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The Measurement of Light in Natural Waters

Radiometric¢ Concepts and Optical Properties

Rudolph W. Preisendorfer and John E., Tyler

Scripps Institution of Oceanography, University of California
| ~Lla Jolla, Califormia

ABSTRACT

The object of this note is two-fold: (i) To define and
discuss those fecently developed concéepts of geometrical radio-
metry which are of greatest use in the experimental study of the
light field in natural waters. (ii) To present a systematic
develorment and discussion of the inherent and'apparent optical
properties of natural waters which are used in modemn hydrologi-

cal optics.

The most uéeful radiometric concept is that of radiance. a
complete documentation of the light field in a natural hydrosol

by means of radiance distribution measurements supplies, in prin-

‘¢iple, all the radiometric information requirecd to solve every

practical problem centering on questions of image and flux trans-

fer in natural waters. Where the determinatioh of radiance

"distributions is impossible or unfeasible, the use of an alternate

' set of radiometric concepts is proposed, This set consists of
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four irradiance quantities which require less effort to obtain than
the radiance distributions. They supply enough information about
the depth dependence of the light field, its local angular struc-
ture and the overall flux transmitting and reflecting properties
of the medium to allow many practical problems to be solved with

satisfactory precision, and completeness.

This basic quartet of irradiances gives rise, by means of
certain well defined opérations, to a set of quantities, each
of which possesses strikingly regular and reproducible features
even though each depends in part on the ephemeral submarine light
field. These regularities allow the quantities to be given the
status of optical properties and, as such, they considerably
simplify the classification of the optical structure of natural
hydrosols. These apparent optical properties play key roles in
the engineering solutions of image and flux transfer problems and
provide powerful empirical checks of theoretical models of the

light field in natural hydrosols.
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INTRODUCTION

in the field of underwater light measurements early initia-
tive belongs largely to the biologists, who, with little if
any help from photometrists devised instrumentation and made
measurcments to discover the main features of the submarine light
field and to correlate binlogical activity with the light that

was measured,

During the period 1935 to 1945 many types of measurements
were made in lake and ocean waters. Unfortunately the instruments
ﬁsed by different workers varied somewhat in important respects
and as a result the light measurements cannot be directly inter-
compared. The measurements are of value chiefly to the experi-
menter who obtained them, and cannot be used for general mathema-

tical or physical applications,

As a result it has become clear that standardization of
measuring technique and conformity to radiometric concepts is

desirable,

The purpose of this paper is to illustrate some recently
“eveloped applications of radiometric concepts to light measure-
ments in the underwater light ficld and to define the important
optical properties of natural waters associated with image and
flux transmission through water. Only monochromatic light will

be considered at this time; this will provide the basis for the
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discussion of hcterchromatic light at a later time. The radio-
metric terminology used here follows where possible, and
extends wherc necessary, the terminology recommended by the

Committec on Colorimetry (1944a, 1944Db).
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30ME GENER.L OBSERVATIONS O "WDEH.~TER LLIGHT-FIELDS

Various aspecta of the submirine iisht field have been
noted and described in the literaturc., M. Minnaert (1940)
describes the "large disc of light 2bove your head" (sometimus
called the “manhole"), which is the entrance port for all direct
sun Aand skylight reaching 2 point below the surface. For flat

calm water, this man-hole is determined by Snell's law:

nsine = n‘smne’, 1)

where N and n/ are the refractive indices of air ond water
reépectively, 8 and 8-,/ are the angles that the ray makes
with the normal to the air-water surface in air and in water,
respectively. If the index of refraction of water is taken as

& .
3, then when © = 90°, sin o'

= .75 and 6O = 48.6°, which
is the angle at which one would expect to see the horizon through
2 flat calm surface from an underwater vantage point. Actually,
little if any light will get through the interface at this
specific angle because of the high reflectance predicted by
Fresnel's law for O = 900. 48 the upward looking line of
sight is swept from & = O ° to 8 = 48.6°%, one can observe

the gradual, successively greater compression of objects toward

the skyline, On days when the surface is windblown, one can
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observe within and around the manhole, the glitter pattern pro-
duced by the sun on the water. This glitter pattern has been
described for example by Cox and Munk (1954). Beyond the edge
of the man-hole, at angles Eﬂl greater than L8.6O and less than
900, one can see the totally reflected and upside down images
of fish as they swim by, and the reflected back-scattered light

welling up from below (Tyler, 1958a).

If, in horizontally stratified water, thg point of obser-
vation is movea horizontally, no ¢ssential difference in the light
field will be'oBserved at the new observation point because
over a substantiélly infinite extent every area of the surface
above is being. illuminated by the same sun and sky, and in the

same way.

As one descends very slightly from the surface, the manhole,
which in principle continues to subtend the half angle ai; 48.60,
loses its relatively sharp edges. If there is a clear sunny sky,
the sun's image becomes progressively dimmer while scattered light
quickly fills in the darker areas, especially in relatively turbid
water, softening the initially high contrast of the manhole, and
partially replacing the sharply collimated light of the sun with
a brilliant field of diffuse, less directional light. At these
very shallow depths the decrease in the sun's share of the light
seems more than compensated by this spontaneous flood of scattered
light. Descending further, the amount of diffuse light begins

to fall off sharply, and the light fram the sun even more quickly.
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Still lower, at very great depths, the direct influence of the
sun and sky light seem all but lost, the diffuse field appears
to settle down to a fixed angular pattern whose only change with
further increase of depth is an overall diminuation in brightness

at an unmistakably exponential rate.
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CONCEPTS USED IN THE MEASURIMENT OF LIGHT

A1l the radiometric concepts discussed below, which form
the scientific basis for the¢ phenomenological description of
light, are based on the single physical idea of radiant flux;
that is, the idea of radiant energy in motion. The basic distinc-
. tion between them arises from the appropriazte geometrical channel-

ing of the collected or emitted radiant flux.

Radiant. Flux

Radient flux is the time rate¢ of change of radiant cnergy.

The term, "time rate" may in general be interpreted two ways:

The firét interpretation is associated with a region of space
which is producing radiant energy; its time rate of production of
radiant energy may be described as its radiant flux outpup. The
second interpretation conceives of radiant energy per unit time
crossing a given surface and is described as the radiant flux
across the surface (in the appropriate direction). The present

paper will limit itself to the sccond interpretation,

It is usually sufficient to have an operational definition
of radiant flux by means of some instrument which can sense and
record incident radiant energy. The basic elements of such an
instrument (depicted schematically in Figure la) arc a small

flat flux collector of size A, and a rccorder. When radiant flux
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falls on thc¢ collector, the recorder reads & response i<

The radiometrist takes care to make the response R directly
relatable in some known way to the amount F of radiant flux
actually incident on A . This means, in particular, that he
ID

trics to make the response R to a given amount of flux

independent of the direction of incidence of = . For example ,

if there are two streams of radiant energy on the collecting sur-
face, one incident perpendicularly, say, and the cother at some
fixed oblique angle, a2s shown in Figure la, and each stream has
the same'nadiaht flux F (as determined e.g., by the electro -
magnétic picture of light) then each stream must give rise to

the same response ?ﬁ%&ton‘the recorder. When the collecting
surfacé satisfies this requirement, it is referred to as a

Lambert collector. In what follows we will always assume that

the radient flux determinations have been madc using a Lambert
golleecting surface, With these¢ remarks in mind, we may writc,

in symbolic form, the operational definition of radiant flux:

-
He
I\

where %5‘ is the known response characteristic of the instrument
which relates R to the incident radiant flux F , and deter-

mines the units of F , 1In practice the recorder is calibratgd
to read F directly. The dimensions of ' are: energy pe;

unit time. In the m.k.s. system the units of ° arc in temms

of watts,

~
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Irradiance and Radient Emittance

In our present interpretation of radiant flux as the flow
of radiant energy across a surface, we consider separately two
possible directions of flow, If the surface encloses a region
of space within which radiant energy is generated, and this
energy flows outward across the surface, it is useful to specify
the outward flow across each unit area of the surface.. The con-

céept that supplies such information is called radiant emittance.

It is defined as the radiant flux emitted per unit area at a
given point of the surface, and is denoted by the symbol W .
To obtéin W operationally, it suffices in principle .to place
the collecting surface of  the flux-recorder over the area of
interest on the emitting surface, and to observe the resultant

reading F . Then, by definition,

, i . (3)
'\/‘v A hd

{

More sobhisticated means- of obtaining \W  are implipit in the
discussions below. Evidently; the, dimensions of W are:
radiant flux per unitiarea;'énd iﬁs units: watté per square

meter,

To complement the idea of radient flux away from a surface,
we have the notion of radiant flux onto a éurface; more specifi-

cally, the amount of radiant flux incident per unit area at'a
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given point of « surfzecc. The concept used for this purpose

is called irradiance. Dimensionally and unit-wise, irradiance

nd radiant emittance may be considered identical, but they are

held conceptually distinct in the sense thet irradicnce refers

to incident flux on » surface, while radiant emittance rofurs

to flux emitted from 2 surface. The symbol feor irradiance is H |

' : 1
md its operational definition is:

£
R
/:L‘
Radinance

- In the preceding discussion @f irr‘adiémcg,'thﬁ:- energy [iow
was nllowed t_o arrive at _a‘p‘oint of » surfnce from All dirce-. -
tions within = Eemisphere de.fi‘héd by = plan¢ tangent to the sur-
face ot the point. A’\,u.i‘ce’f cften, the individual amounts of flux
-:x.rri‘viﬁg fram egach of these directions is of more importance
rhan thedir t.otai. In or“der to'_measu‘re the flow :-.r‘riving :“rgi‘. "
'.'ar;'t.icula?.r dircction, some kiﬁd of "biin'der" must 'be put on the
Lambert collector. The blinder serves to block off th@;l incoming
f1low of 'radiant ‘:ener‘gy in =11 but » small solid angle of direc-

j j,cns;', { flux collector with = set of blinders is schemc_atice;l_ly.
depicted in Ficure lb. This device is conventionaily. referred to

