = sup{‖Mx‖2 : x ∈ Rp, ‖x‖2 = 1},

which for symmetric matrices reduces to ‖M‖ = maxi |λi(M)|.

• Denote p = p1 + p2.

1.3 Banding Method

First, we consider the situations where there exits a natural metric on the index set. For
instance, we can expect that large |i − j| implies near independence or conditional (given
the intervening indexes) independence of X·i and X·j. This is a reasonable assumption in
many applications, such as climatology and spectroscopy, and it will be especially plausible
for the studies involving the time series.

Banding the empirical covariance matrices of high-dimension has been well studied. In
this section, we will adapt the results of Bickel and Levina [4] and extend it to the CCA
problem.

Preliminary

Let’s restate the banding operator in [4] first. For any matrix M = [mij]p×p, and any
0 ≤ k < p, define,

Bk(M) = [mij1(|i− j| ≤ k)].

As shown in [4], we’ll also define a banded-approximatable matrices class. Since the
CCA problem involves the cross-covariance matrices, which in general are not symmetric
any more, we need to modify the original definition in [4] slightly:

U(ε0, α, c) = { Σ : max
j

∑
i

{|σij| : |i− j| > k} ≤ ck−α for all k > 0;

and 0 < ε0 ≤ λ
1/2
min(Σ>Σ) ≤ λ1/2max(Σ

>Σ) ≤ 1/ε0}.

According to [4], by either banding the sample covariance matrix or estimating a banded
version of the inverse population covariance matrix, we can obtain estimates which are
consistent at various rates in the operator norm as long as log p/n→ 0.
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Main results

This regularization method contains two steps:

• Banding the sample covariance matrices and cross-covariance matrices;

• Plug-in the banded sample covariance matrices and cross-covariance matrices into (1.2)
and solve for the eigenvectors and eigenvalues.

In the following, we’ll show that the regularized estimator of (1.2) is consistent under the
operator norm, under the suitable assumptions.

Theorem 1.3.1. Suppose that X and Y are Gaussian distributed; U(ε0, α, c) is defined above.
Then, if ki � (n−1 log pi)

−1/(2(αi+1)) (i = 1, 2, 3), where p3 := min(p1, p2),

‖Bk1(Σ̂11)
−1Bk3(Σ̂12)Bk2(Σ̂22)

−1Bk3(Σ̂21)− Ω1Σ12Ω2Σ21‖

=OP

(( log pm
n

)α/(2(α+1))
)

uniformly on Σ11 ∈ U(ε1, α1, c1), Σ12 ∈ U(ε3, α3, c3), Σ22 ∈ U(ε2, α2, c2). Here, α :=
maxi αi, pm := maxi pi.

Proof. :
According to [4] Theorem 1, under the assumptions given, we have

‖Bk1(Σ̂11)
−1 − Ω1‖ = OP

(( log p1
n

)α1/(2(α1+1))
)

;

‖Bk2(Σ̂22)
−1 − Ω2‖ = OP

(( log p2
n

)α2/(2(α2+1))
)
.

For Σ12, one can not apply their results directly, but from the proof of their theorem, one
can easily go through each step for the cross-covariance matrices. Therefore,

‖Bk3(Σ̂12)− Σ12‖ = OP

(( log p3
n

)α3/(2(α3+1))
)
.
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Thus, we have

‖Bk1(Σ̂11)
−1Bk3(Σ̂12)Bk2(Σ̂22)

−1Bk3(Σ̂21)− Ω1Σ12Ω2Σ21‖

≤‖Bk1(Σ̂11)
−1Bk3(Σ̂12)Bk2(Σ̂22)

−1Bk3(Σ̂21)−Bk1(Σ̂11)
−1Bk3(Σ̂12)Ω2Σ21‖

+ ‖Bk1(Σ̂11)
−1Bk3(Σ̂12)Ω2Σ21 − Ω1Σ12Ω2Σ21‖

≤‖Bk1(Σ̂11)
−1Bk3(Σ̂12)‖

(
‖Bk2(Σ̂22)

−1 − Ω2‖‖Bk3(Σ̂12)
>‖+ ‖Ω2‖‖Bk3(Σ̂12)

> − Σ>12‖
)

+ ‖Ω2Σ
>
12‖
(
‖Bk1(Σ̂11)

−1 − Ω1‖‖Bk3(Σ̂12)‖+ ‖Ω1‖‖Bk3(Σ̂12)− Σ12‖
)

=‖Bk1(Σ̂11)
−1‖‖Bk3(Σ̂12)‖2‖Bk2(Σ̂22)

−1 − Ω2‖

+
(
‖Bk1(Σ̂11)

−1‖‖Bk3(Σ̂12)‖+ ‖Ω1‖‖Σ12‖
)
‖Ω2‖‖Bk3(Σ̂12)− Σ12‖

+ ‖Bk3(Σ̂12)‖‖Σ12‖‖Ω2‖‖Bk1(Σ̂11)
−1 − Ω1‖

=OP (ε−11 ε−23 )OP

(( log p2
n

)α2/(2(α2+1))
)

+OP (ε−11 ε−12 ε−13 )OP

(( log p3
n

)α3/(2(α3+1))
)

+OP (ε−12 ε−23 )OP

(( log p1
n

)α1/(2(α1+1))
)

Remarks:

1. The Gaussian assumption may be weakened, which has been pointed out in [4]. It can
be replaced by the following. Suppose Zi :=

(
Xi
Yi

)
∈ Rp1+p2 are i.i.d., Z1j ∼ Fj, where

Fj is the c.d.f. of Z1j, and Gj(t) = Fj(
√
t)−Fj(−

√
t); Then for Theorem 1.3.1 to hold

it suffices to assume that

max
1≤j≤p1

∫ ∞
0

exp(λt)dGj(t) <∞, for 0 < |λ| < λ0.

for some λ0.

2. Cai et.al. [7] points out that the convergence rate obtained by the banding method can
be improved by a very similar regularized estimator , called the tapering estimator. If
we use the tapering estimator for ˆSigmaij, then under the same assumption of Theorem
1.3.1, it can obtain the rate of

OP (max{n−
α

2α+1 +

√
log pm
n

,

√
pm
n
}).
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1.4 Thresholding Method

Although the banding method can be applied in many situations, it will not be applicable
if the labels are meaningless as in microarrays genomics, where the coordinates simply label
genes. To deal with this, here we propose using the second method, of Bickel-Levina [3]
and El Karoui [12], the thresholding method, which can solve such difficulties in certain
conditions.

We’ll use direct thresholding method for Σ̂12 as in [3] and the SPICE method as in [35]

for Σ̂11
−1

and Σ̂22
−1

.

Σ̂12

According to Bickel and Levina (2008) [3], We define the thresholding operator by

Ts(M) = [mij1(|mij| ≥ s)]

which we refer to as M thresholded at s.
Next, we define a uniformity class of covariance matrices

Uτ (q, c0(p),M) =
{

Σ : σii ≤M,

p∑
j=1

|σij|q ≤ co(p) for all i
}
,

for 0 ≤ q < 1. And, if q = 0,

Uτ (0, c0(p),M) =
{

Σ : σii ≤M,

p∑
j=1

1(σij 6= 0) ≤ co(p) for all i
}

defines a class of sparse matrices.

Then, uniformly on Uτ (q, c0(p),M), for sufficiently large M ′, if tn = M ′
√

log p
n

, and log p
n

=

o(1), then

‖Ttn(Σ̂)− Σ‖ = OP

(
c0(p)(

log p

n
)
1−q
2

)
=⇒

‖Ttn(Σ̂12)− Σ12‖ ≤ ‖Ttn(Σ̂)− Σ‖ = OP

(
c0(p)(

log p

n
)
1−q
2

)
(1.3)

Further more, we know from their results that ‖Σ12‖ and ‖Ttn(Σ̂12)‖ are bounded,
OP (co(p)).
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Σ̂11
−1

and Σ̂22
−1

Based on SPICE method by A.J. Rothman et al. (2008)[35], we make additional assumptions
on Ω1 and Ω2.

A1: Let the set Sk = {(i, j) : Ωkij 6= 0, i 6= j}, k = 1, 2. Then card(Sk) ≤ sk.

A2: φmin(Σii) ≥ k > 0, i = 1, 2.

Since we already assume that Σ ∈ Uτ (q, c0(p),M), φmax(Σii) (i = 1, 2) are bounded with-
out additional assumptions.

And we use the correlation matrix rather than the covariance matrix. Let Wi be the
diagonal matrix of true standard deviations; Γi = W−1

i ΣiiW
−1
i , i = 1, 2.

Let Ki = Γ−1i . Define a SPICE estimate of Ki by

K̂λi = argmimK�0{tr(KΓ̂i)− log |K|+ λi|K−|1}

Then we can define a modified correlation-based estimator of the concentration matrix by

Ω̃λi = Ŵi

−1
K̂λiŴi

−1
, i = 1, 2

Under A1, A2, uniformly on Uτ (q, c0(p),M), if λi �
√

log pi
n

, then

‖Ω̃λi − Ωi‖ = OP

(√
(si + 1) log pi

n

)
, i = 1, 2 (1.4)

Main Results

Theorem 1.4.1. Suppose X and Y follow Gaussian distributions. Under A1, A2, uniformly

on Σ ∈ Uτ (q, c0(p),M), for sufficiently large M ′, if tn = M ′
√

log p
n

, λi �
√

log pi
n

, and log p
n

=

o(1) , then

‖Ω̃λ1Ttn(Σ̂12)Ω̃λ2Ttn(Σ̂21)− Ω1Σ12Ω2Σ21‖

=OP (c0(p)
2)OP

(√
(sm + 1) log pm

n

)
,

where sm = max{s1, s2}, pm = max{p1, p2}.
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Proof. :

‖Ω̃λ1Ttn(Σ̂12)Ω̃λ2Ttn(Σ̂21)− Ω1Σ12Ω2Σ21‖

≤‖Ω̃λ1Ttn(Σ̂12)Ω̃λ2Ttn( ˆΣ21)− Ω̃λ1Ttn(Σ̂12)Ω2Σ21‖

+ ‖Ω̃λ1Ttn(Σ̂12)Ω̃λ2Ttn( ˆΣ21)− Ω1Σ12Ω2Σ21‖

≤‖Ω̃λ1Ttn(Σ̂12)‖
(
‖Ω̃λ2 − Ω2‖‖Ttn(Σ̂12)

>‖+ ‖Ω2‖‖Ttn(Σ̂12)
> − Σ>12‖

)
+ ‖Ω2Σ

>
12‖
(
‖Ω̃λ1 − Ω1‖‖Ttn(Σ̂12)‖+ ‖Ω1‖‖Ttn(Σ̂12)− Σ12‖

)
=‖Ω̃λ1‖‖Ttn(Σ̂12)‖2‖Ω̃λ2 − Ω2‖

+
(
‖Ω̃λ1‖‖Ttn(Σ̂12)‖+ ‖Ω1‖‖Σ12‖

)
‖Ω2‖‖Ttn(Σ̂12)− Σ12‖

+ ‖Ttn(Σ̂12)‖‖Σ12‖‖Ω2‖‖Ω̃λ1 − Ω1‖

=OP (c0(p)
2)OP

(√
(s1 + 1) log p1

n

)
+OP (c0(p))OP

(
c0(p)(

log p

n
)
1−q
2

)

+OP (c0(p)
2)OP

(√
(s2 + 1) log p2

n

)

1.5 l1 Regularized CCA

In the first two approaches, the matrices are considered separately. Thus, the sparsity as-
sumptions are required for each matrix. In this section, we’ll consider a different approach
to the CCA problem.

