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ABSTRACT OF THE DISSERTATION 

 
Multipolar Raman Scattering on Chiral Plasmons 
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Kate Rodriguez 

 
Doctor of Philosophy in Chemistry 
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Professor V. Ara Apkarian, Chair 

 
 
 

Surface-enhanced Raman spectroscopy (SERS) has been an area of active 

research since its discovery in 1973. In particular, the dimer nano-antenna SERS 

geometry, consisting of two gold nanospheres functionalized with molecular reporters, 

has emerged as a powerful and feasible tool for single molecule studies. Despite its 

popularity, there is still little consensus regrading the role of the nantenna in dictating 

the observed SERS response. Until issues such as SERS backgrounds, anomalous 

molecular anti-Stokes intensities, and polarized responses are fully understood, the full 

power of single molecule Raman can never be realized. 

Here, the antenna behavior is clarified via two types of studies: one excitation-

dependent study, in which the SERS signal is recorded as a function of increasing laser 

power, and one polarization-resolved study, in which the SERS response is monitored 

as a function of changing excitation polarization. Two important discoveries emerge 

clearly here: first, that the background commonly observed in SERS spectra can be 

unilaterally assigned to the inelastic light scattering (i.e., Raman) of the plasmon. 

Second, that the dimer alone dictates the polarization of the scattered response, 
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including a clear demonstration of both linear and circular chirality. With these in hand, 

novel applications, such as a quantum description of the plasmon and orientation-

dependent chiral response are explored. 
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INTRODUCTION 

 Since its discovery in 1973 [1], surface enhanced Raman scattering (SERS) 

spectroscopy has found near-ubiquitous use, lending itself to applications ranging from 

the obvious, like single molecule spectroscopy, to more novel techniques including 

genetic profiling [2] and even cancer diagnostics [3]. Under the application of visible 

light, the electrons of coinage metals (which are not loosely bound to individual atoms 

but are rather electron gas-like) collectively oscillate with the alternating field [4]. This 

collective motion constitutes a plasmon which subsequently mediates the far-field 

excitation and local molecular interaction.  

Though the geometric and material constructions of SERS platforms are nearly 

as varied as its applications, one of the most fruitful has been the so-called dimer nano-

antenna (“nantenna”). The nantenna consists of two gold nanospheres, each ~100 nm 

in diameter, with ~1 nm interparticle junction populated with a Raman-active molecular 

reporter(here, bipyridyl ethylene, BPE) [5]. Given that no molecular features are 

observed on functionalized nanosphere monomers, the nanosphere dimer serves as the 

simplest construction that allows for single molecule detection. The most critical space 

of the dimers is in the inter-particle junction (“hot-spot”), where the incident light (~500 

nm) is confined down to ~1 nm. The dimer, then, performs the impedance matching 

between the far-field radiation and molecular reporter. By necessity, due to the small 

are of the confinement of the field in the hotspot, only one to a few molecules are 

excited. 

Despite its seemingly geometric simplicity, the scattering response of the dimer 

nantenna is surprisingly rich in both scope and depth. The quantum nature of the 
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collective electron response of the plasmon, combined with the relatively large scale of 

the dimer compared to the excitation wavelength (𝑙~𝜆/2) lead to several interesting 

phenomena including inelastic intraband light scattering and multipolar Raman of 

plasmons, both of which are explored in detail below.  

 

Inelastic light scattering on plasmons 

SERS on plasmonic structures is invariably accompanied by a background 

continuum which has been attributed to explanations ranging from fluorescence of the 

metal [6] to the formation of molecular image charges [7]. This disparity finds 

clarification here via experiments into the wavelength- and shape-dependence of the 

SERS scattering response. A clear anti-Stokes portion of the scattering continuum 

immediately rules out fluorescence, while the appearance of a background on bare 

metals precludes molecular reasonings. These observations are sufficient to assign the 

continuum instead to inelastic light scattering on the metal: i.e., Raman of plasmons. 