.5 » Gershun tube (or radisnce tube) (Gershun, 1939,. In practice,

=

e
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the collecting area is circular, and the blinder is in the form
of a long narrow cylinder eontaining baffles whose surfaces

have been treated with matte black paint. The Gershun tube ié
constructed so that the flat circular collecting area at the
base of the cylinder is centered on and perpendicular to the axis

of the cylinder,

Consider a Gershun tube whose associated solid angle is ([l .
That is, each point of the collecting surface of area A has
access to the radiometric environment through a solid angle of
magnitude L) . Of course there will exist in any material
Gershun tube a slight variation of solid angle opening fram point
to point on the collecting surface. However, if the ratio of the
length of the tube to its radius is 10 to 1 or greater, this
variation is negligible.We will assume that all Gershun ‘tubes
used in the arguments below have this property. Now point the
Gershun tube in a given direction and suppose the reading of the
flux-rccorder is [ . Then the Gershun tube determines a radiance
N for this particular direction, whose magnitude is defined

by the rule:

N = A (5)
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Prom Eq. (4), P/A= H , s¢ that the radiance may also be
characterized by the formula:

H

O ()

A%

N =

[

In praciice Gershun tubes are usually designed so thot the
flux recorder reads N dircetly, the quantities A and Sl
being fixed characteristics of the assembly. From the defini-
tion of radiance, Eq. (5), we see that it has the dimensions:
radiont flux per unit arca per unit solid angle. Its units are:

watts per square meter per steradian.,

In the discussion of irradiance and radiant emittance these
conecepts of radiant flux across a surface were associated with
particular directions of flow. 4 similar useful distinction
c:n be made with radiance., Consider TFigure 2a. Radiant flux
is passing perpendicularly across a surface 55 at point &b
on S . The flow is constrained within a solid angle of mag-
nitude Ji. (the solid angle of some Gershun tube.) If the
tube were oriented so as to collect the incoming flux, then an
irradiance H would be induced on the Gershun tube's collecting

plate, znd the radiance

”JZE
~
oy
S

4
(-J
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would be reported for this incoming pencil of energy. However,
this same bundle of radiant energy could be thought of as
giving rise to a radiant emittance W of S at £~ . The
magnitude of the solid angle in which the emitted flux is con-
strained to flow is still (), . Hence the radiance may also

be characterized by:

ol

(7)

To distinguish between these two ways of looking at radiance,

we call the radiance as given in (6), the field rodiance, and

the radiance given in (7) as the surface radiance. Field

radiance is of greatest use in experimental work in conjunction
with the use of Gershun tubes, and surface radiance is used to

greatest advantage in theoretical work,

Scalar and Spherical Irradiance

Spherical and scalar irradience are the last two of the
major radiometric concepts to be discussed here. Scalar
irradiance gives a quantitative measure of the total radiant
flux arriving at ~ point from all directions about the point.
Scalar irradiance, in essence, is a measure of the amount of
radiant energy per unit volume of space at a given point; the
individual amount coming in from each direction about the point

is unimportant, only the total is of interest.
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Scalar irradiance, (as defined in the analytic rclatiens
section below), can be determined if the field radiance is
known for 21l directions ~round the point of intercst. Such a
determination, however, involves a somewhat tedious numericeal
procedure. A spherical Lambert collector, (Figure lc) provides
o simple experimental means of obtaining scalar irradiance
directly. Measurements with a spherical collector systematically
differ from theoretically computed scalar irradiance values
by a constant factor of L. (See section on analytical relations,
below). All other things being equal, the spherical collector
readings are less by a factor of 4 than the scalar irradience
values. Since this difference is known and invariable, a
spherical collector can be used to obtain both scalar and spheri-

cal irradiance.

The distinction between scalar and spherical irradiance can
be stated as follows: scalar irradiance arises naturally in
theoretical analyses and has a simple analytic definition in
terms of the angular distribution of field radiance about a point
in space; spherical irradiance is the associated quantitv mea-

sured by a small spherical Lambert collecting surface.

The operational definition of spherical irradiance is as
follows: consider a small spherical surface of radius | .
Let the surface be a Lambert collector (i.e., each tiny arca

on the surface acts like a plane Lambert collector). Let F°
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bhe the recorded amount of radiant flux incident on the sphere.

Then the sphuricel irradiance hqn associated with this

flux is defincd as:

Evidently the dimensions of spherical irradiance are: radiant

flux per unit area; its units are: watts per square mecter.

(2)
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SOME THEOREMS OF GEOMETRIC AL RADIOMETRY

In this section a few key theorems in geometrical radio-
metry, will be discussed. The discussion by no means exhausts
all of the theorems of this discipline, but rather presents
those theorems which will be of greatest use to persons engaged

in optical oceanography.
Cosine Law

.Imagine a small arbitrarily shaped plane area of magnitude
A in a uniform stream of radiant energy (Figure 3a). Suppose
that when the area is broadside to the stream, so thet its
normal makes a zero angle with the direction of the stream,
the amount of flux across the surface is (O) . Suppose,
in general, that when the normal to the arca makes an angle 8
with the stream, the amount of flux across the arca is P(©)
We may then ask: what is the relation between P(©) and P(®) 2
It seems reasonable that the amount would be dircctly proportional
to the projected arca A(B) that the surface presents to
the stream of energy. That is, if the projected area were, for
exemple, just one half A , the amount of intercepted flux is
just one half P(C) , and so on. In general, we then would
expect that

P(o) ALB

= =L 9
P(0) AlD) (9)

-
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where, of course, A(O) = A . Hence, we may express P(O)
as:
A(O)
P©e) = (o) A (10)

So far we have used physical reasoning: no amount of pure mathe-
matics conld ever give a relation of the kind summarized in

Eq. (9). Relation (9) is,in the last analysis, an experimental

?
fact. Howevecr, the next step is purely mathematical: the relation
between A(B) ad A is given by a theorem in geometry

which states:
AB)= Acoso. (11)

Hence the answcr to the question posed above may be written in

the form:

peY = Po)cossE. (12)

The principal cosine law in geometricai’-..radiometry is the statement
of the dependence of irradiance on & . If |H(®) is the
irradiance on the surface of Figure 2a when its normal makes an

angle 6 with the stream of radiant energy, then by definition,

P(o)
A

HiE) = . (13)
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By substituting the velue of FP(B) from Eq. (12) into this

expression, we have the desired cosine law for irradiance:

H(B)= H(D) cos e, (1)
where, by definition,
fPeo) (15)

This cosine relation for irradiance has been derived in detail
in order to emphasize that it is, in the last analysis, an
experimental relation, or a relation which incorporates assumptions

based on experimental fact.,

Cosine Law for Surface Radiance

In this section we will derive a useful alternate expression
for surface radiance. The derivation will be of particnlar value
in the discussion of the volume scattering function in a later
section. In the preceding section entitled "Radiance!' the notion
of surface radiance was introduced by considering a narrow pencil
of radiation leaving a surface in the direction perpendicular to

the surface. Of course, pencils of radistion can be emitted from
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surfaces at arbitrary angles © with respect to the surface

normals. Such a situation is depicted in Figure 2b.

Consider a small region of area A on the surface S which
is emitting an amount P(8) of radiant flux. In particular
suppose that at each point £ of S there is a narrow pencil of
radiant energy emitted from 42 in the direction of the arrow,
and that the radiant emi‘r;tance of the surface into each of these
directions has some fixed magnitude W (E€) . Therefore P(8) =
WIB)A. Let each pencil, which is inclined at an angle & with
the normal to the surface, have a solid angle opening of NOF
Now project the area A ona plane perpendicular to this common
direction of the pencils and let the projection have area A(8)
We suppose that A is sufficiently small so that the following
assumption holds: All the radiant flux that leaves A crosses A(E)
Then by definition of surface radiance in the direction & ,
we have: (See Eq. (5))

_P(®)
A(©) L

N(g) = .
From the geometric fact summarized in Eqg. (11), this radiance

expressicn may then be written in the following equivalent form:

P(O)

——e

A\l cos®

N©) = ) (16)

which is the desired cosine law for surface radiance.
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Furthernmre, since

‘ P
wer= &,
we may write
_we |
N(O) = 0 cos6 ‘ (17)

" It should be noted that no such alternate expressions exist for
.fiéld radiance, since the latter is by definition associated with
radiant flux whieh crosses the collecting surface in the direction
of its normal. There is no need of complicating the notion of
field radiance by allowing flux to be incident in any other direction
on the collecting surfece. It is this fact that makes the notion
of field rédiance conceptually simpler than surface radiance and of
key importance in experimental work. For example, all the infor-.
mation abéut the structure of thé light fields in natural hydrosols
can be based on the systematic use of fiecld radiance: it is a
Qell-defined»quantity obtained by direct and systematic use of a

Gershun tube,
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The General ttelation Betwecn Surface Radisnce and Field Radi-nce

The dual relation between surfice radirnec and field radiance
at a point has already been discussed (see scction wi "Hadiance,"
and Figure 2 (a)). However, an experimenter working with o
Gershun tube in a natural hydrosol iz confronted with the following
question: When the line of sight of a Gershun tube is directed
through water—-which scnttqrs-and absorbs radiant energy——how dovs

the field radiance N, of a surface & of radiance N, depend

on the distance bt at which & 1is viewed?

This question can be resolved into the following two prob-
lems: (i) How much flux is transmitted direcctly from & to &
after suffering' possible losses by the actions of scattering and
absorption? (ii) How much flux is added to the signal arriving
at & , which has been contributed by the scattering of ambient
light into the intervening space between S mnd G 'j We

begin by considering in detail the fiyst of these questions.