Notice that the products Σ−111 Σ12 and Σ−122 Σ21 are related to the linear regression problem
Y on X and X on Y respectively. So it is natural to ask: can we use the regularization
methods of the linear regression to regularize the products of the matrices directly?
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More precisely, let’s consider the following problems. Denote A∗ = Σ−111 Σ12 and B∗ =
Σ−122 Σ21. Consider two multiple responses linear models:

Y = XA+ ε

and
X = Y B + η,

where X ∈ Rp1 and Y ∈ Rp2 are random variables we considered in the original CCA prob-
lem. Then, theoretically, A∗ = argminAE‖Y −XA‖2 and B∗ = argminAE‖X − Y B‖2 .

Therefore, the CCA problem can be solved in two steps:

• solve the optimization problems for the linear models;

• solve the eigenvalue problem for the matrix Â∗B̂∗.

Previous work

For low dimensional cases, the ordinary least square (OLS) estimator Âols = Σ̂−111 Σ̂12 would
be a good estimator of A∗. However, as pointed out earlier, this wouldn’t be the case in high
dimensional settings. Recently, quite a lot of attentions has been given to regularization
methods in high dimensional linear regression. Among the popular regularization methods,
a great amount of work has focused on the behavior of l1-based relaxations. And most of
the work focus on the single response linear regression model. A variety of practical algo-
rithms have been proposed and studied, including basis pursuit[10], the Lasso [40], and the
Dantzig selector [8]. Various authors have obtained convergence rates for different error met-
rics, including l2-error [27], prediction loss [21] [43], as well as model selection consistency
[28] . In addition, a range of sparsity assumptions have been analyzed, including the case
of hard sparsity or soft sparsity assumptions, based on imposing a certain decay rate on the
ordered entries of coefficients.In the following, we’ll apply the related results from the linear
regression to our CCA problem.

Existing works on l1 penalized CCA include the double barrelled lasso which is based
on a convex least squares approach [16], and CCA as a sparse solution to the generalized
eigenvalue problem [37] which is based on constraining the cardinality of the solution to
the generalized eigenvalue problem to obtain a sparse solution. Another recent solution is
by Witten et al. (2009)[45], which uses a penalized matrix decomposition framework to
compute a sparse solution of CCA. However, all the above methods are imposing the sparse
condition on the coefficients of canonical variates, which are different from ours assumptions.

In the CCA problem, what we’re interested most is the l2 loss of the estimator of the
coefficients. The restricted eigenvalue (RE) conditions introduced by Bickel et al. (2009) [5]
are among the weakest and hence the most general conditions in literature imposed on the
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Gram matrix in order to guarantee nice statistical properties for the Lasso and the Dantzig
selector. Moreover, under this condition, they derived bounds on l2 and lr prediction loss,
where 1 ≤ r ≤ 2, for estimating the parameters of both the Lasso and the Dantzig selector
in both linear regression and nonparametric regression models.

We’ll consider the following linear model in this subsection,

y = Xβ∗ + w (1.5)

where X is an n× p matrix and each row follows i.i.d. N(0,Σ) and w is independent of X,
∼ N(0, σ2In). Then the lasso estimator of β∗ is defined by

β̂ = argminβ∈Rp{
1

n
|y −Xβ|22 + 2λ|β|1}.

We adapt the notation vJ0 to always represent the subvector of v ∈ Rp confined to J0,
which corresponds to the locations of the s largest coefficients of v in absolute value.

Now, we are ready to introduce the Restricted Eigenvalue assumption that is formalized
in Bickel et al. (2009) .

Assumption 5.1. (Restricted Eigenvalue assumption RE(s, k0, X) (Bickel et al., 2009))
For some integer 1 ≤ s ≤ p and a positive number k0, the following holds:

1

K(s, k0, X)
:= min

J0⊆{1,··· ,p},|J0|≤s
min

v 6=0,‖vJc0‖1≤k0‖vJ0‖1

‖Xv‖2√
n‖vJ0‖2

> 0. (1.6)

However, the above RE condition cannot apply to our problem directly, since what we
have is a random design matrix X, not fixed. In the paper of Zhou (2009) [47], a detailed
discussion of RE conditions on random design matrices had been given, which we’re going
to apply to the CCA problem.

Assumption 5.2.(Restricted eigenvalue assumption RE(s, k0,Σ)) Suppose Σjj = 1, j =
1, · · · , p, and for some integer 1 ≤ s ≤ p, and a positive number k0, the following condition
holds:

1

K(s, k0,Σ)
:= min

J0⊆{1,··· ,p},|J0|≤s
min

v 6=0,‖vJc0‖1≤k0‖vJ0‖1

‖Σ1/2v‖2
‖vJ0‖2

> 0. (1.7)

Zhou shows that if Σ satisfies the RE condition, X will satisfy the RE condition with
overwhelming probability, given n that is sufficiently large.
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Define √
ρmin(m) := min

‖t‖2=1,|supp(t)|≤m
‖Σ1/2t‖2,√

ρmax(m) := max
‖t‖2=1,|supp(t)|≤m

‖Σ1/2t‖2.

Summarizing the results in the paper [47], we have that

Theorem 1.5.1. Set 1 ≤ n ≤ p . Let s < p/2. Consider the linear model (1.5) with
random design X , and Σ satisfies (1.7). Assume ρmin(2s) > 0. Let β̂ be an optimal
solution to the Lasso with λn = Op(

√
log p/n) = 0(1). Suppose that n satisfies for C =

3(2 + k0)K(s, k0,Σ)
√
ρmax(s) ,

n > c′max(C2s log(5ep/s), 9 log p).

Then with probability at least 1− 2 exp(−cθ2n), we have

‖β̂ − β‖2 ≤ 8cK2(s, 3,Σ)λn
√
s (1.8)

CCA

We return to the CCA problem. We propose the following procedure,

• Let Y(i) denote the ith column of Y , i = 1, · · · , p2; and A∗(i) be the ith column vector
of A∗.

– Decompose the multiple response linear model into p2 individual single linear
models. Consider

Y(i) = XA∗(i) + ε(i), i = 1, · · · , p2.

– Find the lasso estimator of A∗(i), denoting it as Â∗(i).

• Let X(i) denote the ith column of X, i = 1, · · · , p1; and B∗(i) be the ith column vector
of B∗.

– Decompose the multiple response linear model into p1 individual single linear
models. Consider

X(i) = Y B∗(i) + η(i), i = 1, · · · , p1.

– Find the lasso estimator of B∗(i), denoting it as B̂∗(i).

• Solve the eigen-problem for Â∗B̂∗.
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Then if Σ11, Σ22 satisfies the RE conditions in theorem 5.1. , we have that

‖Â∗ − A∗‖2F = Op

(
log p1
n

(

p2∑
i=1

siK
4(si, 3,Σ11))

)
and

‖B̂∗ −B∗‖2F = Op

(
log p2
n

(

p1∑
i=1

tiK
4(ti, 3,Σ22))

)

Let s := maxi si and t := maxi ti. Then,

p2∑
i=1

siK
4(si, 3,Σ11) ≤ sp2K

4(s, 3,Σ11),

p1∑
i=1

tiK
4(ti, 3,Σ22) ≤ tp1K

4(t, 3,Σ22),

Therefore,

‖Â∗B̂∗ − A∗B∗‖2F = Op

(
sp2 log p1

n
K4(s, 3,Σ11) +

tp1 log p2
n

K4(t, 3,Σ22)

)

If in fact some of the si’s and ti’s are just 0, then we may have that
∑p2

i=1 si << p2 and∑p1
i=1 ti << p1, which will give a better rate.

1.6 Simulation

The dependency between two sets of variables can be modeled using latent variables. Using
this idea for simulation of CCA model can be found in [31]. Suppose there exist latent
variables U that affect both a subset of observed variables in X and a subset of observed
variables in Y . Formally, we have that, for X, ε ∈ Rp1 , Y, η ∈ Rp2 , U ∈ Rw, A ∈ Rp1 × Rw

and B ∈ Rp2 × Rw,
X = AU + ε,

Y = BU + η.

where U , ε and η are mutually independent.

Let U ∼ N(o,Σ), ε ∼ N(0, σ2
1I) and η ∼ N(0, σ2

2I). Then we have that,

Σ11 = AΣA> + σ2
1I

Σ22 = BΣB> + σ2
2I

Σ12 = AΣB>
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For simplicity, we’ll set Σ = I in the following simulations. By imposing different struc-
tures to A and B, and setting different values to σ2

1 and σ2
2, the model covers a lot of

situations.

Example 1

Let A, B be banded matrices with bandwidths k1 and k2 respectively. Then Σ11, Σ22 and
Σ12 as defined above are all banded matrices with bandwidths 2k1, 2k2, and k1 + k2. The
Figure 1.1 illustrates this setting . To be specific, we set A and B be

aij = ρ
|i−j|
1 I{|i−j|≤k1}, i = 1, · · · , p1; j = 1, · · · , w.

bij = ρ
|i−j|
2 I{|i−j|≤k2}, i = 1, · · · , p2; j = 1, · · · , w.

X correlation Y correlation

Cross−correlation

−1.0 −0.5 0.0 0.5 1.0

Figure 1.1: Correlation matrices and cross-correlation matrix structure of Example 1

The results provided are under the settings of p1 = 50, p2 = 100, n = 100, k1 = 3, k2 =
2, ρ1 = 0.7, ρ2 = 0.6, σ1 = σ2 = 2. The true canonical correlation is 0.84. With 100 replica-
tions, we have the following results,
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Mehtod Estimated canonical correlation Frobenius norm |λ̂max − λmax|

Sample 1.00( 0.00) 6.15(0.00) 0.16(0.00)

Banding 0.79( 0.15) 2.88(0.12) 0.08(0.13)

Lasso 0.73(0.14) 2.96(0.16) 0.13(0.12)

Table 1.1: Results for CCA example 1

We can see that without regularization, the empirical estimator performs very badly un-
der this setting. And since the underlying structure of covariance matrices of example 1 are
banded, the banding method gets the best performance.

Example 2

In this example, we adopt the simplest case under this model scheme, which is that there
is only one latent variable. Then A and B become vectors. And assume that U ∼ N(0, 1),
ε ∼ N(0, I), η ∼ N(0, I). In this case, we have

Σ11 = AA> + I Σ22 = BB> + I Σ12 = AB>

Then CCA has a simple solution,

wx = λmax(AA
>)

wy = λmax(BB
>)

cor(w>xX,w
>
y Y ) =

A>AB>B

(1 + A>A)(1 +B>B)

By varying the norm of vector A and B, the canonical correlation can obtain any value
in (0, 1).