While intraband transitions in the metal are typically forbidden due to the orthogonality 

of the electron k-states, this issue can be circumvented through realization that the 

scattering occurs on the collective state of the plasmon itself.  

With this knowledge, the signature of the plasmon can be effectively decoupled 

from that of the molecule. Further intensity-dependent experiments, which record the 

SERS response as a function of incident laser power, allow for independent extraction 

of the molecular and metallic temperatures. While the two are found to be in thermal 

equilibrium in every case, careful consideration of the intensity profiles reveals an 

anomaly: both the anti-Stokes and Stokes molecular lines show non-linear intensity 
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dependence, while the metal remains strictly linear. This observation can only be 

resolved by including the molecular vibrational partition function in the treatment which, 

though not necessary in bulk measurements, is apparently crucial in the single-molecule 

limit.  

 

Multipolar Raman of plasmons 

Molecular magnetic and quadrupolar transitions are weak in comparison to 

dipolar transitions when driven by free propagating optical fields [8]. This is recognized 

by noting that the ratio of magnetic/quadrupolar to electric dipole transitions 

|〈𝑚〉|2/|〈𝑑〉|2 scale as 𝜁2 = |𝑘〈𝑟〉|2, where 𝑘 =
𝜔

𝑐
= 2𝜋/𝜆 is the field wave vector and 〈𝑟〉 

is on the molecular length scale. In vacuum, under the long-wave limit, 𝜁2~10-4 <<1, 

which allows the spatial dispersion of the electromagnetic waves to be neglected by 

setting 𝐴𝑒−𝑖(𝑘𝑧− 𝜔𝑡) = 𝐴𝑒𝑖𝜔𝑡 in treating light matter interactions [9]. As such, any 

observation of multipolar vibrational Raman on plasmonic nantennas implies 

enhancements of order 104 beyond the typical SERS enhancement factors of ~108. This 

additional enhancement makes accessible otherwise dark states of matter, including 

applications such as surface enhanced Raman optical activity (SEROA) and vibrational 

dichroism, which are otherwise prohibitively weak effects. As the nantenna effectively 

couples molecular multipoles to the far field, it is crucial to understand the nature of both 

the metal scattering and molecular coupling mechanisms. 

Clearly, the long-wave limit does not apply to such nantennas: at optical 

wavelengths 𝑙~𝜆/2 and spatial dispersion, or equivalently, retardation effects, cannot be 

neglected. In addition to dipolar Raman given by the local third order susceptibility, 𝜒(3), 
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in which all four field interactions are dipole coupled to the far field, nonlocal response 

𝐼(3), due to magnetic and quadrupolar contributions, can be seen.  

By investigation both the linear and circular dichroism of the nantenna, the 

response of the dimers can be fully characterized. In every case, the polarization 

patterns of the molecular lines follow those of the nantenna on which they reside, even 

when the scattering involves manifestly different multipoles of the molecule and 

nantenna. The experiments then are ones into plasmonic, rather than molecular, 

dichroism. Plasmonic chirality, and the subsequent “handedness” of the response, is 

contrasted against standard molecular chirality in two major ways: first, plasmonic 

chirality is orders of magnitude larger than its molecular counterpart (parts per ten 

versus parts per thousand [10]). Second, the handedness is entirely orientation-

dependent, whereby a simple in-plane rotation transforms the dimer from a right-handed 

to a left-handed object.  

The observed polarization patterns can be reproduced by expanding local 

response to second order in spatial dispersion, which contains inseparable terms of 

electric dipole (𝑑), magnetic dipole (𝑚), and electric quadrupole (𝑞), including the cross 

terms < 𝑚𝑞 > and < 𝑚𝑑 > of linear and circular dichroism. In particular, the circular 

dichroic response 𝑚𝑑 implies excitation of helical plasmons, in which both left- and 

right-handed behavior is observed on different dimers. That this occurs on the 

prototypical nano-analog of the Hertzian dipole antenna is remarkable. Both TEM 

images and theoretical analyses clarify that typical asymmetries in the structure, 

particularly at the intersphere junction, are sufficient to drive nonlocal response.  