Suppose & Gershun tube & (Figure L,a) §s directed at some
surface O , » distance + from (& . Suppose further that the
field of view of the Gershun tube is of sizg ), and that its
collecting area is of size Ao . Let N, be the field radiance
induced by the flux trensmitted directly fyrom S to &
across the distance ©° . At this distance the ficld of view of

the Gershun tube determines a region on S whose projected area
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nomal to the line of sight is designated by A, (Figure 4b).
Suppose that the field of view of the tube is sufficiently small
so that at all points of /ﬁr the surface radiance of O is
essentially N, in the direction of the line of sight., Further-
more, at e ach point of /\k let VJO be egsentially uniform over
the solid angle \(),, subtended by the collecting plate of

the Gershun tubc. Finally, let |2 be the radiant flux emitted
by A, into the solid angles (), , and let . be that part .
of P, trensmitted from S to G . Then, we ha.ve,-by defini-

tion,

i

Py Nl?‘ :AO nfo

’
(18)

Po = No A\v \ﬂﬂ" .

But now observe the following two facts:, First, the geometrical

fact that

Ao A

e 9 (19)

/\o‘jl,o = ./\r\fllp =

and second, the physical fact that

(20)

Pr= T B .
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Here -T;. is the factor (the beam transmittance) which determines

how much of Po gets through to (& . It tokes into account
the losses suffered by Fg due to scattering =nd =bsorption ~11

l'.mlong its travels from O to G . T; is actually of the form:

where o 1is thc volume attenuation coefficient to be defined
in detail below. From statements (18), (19), ~nd (20), wc have

the conclusion:

Nr‘ = .r‘" NO; (2:’)

By viewing the preceding arguments in a suitably general
way, we can immedirtely solve the sccond problem (ii). Consider 8§
as the hypothetical surface of a small volume V on the path of
sight 2t a distance r—t’ from &, where P may teke any
magnitude between O and Y (Figure 4c). Furthermore, the
surface radinnce N:.r, of S is now defined as the radiance gener~ted
by scattering of ambient flux per unit length of path into the
direction of & . (The exact nature of N* will be determined
in the section on the volume scattering function). It follows
immediately from (22) th~t the emount of radiance transmitted

from V to G is:
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Ty._;.’ N* dr’ . (23)

Clearly, the total amount of radiance generated in this way and
received at (5 is obtained by surming the above contributions

) .
over 2ll disteances P between O and P i i.e..

F

o

* b

Ny = g Tr-r N=i< d}'/, =
o

X
where N ¢ is crlled the path radiance. Thus the answer to the

main problem posed in this section is expresscd in the following

formula:

(25)
Nk

0

TN + NY .

It follows that the field radiance N,_ of an object viewed
along a path of length |~ gencerally consists of two parts: the
transmitted surface radiance T, N,  of the object, and the
path radiance N:< which represents the "gpace light" generated
by scattering in the intervening distance between the object

and the Gershun tube.
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As A special case of the cbove fermula, suppese the intor-
vening distance botween S ond (3 were through @ veid, then

" :
*
of course [, = | and - N = 0O , 30 thot:

Ny = N, .

Thus, the observed ficld recisnce N, is, in this cese, equal

to the surface radisnce PJO .

The term "field radiance" for the quantity ’Vy is occasi~nally

replaced by the more suggestive term apparent radiance. Thesc

terms are of course to be considered completely synonymous.

The latter term is usually employed when a porticular object is
wnder view, so that we may speck of the "apparent radisnce cof

an object" in the field of view. In like manner, PJO is usurlly

referred to as the inhercnt radiance of the object. According

to (25), then, the apporent radiance iﬂy of an object generclly
consists of the sum of its dircctly transmitted inherent radicnce

No » ~nd the path radinnce nssocieted with the poth of sight.

Inversc-Scuare Lew

The inverse-square low is conventionally asscocicted with the
irradiance produced by o peint source. More explicitly, the law
states thoat the irrndi~nce u & surfoce produced by a point

source varics inversely as the squere of the distance between

the point and the receiving surfrce.
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The customary prodfé of the invérse-square law require the.
.hotion of radiant intensity; that is the radiant flux output
f a point source. The folldwihg discussion, however, considers
finiée sources of radiant flux and handles the radiometric quan-
tities by means of. radiance., ‘This is a more meaningful approach

since it deals with measurable quantities.

.Consider a plané area of avbitrary shape (Figure 35). ?ét
the area be of ma gnitﬁde /\ . View this'ﬁred with a Gershun tube
S0 thﬂt the llne of 51ght is perpendlcular to the area.  (If
a glven.area is not norm.l to the line of 51ght,'let /\ represent. -
'1ts progected.aree normll to the line of 31uht ) Suppose that
at each point of the: ﬂrea tne surface rﬂdlance is’ some fixed:
value N ~ih the direction of the line of’ sight. If thé surface
‘ié'viewed'through-a void from a distance at which the surface
completely fills the field of view of the tube, then by the
‘preceding grgumehts; the fiélq radiance determined by the. Gershun
tube is5aléé"w ';J As ihe'aistance from the surfa;e is increased?
thcre w1ll be a dlstrnce, say r ) at whlch the entire surfcce

1s Just w1th1n the field of view of the tube, and for all distances
'preater th?n Y , the emitting surfece w1ll be contained wholly
.w1th1n the field of view. The flux from the surface now arrives

at the collecting plate of the tube through a solid aﬁglerf

magnitude,
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which is not greater than the Ll of the tube. It is clear,
however, that the field radiance of each point of the emitting
surface is still !V (as would be verified if a Gershun tube with
a solid angle sufficiently smaller than \(lx were to be used).

It follows thet the irradiance on the tube's collecting surface

must be
HY= Nlﬂ.r

If these expressions are combined, we have the following

form of the inverse-square law for irradiance:

H, = D& . (26)

= r

By including the factor 'T; in the above formula, we can
describe the transmitted irradiance through a scattering-absorb-
. ¥
ing medium, Furthermore, an analogous term tc h]r can also be

included when needed.

In this way the inverse-square law (26) is defined in terms
of the directly observeble quantities N , A , and r .
We note in passing that the product NA takes over the role
of radiant intensity, having the dimensions of radiant flux per
unit solid angle; however, the geometric entity with which this
quantity NA is associated is a surface of finite area and arbi-

trary shape. These considerations lead us to a useful operational
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definition of the term "point source." As the preceding discussion
shows, the idea of a point source is actually relative to the
angular opening of the Gershun tube. (Recall that radiometrically
mood tubes will have length to redius ratios of 10 to 1 or lerger;
see, e.g., (Tyler, 1958¢c)). Thus a source of radiant flux in

the radiometric environment of a given Gershun tube may be said

to be a point source if it can be completely contained within

the field of view of that tube. It is of interest tc observe that
if we were to indulge in an exact mathematical analysis of the
accuracy of the above statement of the inverse-square law, we

would find that the above estimate of H, differs from the exact
amount by not more than one per cent of the exact amount. Since
our approach is purely operational, the preceding form of the
inverse-square law and the definition of point source are evidently
the ones that are most natural to adopt in any experimental study

of the light field.

Lambert Collectors and Emitters

The definition of a Lambert collector given during the dis-
cussion of the measurcment of radiant flux can be cast into
several altermnate forms. The characterization chosen for discussion
here is not only applicable to Lambert collectors, but also can
be turned around, so to speak, ond be used to characterize the

complementary notion of a Lambert emitter.
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First, as regards the Lambert collector, consider a plane
area of arbitrary shape and of arca A . Let the arca be
irradiated at cach point of its surface by incoming flux which
has a field radiance N in all directions over the incoming
hemisphere. Then the radiant flux E(G) incident on the crea
(sec footnote 1) , thmugh & small solid angle LV  inclined at

an angle B with the normal, ims given by:

P(8) = N Acose = R(0)cose, (2

A

and the surface, being a Lambert collector, rccords a responsc

equal to P:(8) i.e., the recorder exhibits ~ cosine response

to such incoming flux.

Conversely, suppose the area A now- emits (or reflects)
radiant flux, and supposc that the total flux P, (©) is
emitted (or reflected) in A mamner described by (27), where the
flux being observed is contributed by each point of the surface
radiating through a fixed small solid angle ), , i.c., Po(®)

is of the form:

P,(8) = No(LA cose = Po)cose (28)
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A surface which exhibits such a radiation characteristic is called
a Lambert emitter (or reflector). From this, it follows imme-
diately that a Lambert emitter (or rcflector) necessarily has a
uniform surface radiance No in all directions at each of its

points,

' Analytical Relations Between the Radiometric Concepts

The radiometric concepts are gathered together for convenient
reference in Table 4 at the end of the paper. In this scction,
we wish to analytically tie together the various concepts intro-
duced so far. Observe that all the concepts have been defined in
terms of realizable physicel operations. However, the various
interrelations between the notions are most conveniently brought
out by using their analytical representations., The concept of
radiance will be singled out as the most basic as far as mathe-
matical operetions are concerned. For, from knowledge of [N ,

all the other radiometric quantities are easily detemined.

Scalar and Spherical Irradiance. The operational procedure for

obtaining sphericel irradiance h has already been outlined.

4T
It remains to define scalar irradiance and show the ceonnection
between these two irradiances. To this end, let N{p,e, 96)

be the field radiance at point,p, arriving from the direction

(9, C[S) where B and c,ﬁ are measured from some fixed reference

AR ) .:.: Lo
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system (Figure 5). Then the scelar irradiance h(p)

pcint 13 is defined as:

T 2T

h(fl) = J j N(#,8,¢) dl)
)

=0 ¢:0

where

dO = swnededdé .