To demonstrate our methods, we further set A and B be sparse. Let the first s1 com-
ponents of A be non-zero, and the first s2 components of B be non-zero. Then, Σ11, Σ12

and Σ22 are all banded matrices. Thus the banding and thresholding methods can be applied.
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Also we have that

X =
1

B′B
AB′Y + (ε− 1

B′B
AB′η)

Y =
1

A′A
BA′X + (η − 1

A′A
BA′ε)

where both AB′ and BA′ are sparse matrices. Therefore, the lasso method can also be uti-
lized here.

X correlation Y correlation

Cross−correlation

−1.0 −0.5 0.0 0.5 1.0

Figure 1.2: Correlation matrices and cross-correlation matrix structure of Example 2

The results provided are under the settings of p1 = 80, p2 = 70, n = 100 and s1 = s2 = 20.
The first 20 components of A and B are generated from U(0, 1/3). The true canonical cor-
relation is 0.68 . With 100 replications, the results are shown in Table 1.2.

As expected, without regularization the empirical estimator performs very badly un-
der this setting. The Lasso method performs slightly better in this case, since the model
construction in this example is slightly in favor of Lasso.
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Mehtod Estimated canonical correlation Frobenius norm |λ̂max − λmax|

Sample 1.00( 0.00) 10.20(0.00) 0.32(0.00)

Banding 0.54( 0.16) 0.75(0.19) 0.16(0.08)

Lasso 0.59(0.14) 0.46(0.17) 0.12(0.07)

Table 1.2: Results for CCA example 2
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Chapter 2

Rank Correlation Matrices and
Extensions

2.1 Introduction

In the precious chapter, we focus on the CCA method, which are using the covariance
matrices and cross-covariance matrix to describe the linear relationship between the two sets
of random variables. Despite its successful application in many circumstances, this can be a
modeling limitation, in cases where strong nonlinear dependencies exist. In this chapter, we’ll
study some other measures of dependence, including the rank correlation and its extensions,
which enable us to capture some non-linear relationship between variables.

2.2 Measure of Dependence

The study of dependence plays an important role in statistics. Over the past years, people
have developed sophisticated theories in this field. The theory and history is rich, and easily
forms a separate volume, e.g. Doruet, Mari and Kotz (2001) [11].

The most widely used and understood measure in the study of dependence is the product-
moment correlation coefficient, which was first invented by Francis Galton in 1885, and then
refined into its modern form by Karl Pearson in 1895 [33]. The product-moment correla-
tion is a measure of linear dependence between random variables. It attains the maximum
magnitude of 1 if and only if a liner relationship exits between random variables. Also the
definition of the product-moment correlation implies that it is defined only when the vari-
ances of the random variables are finite. Thus, it is not an appropriate measure for very
heavy-tailed distributions.

In the statistical literature, there are many alternative approaches, for example, Spear-
man’s rank correlation, Kendall’s rank correlation, the distance correlation of Szekely et.al.
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(2007) [39], etc. Here we first focus on Spearman’s rank correlation, which was introduced
by Spearman (1904) and some generalization.

As a different way to describe the dependence of random variables, in its population
version Spearman’s rank correlation is actually nothing but the linear correlation between
the transformed version of the original random variables by their cumulative distribution
functions, which always exist.

Rank correlation is also a robust way to describe the dependence structure among the
variables. Usually, severe outliers can dramatically change the sample covariance estimator,
but the sample rank correlation matrix is much less affected. We also notice that, to estimate
the covariance matrix, one requires the random variable to have at least second moments,
while one does not need any moments if the rank correlation is used.

2.3 Spearman’s Rank Correlation

Given two random variables X and Y , the classic Pearson’s correlation coefficient between
them is defined as ρX,Y = Cov(X,Y )√

Var(X)Var(Y )
; while the Spearman’s rank correlation is defined as

r(X, Y ) = Cov(F (X),G(Y ))√
Var(F (X))Var(G(Y ))

, where F and G are the cumulative distribution functions of

X and Y respectively. It can be seen from the above equations that the population version
of Spearman’s rank correlation is just the classic Pearson’s correlation between F (X) and
G(Y ). In the following, we’ll present some useful facts about the Spearman’s rank correla-
tion, which one can find in detail in the 3rd Chapter of the book Uncertainty analysis with
high dimensional dependence modelling [22].

Proposition. If X is a random variable with a continuous invertible cumulative distri-
bution function F , then F (X) has the uniform distribution on [0, 1], denoted by U [0, 1].

Thus, the rank correlation is independent of marginal distributions in the continuous case
and the formula can be simplified as

r(X, Y ) =
E[F (X)G(Y )]− (1/2)2

(1/12)
= 12E[F (X)G(Y )]− 3 (2.1)

Therefore, Spearman’s correlation coefficient is often described as being “nonparametric”.
For continuous random variables, their exact sampling distribution can be obtained without
requiring knowledge of marginal distributions of the data coordinates..

Further, the rank correlation is invariant under non-linear strictly increasing transforma-
tions.
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Proposition. If H : R→ R is a strictly increasing function, then,

r(X, Y ) = r(H(X), Y ).

A perfect Spearman correlation can be obtained when X and Y are related by any mono-
tonic function. And in contrast, the Pearson correlation only gives a perfect value when X
and Y are related by a linear function.

In the Gaussian case, the Spearman’s rank correlation r is an increasing function of the
ordinary correlation coefficient ρ,

ρ = 2 sin(
π

6
r).

And r = 0⇔ ρ = 0, r = ±1⇔ ρ = ±1.

In practice, given n pairs of i.i.d. samples {xi, yi}, denote R(xi) to be the rank of xi
among n samples, similar for R(yi). Then as illustrated in many textbooks, e.g. [11], the
empirical Spearman’s rank correlation can be computed as following,

r̂ =
n(
∑
R(xi)R(yi))− (

∑
R(xi))(

∑
R(yi))√

n(
∑
R(xi)2)− (

∑
R(xi))2

√
n(
∑
R(yi)2)− (

∑
R(yi))2

.

For the purpose of theory development, we’d like to introduce following notation,

P (f) := Ef(X), Pn(f) :=
1

n

n∑
i=1

f(Xi), ∀f.

Then under the assumptions that X and Y have continuous marginal c.d.f. F and G, we
can rewrite ρ̂ as

ρ̂ =
Pn(F̂ Ĝ)− Pn(F̂ )Pn(Ĝ)√

Pn(F̂ 2)− (Pn(F̂ ))2
√
Pn(Ĝ2)− (Pn(Ĝ))2

=[Pn(F̂ Ĝ)− (
n+ 1

2n
)2]/(

n2 − 1

12n2
)

=
12n2

n2 − 1
Pn(F̂ Ĝ)− 3(n+ 1)

n− 1

where F̂ and Ĝ are empirical c.d.f. ( F̂ (x) = 1
n

∑n
i=1 1[xi,∞)(x) ).

2.4 Extending to Multivariate Cases

Spearman’s rank correlation often appears as the measurement between only two variables.
We’ll first extend the rank correlation idea to multi-variable cases. The correlations between



CHAPTER 2. RANK CORRELATION MATRICES AND EXTENSIONS 22

random vectors X are collectively represented by the correlation matrix. The (i, j)th ele-
ment of the matrix represents the correlation between components Xi and Xj. In parallel,
we define the rank correlation matrix of the random vector X, where the (i, j)th element of
the matrix represents the rank correlation between components Xi and Xj.

In the multi-dimensional settings, we consider a random sample {X1, X2, · · · , Xn} i.i.d.,
Xi = (Xi1, · · · , Xip)

T ∈ Rp, and assume it has continuous marginal cumulative distribution
function (c.d.f.) F1, · · · , Fp.

Using R =
(
rij
)

denote the rank correlation matrix, which is ∈ Rp×p, with

rij = 12P (FiFj)− 3.

Let R̂ =
(
r̂ij
)

denote the empirical rank correlation matrix, ∈ Rp×p, with

r̂ij =
12n2

n2 − 1
Pn(F̂iF̂j)−

3(n+ 1)

n− 1
,

where F̂j(x) = 1
n

∑n
i=1 1[Xij ,∞)(x), which is the empirical c.d.f.’s.

In addition to the above, we’d like to introduce more matrix notations which will appear
in the following subsections :

R0 :=
(
P (FiFj)

)
i,j

,

R̃0 :=
(
Pn(FiFj)

)
i,j

,

R̂0 :=
(
Pn(F̂iF̂j)

)
i,j

.

Simply notice that,

R̂−R = 12(R̂0 −R0)− 6

n− 1
11T +

12

n2 − 1
R̂0, (2.2)

where 1 = (1, · · · , 1)T ∈ Rp.

2.5 Regularization methods in High-dimensional

Cases

In many situations, the data dimension p is comparable to or larger than the sample size n.
Developments in random matrix theory, Jonestone [19], Johnstone & Lu [20] , Paul [32], Bair
et al. (2006), Tracy and Widom [41] etc., have made it clear that the sample (empirical)
covariance matrix may have a very poor performance in high dimension problems. Therefore
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it’s obvious that the M-correlation matrices will have the same difficulty when the dimension
is high.

Many methods of regularization have been proposed for covariance matrices. Ledoit and
Wolf [24], replaced the sample covariance with its linear combination with the identity ma-
trix. Furrer and Bengtsson [15], Bickel and Levina proposed banding [4] and thresholding [3]
methods. Yuan and Lin[46], Banerjee et al. [2] and Friedman et al. [14] developed different
algorithms for estimators based on regularized maximum likelihood using an l1 constraint
on the entries of sample covariance matrices.

In this section we’ll present three regularized version of R̂ when the dimension of p is
large and we will show also that all three versions will give consistent results.

The results of the convergence rate of estimators are under the matrix L2 norm, also
called the operator norm,

‖M‖ := sup{‖Mx‖ : ‖x‖ = 1} =
√
λmax(M>M)

which for symmetric matrices reduces to ‖M‖ = maxi |λi(M)|.

In addition to the operator norm, we also use the matrix infinity norm, defined as

‖M‖∞ := max
i,j
|mij|;

and the matrix (1, 1) norm as

‖M‖(1,1) := max
j

∑
i

|mij|.

Preliminaries

Before introducing our regularized estimators of rank correlation matrices, we’ll give out two
basic, but useful lemmas first.

Lemma 2.5.1. P( |Pn(FiFj)− P (FiFj)| ≥ t) ≤ 2 exp(−nt2

8
)

Proof. Notice that {Fi(Xli)Fj(Xlj)−P (FiFj)}, l = 1, · · · , n are i.i.d. random varibles with
mean 0.

Moreover, |F (Xli)Fj(Xlj)− P (FiFj)| ≤ 2.

So we can use the Hoeffding’s inequality and the desired result follows.
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Lemma 2.5.2.

‖R̃0 −R0‖∞ = OP (

√
log p

n
)

Proof. Using the results in Lemma 2.5.1,

P(‖R̃0 −R0‖∞ ≥ t) = 1− P(max
i,j
|Pn(FiFj)− P (FiFj)| < t)

= 1−
∏
i,j

P(|Pn(FiFj)− P (FiFj)| < t)

≤ 1−
∏
i,j

(1− 2 exp(−nt
2

8
))

≤ 2p2 exp(−nt
2

8
)

Let t = O(
√

log p
n

), we have

‖R̃0 −R0‖∞ = OP (

√
log p

n
) (2.3)

Further, in order to get the consistency results, we also need to know the convergence
rate of the empirical c.d.f.’s. There is a well known inequality in the literature of asymptotic
statistics.