5 
 

Formally, the treatment is formulated in the framework of Jones calculus. It 

establishes that broken symmetry in the absorption-re-radiation process of the dimers is 

required to generate the wealth of experimental observations. This treatment, though 

formulated specifically for the dimers, is entirely general and can be readily extended to 

any multipolar excitation process. It has important implications in the quantum 

mechanical treatment of plasmons, including angular momentum states, as well as the 

general field of bi-isotropic media. 
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CHAPTER 1: Raman of Plasmons 

 

1.1: Introduction: Backgrounds in Surface Enhanced Raman Scattering 

Plasmonic nanostructures are extensively used as nano-antennas (nantennas) to 

couple far-field radiation to molecular receivers [11]. Their ability to confine light beyond 

the diffraction limit to the nm scale allows for the generation of large, highly localized 

fields. This confinement constitutes the physical mechanism of surface enhanced 

Raman scattering (SERS) [12, 13] under which single molecule sensitivity can be 

achieved [14-19]. One of the more commonly used designs for these purposes is the 

nanosphere-dimer – two metallic nanospheres adjoined by molecular linkers. As the 

nano-analog of the Hertzian dipolar antenna, the nanosphere dimer has been subjected 

to extensive experimentation [20-25] and theoretical analysis [26-32]. This constitutes 

the simplest prototype of a nano-junction which plays a two-fold role: in addition to 

generating enhanced field confined at the gap (hot-spot), it also broadcasts the 

spectroscopic signature of reporter molecule(s) present in the junction. We find that 

junction dynamics – in terms of morphology and evolution, which are difficult to control 

or characterize experimentally – dictates to significant extent the resulting SERS 

spectra. As the highest local fields are generated in the plasmonic junction, a rich 

tapestry of photophysics is generated in this sub-nm critical space, including charge 

transfer and quantum effects such as tunneling plasmons [33-35]. Recently, nearly 

exact ab-initio theoretical calculations have illustrated the importance of atomic scale 

structural variations in determining plasmonic response of sodium nano-dumbbells [36]. 

Experimental observation of photophysics on a real plasmonic junction was highlighted 
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in a study of SERS on a single silver dumbbell undergoing light-induced fusion [23]. 

There, magnetic and quadrupolar SERS, charge transfer plasmon-driven Raman, and 

rectification [37] of photocurrent through Stark shifted Raman were identified. These 

observations have important implications with regards to molecule-plasmon interactions 

and, more importantly, emphasize the crucial role of the antenna in general and the 

junction in particular in dictating far-field scattering response. 

In this chapter, a straightforward model for the background continuum observed 

in the SERS spectra is presented. While a variety of inelastic scattering processes may 

contribute to the background in different experimental arrangements, the continuum 

observed here can be assigned predominantly to electronic Raman scattering on the 

metal. Through exhaustive experimentation, the scattering nature of plasmonic 

nantennas will be directly extracted from the spectra themselves. The intensity profiles 

of the anti-Stokes tail is used to extract electronic temperature of the metal, while 

comparison of the Stokes and anti-Stokes molecular vibrations is used to determine the 

vibrational temperature of the molecule. After rigorous analysis, it appears that the 

molecule (including all vibrations) is generally in equilibrium with the metal temperature 

up to threshold under which no permanent damage is incurred. The method described 

here serves as a reliable nanothermometer, providing a realistic temperature gauge for 

the hotspot, the most critical functional space of the plasmonic junction. 