We can obtain an analytic expression for Figg (42)

- 32 -

at

(29)

(30)

in

the following way: cnnsider a small spherical Lambert collector

of radius | with center at 42 . Then the amount P(r.e,¢)

of radiant flux intercepted by the spherical surface from a unit

solid angle in the direction (9, ¢) is (using the cosine law)

-
P(p,8 @)= N(p,e,gzb)J cos\/‘dA . (31)

hem:sphere

where the hemisphere of integration is determined by the plane of

the great circle C which is perpendicular to¢ the direction (a,qb),
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The integral is easy to evaluate because it simply represents the
projected area of the hemisphere on the plane of itsgreat circle,

so that

Ple.o,d)= TriNGgee ). (32)
The amount l3(43) of flux intercepted by the sphere from all
directions is:
ToLaTw )
~P(/'2)=')§ \ Pipe,) dQ = T hep). (33)
g=¢ ¢=o

Finally, the average flux per unit area on the collecting sphere is,

by definition:

(34)

Irradiance and Radiant Emittance. The irradiance H</4) produced

by o distribution of field radiance N(z2,8,¢) at p on

a surface is cbtained from Equations (6) and (14):
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Tl2 ar
H(P):S j N(p,®,¢) cose di) . (35)
8=o0 “¢=o
On the other hand, if NO(P19)¢) represents the surfece

redisnce 2t point B then by (17):

e 2T

W(p) = g S No (r,8,¢) cose d.r. (36)
g=0 P=°

Radinnt Flux., If @ surface & is being irradisted at each

print © by a certsin radirnce distribution, then we can calcu-
late ot each point /a, the irradiance H(ﬁ,) , and it

follows that the flux incident on the whole surface S is:

P(s) = Schﬂ) olA . (37)
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Radiant Energy. The radiant energy content L}(FE) of a given

region R or space is:

U(RY = SR weprdV = th(molV. (38)

The unit of radiant energy is a joule.
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PROPERTIES WHICH GOVERN THE TRANSFER OF LIGHT

Introductory Remarks

The passage of light through regions containing matter c an
be studied on several levels: on the microscopic level using
the tools provided by quantum theory and relativity theory; on
a bend of levels betwéen the microscopic and macroscopic level
by mezns of Maxwell's equations, the equations of relativity
or the quantum theory, or a combination of ~ll three; and finally,
on a macroscopic level in which the main tools are the radiometric
concepts and the simple devices used to measure them, nemely
the Gershun tube, fleat-plate and spherical collectors. We will
eontinue ~ur studies of light by remaining on this macroscopic,
or phenomenological level. It is on this level that we can
reach, in the quickest and most natural way, the solution of the
important problems dealing with the visibility of underwater
objects, and the sclutions of those problems of marine biology
which require detailed knowledge of the gquantity ond quality

of the light field in natural hydrosols.

By adopting the phenomenological approach, we autometically
preselect certoin macroscopic physical properties of the optical
medium which govern the passage of light through and within

the medium, In sther words we automatically eliminate to a
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great degree the need to come to grips with the intricate details
of the interaction of light with individual atomic systems, nor
need we determine various electrical or magnetic properties of the
substance comprising the natural hydrosol before we can make
meaningful predictions of the passage of light through the hydrosocl.
By adopting the present approach, we necessarily limit ourselves

to small but finite volumes of matter and to the direct observation
of how these absorb and scatter the radiant flux through them.

By a systematic study of the interaction of light with such

small but finite volumes the experimenter can detect and classify
the phenomena of absorption and scattering in an exhaustive and
detailed manner, and subsequently go on to erect a phenomenological
theory of light whose mathematical framework is just as rigorous
and internally consistent as those associated with the study of

light on the alternate descriptive levels mentioned above.

As the phenomenological classification of the scettering and
absorbing properties proceeds, we will see that these properties
can be divided quite naturally into two classes: the class con-
sisting of the inherent optical properties of a medium, and the
class consisting of the apparent optical properties of the medium.
The former class includes such quantities as the volume attenuation
function, the volume scattering function, and the absorption
function. These summarize certain intrinsic physical acticns of the

i

medium on a given beam of light as the beam passes through the

medium. This action is generally independent of the orientation
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of the beam, and »f the existing lighting cnnditi-ns within the
medium. The sccond class contains such quantities as the
V(-iunctions, the distribution functions, and the reflectance
functions. These describe the behavior of light fields as they
exist at the moment of the experiment: they are properties
which depend jointly on the inherent properties of the medium

and the geometrical structure of the light field.

The apparent optical pfoperties depend in a rather complicated
way on the inherent properties and at the same time are at the
mercy of highly varieble and unpredictable external lighting
conditions; however, they are worthy of study and classification
because of the following three facts: First, the gross behavior
of these properties as determined by actual experiments are
strikingly regular. While these gross features do indeed depend
upon extemal lighting conditions, their observable regularities
are, as we shall see, amenable to generalizations which apply
to all real scattering-absorbing media, Secondly, there are
useful theoretical relationships between the inherent and apparent
optical properties. These relationships can be deduced from
the exact equations of radiative transfer theory, independently
of any further éxperimental considerations. These relationships
hold irregardless of the lighting conditions that exist inside
or outside of the medium. Finally, the use of apparent optical
properties reduces to a practical level the solution of under-

water visibility problems ond pertinent problems of marine
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biology. These problems are simplified in the following sense:

It is possible, by mathematical procedure, to obtain an exact
aetennination of the light field throughout an optical medium

having given only the inherent optical properties ond the external
lighting conditions (i.e., the radiance distributions at the
boundaries of the medium). However, this is a2 prohibitively complex
and lengthy procedure at the present time. By experimentally
determining the apparent optical properties of real media, we are

in effect solving on a practical level certain particularly diffi-

cult parts of this analytical procedure.
Inherent Optical Properties

We will introduce the inherent optical properties by means
of three hypothetical experiments. Besides drawing out the
basic nature of the optical properties, these experiments outline
actual operational procedures for the determination of numerical
values for these properties, However, the experiments carried
out below are ideal experiments. They are deliberately not
complicated by the precautions that must be taken in actual prac-
tice in order to avoid the obvious pitfalls accompaenying imperfect
instruments, perturbations of light fields by measuring equipment,

et cetera.
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1. Volume Attenuation Coefficient. Consider the experimental

arrangement shown in Figure 6a. The source O has a surface
radiance Ny as measured by the Gershun tube & when the
latter is at zero distance from the source. The Gershun tube is
now moved away from the source but in such a way that it always
looks into the beam and in the direction of the source, Let Nk
be the radiance measured by & when at a distance P from S .
If the intervening region between S and & were a vacuum,
then we know from our earlier discussions that for any distance F ,
we would have Nr.= N, . But now the intervening region

is assumed to be uniformly filled by the material of some natural
hydrosol and the values of Nr are observed to decrease with

increasing ¥ . When we plot the following quantity:

n ()

for each F , we see that the resultant plot over a certain
range is a straight line with negative slope (depicted schemati-
cally in Figure 6éb). Let the absolute value of the slope of this
line be designated by << , Then, the relation between Ny

and No in this renge is evidentaly of the form:

Noe =" (39)

=z
]
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W

We perform this experiment severzal times, each time setting'tbd

to some new value and observing the resultant PJr values over: 
the same path. Each time a plot is made, another line with thé
same slope is obtained. By taking measurements along other paths;
the same value X is obtained acain. In the terminology defined

5 . .
sbove,” we are working in a homogeneous region of the medium.

In these experiments, we have taken precautions to measurc
only the light that has come directly from the source, and also
not to take readings at extreme distances so as to stay within

the region of linearity.

In order to fully understand the meaning of the value of o ,

let us write (39) in differential form:

dN}_:::—-—OLN}, Cl}". (40)

The first observation we can moke is that for each increment ol b

of distonce away from S , the corresponding increment CibJr

of the observedvradiance is negative. This reflects the obser-
ation that ’VF decreases with increasing distance from 65 R

The second fact we may observe is that this increment cihlr is

linearly proportionzl to N, and to ol . But since we per-

formed thc experiments for several velues of ﬁdo and veariously
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oriented paths, and obtained the same o each time, we conclude
that ©{ must be some inherent property of the medium independent
of the rmount of flux in the beam and of the beam's orientation.
Apparently o has the dimensions of reciprocal length. Fiom
the differential statement, we conclude that o( gives the attenua-
tion per unit length of a beam of unit radiance. The preceding
statement, Eq. (40), being written in differential form, is a
statement of the chenge of hir over small increments of path
length. It is quite possible that the value ©¢ may be found

to be different at other points of the path and, in general, at
other points of the medium. In such cases, as noted above

(footnote 5), we will refer to ¢X as the volume attenuation function.

We can make some further observations about <{ by return-
ing to the original experimental setup. By careful measurement

of the beam's radiance from regions just outside of the beam

(Figure 7), we detect radiation of the same wavelength as that

of the soirce. This stray light can be positively identified as
coming from the beam. From this we may conclude that the attenua-
tion of the heam's radiance is partially due to a scattering of
some of its flux out of the main direction of travel of the beam.
A critical examination of the scattered flux would soon reveal
that scattering alone would not account for the total attenua-
tion of the original beam. We conclude therefore that the medium,
in addition to inducing a loss by scattering, also 'absorbs!

some of the beam's radiance. Since we have fixed our radiance
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tube's sensitivity at one particular wavelength, and since the
total attenuation of the beam's radiance cannot be accounted
for by scattered flux of the seme wavelength in the vicinity of

the beam, this absorption must manifest itself by a conversion

of some of the beam's radiant flux into radiant flux of a
different (generally longer) wavelength. This conjecture could
soon be verified by suitably probing the immediate vicinity of
the beam with Gershun tubes which have been made sensitive to

radiant flux of longer wavelengths.