Dvoretzky-Kiefer-Wolfowitz inequality: Given a natural number n, letX1, X2, · · · , Xn

be real-valued, independent and identically-distributed random variables with distribution
function F . Let F̂n denote the associated empirical distribution function defined by F̂n(x) =
1
n

∑n
i=1 1[Xi,∞)(x). Then, ∀ t > 0

P( sup
x∈R
|F̂n(x)− F (x)| ≥ t) ≤ 2 exp(−2nt2)

Hence, the convergence rate of the difference between the empirical distribution function
and the population c.d.f is

‖F̂n − F‖∞ = OP (1/
√
n)

Now, we can use this result to bound the difference between R̂0 and R̃0 and get some
intuitions for the final results.



CHAPTER 2. RANK CORRELATION MATRICES AND EXTENSIONS 25

P(|Pn(F̂iF̂j)− Pn(FiFj)| ≥ t)

=P(
∣∣∣ 1
n

n∑
l=1

F̂i(Xli)F̂j(Xlj)−
1

n

n∑
l=1

Fi(Xli)Fj(Xlj)
∣∣∣ ≥ t)

≤P(
1

n

n∑
l=1

∣∣F̂i(Xli)− Fi(Xli)
∣∣F̂j(Xlj) ≥

t

2
) + P(

1

n

n∑
l=1

∣∣F̂j(Xlj)− Fj(Xlj)
∣∣Fi(Xli) ≥

t

2
)

≤P(‖F̂i − Fi‖∞
1

n

n∑
l=1

F̂j(Xlj) ≥
t

2
) + P(‖F̂j − Fj‖∞

1

n

n∑
l=1

Fi(Xli) ≥
t

2
)

≤P(‖F̂i − Fi‖∞
n(n+ 1)

2n2
≥ t

2
) + P(‖F̂j − Fj‖∞

1

n

n∑
l=1

[
F̂i(Xli) + |F̂i(Xli)− Fi(Xli)|

]
≥ t

2
)

≤2 exp(−2n3t2/(n+ 1)2) + P(‖F̂j − Fj‖∞
n(n+ 1)

2n2
≥ t

2
) + P(‖F̂i − Fi‖∞‖F̂j − Fj‖∞ ≥

t

2
)

≤4 exp(−2n3t2/(n+ 1)2) + (2 exp(−2nt/2))2

Based on this inequality, with arguments similar to those used for (2.3), we have

‖R̂0 − R̃0‖∞ = OP (

√
log p

n
) (2.4)

Combining equations (2.3) and (2.4), desired result follows:

‖R̂0 −R0‖∞ ≤ ‖R̂0 − R̃0‖∞ + ‖R̃0 −R0‖∞ = OP (

√
log p

n
) (2.5)

Banding the rank correlation matrix

As introduced in chapter 1, banding, which is well studied by Bickel and Levina [4], is proved
to be as an effective method of regularization in high dimensional settings. In this subsection,
we’ll apply this method to the rank correlation matrix and derive the consistency results for
it.
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First, we define a similar matrices class as of [4]

U(α, c) = {R : max
j

∑
i

{|rij| : |i− j| > k} ≤ ck−α for all k > 0; |rij| ≤ 1}.

We’ll show that banded sample rank correlation matrices give the consistent estimates
under the operator norm in this class of matrices.

Restate the banding operator in [4] first. For any matrix M = [mij]p×p, and any 0 ≤ k <
p, define,

Bk(M) = [mij1(|i− j| ≤ k)].

Theorem 2.5.1. If k � (n−1 log p)−1/(2(α+1)),

‖Bk(R̂)−R‖ = OP

(( log p

n

)α/(2(α+1))
)

uniformly on R ∈ U(α, c).

Proof. Notice that,

‖Bk(R̂)−R‖ ≤ ‖Bk(R̂)−Bk(R)‖+ ‖Bk(R)−R‖ (2.6)

Thus, we can deal the two parts separately. The second part on the right hand side has
a simple bound:

‖Bk(R)−R‖ ≤ ‖Bk(R)−R‖(1,1) ≤ ck−α (2.7)

While for the first part on the right hand side, we have the following argument.

By the equation (2.2),

‖Bk(R̂)−Bk(R)‖ ≤ 12‖Bk(R̂0)−Bk(R
0)‖+

6

n− 1
‖Bk(11T )‖+

12

n2 − 1
‖Bk(R̂0)‖ (2.8)

The second term on the right hand side is easy to bound:

6

n− 1
‖Bk(11T )‖ =

6

n− 1
(2k + 1) = OP (

k

n
)

To deal with the first two terms, we have to use some some basic facts on norms of
matrices, and the results in the subsection above, equation (2.5), it’s easy to see that,
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‖Bk(R̂0)−Bk(R
0)‖ = OP (k‖Bk(R̂0)−Bk(R

0)‖∞) = OP (k

√
log p

n
).

and
‖Bk(R̂0)‖ = OP (k‖Bk(R̂)‖∞) = OP (k)

Back to the inequality (2.8), we have

‖Bk(R̂)−Bk(R)‖ ≤ 12OP (k

√
log p

n
) +OP (

k

n
) +OP (

k

n2 − 1
)

= OP (k

√
log p

n
)

Finally, combining the results from (2.7), if set k � (n−1 log p)−1/(2(α+1)), the desired
result follows.

Tapering

A recent paper by Cai et.al. [7] proposed another kind of regularized estimator for the class
of banded-approximatable matrices defined in [4] , which they call the tapering estimator
and pointed out that it is the rate optimal over the banded-approximatable matrices. So
in this section, we’ll investigate the tapering estimators for rank correlation matrices, which
will also yield the optimal rate of convergence over matrices class U(α, c) as defined above.

Parallel to what’s defined in [7], for a given integer k ∈ [1, p], the tapering estimator of
sample rank correlation matrix with parameter k is defined as following,

Wk(R̂) :=
(
wij r̂ij

)
p×p

where
wij = k−1{(2k − |i− j|)+ − (k − |i− j|)+}.

We’ll show as in Cai et.al. [7] for sample covariance matrix, a tapering estimator for
sample rank correlation matrix with the optimal choice of k also attains the optimal rate of
convergence under operator norm. Moreover, the optimal rate of convergence for estimating
the rank correlation matrix under the operator norm is the same as for the covariance matrix
estimation, which is showed in the following theorem.
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Theorem 2.5.2. Suppose p ≤ exp(γn) for some constant γ > 0. The minimax risk of
estimating the rank correlation matrix R over the class U(α, c) under the operator norm
satisfies

inf
R̂

sup
U(α,c)

E‖R̂−R‖2 � min

{
n−

2α
2α+1 +

log p

n
,
p

n

}
We’ll derive a minimax upper bound and a lower bound respectively in the following

subsections.

Upper bound

The minimax upper bound is obtained by constructing a special class of tapering estimators.

Notice that R̃0 follows the subgaussian distribution, so the theorem in [7] can be directly
applied. So we only need to deal with the difference between R̃0 and R̂0, which will be
almost the same as in banding section.

Lower bound

We shall show that the following minimax lower bound holds.

Theorem 2.5.3. Under the same assumptions as described in Theorem 2.5.2, the minimax
risk satisfies

inf
R̂

sup
U(α,c)

E‖R̂−R‖2 ≥ c′n−
2α

2α+1 + c′
log p

n
.

The basic strategy underlying the proof is similar as to [7], to carefully construct a finite
collection of multivariate normal distributions and calculate the total variation affinity be-
tween pairs of probability measures in the collection.

First, we’ll show that any correlation matrix can be a rank correlation matrix, which will
enable us to use part of the proof of [7].

As for rank correlation matrices ,they are just all correlation matrices of variables having
U(−0.5, 0.5) marginal (in continuous case), and let M denote the set of all correlation ma-
trices of this type. Since uniform marginal is preserved for aF1 + (1− a)F2, where Fi is the
underlying probability distribution of M1,M2 ∈ M, it follows that aM1 + (1− a)M2 ∈ M,
which means that M is convex.

Now consider matrices of the form [eiej]/12. This is covariance matrix of Ue where
U ∼ U(−0.5, 0.5) and e = (e1, · · · , ep)>. Therefore all covariance matrices of the form∑

(ak[e
k
i e
k
j ]) with

∑
(ak) = 1 are possible. By spectral theorem any covariance matrix can

be written as c times such a matrix for some c. Therefore all correlation matrices are possible.
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Set k = n1/(2α+1) and a = k−(α+1). Define the same matrices classes F11 as in [7],

F11 =
{
R(θ) : Ip + τa

k∑
m=1

θmB(m, k), θ = (θm) ∈ {0, 1}k
}

where 0 < τ < 2−α−1c and p× p matrix B(m, k) = (bij)p×p with,

bij = I{i = m and m+ 1 ≤ j ≤ 2k, or j = m and m+ 1 ≤ i ≤ 2k}.

It’s easy to check that F11 ⊆ U(α, c).

And since any matrix in F11 is a correlation matrix, thus can be a rank correlation matrix.
It immediately follows the proof in F11,

inf
R̂

sup
F11

E‖R̂−R‖2 ≥ c′n−
2α

2α+1 . (2.9)

However, the ways of the construction the second matrix class is quite different. In paper
of Cai et.al., it’s constructed as

{Σm : Σm = I + (

√
τ

n
log p1I{i=j=m})p×p},

which cannot be a correlation matrix. For any correlation matrix, the diagonal entries are
always 1, thus, cannot make any changes. Therefore, a different construction should be used.

In addition to F11, we define

F12 =
{
Rm : Rm = A−B(m), 0 ≤ m ≤ p1,m odd

}
where p1 = min{p, en} and the p× p matrix A = (aij)p×p with,

aii = 1, ai,i+1 = ai+1,i = 0.5 for i is odd;

and define

B(m) =
(√τ

n
log p1I{i = m, j = m+ 1}; I{i = m+ 1, j = m}

)
.

We’ll show that

inf
R̂

sup
F12

E‖R̂−R‖2 ≥ c′
log p

n
(2.10)

for some constant c′. Combining with 2.9, the conclusion of Theorem 2.5.3 follows.

We now apply Le Cam’s method to derive the lower bound (2.10).
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First construct a parameter set. For 1 ≤ m ≤ p1 and m odd, let R(m) be a block-diagonal
matrix of block-size 2 with the (m+ 1)/2th block be[

1 0.5−
√

τ
n

log p1
0.5−

√
τ
n

log p1 1

]

and the rest of the blocks be

[
1 0.5

0.5 1

]
. And let R0 = A as defined above.

Clearly R(m) is positive definite, thus could define a multivariate normal distribution
with R(m) be its correlation matrix.

We restate the Le Cam’s Lemma here to make our proof more complete.

Lemma 2.5.3. Let T be an estimator of θ based on an observation from a distribution in
the collection {Pθ, θ ∈ L = {θ0, · · · , θp1}}, then

supθEL(T, θ) ≥ 1

2
rmin ‖Pθ0 ∧ P̄‖.