 

 

 

1.2: Experimental  
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SERS spectra are recorded on individual gold nanosphere monomers and 

dimers onto which molecular reporter bipyridyl ethylene (BPE) is adsorbed. Particles 

with average diameter 90 ± 5 nm are encapsulated in a silica shell (~70 nm thickness), 

a size where radiation competes with the dephasing of surface plasmons. Scanning and 

tunneling electron micrographs allow for identification and characterization of the 

particles of interest, which are analyzed individually. Spectra are collected using 532 

(diode-pumped solid state) and 633 (He-Ne) nm laser excitation, in the backscatter 

geometry with high NA microscope objective (NA = 0.625) and a notch filter with a 

rejection band of ±250 cm-1 centered at the respective Rayleigh line. For intensity-

dependent measurements, the incident laser power was increased from 0.1to 1.7 

mW/μm2 (633) or ~1 mW/μm2 (532) in steps of roughly 0.1 mW/μm2. In all cases, the 

laser intensity was carefully controlled via a neutral density filter (NDF) placed just after 

the laser source (Fig. 1.2.1). 

 

 

 

 

 

 

Figure 1.2.1. (a) Schematic and transmission electron micrograph of a typical dimer. (b) 

Experimental geometry. The intensity of a CW laser source is controlled via a neutral density 

filter (NDF). A notch filter (NF) centered at the excitation wavelength is used as a mirror to direct 

the source toward a single dimer. After interaction, the backscattered Raman is filtered through 

the NF and the signal is dispersed onto the detector for analysis. 
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1.3: Results: SERS on Metallic Structures 

 Despite the extensive attention devoted to plasmonic junctions in the past few 

decades, the origin of the background that invariably accompanies their SERS spectral 

response remains the subject of deliberation [38-44] and unanimous agreement is yet to 

be achieved. Though it has been increasingly recognized to be arising from metallic 

response, it has been separately attributed to both metallic photoluminescence due to 

radiative recombination [43] and intraband scattering processes [45]. To first verify that 

the origins of the continuum are metallic in nature, the SERS spectra obtained on a 

variety of gold substrates is presented in Fig. 1.3.1a: nanoparticle monomer, 

nanoparticle dimer lacking molecular reporter, and evaporated gold substrate. Each of 

these systems is bare, lacking any molecular functionalization, yet they all show a clear, 

continuous background, precluding its assignment to a consequence of molecular 

image charges [7]. To argue that the continuum is due to the collective plasmon rather 

than individual, incoherent electron transitions, the results of polarization-resolved 

experiments are presented in Fig.1.3.1c-d. A thorough discussion of the polarized 

scattering nature of the antenna will be reported in Chapter 2; here it is noted only 

briefly that the Stokes scattering response is highly polarized along the antenna long 

axis, indicating that the scattering is coherent, and is aware of the structure and 

orientation of the object. Such polarized response indicates coherent luminescence, 

which is equivalent to resonant Raman. Although gold does have a broad interband 

transition centered at 2.4 eV (520 nm) [46], incoherent luminescence implies dephasing 

either through electron-electron or electron-phonon collisions prior to emission, which 
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will scramble the polarization. Finally, the appearance of a clearly exponentially 

decaying anti-Stokes decaying tail in all cases (Fig. 1.3.1b) further clarifies that the 

continuum cannot arise from interband processes, as they do not allow for emissions at 

energies higher than the excitation. 

 

Figure 1.3.1. a) Raman spectra collected on a variety of metal structures, including a gold 

nanodimer (200 nm diameter), gold nano-monomer (100 nm diameter), and evaporated metal 

film. All samples are free of molecular reporters, indicating that the broad continuum can only 

arise from inelastic light scattering from metallic electrons. While the Stokes signatures vary 

between the three structures, each shows an identical decaying tail in the anti-Stokes (AS) 

regime. The exponential nature of this tail is highlighted by the linear plots obtained from semi-

log plots (inset). (b) SERS spectra collected on a gold nanodimer functionalized with molecular 

reporter bipyridyl ethylene (BPE) under both 532 nm (green) and 633 nm (red) excitation. In 

addition to the increased metallic background response excited at 532 nm compared to 633, it 

also conspicuously lacks any molecular AS peaks regardless of the laser intensity. We attribute 

this to the metallic reabsorption of emitted AS photons which are harmonious with gold’s d → s 

interband excitation. (c) Polarization-resolved experiments reveal that only the Stokes region 

yields is polarized. 