Equations (39) and (40) supply the following altemate

operational definitions of <

X = - N
(41)

<= Th(})-

X 1is apparently the sum of two generally independent temms:
a term, .4 , which refers to that part of the attenuation due
ﬁo scattering of flux from the beam without change in wavelength,
and a term QL which refers to the conversion, or absorption, of
some of the flux into flux of different wavelength as that of the
original beam. Thus, we may write ¢ = Q.+.4 . In fhis wey
we come to the concepts of the total volume scattering function

and the volume absorption coefficient.
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2. Volume Scattering Function. In the preceding discussion,

during the attempt to estimate the amount of radiant flux
scattered out of the original beam, the experimental arrangement
shown in Figure 7 was used: The Gershun tube G was directed

at a fixed point #£ 1in the original beam. The tube was turned

so that it successively loocked at point 4+ 1in all directions e
from the direction of the source S . Thus €  was varied
essentially from O to 180°. For each orientation 8O sy, G was

always kept at a small fixed distance I from £ , end the

corresponding field radiance hfﬁs(a) of the beam was recorded.
The length A (O) of the path of sight through the beam

for that particular orientation was also noted. From this
information, the flux scattered out of the beam over each unit of
path length can easily be computed. We now go through the details
of this computation because they lead us directly to (a) the
volume scattering function g~ , (b) the path function TU4< R
(c) the (volume) total scattering coefficient .4 , and

(d) a simple derivation of the basic equation of transfer for
radiance.

(a) The volume scattering function.

Assume | ‘is emall, so thet the surface radiance of

the small segment of the beam under view by G is essentially
XK

the recorded field radiance Ny (9) . Let Ao be

the projected area that the observed element of vclume presents

to the line of sight of (& . Then by (16), the flux per unit
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solid angle emitted by the volume in the direction of (& is

clearly:
>k
N L (9) A(@) P

But the volume of the observed element of beam can be represented

by

Ace) dee)

so thot the flux in a unit solid angle in the direction of (&

emitted by a unit volume of the medium at £ is evidently:

NX(e) Ae) _ Nele) "
Ace) L) o) *

Let the cross-sectional arca of the beam be designated by A .

Then the quantity
A N%(9)
£(9)

has the following simple interpretation: it is first of all the
amount of flux per unit solid angle scattered in the direction
of (& ; and secondly, it is scattered by an element of volume
of the medium which has cross section A and unit length in

the direction of the beam. Thus the integral
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*
e A©®

n

over all solid angles about y/2 evidently gives the total flux
scattered out of the beam per unit length of travel of the beam

through the medium,

While (43) is useful in practical estimates of the rote of
loss of radiant flux from the beam through the mechanism of
scattering, it nlso contains the germ of the idea of the volume
scattering function. To see this, we first note that the total

flux of the beam across the area A is

Nr\Q}.A )

where \_Q_/r is the solid angle subtense of the source at
point L2 ond N,. is the radiance of the beam at ¢ . There-

fore, if we divide (43) by this quantity, the result,

A NEe©) o, (44)
Ny by - ,ﬂ(a)

has the following interpretation: it is the totnl amount of
radiance lost by scattering per unit length of travel of 2 beam

of unit radisnce.
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We now may inquire about the directional distribution of the
scattered flux. From (44) we see thet this distribution is

governed by

| ) Nf(e)
Nl 2(8)

ae) = (45)

When this operation on the observeble quantities N,, ’ S r
Ni(e) and  A(8) is examined in detail, we uncover
the following sct of experimental fects:
(1) @(®) is found to be independent of the amount
of irradiation Np L, .
(ii) 0(8) is independent of the magnitude of Mo) .
(ii1) If 8, F, r’) d md N, are 21l held fixed
and G is swung around the beam, ((8) remains
fixed.
(iv) g(®) 4is independent of the 2zbsolute orientation of

S and G about £ (medium is isotropic).

These four experimental findings form the basis for the
conclusion thrt T(8) is an inherent optical property of the
medium. Clesrly, on the basis of (i), J(8) does not depend
on the absolute amount of irradiation on the element of volume

of the medium. Furthemmore, on the basis of (ii), the relative

amount of flux observed to be scattered at a given angle 8
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by o small irradisted volume dous not depend on the length of the
path of sight through that small volume. Finally, according

to (iii) and @Gv), J(®) does not depend on the spatial orientation
of the plane formed by the irradiating beam and the direction of
observotion of the irradisated volume. The function - , which
depends only on 8 (in a homogenecous medium) is called the

volume scattering function. Its operational definition is given

by (45), or by the equivalent form

—_ (46)
q(e) e J
where
N o) (47)
PJ%<(8) = L ( )

Lce)

is n quantity independent of the length M(8) (feet (ii)). N
nd L refer té the radicnce and solid sngle subtense (at
the point fl ) of the irradioting source. The dimensions of a
are: per unit length per unit solid ingle. Both the unit of

length ~nd sclid anzle are in the direction cf obscrvation of the

irradiated volume,



310 Ref., 58-69 - Ly -

(b) The peth function Nc-i:l,

N* (8} as defined.in (47), is interpreted as
follows: it is the radiance per unit length.in the direction of

¥ the line of sight, gemerated by the.scatbered.light of the beam.

Ny is called the path function.. It plays -an important
' rl ”; role in the general theory of radiative transfer-and in the

* solution of-visibility problems. By .(46) we may writc

L8
Nyl)= T(B) N\ . e

"It is easy-to-generalize this. femula to the following. form:

. . - oy (49)
"Nk 2ro= S T(piebie,p' ) N(AOLE' )y O04), "

4

where the-point -2 - is now being irradiated by flux from all ’
directions-cbout 42 . An example of the calculation of N*(-;Q,EJ,qS)‘
in real media is given in (Preisendorfer 1956). O¢p;6,¢;6'¢')is
the value of the volume .scattering function at point 42 for
light incident in the directiom (G,’tﬁ'}end scattered ‘off in the

direction (©,#) . (B,¢) d(8)¢')ere mensured with respect to some
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fixed reference frame (in the derivetion (6,¢d was taken ~s

(p,0) md TP j8#: 6 ¢') was conveniently abbreviated to

G(68)) . This generalized form Ng(2/6,®) has the same

general interpretation as AQ((B) above, but now the radiance

| per unit length in the direction of observetion is generated by

light scattered into the line of sight from all directions about

the point @ . By property (iv), a(pio®;6,4') for any pair (6,¢), (B,’W)
| is known from the determination of Q(®) ot point £, as

3 defined in (46).

c. The volume total scattering coefficient.

From the above arguments we now have an explicit

cxpression for the term, .A , which arose in the discussion of
the volume attenuntion coefficient <o . For this term is
evidently none other than that given in (44) which, by (45),

may be written

w
4 = g ag(e)d, = ETFE q(8)sIng de. (50)
4 o

T

The sceond axpression follows from facts (iii) snd (iv). This

is the volume total scattering coefficient . In non homogeneous

media, it may change from point to point, but in my event, 4
Aoes not depend on the dircction of the irradi~ting beam (facts

(ii1) ~nd (iv)). Closely relrted to .4 ~re the (volume) forward
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scattering and (volume) backword scattering coefficients ¥

and b defined by the following formulas:

/e
f= 27 _\O g®) s do , (51)
(,TL‘
b= 2T ad®e) 5me’d9‘, (52)
e
so that

Ais in the case of .4, both § and ,b‘ may vary with
position, but they do not in any event depend on the direction

of the irrzdiating beam.

d. Equation of transfer.

From the preceding interpretations of o¢ and N
it is easy to verify that the equation of trensfer for field radiance
(or surface radiance) N'}_ in a source-free medium is expressible

as:
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é..r\i# == o—— O N' -+ N* . (5/+)
d+

The first term on the right irives the space rate of logs of /\i,
by attenuation; the second term gives the space rrte of gain
of Nb by scattering. It is of interest to point out that

Eq. (25) is the formmal sclution of Eq. (54).

3. The Volume Absorption Coefficient., Durin;; the discussion

>T the volume attenuation coefficient ¢ we found that <X

summarizes twe distinct types of action by the medium on the bcam:
absorption and scattering. The preceding discussion of the volume
scattering function resulted in an explicit formule for _é_, (50).

Thus from (53) we may obtain (L by subtraction:

A= < — 4. (55)

There exists another way of obtmining ©. . This method requires
no previcus knowledge of o or _& . It is exact, and completely
renerrl. Purthermore, it is prrticularly simplc tc use in

nntural hydrosols., This is the method which makes usc of the

divergence reletion of the light field (Prcisendorfer 1957-) ~nd
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vields the equation:

dH@,+) _ a2) hez). (56)
dz

To understand the physical significance of the terms oceurring

in (56), consider the experimental arrangement in Figure 8.
H(2Z,+) is the net upwelling irradiance measured at depth 7
ie., H(Z,+) = H(2#) - H(Z,~) . Here H(Z +) is the
irradiance at depth 7 on a flat plate collector which receives
the upward moving flux., H(Z, —) is the irradiance at depth
7z due to downward moving flux. h(2) is the scalar
irradisnce at depth Z , and Q(2) is the value of the
volume absorption function at depth # . According to (56),

to obtain  G.(Z) one performs the following operation:

1 dHEz (57)
h(z) Az

c(z) =

on the measurable quantities 11(2)4') and })(&) . If the
medium is homogeneous (footnote 5) then (57) will automaticelly
yield the value of the volume absorption coefficient. In the
determination of a(#) by this method, it is clear thet in
order to evaluate the derivative of ?I(Z,'*) s Mmeasure-
ments of H{Z,+) and H(Z,—) mnust be made in some interval

of depths about the depth =< .
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The volume absorption coefficient is an inherent optical
property of the medium, While this fact may be somewhat difficult
to establish from (57), it is readily scen to be true by (55),
since we have already shown in detail that both (. 2nd -4 arc
inherent optical properties. The dimension of Cx as that of (x
and _A , is reciprocal length. This can be established by

inspection of either (55) or (57).