First, we need to construct a parameter set. Let X1, · · · , Xn ∼ N(0, R(m)), and denote
the joint density by fm.

Let θm = R(m) and L be the squared operator norm.

r(θ0, θm) := inft[‖t− θ0‖2 + ‖t− θm‖2]

= ‖θ0 + θm
2

− θ0‖2 + ‖θ0 + θm
2

− θm‖2

=
1

2
τ

log p1
n

.

Thus, rmin = infmr(θ0, θm) = 1
2
τ log p1

n
.

To apply the Le Cam’s method, we also need to show that there exists a constant c′ > 0
such that

‖Pθ0 ∧ P̄‖ ≥ c′.

where P̄ = 1
p2

∑p2
l=1 Pθ2l−1

. Here p2 = bp1
2
c.

Shown by [7] , we only need to prove

∫ (
1

p2

p2∑
l=1

fm

)2

/f0dµ→ 1.
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Denote 0.5−
√

τ
n

log p1 by b. Then,∫
f 2
m

f0
dµ =

(
√

2π(1− b2))−2n

(
√

2π(1− 0.52))−n

n∏
i=1

∫
exp

[
−2

2
(xim xim+1)

(
1 b
b 1

)−1(
xim
xim+1

)]
/

exp

[
−1

2
(xim xim+1)

(
1 .5
.5 1

)−1(
xim
xim+1

)]
dximdx

i
m+1

=

(
(1− b2)2

1− 0.52

)−n/2(
(b2 − 2b+ 3/2)2 − (b2 − 5b− 1)2/4

(1− 0.52)2(1− b2)2

)−n/2

= c1[c2(1− τ
log p1
n

) + o(
log p1
n

)]−n/2

Thus, ∫ (
1

p2

p2∑
l=1

fm

)2

/f0dµ− 1

=
1

p22

p2∑
l=1

(∫
f 2
m

f0
dµ− 1

)

≤ exp

[
− log p2 −

n

2
log(1− τ log p1

n
)

]
− 1

p1
→ 0.

Thresholding

Parallel to the method of thresholding for the covariance matrices in the paper of Bickel and
Levina [3], we also consider thresholding the rank correlation matrices.

Similarly, the results are uniform over families of matrices which satisfy a fairly natural
notion of sparsity:

U(q, c(p)) = {R :

p∑
j=1

|rij|q ≤ c(p) for all i; |rij| ≤ 1}.

Theorem 2.5.4. Uniformly on U(q, c(p)), for sufficiently large M ′, if

tn = M ′

√
log p

n
,
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and log p
n

= o(1), then

‖Ttn(R̂)−R‖ = OP

(
c(p)

( log p

n

) 1−q
2

)
.

Proof.
‖R− Tt(R̂)‖ ≤ ‖R− Tt(R)‖+ ‖Tt(R)− Tt(R̂)‖

With this inequality, we can deal the two parts separately. The first part on the right hand
side has a simple bound:

‖R− Tt(R)‖ ≤ max
i

p∑
j=1

|rij|I(|rij |≤t) ≤ t1−qc(p)

Let’s focus on the second part. Notice the following inequality,

‖Tt(R)− Tt(R̂)‖ ≤ ‖Tt(R)− Tt(R̃)‖+ ‖Tt(R̃)− Tt(R̂)‖

Consider ‖Tt(R)− Tt(R̃)‖ first.

‖Tt(R)− Tt(R̃)‖ ≤max
i

p∑
j=1

|r̃ij|

≤max
i

p∑
j=1

|r̃ij|I(|r̃ij |≥t,|rij |<t) . . . (A)

+ max
i

p∑
j=1

|rij|I(|r̃ij |<t,|rij |≥t) . . . (B)

+ max
i

p∑
j=1

|r̃ij − rij|I(|r̃ij |≥t,|rij |≥t) . . . (C)

(A) ≤max
i

p∑
j=1

|r̃ij − rij|I(|r̃ij |≥t,|rij |<t) + max
i

p∑
j=1

|rij|I(|rij |<t)

≤OP

(
c(p)t−q

√
log p

n

)
+ t1−qc(p)

(C) ≤ max
i,j
|r̃ij − rij|max

i

p∑
j=1

|rij|qt−q = Op

(
c(p)t−q

√
log p

n

)
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For (B), we have,

(B) ≤max
i

p∑
j=1

(|r̃ij − rij|+ |r̃ij|)I(|r̃ij |<t,|rij |≥t)

≤max
i,j
|r̃ij − rij|

p∑
j=1

I(|rij |≥t) + tmax
i

p∑
j=1

I(|rij |≥t)

=OP

(
c(p)t−q

√
log p

n
+ t1−qc(p)

)
Now it’s turn to deal with ‖Tt(R̃)− Tt(R̂)‖.

‖Tt(R̃)− Tt(R̂)‖ ≤max
i

p∑
j=1

|r̂ij|I(|r̂ij |≥t,|rij |<t) . . . (D)

+ max
i

p∑
j=1

|r̃ij|I(|r̂ij |<t,|r̃ij |≥t) . . . (E)

+ max
i

p∑
j=1

|r̃ij − r̂ij|I(|r̂ij |≥t,|r̃ij |≥t) . . . (F )

Look at (F) first.

(F ) ≤ c

√
log p

n
max
i

p∑
j=1

I(|r̃ij |≥t,|r̂ij |≥t) ≤ c

√
log p

n
max
i

p∑
j=1

I(|r̃ij |≥t)

Notice that,

I(|r̃ij |≥t) = I(|r̃ij |≥t,|rij−r̃ij |≤ε) + I(|r̃ij |≥t,|rij−r̃ij |>ε)

≤ I(|rij |≥t−ε) + I(|rij−r̃ij |>ε)

Define Ni(ε) :=
∑p

j=1 I(|rij−r̃ij |>ε).

P(max
i
Ni(ε) > 0) = P(max

i,j
|rij − r̃ij| > ε) ≤ 2p2 exp(−nε2/8)

Thus, as long as 2 log p− nε2/8→ −∞,

(F ) ≤c
√

log p

n
max
i
Ni(ε) + c

√
log p

n
c(p)(t− ε)−q

=OP

(
c(p)t−q

√
log p

n

)
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For (D),

(D) ≤max
i

p∑
j=1

(|r̃ij − r̂ij|+ |r̃ij|)I(|r̃ij |<t,|r̂ij |≥t)

≤max
i,j
|r̃ij − rij|

p∑
j=1

I(|r̂ij |≥t) + tmax
i

p∑
j=1

I(|r̂ij |≥t)

I(|r̂ij |≥t) = I(|r̂ij |≥t,|r̂ij−r̃ij |≤ε) + I(|r̂ij |≥t,|r̂ij−r̃ij |>ε)

≤ I(|r̃ij |≥t−ε) + I(|r̂ij−r̃ij |>ε)

Thus, using the results from (F), we have

(D) = OP

(
c(p)t−q

√
log p

n
+ t1−qc(p)

)

2.6 Extension of Rank Correlation

Normal score transform

Some interpolation and simulation methods assume the input data to be normally distribut-
ed, such as kriging method [29] in the field of geostatistics , which is a technique to interpolate
the value of a random field (e.g., the elevation, z, of the landscape as a function of the geo-
graphic location) at an unobserved location from observations of its value at nearby locations.
The normal score transformation is designed to transform the data set so that it marginally
closely resembles a standard normal distribution. It achieves this by ranking the values in
the data set from lowest to highest and matching these ranks to equivalent ranks generated
from a normal distribution. Steps in the transformation are as follows: the data set is sorted
and ranked; an equivalent rank from a standard normal distribution is found for each rank
from the data set; and the normal distribution values associated with these ranks make up
the transformed data set. The ranking process can be done using the frequency distribution
or the cumulative distribution of the data set. And studying the dependence structure of
the transformed random variables is a very important step for many applications, and this
also makes it a direct extension of the Spearman’s rank correlation.

Formally, for random variable X with c.d.f F , after the normal score transformation it
becomes Φ−1(F (X)). Thus, the normal score transformed correlation between X and Y is
defined as, cor(Φ−1(F (X)),Φ−1(G(Y ))).



CHAPTER 2. RANK CORRELATION MATRICES AND EXTENSIONS 35

In the high dimensional scenario, Liu, Lafferty and Wasserman (2009) [25] studied a
semiparametric Gaussian copula model, which they called “nonparanormal”. Under their
model, the correlations between coordinates are in fact the normal score transformed cor-
relation. Consistency results are obtained for the differences between sample normal score
transformed correlation and the true normal score transformed correlation matrix under the
matrix l∞ norm, and also for the l1 regularized sample concentration covariance matrices.

M-Correlation

Here we extend the rank correlation to a more general monotone transformed version, which
we call M-correlation.

Definition: We are given a strictly monotone increasing function ψ : [0, 1] → R, which is
square-integrable. Then, define the M-correlation between X and Y as

rm(X, Y ) = cor(ψ(F (X)), ψ(G(Y )))

where F and G are the cumulative distribution functions of X and Y respectively.

It’s easy to see that , when ψ = Identity, the M-correlation is just the rank correlation
itself. And when ψ = Φ−1, the M-correlation is the normal score transformed correlation.

For simplicity, without loss of generosity, we can always assume that
∫ 1

0
ψ(u)du = 0 and∫ 1

0
ψ2(u)du = 1. Then the population M-correlation becomes

rm(X, Y ) = E[ψ(F (X))ψ(G(Y ))]

which holds because of the assumption on ψ , and that F (X) and G(Y ) are uniformly dis-
tributed on [0, 1].

2.7 Theoretical Results on M-correlation Matrices

In this section, we’ll extend the results for the rank correlation matrices to M-correlation
matrices.

Notations

We’ll denote the given monotone transformed function by ψ, and assume it’s a strictly in-
creasing function from [0, 1]→ R and

∫ 1

0
ψ(u)du = 0 ,

∫ 1

0
ψ2(u)du = 1 . Then, we know that

ψ is differentiable almost everywhere, i.e. the non-differentiable set has Lebesgue measure
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0. In order to simplify the proofs, we can assume that ψ is differentiable on (0, 1).

The correlations between random vectors X are collectively represented by the correlation
matrix. The (i, j)th element of the matrix represents the correlation between components
Xi and Xj. In parallel, we define the M-covariance matrix of the random vector X, where
the (i, j)th element of the matrix represents the M-covariance between components Xi and
Xj.

Using the same notation R =
(
rij
)

for the M-correlation matrix, which belongs to Rp×p,
with

rij = P
(
ψ(Fi)ψ(Fj)

)
.

Let R̂ =
(
r̂ij
)

denote the empirical M-correlation matrix, ∈ Rp×p, with

r̂ij = Pn
(
ψ(F̂i)ψ(F̂j)

)
− Pn

(
ψ(F̂i)

)
Pn
(
ψ(F̂j)

)
,

where F̂j(x) = 1
n

∑n
i=1 1[Xij ,∞)(x), which is the empirical c.d.f.’s.