11 
 

1.3.1: SERS of bare metals 

 In Fig. 1.3.1a, the Raman spectra of three distinct metal structures are 

presented: a bare (molecule-free) gold dimer, a bare gold monomer (100 nm diameter), 

and a standard bare evaporated gold film. In each case, the spectra exhibit a broad 

continuum that persists through the entire spectral range. The Stokes side reveals that 

the spectral composition depends to large extent on the geometry of the metal. More 

detail on the various resonances that decorate the Stokes side are given in Chapter 2. 

Here it is noted only that this continuum is general and can only arise as a consequence 

of metallic scattering.  

Interestingly, each spectrum presented in Fig. 1.3.1a shows an identical, 

exponentially decaying anti-Stokes (AS) tail. The pure exponential nature of these tails 

is emphasized by the semi-log plot inset, which reveal clear linearity for as long as the 

signal remains above the noise level. This AS Raman branch will be the point of interest 

for the remainder of the paper.  

 

1.3.2: SERS of functionalized nantenna  

 Fig. 1.3.1b presents two representative cases of SERS obtained from a single 

dimer under 532 nm (green) and 633 nm (red) CW excitation. In both cases, the 

discrete molecular vibrations from the molecule, bipyridyl ethylene (BPE), appear on top 

of the broad Stokes continuum of the metal. The Stokes assigned primarily to plasmon 

resonances because to their strong polarization (Fig. 1.3.1c-d). The large (~3000 cm-1) 

spectral width evident particularly under 532 nm is indicative of typical plasmon decay 

times on the order of 10 fs. While the difference in the shape of the continua arise from 
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the uniquely excitable plasmon modes, the variation in intensity of the scattering 

background relative to the molecular lines can be associated with the spectral 

dependence of the penetration depth of gold: 45 nm at 532 nm excitation, versus 30 nm 

at 633 [47]. Generally, the metal-molecule scattering ratios, calculated from dozens of 

dimers analyzed, are found to be 1:1 for green and 1:10 for red. This claim is further 

validated at 785 nm excitation, where the penetration depth of gold is lowered to ~25 

nm and the SERS response is virtually background-free. 

 The origin of the AS regime is quite different, as first indicated by the entirely 

isotropic nature of the signal (Fig. 1.3.1c). Moreover, the characteristic decay is 

maintained as a function of excitation wavelength, nullifying any arguments of resonant 

contribution in the underlying mechanism. Interestingly, there is no evidence of 

molecular anti-Stokes under 532 regardless of excitation intensity, which we ascribe to 

interband reabsorption of the emitted photon (Fig. 1.2.1b, ii). Here, the blue-shifted AS 

photons are now energetic enough to match the 2.5 eV d→s interband transition in the 

metal and so are immediately reabsorbed. The less energetic 633 nm AS emission 

does not reach the interband resonance and hence molecular AS vibrations, which are 

no longer in competition with metallic absorption channels, are observed. 

 

 

 

 

 

 



13 
 

1.4: Results: Laser Intensity-Dependence Studies 

 To better understand the behavior of the metallic and molecular scattering, 

dimers are subject to laser intensity-dependence studies. The results of such a study for 

an individual dimer, D1, is presented here under both 532 (Fig. 1.4.1) and 633 nm (Fig. 

1.4.2) excitation, for four illustrative powers. There are a few marked differences in the 

power series data between the two colors, in addition to the lack of molecular AS under 

532 nm excitation. In the case of 633 nm excitation, even relatively high laser powers 

produce nearly identical, clean molecular spectra. Under 532 nm, however, the 

molecular lines begin to broaden and eventually fuse >~500 μW/μm2, while the metallic 

background develops additional humps not observed at lower powers.  In some cases, 

the degradation of the molecular signal is entirely reversible, while in others it remains 

permanent. Accordingly, the exact origins of this phenomenon are likely varied, with 

possibilities such as irreversible molecular degradation and reversible metal-molecule 