Apparent Optical Properties

The apparent optical properties of natural waters consists at
present of a set of seven quantities whose numerical values
depend on the angular structure of the light field as well as

on the physical composition of the water.

The apparent opticel properties can be obtained from four
basic measurements. These measurements take the form of two
pairs of irradiance quantities: one pair consists of ordinary
irradiances, the other of scalar irradiances. In each of these
pairs, one member is assigned to upwelling flux, the other to down-
welling flux. The reason that there are precisely four such
quantities stems from our conceptual decomposition of the flow of
radiant energy in any natural hydrosol. (stratified or not) into
two streams: an upward flowing stream and a downward flowing

stream across each horizontal plane in the medium.
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The four basic irradiances are:
H(Z, +) H(Z,=) ,

(58)
h(%+) hez, =),

H(Z,+) ena H(Z,~] are the upwelling (+) and downwelling (=)

irradiance, respectively. They are induced by the up and down-
welling flux streams at depth Z . These quantities may be
obtained from field radiance measurcments, or they may be measured
by flat Lambert collectors exposed to the appropriate hemis-
pheres (Figure 8). In like manner, hez,+) and h(Z,=)

are the upwelling (+) and downwelling (~) scalar irradiances,

and refer to up and downwelling flux, respectively, at depth #.
They may be obtained from field radiance measurements. Alter-
natively, spherical Lambert collectors may be used to measure
these quantities. A possible experimental arrangement is shown
in Figure 9. Observe that the collectors are complete spheres

in each case. The sphere that measures l’!(Z, —-) , for example,
should be shielded from the upwelling flux by some device which at
the same time impedes as little as possible the interchange of
flux across the horizontal plane at depth Z . In analogy to
our earlier discussion of the relation between h and h 4TC ,

we can show that the downwelling spherical irradiance h,p(2,-)

actually measured by the shielded sphere shown schemetically in

Figure 9a is related to |(z,-) by:



SIO Ref. 58 - 69 . =56 -
. | .
hae(2, =) = hez =), . (59)

Similarly, the upwelling spherical irradiance },4-,1- (2,+)

measured by the other shielded sphere shown schematically in

Figure 9b, is related to h(2,+) by:

‘,\4“_-(2,-(-) = -‘l'- hez,+). | (60)

The connection between )\ 47c and the spherical irradiances

defined above, assuming ideal shielding, is straightforward:

Furthemore

hezy = hizg, 9+ hez,+. (62)
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1. The Reflectance Functions, The reflectance functions

are defined by:

o ) H(z,+)
(Z,-) = ‘
’ He,-)
H(z,-) (63)
R+ = T+
The physical interpretation of R(Z,-) is straightforward:

it represents the ratio of the upwelling irradisnce at depth Z
to the downwelling irradiance at depth Z , so that 12(2) =)
may be thought of as the reflectance, with respect to the down-
welling flux, of a hymothetical plane surface at denth Z in

the medium. For completeness, we have included the reflectance
R(z ) ~+) for the upwelling stream. However, this is sinply
the reciprocai of R(Z, =) . 1In actuality, R(Z,-) depends
on the scattering vroperties of the entire medium above and below
this level., It will also depend in part on the reflectance pro-
perties of the upper and lower boundaries of the mediur: if these
are within sight of the flux collectors. [<(Z,—) is not an
inherent property of the rmedium, for experiments and theory show
in general that for a given medium and a civen depth in that
medium, the value KK (2, -) changes vith the external lighting

conditions.

Definition (63) is completely general: it aprlies to any

nedium, be it deep or shallow, irradiated by the sun in a clear
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sky or by any type of overcast. Because of this generality,

very little can be said about exectly how the values of ~R(Z)—)
should depend on depth., No pat statement can be made which asserts
fﬁat R(#,-) should always increase with depth, or that it
should always decrease with depth, or that it should go through
maxima or minira at certain depths, remain constant with depth,

and so on.

Despite this unwillingness of R (Z,—) to have its
characteristics tyned in very fine deteail, there are certain gross
characteristics vhich make it an indispensable tool in engineering
calculations: in optically ceep homogeneous hydrosols, R (Z,-—)
varies very little with depth. Mear the surface of thesc nedia,
it shows reletively high variability with depth which depends
on the state of the surface an¢ incident lighting pattemns,
but soon settles down and apnroaches a constent value independent
of depth. R (#,-) thereby takes on the status of an apparent
opt'ical property of the medium. Furthemore, in media that have
no self-luminous organisnms, K (#Z,—) behaves as any respect-
able reflectance should: it is never greater than 1. In fact,
in most natural hydrosols the values of ,Q’( Z;-) arec usually
found to be somewhere in the neighborhood of 0.02, give or take
0.01. In media containing self-luminous organisms distributed
throupghout some layer, it is quite possible, however, for the
values of [( Z)-—) to anproach 1 as this layer is approached,

and even became greater than 1 just before it enters the layer.
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Some examples of R(7,-) are given in Table 1.

While the problem of the fine detail of the dépth dependence
of [2(Z,~) is mainly of academic interest, we note that there
is no dearth of theoretical approaches to this interesting problem.
One model of the light field uwhich is particularly useful in the
study of this problerm is the so-called two-D theory (Preisendorfer
1957b). This model is particularly simple to use, and is still
sufficiently detailed to supply a multitude of examrles of the
depth dependerice of IR(Zy,-) ¢ it supnplies cases in which
K(Z,-) can increase or decrease over preselected depth ranges.

In all cases, however, the nodel states that there is some value
Roo which K(Z)-) approaches asymptoticelly with depth in
optically infinitely deep media. This asymptotic value depends
in a calculable way on both the inherent optical properties of
the mediun and on the limiting lighting conditions. Further
remarks on the behavior of [R(Z,-) at great depths are

made in the closing section of this paper.

2. The Distribution Functions. 4 particularly simple

means of characterizing the depth dependence of the shape of
radience distributions, without resorting to an actual measure-
ment of the radiance over all directions at each cdepth, is given

by the distribution functions:

- "‘(Z')‘)
A v
) (64)
_ (Z,+)
D(2)+) - H(z)"‘)
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It is easily seen fron the definitions of h end H that if
the shape of the recdience distribution changes with depth, then
D(2,-) and D(Z,+) will chenge with depth; and conversely,

if the values of the distribution functions very with depth,

the radiance distributions nust be changing shape with depth., It
is clear from the definitions that D(Z,-)  gives an index of
the shape of the radiance distribution in the upper henisnhere
(i.e., for the downwelling flux), and [D(Z,+) does a
sinmilar job cf characterizing the shape of the rediance distribu-

tion in the lower hemisphere (i.e., for the upwelling flux).

Detoiled experimental studies of the light field in Lake
Pend Oreille show that both D(Z,+) and D(Z,~) exhibit
relatively little change vith depth (Tyler;1958a). Furthermore,
this independence of depth is found whether the externzl lighting
conditions are sunny or overcast. Under either of these condi-
tic;ns, the values [J(2,~) hovered very closely in the neigh-
borhood of 1.3, while the values D (Z,+) clustered around 2.7.
Examples of (D(2,~) and D(Z,+) are given in Table 1.
It aprears at present that these values should be tvrical of the

values that one may find in many natural hy‘rosols.
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Of course, as in the case of K(Z,-) , the cuantities
D(Z,~) and D(Z,+) will obstinately refuse to have any
sweeping generalizations made sbout the fine structure of their
depth demendence. However, as in the casc of R (2Z,—) s
simple theoretical tools exist which can be directed toward such
nroblems if the need ever arises to discuss depth denendence in
detail (Preisendorfer 1957c). Furthemorc, the ultimate depth
dependence of D(Z,-) and D(Z,+) in deep media is

quite regular and predictable (see closing section).

The observed constancy of the distribution functicns with
depth has important practical consequences. In homogeneous media
exhibiting this type of behavior a few well-selected measurements
of the inherent optical properties together with radiasnce distri-
butions near the surface would suffice as the basis for an
estimate of the quantity and quality of the light field for all
depths in the medium. Such estimates could be maede by means of
the two-D nodel (Preisendorfer 1957b) or the simple radiance

rmodel (Freisendorfer 1957c).

In addition to characterizing the depth dependence of the
anmular structure of radiance distributions, (2, =) and D(Z,%)
play indispensable roles in the equations of anplied radiative
trensfer theory, marticularly in those equations which link the
inherent and anparent optical proverties of a medium. These roles

will be illustrated as a matter of course in the discussions below.
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3. The K-Functions. The reflectance function sives a

running account of the relative magnitudes of the irradiance of
each stream of radiant flux. In this section we now discuss the
quantities which characterize the individual depth dependence of the
up and downwelling irradiances and of the scalar irradiance. Thesec
are called the Ff ~functions. The motivations for the definitions
of these functions are supplied by both theoretical and experi-
mental orecedent extending back over at least fifty years of

applied radiative trensfer theory.

The theoretical motivation for the K -functions for irra-
diance and scalar irradiance defined below stems from an attempt
to increase the usefulness of the Schuster equations for the
two-flow analysis of the light field, The detailed development
of this arproach and its practical applications recently have been

completed (Preisendorfer 1958a).

The experimental rotivation for the K -functions rests in

early empirical relations of the kind:

- I —KZ (65)

which simultaneously vere to characterize the depth dependence

of J:Z and define its depth-rate of decay, K . In the above
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relation [ z took many forms: in some studies it was downwelling
irradiance, in others it was a scalar irradiance-like quantity;

in still others, its exact nature was not quite clear., Therefore,
there was no universal agreement as to what radiometric quantity
it should represent. As a result, there was ho agreement as to
what it really measured. 4 plot of IZ- on semi~log paper with
depth as abscissa yielded — K as the slope of the streight line.