For ψ which is bounded on [0, 1], the above empirical M-correlation is well-defined. How-
ever, if it’s unbounded, the value of |ψ(F̂ )| can go to infinity. Tsukahara (2005) [42] suggested
using n

n+1
F̂j instead of F̂j. However, as pointed out by [25], in the high dimensional scenario,

unless ψ is regularized at the end points there could be problems with convergence of the
empirical M-correlation. As in [25], we need to use a truncated estimator:

F̃j(x) =


δn if F̂j(x) < δn

F̂j(x) if δn ≤ F̂j(x) ≤ δn
1− δn if F̂j(x) > 1− δn

(2.11)

where δn will be determined later in the theorem.

In the remainder of this section, we’ll use F̃ instead of F̂ to formulate our estimators.
Denote R̃ =

(
r̃ij
)
, with

r̃ij = Pn
(
ψ(F̃i)ψ(F̃j)

)
− Pn

(
ψ(F̃i)

)
Pn
(
ψ(F̃j)

)
,

In addition, we will also define the matrices

R̃0 :=
(
Pn
(
ψ(F̃i)ψ(F̃j)

))
i,j
.

R̃1 :=
(
Pn
(
ψ(Fi)ψ(Fj)

))
i,j
.
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Results on R̃

Before considering any regularization methods, we’ll first present some theoretical results
about R̃ in this subsection.

As discussed earlier, the boundary points might cause trouble, we’d like to first get rid
of them by using the truncation.

Define Uij := Fj(Xij) . For each j ∈ {1, · · · , p}, U1j, · · · , Unj are i.i.d. U [0, 1].

Define the event

An := {δn ≤ Uij ≤ 1− δn, i = 1, · · · , n, j = 1, · · · , p}.

Then

P(Acn) ≤
p∑
j=1

2P( max
i=1,··· ,n

Uij > 1− δn)

= 2p[1− (1− δn)n].

Choose δn = 1− (1− p−γ)1/n, for γ > 1, then the above probability tends to 0.

And
P(∗) ≤ P(∗|An) + P(Acn)

Thus, we only need to carry out our analysis on the event An.

Since ψ is a monotone function, the maximum is obtained on the boundary. Denote

Mn := max{|ψ(δn)|, |ψ(1− δn)|} = max
δn≤t≤1−δn

|ψ(t)|.

Let
Bn := sup

δn≤t≤1−δn
|ψ′(t)|.

Theorem 2.7.1. If Cn := max(Bn,Mn) = o((n/ log p)1/4), then

‖R̃−R‖∞ = OP (MnCn

√
log p

n
)

As a first step we’ll give the big picture of the proof.
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According to the triangular inequality, we have

‖R̃−R‖∞ ≤ ‖R̃− R̃0‖∞ + ‖R̃0 −R‖∞

Notice that R̃− R̃0 with element Pn
(
ψ(F̃i)

)
Pn
(
ψ(F̃j)

)
is of higher order. Thus, we only

need to consider the second term on the right hand side of the above inequality.

Using the triangular inequality again, we have

‖R̃0 −R‖∞ ≤ ‖R̃0 − R̃1‖∞ + ‖R̃1 −R‖∞.

In the following, we’ll treat the two terms on the right hand side separately.

•‖R̃1 −R‖∞

Lemma 2.7.1. P
(
|Pn
(
ψ(Fi)ψ(Fj)

)
− P

(
ψ(Fi)ψ(Fj)

)
| ≥ t|An

)
≤ 2 exp(− nt2

2(M2
n+1)2

)

Proof. Notice that {Yl := ψ
(
Fi(Xli)

)
ψ
(
Fj(Xlj)

)
− P

(
ψ(Fi)ψ(Fj)

)
}, l = 1, · · · , n are i.i.d.

random variables with mean 0.

Also

|P
(
ψ(Fi)ψ(Fj)| ≤

√
P (ψ2(Fi))P (ψ2(Fj)) = 1

Thus, conditioning on An, |Yl| is bounded by M2
n + 1.

By Hoeffding’s inequality, we have

P(|Ȳl| ≥ t|An) ≤ 2 exp(−nt2/2(M2
n + 1)2).

Lemma 2.7.2. If Mn = o((n/ log p)1/4),

‖R̃1 −R‖∞ = OP (

√
M2

n

log p

n
)
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Proof. Using the results in Lemma 2.7.1,

P(‖R̃1 −R‖∞ ≥ t|An)

= 1− P(max
i,j
|Pn
(
ψ(Fi)ψ(Fj)

)
− P

(
ψ(Fi)ψ(Fj)

)
| < t|An)

= 1−
∏
i,j

P(|Pn
(
ψ(Fi)ψ(Fj)

)
− P

(
ψ(Fi)ψ(Fj)

)
| < t|An)

≤ 1−
∏
i,j

(1− 2 exp(−nt
2

8
))

≤ 2p2 exp(− nt2

2(M2
n + 1)2

)

Let t = O(M2
n

√
log p
n

), we have

‖R̃1 −R‖∞ = OP (M2
n

√
log p

n
) (2.12)

Remark: From this lemma, we see that to make the estimator consistent, ψ cannot grow
too fast when approaching the boundary points.

•‖R̃0 − R̃1‖∞

First, notice that,

P
(
|Pn(ψ(F̃i)ψ(F̃j))− Pn(ψ(Fi)ψ(Fj))| ≥ t |An

)
(2.13)

≤ P
(
|Pn
(

(ψ(F̃i)− ψ(Fi))(ψ(F̃j)− ψ(Fj))
)
| ≥ t

3
|An
)

(2.14)

+ 2P
(
|Pn
(

(ψ(F̃i)− ψ(Fi))(ψ(Fj))
)
| ≥ t

3
|An
)

(2.15)

Further, |Pn
(

(ψ(F̃i) − ψ(Fi))(ψ(F̃j) − ψ(Fj))
)
| is of higher order than |Pn

(
(ψ(F̃i) −

ψ(Fi))(ψ(Fj))
)
|. So we only need to analyze the second term on the right hand of the above

inequality.
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Further, by Dvoretzky-Kiefer-Wolfowitz inequality , for F̃n, we have

P( sup
x∈R
|F̃n(x)− F (x)| ≥ t)

≤P( sup
x∈R
|F̃n(x)− F̂ (x)| ≥ t

2
) + P( sup

x∈R
|F̂n(x)− F (x)| ≥ t

2
)

≤I{δn≥ t2} + 2 exp(−2nt2)

Now, we’re ready to analyze the probability in (2.13).

Lemma 2.7.3. If Bn <∞, then, for t > 2δn,

P
(
|Pn
(

(ψ(F̃i)− ψ(Fi))(ψ(Fj))
)
| ≥ t

3
|An
)
≤ exp(− 2nt2

9M2
nB

2
n

) (2.16)

Proof. Let Sn := {x : δn ≤ Fi(x) ≤ 1− δn}.

P
(
|Pn
(

(ψ(F̃i)− ψ(Fi))(ψ(Fj))
)
| ≥ t

3
|An
)

≤P
(

sup
Sn

|ψ(F̃i(x))− ψ(Fi(x))| |Pn(ψ(Fj))| ≥
t

3
|An
)

By the mean value theorem, ∃ s ∈ [δn, 1− δn], s.t.

ψ(F̃n(x))− ψ(F (x)) = ψ′(s)(F̃n(x))− F (x))

Hence,

sup
Sn

|ψ(F̃i(x))− ψ(Fi(x))| ≤ sup
{δn≤s≤1−δn}

|ψ′(s)| sup
Sn

|F̃i(x)− Fi(x)|

Also on An, ψ(Fj) is bounded by Mn, and so is Pn(ψ(Fj)).

Therefore,

P
(
|Pn
(

(ψ(F̃i)− ψ(Fi))(ψ(Fj))
)
| ≥ t

3
|An
)

≤P
(

sup
Sn

|F̃i(x)− Fi(x)|BnMn ≥
t

3
|An
)

≤ exp(− 2nt2

9M2
nB

2
n

)
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Corollary 2.7.1. If MnBn = o((n/ log p)1/2), then

‖R̃0 − R̃1‖∞ = OP (MnBn

√
log p

n
)

Proof. Using the same argument as in the proof of lemma 2.7.2, and the results of lemma
2.7.3, the desired result follows.

Remark: Here another assumption for ψ has been imposed, which is that it should not
change too dramatically on [δn, 1− δn], i.e. |ψ′| cannot grow too fast.

The result in Theorem 2.7.1 directly follows from Lemma 2.7.2 and corollary 2.7.1.

Banding the M-correlation matrix

As for the rank correlation matrices, we’ll show that banded sample M-correlation matrices
also give consistent estimates under the operator norm in the matrix class of

U(α, c) = {R : max
j

∑
i

{|rij| : |i− j| > k} ≤ ck−α for all k > 0}

Theorem 2.7.2. If k � (M2
nC

2
nn
−1 log p)−1/(2(α+1)),

‖Bk(R̃)−R‖ = OP

((
M2

nC
2
n

log p

n

)α/(2(α+1))
)

uniformly on R ∈ U(α, c).

Proof. Notice that,

‖Bk(R̃)−R‖ ≤ ‖Bk(R̃)−Bk(R)‖+ ‖Bk(R)−R‖ (2.17)

Thus, we can deal the two parts separately.

The second part on the right hand side has a simple bound:

‖Bk(R)−R‖ ≤ ‖Bk(R)−R‖(1,1) ≤ ck−α (2.18)

To deal with the first part, we have to use some basic facts on norms of matrices, and
the results of theorem 2.7.1. After doing this, we have,

‖Bk(R̃)−Bk(R)‖ = OP (k‖Bk(R̃)−Bk(R)‖∞) = OP (kMnCn

√
log p

n
).

Combining these results, and setting k � (M2
nC

2
nn
−1 log p)−1/(2(α+1)), we will get the

desired result.
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Tapering

Given a general ψ, it’s hard to construct a finite collection of distributions whose M-
correlation matrices have desired structures. Here, we give the following conjecture for
the minimax result without proof.

Conjecture 2.7.1. Suppose p ≤ exp(γn) for some constant γ > 0. The minimax risk
of estimating the M-correlation matrix R over the class U(α, c) under the operator norm
satisfies

inf
R̂

sup
U(α,c)

E‖R̂−R‖2 � min

{
n−

2α
2α+1 +M2

nC
2
n

log p

n
,
p

n

}

Thresholding

Similarly, the results are uniform over families of M-correlation matrices which satisfy a fairly
natural notion of sparsity:

U(q, c(p)) = {R :

p∑
j=1

|rij|q ≤ c(p) for all i}.

Theorem 2.7.3. Uniformly on U(q, c(p)), for sufficiently large M ′, if

tn = M ′MnCn

√
log p

n
,

and MnCn

√
log p
n

= o(1), then

‖Ttn(R̂)−R‖ = OP

(
c(p)

(
M2

nC
2
n

log p

n

) 1−q
2

)
.

Proof: The proof procedure will be very similar to the proof thresholded rank correlation
matrices. So we omit the details here.