Fano coupling [48] likely both playing a role. In any case, if the incident intensity under 

532 nm is raised above ~1500 μW/μm2, the dimer itself is destroyed. Under 633 nm, on 

the other hand, even full laser intensity (1700 μW/μm2) does not induce any damage to 

the metal or molecule. Apparently, the two excitation colors lead to drastically different 

heating effects in the nantenna, which will be explored in the proceeding sections.  
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Figure 1.4.1. Results of a laser intensity-dependence study performed on a dimer, D1, under 

532 nm CW excitation. The anti-Stokes regime (left) is free from any molecular signature 

regardless of incident excitation intensity. The Stokes regime (right) often shows a broadening 

and eventual merging of molecular lines, which in this case was irreversible. Additionally, the 

background continuum develops resonances (~2800 cm-1) not observed at lower powers. In this 

case, the bumps likely developed as a consequence of fusing of the individual spheres. 

Figure 1.4.2. Results of a laser intensity-dependence study performed on a dimer, D1, under 

633 nm CW excitation. The anti-Stokes regime (left) shows clear molecular signatures in all 

instances, though the signal becomes clearer at high powers. The Stokes regime (right) remains 

nearly identical over the course of the measurements.  
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1.5: Molecular Temperature 

 Information on molecular (vibrational) temperature is extracted from the ratio of 

the intensity of the anti-Stokes to Stokes lines. Correspondingly, the lack of molecular 

AS at 532 nm precludes its inclusion here, and so only 633 nm data is used. Six 

vibrations in total were chosen for the analysis, which are defined as follows. 

 

Vibration Wavenumber (cm-1) 

Vib 1 1641 

Vib 2 1604 

Vib 3 1200 

Vib 4 1008 

Vib 5 738 

Vib 6 663 

 

Table 1.5.1. List of the molecular vibrations used in the temperature analysis with their 

corresponding shorthand notations.  

 

The ratio of anti-Stokes to Stokes intensities (𝐼𝐴𝑆 and 𝐼𝑆, respectively) as a function of 

incident laser and vibrational frequencies (�̅�𝐿, �̅�𝑣𝑖𝑏, in wavenumbers) is given by: 

𝐼𝐴𝑆

𝐼𝑆
 (

𝜈𝐿−𝜈𝑣𝑖𝑏

𝜈𝐿+𝜈𝑣𝑖𝑏
)
3
= 𝑒−𝜈𝑣𝑖𝑏/𝑘𝑇 .    1.5.1 

 

Here, the cubed power term arises from the vacuum density of states. Accordingly, the 

anti-Stokes data is scaled by (�̅�𝐿 − �̅�𝑣𝑖𝑏)
3/�̅�𝐿

3 while the Stokes by (�̅�𝐿 + �̅�𝑣𝑖𝑏)
3/�̅�𝐿

3. For a 

shift occurring around �̅�𝑣𝑖𝑏 =1640 cm-1, this correction scales the anti-Stokes line by a 

factor of 0.72 and the Stokes by 1.34. For the molecule, each vibration is weighted by 

its singular Raman shift �̅�𝑣𝑖𝑏 in this way, while the metal correction will be done for the 

continuum. That the correct correction be done is crucial: If left untreated, the data will 
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yield artificially high temperatures due to the preferential weighting of the anti-Stokes 

shifts.  

 Extraction of vibrational temperature from Eqn. 1.5.1 proceeds straightforwardly. 

When carried out for dimer D1, all six vibrations yield similar temperatures at each 

incident intensity, revealing that the vibrations are in thermal equilibrium as expected. 

Additionally, extraction to zero-intensity yields temperatures at or near 300K (Fig.1.6.2).  

For dimer D1, as well as several others analyzed, both the Stokes and anti-

Stokes lines show clear non-linear intensity dependence (Fig. 1.5.1). This is most 

apparent as the laser intensity surpasses ~1200 μW/μm2 – here, the Stokes lines 

plateau while the anti-Stokes rapidly increase. Linear fits return substantial y-intercepts 

(positive for Stokes, negative for anti-Stokes), on the order of 20% of the median 

counts. Even if these higher powers are ignored, the intercepts (while reduced to ~15% 

of the median counts) remain non-zero and the residuals are significant. 