K could thus be defined operationally as:

| Lz (66)
K= %[ F ]

It suffices to observe here that these early theoretical
and experimental approaches to characterize a K -like optical
property of natural hydrosols were inadequate to the subsequent
needs for precision and completeness in modern hydrological optics.
In current basic research IZ is replaced by the three pre-
cisely defined irradiances |( Z,-) H(Z,+) , and h(Z) .
Furthermore, it has become necessary to distinguish not only
between the megnitudes |H(z,-), H(Z,+) , and h(z_z) , but
also their logarithmic rate of change with depth. Careful measure-
ments (Table 1) show that their logarithmic rates of change are
generally different, and the difference far exceeds the range of
experimental error. In general, semi-log plots of H (2Z,— )

H(Z,+) , and (Z) also exhibit noticeable
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devartures from linearity, especially in near-surface regions.
this fact, of course, is part of the folklore of the study of
hvdrologicel optics which has been extant for many years, but this
non-linearity has been cénsidered more of an annoyance than a
source of enlightening information. In-particular this non-
linearity made it impossible to define a single unambiguous K ,
of the kind anpezring in (66) which othervise could be used to

heln classify the ontical properties of the medium.

The current views in hydrological optics are such that the
'clepar'tures from linearity by semi-log plots.of H(Z,-) , H(Z,+i
anr t')(ZA) are a source of extremely useful insight into the
intricate structure of light fields in natural hydrosols. Far
from beihg ignored, these depart!ures from linearitv should be
welcomer as harbingers of new and deeper understanding. The loga-
rithmic slopes of the FI(Z.-) , H(Z,+) , and hez) plofs

are defined in general as follows:

| AH(Z, )

,\/(Z,i’) oty ~‘H—E—g).§5. dz

@
7

(67)

| ad he#)
})(Z) o 7

15
fizy = -
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Some lelations Between Inherent and .pparent Optical Properties

“‘e continue our present discussion of optical properties
of natural hydrosols by exhibiting a few pgeneral relatioﬁs
between the inherent and aoparent optical properties discussed
above. These relations have been found helpful in collating the
date of basic experimental research and have proviced, in some
insiances, deevner insirht into the whys and hows of the fine struc;
ture of the denth AGbendence of the apnarent ontical pfonertics.
The derivations of these relations need not concermn us here. These
deteils, and some further relations may be found elsewhere

(Preisendorfer 1958a).

The rmost important of these comnecting relati~ns is the

following:

CK(E-) = Q(Z,-)
Rz, -y = . - 9 (69)

k(z.)"l") + a(z)-‘—)

where

' ‘ (70)
a3, ). = D(2, 1))
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Thus (69) links together the K -functions for irradiance, the
R -functions and the {D -functions, i.e., the main anparent

ontical nroperties, with the inherent optical prvdperty aC .

There also are available the following useful inequalities:

A(Z-) £ K(Z,~) < = (2, -)

(71)
or ecuivalently:
a(z) < ‘g(‘(’%f_‘;' T < (Z), (72)
Si-ilarly,
Q2 t) S - K(E+) & RZ,+) (73)
or emiivalently:
e —KEP ey
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vihere

(75)
X2, ) = DB R ) x(Z),

The right-hand sides of all these inequalities hold without
qualification. However, the left-hand side of (71) holds when-
ever O K(Z,+) . The left-hand side of (73) holds
whenever K(Z,-)< O . While our treatment of the down-
welling and upwelling streams has been deliberately kept symmetrical
whenever possible, nature takes a hand in the matter at this point
and clearly shows a preference to the downwelling stream in the
following sense: the conditiecn O < K(Z,+) almost always
holds, so that the inequalities of (71) for downwelling stream
almost always hold. However, the condition K(Z,~)< 0O almost
never holds, so that the left side of (73) for the upwelling
stream almost never holds. The condition |« (Z,-)< O means
that the downwelling stream is constant or growing with increasing‘
depth, a situation which occurs, if at all, only in regions of
very shallow depths in the hydrosol, or in regions where there are

self-luminous sources distributed throughout some layer.

Some further inequalities which are helpful in checking

experimentally obtained »ptical properties and which aid in the
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understanding of the mutual interactions between the up and down-

welling streams of radiant flux are:

K2, +) R(Z,-) < K(2,-), (76)
or equivalently
drz, =) o dHE ) (77)
dz oz

These relations hold for arbitrarily stratified source-freec media.

The same is true for:

IREZ ) pez [K(’Z,—) ——K(fﬁ’]
o |

(78)

The quantities ( Z,E) ; X(Z *) defined in (70)
and (75) are hybrid optical properties: they are the result of
simple combinations of the inherent and apparent optical properties.
Eq. (70) gives the volume absorption function for each strcam,

and (75) rives the volume attenuation function for each stream.
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These quantities by definition do not fall directly into either
the inherent or apparent class.

To round out and complete the picture of the hybrid optical

properties, we mention the (volume) forward scattering functions:

5‘(2,1’), (79)

the (volume) backward scattering functions:

b(z,t), (&)

and the (volume) total scattering functions:

A(Z, %), e

for each stream. Detzailed definitions and discussions of these

quantities may be found in the references (Preisendorfer 1957b).
The hybrid optical properties play important roles in the exact
‘theoretical discussions of the two-flow analysis of the light
fields. They also are of use in collating experimental data on’
inherent and apparent optical properties. Examples of such uses

may be found in the references (Preisendorfer 1958a).
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The Behavior of the Apparent Optical Properties at Great Depths

It was emphasized repeatedly during the introduction and
discussion of the apparent optical propertics that they exhibit cer-
tain useful, rcgular behavior patterns. One of the most striking
of these patterns occurs at great depths in opticnlly deep natural
waters. We briefly summarize herc some of the more important of
these facts. Proofs of these remilts, their historical background,

and practical consequences are given elsewhere. (Preisendorfer 1958b,

1958c, 1958d).

For simplicity, we consider an infinitely deep source-free
homogeneous natural hydrosol. In actuality the results cited
below hold in all natural hydrosols in which the ratio T/

‘becomes independent of depth with increasing depth.

In analogy to K(2,+) , K(Z,~) , and Az) , We can
define one more. K -=function. This is associaft,ed with radiance

N(Z,8,¢)

j A NEZ,e,%) '
N(z®o,¢) - dZ (82)

K(z)9|¢)=' -

It can be shown that

(i) ){(i) | approaches a limit as, Z -2 O , Let this

| limit be denoted by }<o.. .
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In symbols:

0 7 (83)

-7

It can be shown that ,I’ , @oes not exceed <X ., In svmbols:

C

O= B, < o,

(ii) For cach fixed (B) </>) , K(# e, ¢ ) approaches
a limit as # -— , and this limit is independent of
(E)) gﬁ) - This common limit for all directions (&, d’) is

/?L'm . In symbols:
’imzu?w K(z_‘@’,c/)) = /&m

for all (@, q.b)

(i11) K« Z, ~) amd K (Z -F) aroroach Jimits as % 00
and these limits are equal to /%m . In syrbols:

Mz e KOZ2=) = I, Kz, +) = B,

(iv) The distribution functions [)(Z;+) and D{z,-)

avoroach a limit as < -=> 1y, Let thase linmits be denoted

by D) and  [J(—) . In symbols:
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J(-) = jlx'ilz-g‘ > D(‘z,-") 5
(aL)
DY = bz Doz, |
(v) The reflectance function fzf_i;'"‘) approsaches
linit as ¥ o0 . Let this limit be denoted by [y, .
LHL syiibolss j‘
fCa = vy z SN Rz
Theri it follows from (69) that
fig — D) @
Ko = . C(85)

’\
—-L_
N
S\

//& (A8

Heoconclude with.a few observations: FProperty (i) shows
that ﬁhcldcpthjdébendéﬁbe of the amount of lightA(moré orecisely,
radlant dnnulty, or scalar irradiance) in'a natural hydrosol
cventuully bacomes exact¢v exponential in behavior. The.value
,%1a, is uniquely determined by (7 and o< Property (ii)
states that the radiance distribution eventually Lssumes a flxca‘
Jnrdlnr structure’ (the asymptotic radiance dlsT”lbhtlbn) at great

dopths. This limiting angular structure is rcadlly found in
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»rinciple; it is independent of the external lighting conditions,
mnd depends only on the aneulsv structure of . Property
(iv) is an equivalent assertion to (ii), but now phrased in
terms of the distribution functions. The quantities [D(+)

and D(-) are readily obtained from the limiting fom of the
radiance distribution functions. Properties (iii) and (i) show
that the logarithmic derivatives of irradisnce and scalar
irradiance eventually coincide as depth increases indefinitely.
It may easily be shovm that the logarithmi-~ derivatives of

h(}_’-‘, -+ and ;'}(Z,-) also approach /)% ay as >
(Of course, then so do the logarithmic derivatives of }", 4T 5
and ") AT (# %) approach ,J}% ® as Z - 0D ). Finally,
property (v) statrs that T{(_z)-) approaches a fixed value
a8 £ —= o0 » and this value is characierized in terms of

/,U&,g; , D(i) , and L, as shown in (85).
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FOOTNQTES

Footnote 1. In radiometric discussicns requiring extreme care
viith rcspect to dimensions, it is sometimes necessary
to make an explicit distinction between outwar?! anid inward
types of radiant flux, In such events, it is customary
to use o for outflowing flux and };  for inflowing
flux, so that W= I:f-‘/‘A and H=F /A becone

symbolically distinct,

Footnote 2. For example, in radiative transfer theory, just
as in fluid dynamics and neutron transport theory, the
equations are most easily formulated by adopting a Lagran-
glan approach: the investigator follows in imagination the
flow of material in its natural path through space, and
tallies up its gains and losses all along the path. This
tally tekes the form of a centinuity equation; in the casc
of radiative transfer theory, it is the equation of transfer
for radiance in which the surface radiance (7) is most

conveniently used .