2.8 Apply the Results to CCA Problems

As for the CCA problem, if the original data sets are not from normal distribution, or there
exits strong non-linear effect among random variables, we propose to use the normal score
transformation before doing CCA. Then the solution can be obtained by replacing the co-
variance and cross-covariance matrices in 1.2 by the corresponding normal score transformed
correlation matrices. Then combining the results from chapter 1 and chapter 2, we can also
derived the consistency results for this generalized problem.
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2.9 Simulation

Choice of the tuning parameters

Foe the banding method, we provide the rate of the bandwidth k to guarantee convergence;
and for the thresholding method, the rate of the threshold t is also provided. However,
how to choose the tuning parameters remains a question in practice. Here we’ll give some
practical guidance for selecting them. The procedure is similar as in [4] and [3].

Random split the original sample into two parts and use the sample M-correlation matrix
of one sample as the “target” to choose the best tuning parameter for the other sample. Let
n1, n2 = n − n1 be the two sample sizes for the random split, and let R̂v

1, R̂
v
2 be the two

sample M-correlation matrices from the hvth split, for hv = 1, · · · , N .

Minimize the estimated risk

k̂ = argmink
1

N

N∑
v=1

‖Bk(R̂
v
1)− R̂v

2‖(1,1)

t̂ = argmint
1

N

N∑
v=1

‖Tt(R̂v
1)− R̂v

2‖F

Rank correlation

First, notice that the sample rank correlation shares the same property as of the population
rank correlation, which is that it’s invariant under the monotone transformations. Thus,
the simulation results are independent of the choice of marginal distributions of random
variables. Thus, we can choose the simplest way to generate the data. The procedure to
generate the data with a certain rank correlation structure is as follows,

• let R be the rank correlation matrix with the designed structure and compute Σ =
( 6
π
arcsin(

rij
2

));

• get X1, · · · , Xn i.i.d. from N(0,Σ) .

Then we have that the rank correlation matrix of X is R.

The true rank matrix R is constructed as

rij = ρ|i−j|I{|i−j|≤k}, i = 1, · · · , p; j = 1, · · · , p.

Thus the true bandwidth of the rank correlation matrix is k.
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We consider three values of p = 30, 100, 200 and the sample size is fixed at n = 100. And
set ρ = 0.5, k = 2, N = 50.

First, we’ll present the banding results in Table 2.1. Here we use four different evaluation
methods to measure the performance, the matrix operator norm, the matrix 1-norm, the
Frobenius norm and the absolute value between the largest eigenvalue, |λ̂max − λmax|. The
first three measurements are different kinds of matrix norms of R̂ − R; while the last one
assesses how accurate each of the estimators would be in estimating the first principal com-
ponent. The estimated bandwidths are also shown in the table. The table reports average
losses and standard deviations of the above measures over 100 replications.

p Estimated bandwidth Operator norm Matrix 1-norm Frobenius norm |λ̂max − λmax|

30 1.96(0.20) 1.02(0.06) 0.59(0.11) 1.05(0.22) 0.08(0.10)

100 1.97(0.17) 1.13(0.05) 0.68(0.10) 1.90(0.34) 0.09(0.08)

200 1.99(0.10) 1.22(0.03) 0.74(0.09) 2.69(0.28) 0.11 (0.06)

Table 2.1: Results for banded rank correlation matrices

Next, we also give out the results for the thresholding method in the following table.

p Optimal threshold Operator norm Matrix 1-norm Frobenius norm |λ̂max − λmax|

30 0.35(0.04) 1.08(0.08) 1.15(0.26) 2.19(0.36) 0.27(0.15)

100 0.48(0.02) 1.22(0.07) 1.50(0.01) 6.35(0.56) 0.47(0.11)

200 0.51(0.01) 1.23(0.03) 1.50(0.00) 9.88(0.34) 0.49(0.09)

Table 2.2: Results for thresholded rank correlation matrices

M-correlation

For the general M-correlation, it’s not easy to generate the data which has the desired M-
correlation structure. Here we’ll give one specific example for a particular choice of ψ.
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Example: ψ(u) = −2 log(1− u), which is the inverse c.d.f of χ2(2) distribution.

Generate the date: • get Z1, · · · , Zp+1 i.i.d. from N(0, 1);

• let Xj := Z2
j + Z2

j+1, then Xj ∼ χ2(2), j = 1, · · · , p;
• repeat n times .

It’s easy to check that (X1, · · · , Xp) has marginal χ2(2) distribution and the correlation
matrix is a banded matrix with bandwidth 1 ( cor(Xi, Xj) = 0.5I|i−j|=1).

Estimate: • compute F̃j(Xij);

• compute the sample correlation matrix of (ψ((̃F )j(Xij));

• find the bandwidth by cross-validation;

• band the sample M-correlation matrix .

We consider three values of p = 30, 100, 200 and the sample size is fixed at n = 100.

Table 2.3 and Table 2.4 show the results for the banding method and thresholding method
respectively. The table reports average losses and standard deviations of four measures over
100 replications.

p Estimated bandwidth Operator norm Matrix 1-norm Frobenius norm |λ̂max − λmax|

30 1.04(0.20) 0.32(0.06) 0.41(0.07) 0.85(0.12) 0.04(0.03)

100 1.16(0.42) 0.37(0.07) 0.49(0.07) 1.58(0.12) 0.07(0.03)

200 1.26(0.54) 0.42(0.08) 0.80(0.08) 3.00(0.13) 0.31 (0.07)

Table 2.3: Results for banded M-correlation matrices

Normal score transformed correlation

Notice that (Φ−1(F1(X1)), · · · ,Φ−1(Fp(Xp))) follows a multivariate Gaussian distribution.
Also, the same reason as showing for the rank correlation simulation, it’s irrelevant of choices
of the marginal distributions of samples. Thus, we have the following procedure to generate
the data.

• let R be the normal score transformed correlation matrix with the designed structure ;



CHAPTER 2. RANK CORRELATION MATRICES AND EXTENSIONS 46

p Optimal threshold Operator norm Matrix 1-norm Frobenius norm |λ̂max − λmax|

30 0.43(0.04) 0.66(0.07) 0.85(0.20) 1.94(0.49) 0.05(0.04)

100 0.55(0.03) 0.92(0.04) 1.00(0.00) 5.96(0.42) 0.09(0.06)

200 0.57(0.01) 0.96(0.03) 1.00(0.00) 8.73(0.27) 0.08 (0.05)

Table 2.4: Results for thresholded M-correlation matrices

• get X1, · · · , Xn i.i.d. from N(0, R) ;

In this way, the normal score transformed correlation matrix of X is R .

The true normal score transformed correlation matrix R is constructed as

rij = ρ|i−j|I{|i−j|≤k}, i = 1, · · · , p; j = 1, · · · , p.

with k = 2 and ρ = 0.5.

Consider three values of p = 30, 100, 200 and the sample size is fixed at n = 100. Table
2.5 and Table 2.6 show the results for the banding method and thresholding method respec-
tively. The table reports average losses and standard deviations of four measures over 100
replications.

p Estimated bandwidth Operator norm Matrix 1-norm Frobenius norm |λ̂max − λmax|

30 1.65(0.52) 0.50(0.12) 0.70(0.15) 1.41(0.47) 0.22(0.21)

100 1.85(0.57) 0.53(0.09) 0.81(0.13) 2.46(0.76) 0.20(0.15)

200 1.84(0.69) 0.54(0.09) 0.85(0.14) 3.68(1.13) 0.24 (0.15)

Table 2.5: Results for banded normal score transformed correlation matrices

The mixture model

Here, we consider that X1, · · · , Xn i.i.d. follow a Gaussian mixture model

(1− ε)N(0,Σ) + εN(0, I),
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p Optimal threshold Operator norm Matrix 1-norm Frobenius norm |λ̂max − λmax|

30 0.37(0.05) 0.84(0.12) 1.25(0.22) 2.38(0.39) 0.27(0.17)

100 0.5(0.18) 1.36(0.06) 1.50(0.01) 6.57(0.38) 0.46(0.10)

200 0.52(0.01) 1.41(0.05) 1.50(0.01) 9.73(0.22) 0.44(0.11)

Table 2.6: Results for thresholded normal score transformed correlation matrices

i.e. with probability (1 − ε) it samples form N(0,Σ) distribution, and with probability ε it
samples form N(0, I) distribution.

Let R be a p× p matrix, defined as

rij = ρ|i−j|.

And let σij = 6
π
arcsin(rij). Then it’s easy to check that Σ := (σij) is a non-negative definite

matrix, which makes it a correlation matrix. Thus, a random variable following N(0,Σ)
distribution has the rank correlation matrix as R.

In consequence, the marginal distribution of Xi is N(0, 1). Then after some computation,
we can deduce that the rank correlation of the mixture model is just

(1− ε)rij if i 6= j, and 1 if i = j.

In the tables below, the results are obtained under the setting of ε = 0.5, n = p = 100
with 100 replicates.

ρ Operator norm Matrix 1-norm Frobenius norm |λ̂max − λmax|

0.5 3.44(0.15) 10.12(0.33) 11.18(0.11) 2.85(0.22)

0.6 3.53(0.19) 10.20(0.37) 11.17(0.12) 2.77(0.27)

0.8 3.79(0.41) 10.46(0.41) 11.15(0.19) 2.43(0.57)

Table 2.7: Results for the mixture model: the sample rank correlation matrix
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ρ Estimated bandwidth Operator norm Matrix 1-norm Frobenius norm |λ̂max − λmax|

0.5 1.09(0.75) 0.90(0.02) 1.43(0.07) 5.73(0.36) 0.25(0.17)

0.6 1.65(0.80) 0.99(0.03) 1.77(0.12) 5.91(0.37) 0.26(0.21)

0.8 4.31(1.53) 1.41(0.19) 3.34(0.26) 6.92(0.52) 0.96 (0.56)

Table 2.8: Results for the mixture model: Banding

ρ Optimal threshold Operator norm Matrix 1-norm Frobenius norm |λ̂max − λmax|

0.5 0.58(0.01) 0.83(0.01) 1.50(0.00) 6.43(0.00) 0.49(0.00)

0.6 0.58(0.02) 0.98(0.02) 2.00(0.00) 7.35(0.00) 0.95(0.15)

0.8 0.55(0.05) 2.14(0.16) 4.50(0.02) 10.42(0.26) 2.81(0.52)

Table 2.9: Results for the mixture model: Thresholding

We have also carried out additional simulations for other combinations of sample sizes
and dimensions. The behavior of the banding and Thresholding estimators are similar.

We notice some interesting facts from the results,

• both banding and thresholding methods outperform the sample rank correlation ma-
trices ;

• when banding is given the correct order of variables, it performs better than thresh-
olding, since it is taking advantage of the underlying structure;

• the same model requires relatively more regularization in higher dimensions.
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Chapter 3

Renyi Correlation

3.1 Introduction

In this chapter, we further discuss other measures of independence. The section 3.2 is based
on a discussion paper of Brownian distance covariance [38] by Peter Bickel and I. Then in
section 3.3, we used the idea of the Renyi correlation to generalize the CCA problem. It
includes the basic framework and some future directions.

3.2 Discussion of: Brownian distance covariance

Szekely and Rizzo [38] present a new interesting measure of correlation, brownian distance

correlation. The idea of using
∫
|φn(u, v) − φ(1)

n (u)φ
(2)
n (v)|2dµ(u, v), where φn, φ

(1)
n , φ

(2)
n are

the empirical characteristic functions of a sample (Xi, Yi) i = 1, · · · , n of independent copies
of X and Y is not so novel. A.Feuerverger considered such measures in a series of papers
[13] . Aiyou Chen and Peter Bickel have actually analyzed such a measure for estimation in
[9] in connection with ICA.

However, the choice of µ(·, ·) which makes the measure scale free, the extension to X ∈
Rp, Y ∈ Rq and its identification with the Brownian distance covariance is new, surprising
and interesting. There are three other measures available, for general p, q

1. The canonical correlation ρ between X and Y .

2. The rank correlation r (for p = q = 1) and its canonical correlation generalization.

3. The Renyi correlation R.

All vanish along with the Brownian distance (BD) correlation in the case of independence
and all are scale free. The Brownian distance and Renyi covariance are the only ones which
vanish iff X and Y are independent.
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However, the three classical measures also give a characterization of total dependence. If
|ρ| = 1, X and Y must be linearly related; if |r| = 1, Y must be a monotone function of X and
if R = 1, then either there exist non trivial functions f and g such that P(f(X) = g(Y )) = 1
or at least there is a sequence of such non trivial functions fn, gn of variance 1 such that
E(fn(X)− gn(Y ))2 → 0.

In this respect, by Theorem 4 of Szekely and Rizzo, for the common p = q = 1 case, BD
correlation doesn’t differ from Pearson correlation.

Szekely and Rizzo illustrate several possible applications of distance covariance by ex-
amples. Although we found the examples varied and interesting and the computation of p
values for the BD covariance effective, we are not convinced that the comparison with the
rank and Pearson correlations is quite fair.

Intuitively, the closer the form of observed dependence is to that exhibited for the ex-
tremal value of the statistic, the more power one should expect. In their example 1, the data
are from the NIST Statistical Reference Data sets, where Y is a distinctly non monotone
function of X plus noise, a situation where we would expect the rank correlation to be weak.
And similarly the other examples correspond to non-linear relationships between X and Y in
which we would expect the Pearson correlation to perform badly. In general for goodness of
fit, it is important to have statistics with power in directions which are plausible departures,
Bickel and Ritov [6].

An alternative being studied here in the context of high dimensional data is the empirical
Renyi correlation.

Let f1, f2, · · · be an orthonormal basis of L2(PX) and g1, g2, · · · an orthonormal basis of
L2(PY ) where L2(PX) is the Hilbert space of function f such that Ef 2(X) <∞ and similarly
for L2(PY ).

Let the (K,L) approximate Renyi correlation be defined as,

max{corr(
K∑
k=1

αkfk(X),
L∑
l=1

βlgl(Y ))}

where corr is Pearson correlation.

This is seen to be the canonical correlation of f(X) and g(Y ) where f ≡ (f1, · · · , fK)T ,

g ≡ (g1, · · · , gL)T , and is easily calculated as a generalized eigenvalue problem. The empirical
(K,L) correlation is just the solution of the corresponding empirical problem where the
variance covariance matrices V ar f(X) ≡ E[fc(X)fc

T (X)] where fc(X) ≡ f(X) − Ef(X),
V ar g(Y ) and Cov(f(X), g(Y )) are replaced by their empirical counterparts. ForK,L→∞,
the (K,L) correlation tends to the Renyi correlation,

R ≡ max{corr(f(X), g(Y )) : f ∈ L2(PX), g ∈ L2(PY )}
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For the empirical (K,L) correlation, K and L have to be chosen in a data determined way,
although evidently each K, L pair provides a test statistic. An even more important choice
is that of the fk and gl (which need not be orthonormal but need only have a linear span
dense in their corresponding Hilbert spaces).

We compare the performance of these test statistics in the first of the Szekely-Rizzo ex-
ample in the next section.

Comparison on Data Example

Here we’ll investigate the performance of the standard ACE estimate of the Renyi corre-
lation and a version of (K,L) correlation in the first of the Szekely-Rizzo examples.

Recall that the proposed nonlinear model is

y =
β1
β2

exp
{−(x− β3)2

2β2
2

}
+ ε.

Breiman and Friedman (1985) provided an algorithm, known as alternating conditional
expectations (ACE), for estimating the transformations f0, g0 and R itself.

The estimated Renyi correlation is very close to 1 (0.9992669) in this case, as expected
since Y is a function of X plus some noise. The plot below shows the original relationship
between X and Y on the left and the relationship between the estimated transformations f̂
and ĝ on the right.

Having computed R̂, the estimate of R, we compute its significance under the null hy-
pothesis of independence using the permutation distribution just as Szekely and Rizzo did.
The p-value is ≤ 0.001, which is extremely small as it should be.

Next, we compute the empirical (K,L) correlation. For this case, we chose, as an or-
thonormal basis with respect to Lebesgue measure, one defined by the Hermite polynomials
defined as Hn(x) = (−1)nex

2/2 dn

dxn
e−x

2/2, for both X and Y . We take fk(·) = gk(·) =

e−
x2

4 Hk(·).

The following table gives the computation results of different combination of K and L.
As before, the p-value is computed by a permutation test, based on 999 replicates.

The value, not surprisingly is close to R̂, for K = L = 5 .
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Figure 3.1: Relationship between X and Y and between f̂ and ĝ

K=2, L=2 K=3, L=4 K=5, L=5
Estimated (K,L) correlation 0.8160803 0.9170764 0.977163
P-value 0.002 0.002 ≤ 0.001

Table 3.1: Results of K − L correlation

3.3 Extension of canonical correlation analysis to

non-linear cases

Recall from chapter 1, canonical correlation analysis (CCA) is a method of correlating linear
relationships between two multidimensional variables. Although it performs well in many
cases, linearity certainly has many constrains. Inspired by Renyi correlation, we propose a
non-linear version of CCA.

Our Problem (Population version):
Consider two sets of random variables, X = (X1, X2, · · · , Xp)

> and Y = (Y1, Y2, · · · , Yq)>.
We are interested in seeking the optimal transformations for each random variable, say
f1, · · · , fp and g1, · · · , gq, such that correlation between

∑p
i=1 fi(Xi) and

∑q
j=1 gj(Yj) is max-

imized.

Without loss of generality, we assume that Efi(Xi) = 0, Ef 2
i (Xi) = 1 (i = 1, · · · , p), and

Egj(Yj) = 0, Eg2j (Yj) = 1 (j = 1, · · · , q).
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Thus,

Σf
x :=

[
Efi(Xi)fj(Xj)

]
p×p

= Ip×p, Σg
y :=

[
Egi(Yi)gj(Yj)

]
q×q

= Iq×q

Also define the cross-correlation matrix as

Σfg
xy :=

[
Efi(Xi)gj(Yj)

]
p×q

.

So this can be formed as an optimization problem,

max
f,g

max
a,b

a>Σfg
xyb√

a>Σf
xa b>Σg

yb

 (3.1)

under the constrains that

Efi(Xi) = 0,Ef 2
i (Xi) = 1 (i = 1, · · · , p); Egj(Yj) = 0,Eg2j (Yj) = 1 (j = 1, · · · , q)

Notice that the inner maximization problem is just an ordinary CCA problem for (f1(X1), · · · , fp(Xp))
and (g1(Y1), · · · , gq(Yq)).

Remarks: Notice that we cannot use the pair-wised Renyi correlation to solve the
optimization problem of 3.1.

Problem solving

Directly optimizing over the functional space is hard, here we propose to use (K,L) correla-
tion instead, which is an approximation of Renyi’s correlation.

For random variables U , V ∈ R1, let H1, H2, · · · be an orthonormal basis of L2(PU) and
Q1, Q2, · · · an orthonormal basis of L2(PV ) where L2(PU) is the Hilbert space of function f
such that EH2(U) <∞ and similarly for L2(PV ).

Let the (K,L) approximate Renyi correlation be defined as,

max
α,β
{corr(

K∑
k=1

αkHk(U),
L∑
l=1

βlQl(V ))}.

Back to our cases, where X and Y are both multidimensional variables, similarly let
H i

1, H
i
2, · · · be an orthonormal basis of L2(PXi) and Qj

1, Q
j
2, · · · an orthonormal basis of

L2(PYj). Thus varying over functions of fi, gj can be approximated by varying their coeffi-
cients of the projections onto the corresponding basis.
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Using vector notations,

H i(Xi) := (H i
1(Xi), · · · , H i

Ki
(Xi))

>,

Qj(Yj) := (Qj
1(Yj), · · · , Q

j
Li

(Yj))
>.

αi := (αi1, · · · , αiKi)
>

βj := (βj1, · · · , β
j
Li

)>

And define matrices as

ΣHQ :=

 EH1(X1)Q
1(Y1)

> · · · EH1(X1)Q
q(Yq)

>

...
. . .

...
EHp(Xp)Q

1(Y1)
> · · · EHp(Xp)Q

q(Yq)
>



ΣH :=

 EH1(X1)H
1(X1)

> · · · EH1(X1)H
p(Xp)

>

...
. . .

...
EHp(Xp)H

1(X1)
> · · · EHp(Xp)X

p(Xp)
>



ΣQ :=

 EQ1(Y1)Q
1(Y1)

> · · · EQ1(Y1)Q
q(Yq)

>

...
. . .

...
EQq(Yq)Q

1(Y1)
> · · · EQq(Yq)Q

q(Yq)
>



A :=

 α1 0
. . .

0 αp



B :=

 β1 0
. . .

0 βq


Then the optimization problem of (1) can be approximated by

max
A,B

{
max
a,b

a>(A>ΣHQB)b√
a>(A>ΣHA)a b>(B>ΣQB)b

}

which is equivalent to

max
ã,b̃

ã>ΣHQb̃√
ã>ΣH ã b̃>ΣQb̃

(3.2)
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where ã ∈ R
∑p
i=1Ki and b̃ ∈ R

∑q
j=1 Lj .

Interestingly, (2) has exactly the same form as the standard CCA problem.

Sample version

Let X(1), · · · , X(n) be i.i.d. samples of X and Y (1), · · · , Y (n) be i.i.d. samples of Y .

Look at the sub-matrix of ΣHQ first. Define Mij := E(H i(Xi)Q
j(Yj)

>), which is a Ki×Lj
matrix. The natural estimation of Mij would be

M̂ij =

(
1

n

n∑
t=1

H i(X
(t)
i )Qj(Y

(t)
j )>

)

When Ki, Lj fixed, n goes to infinity, M̂ij will converge to Mij under operator norm.

Future directions

In this section, I present an extension of canonical correlation analysis by utilizing an ap-
proximate method of Renyi correlation. It leaves us a lot of open questions for the future
work. Even in the finite dimension case, it’s worth of discussion on how to choose the base
functions. When n, p and q all go to infinity, regularization methods should be used to obtain
the consistency results. Then the question comes up, what kind of regularization methods
is suitable for the problem and what can we expect for the convergency rate. I’d like to
propose the group lasso [34] [1]. Naturally in our problem, ã and b̃ fall into p and q groups
respectively. When imposing the sparse assumptions, the group effects play an important
role, which makes the group lasso method promising.
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