Footnote 3. For complete generality, wc must also take into
account the possibility that the index of refraction of the
medium differs at S and at & . This situatlon is
encountered, for example, when the line of sight has one

end in air and the cther in water., To this end, suppose
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that the index of refraction at S is 1, , and at (&
is 0, . Then the appropriate form of (22) is N, =
;:(nh/no)a"T} Neo . T} retains its interpre-
tation as the transmittance for the path. Its general
form is 1} = pr'gl_.)o&(k’) df"/_:(; wrich reduces tc (ZL1}

if o 1is a constant over the path.

vootnote 4. The relation between scalar irradiance and radiant

density . (no. of joules of radiant energy per unit
volume) is: h = Uu where " 1is the speed cf Light

in meters per second.

Footnote 5. A preliminary word about notatior and terminclogy

at this point would be desirable. The present discussion is
concerned with the phenomena of scattering and absorption
in optical media, specifically natural hydrosols. The
mathematical concepts that handle these ideas are: the
volume scattering function O~ , the volume absorption
function (G , and the volume attenuation function << .
First of all, the word "volume" is used to distinguish
these quantities from their "mass" counterparts in astro-
physical optics in which the passage of light is princi-~
pally through gaseous rather than incompressibie liguid
media. Furthermore, the word "attenuation" is understocd
to denote the effects of the simultaneous action of
scattering and absorption. Finally, the word "function!

is used to point up the fact that the gquantities & , and

-7 -



SIO Ref. 58 - 69 - 78 -

are functions in the mathematical sense: to each point of
the optical medium they assign a real number which--with

the appropriate units--has the physicel significance
described in detail below. If @, =£ , and J~ are
independent of position in the medium, then the medium is
said to be homogeneous, and toc point up this fact throughout
a discussion which enploys <t and o , we will refer to
these as the volume absorption coefficient and volume
attenuation coefficient, respectively. The quantity g~
will always be referred to as a function, becamuse it

depends in general not only on position in the medium but on
two given directions. In the interests of simplicity all

subsequent discussions willi deal with homogeneous media.

Footnote 6. ¥e observe that the decomposition of the flow of
radiant energy in a natural hydrosol need not be into up
and downwelling flows: the two flows could conceivably
be thought of as cccurring across any arbitrarily oriented
plane. Furthermore, it is quite possible to consider decom-
positions into more than two flows. However, the essen-
tially plane-parallel geometric structure of all natural
hyrrosols and their almost unanimous propensity toward
horizontal stratification of physical properties assigns
a particularly high utility to the adopted two-flow

decomposition.
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Footnote 7. This function is independent of depth in nomogeneous

media (for definition, sce footnote &).

Footnote 8. This functicn is generally dependent or depth, ewen
in homogeneous media (cf. Table 2, and apuvmovriate defining

couaticns),
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PABLE 1

EXAMPLES OF THE V,LUES OF D{(2,%), Ki& T), ®iZ}, K(Z)

Gorers) DUEm) DB ) -1 K(E,+)  add)  R@,-)
L2 1247 2.704 0.0215
7.33 0.129  6.126

10.42 1.288 2.727 0.153 0.150 Guils 0.0184

13.50 178 0.17%

i€.58 L2910 20778 075 0,172 6.1l8 0.020

22.77 5171 0.170

28 .06 1.5l <. 781 C.169 0.169 G.117 (. G227

35.13 0.167  0.167

41.30 SR 757 0.165 0.165 U117 Q.0235

L7.5¢ 0.162  0.163

53.71 L30T S 0,158 0,158 5,112 0.lR3E

59.9C 04150 0,154

Explanation of Table l: Depths and units are in terms of metsrs. Data
iz associated with a wavelength of 480 mp and was derived from radiance
information summarized in (Tyler, 1958a). The optical mediwn (Lake P-nd
Creille, Idaho) was found to be essentially homogeneous, the volume
sttenuation coefficient being o< = 0.402/meter. The sky was clear and
sunny with the sun at about AOO from the zenith. The values Q{Z) wire

obtained by means of (57).
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TABLE 2

ETERARCHY OF OPTICAL PROPERTIES IN HYDROLCGICAL OPTICS

INHERENT CPITICAL PROPERTIES ARPPARENT OPTICAL PROPERTIES

He(2)

N(Z,8,d) HOZ, %) h(z,*
l |
oi( %) T(2;0,4;66") () RiZ,x D(Z,%) K(z,*
f2) b(2)
I
AZ)

\J e meee
=

HYBRID OPTICAL PROPERNES

|
alz,*)

: 1
{ez,+) h(z.t)
l,__-.__,_..___l

i
AZE)
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TABLE 3

- 82 -

INDEX OF SPECIAL CONCEPTS USED IN HYDROLOGIC.L OPTICS

SYMBOL

f‘:i'u‘f,e.’-,'/’l')

N, (2,8,9)

NF(z2,0,4)

T t2.8,9)

t.')(l(2>

g(z;e,¢:0.d")

DESCRIFTICN CF CONCEPT

Radiance at depth # in
direction (8,)

Path function at depth 7 in
direction (9, &)

Path radiance of patn of length
I, with initial point at
depth 2 , direction (©,d)

Upwelling (+) and downwelling (—)
irradiance at depth Z

Upwelling {+) and downwelling (—-)
scalar irradiance at depth =

Upwelling (+) and downweliling (-)
spherical irradiance at depth =z

Beam transmittance of path of
length y with initial reint at
depth Z , direction (&, ¢-)

Value of volume attenuation function
at depth z7

Value of volume scattering function
at depth #7 for incident flux in
direction (5)¢/,and scattered flux
in direction (g ,+ )7

(Volume) forward scattering .-
function at depth =7

(Volume) backward scattering functisn
at depth #7

(Volume) total scattering function
at depth Z.7

% Refer to footnote 5.

DEFIN

ING EQUATLINS

(5)

(49)

(24)

(18)

(59), (€0)

(21)

(51) ™~

(46), (49)

(51) *
(52) %

(53) *
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SYMBOL

R(2,+)

o

D, +)

D)

Kz, ®

Foz, )
b(z,*
4(Z,+)

QZE)

DESCRIPTION OF CONCEPT

Volume absorption function at
depth 77

Reflectance at depth Z for upwelling
(+), downwelling (- ) fiux?8

Limit of R(z,—) as Z—> o0
Distribution function for upwelling
(+), downwelling (=) flux at
Gepth 28

Limit of D(Z,X) as z-»> oo

K -function for upwelling (+),
downwelling (~) irradience at

depth 2.8

K —function for scalar irradiance
at depth 7

Limit of A(z) as z —> o

Volume attenuation function for

upwellin§ (+), downwelling (-) flux at

depth Z

(Volume) forward scattering function
for upwelling (-+), downwelling (—)
flux at depth z8

(Volume) backward scattering function
for upwelling (-}, downwelling (—)
flux at depth ;.4’_p

(Volume) total scattering function
for upwelling (4 ), downwelling (—)
flux at depth Z,

Volume absorption function for
upwelling (+), downwelling (—) flux
at depth Z¥8

¥ Refer to footnote 5.
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DEFINING EQUATIONS

(57)
(63)
(85)
(64,)
(84)

(67)

(68)
(83)
(70)"

79)"
3

(80)

(81) kS

&

(70)
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T/BLE 4

BASIC RADIOMETEIC CONCEPTS

- 84 -

1
+

! [
' NAME ' BASIC SYMBCL | m.k.s. UNITS DEFINITION
| _ |
{ : i
— T }
| i : .
* Radiant Flux | -~ [ watt Basic
' Hadinnt Emittance w 5 watt/m2 W = 15, fA
i
Irradiance i i watt/m2 H = /A
i
Radiance -
| (Fielq) N=FR/adsn
i N i watt/ (m2 % s teradin ) W
(Surface) N=To/AdL =
scalar Irradiance h watt/m< h ES N dii
4T
- . 2 hoo=F Jgm; ¢
Spherical . watt/m am =1 /4T
Irradiance ! M .\
‘ }’)411' = Z
Radiant ! f |
Density Ui ,joule/m} W= }} %
i
—_
Radiant ¥ watt sec ¢ joulc U= ‘\ w dv
1 Fnergy - R
| :
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Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure
Figure

Figure

Figufe

Figure

Figure
Figure
Figure

Figure

la
1b
le

2a

2b

3a
3b

La
Lb
Le

ba

6b

9a

FIGURE LEGENDS

Schematic diagrams of radiant flux meter, Gershun
tube, and spherical irradiance meter.

Illustrating conceptual duality of irradiance H
and radiant emittance \w/

Derivation of cosine law for surface radiance.

Derivation of the cosine law for irradiance.
Derivation of the inverse square law for irradiance.

Derivation of the relation between surface radiance
and field radiance.

Derivation of the formula for path radiance.

Derivation of the relation between scalar irradiance
and spherical irradiance.

Experimental arrangement for the determination of
volume attenuation function ol .

Hypothetical plot of experimental results for
determination of o¢ .

Experimental arrangement for the determination of the
volume scattering function g~ .

The experimental determination of the volume
absorption function O. .

Schematic diagrams for instruments to measure up-
and downwelling spherical irradiance.

15 October 1958
RWP:deg
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Figure 1
Preisendorfer and
. Tyler
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Figure 2

Preisendorfer and Tyler
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Figure 3

Preisendorfer ana Tyler
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. Preisendorfer and Tyler
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Figure 6
Preisendorfer and Tyler




SIO Ref. 58-69

&59\
e o
\
o
NI(B)

|

¥

—
—
—
—_——
_———
—

—

~Figure 7
Preisendorfer and Tyler
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