To account for the observed nonlinearity, the molecular vibrational partition 

function for BPE is utilized. Each normal mode of BPE will contribute to the total 

partition function. Under the harmonic approximation (and setting the ground state 

energy to zero), the vibrational partition function is given by the product of each mode �̅�: 

𝑄 = ∏
1

1−𝑒−�̅�/𝑘𝑇𝜈 .     1.5.2 

The partition function describes the distribution of the population into the thermally 

accessible vibrational states. Its inverse, 1/𝑄, accordingly describes the depletion of the 

ground (zero-energy) state into the higher energy vibrational states and serves as the 

normalization constant. Both 𝑄 and 1/𝑄 are shown as a function of temperature in Fig. 

1.5.2. 
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Figure 1.5.1. Stokes (top set) and anti-Stokes (bottom set) line counts as a function of laser 

intensity for four vibrations of interest. Both show highly non-linear response, an effect which 

has been reproduced across a number of dimers. 
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Figure 1.5.2. The partition function 𝑄 (left) and its inverse 1/𝑄 (right) as a function of 

temperature. While 𝑄 describes the spread of the population into available vibrational states, 

1/𝑄 according reports on the depletion of the ground state.  

 

As any Stokes scattering process is proportional to the ground state population, it 

is therefore expected that all Stokes vibrations will follow basic 1/𝑄 dependence. The 

anti-Stokes, on the other hand, is limited instead by the population in the initial 

vibrationally excited state. As such, it depends highly on the mode of interest (𝑣𝐴𝑆). The 

two processes, Stokes (𝑆) and anti-Stokes (𝐴𝑆) are then succinctly described as follows,  

𝐼𝑆(𝑇) ∝ 𝑐𝑣
1

𝑄(𝑇)
     1.5.3 

𝐼𝐴𝑆(𝑇) ∝ 𝑐𝑣
𝑒

−
�̅�𝐴𝑆
𝑘𝑇

𝑄(𝑇)
     1.5.4 

where 𝑐𝑣 is the cross-section of each vibration. To recast these descriptions in terms of 

intensity 𝐼, the average of the heating rates presented in Fig. 1.6.2 can be used, 

replacing 𝑇 → 𝑇0 + ∆𝑇𝑎𝑣𝑔 ∗ 𝐼 = 𝑇0(𝐾) + 0.055 𝐾/𝜇𝑊 ∗ 𝐼(𝜇𝑊), and the overall functions 

multiplied by 𝐼 as follows. 

𝑄(𝐼) = ∏
1

1−𝑒−�̅�/𝑘(300+0.055∗𝐼)�̅�      1.5.5 
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  𝑆 ∝ 𝑐 𝐼
1

𝑄(𝐼)
      1.5.6 

 

𝐴𝑆 ∝ 𝑐′𝐼 
𝑒−�̅�𝐴𝑆/𝑘(300+0.055∗𝐼)

𝑄(𝐼)
    1.5.7 

 

The modes used to calculate 𝑄 were taken from [49]. For the fits (solid lines present in 

Fig. 1.5.1), all 58 calculated frequencies (Ag, Bg, Au, and Bu) were used. Parameter 𝑐𝑣 is 

left as a free parameter in the fit.  

 The curvature present in the intensity-dependent plots of Fig. 1.5.1 are only 

describable under this partition function treatment. Previous arguments of phenomena 

such as vibrational pumping in SERS [50], which result in quadratic AS intensity-

dependence, are not suitable here. Firstly, the S lines in the dimers do not remain linear 

across the range of the measurements, as is standard in the case of pumping, and 

which was observed in [50]. Secondly, quadratic fits do not sufficiently describe the AS 

data in Fig. 1.5.1: though the fits look reasonable at first glance, they return extremely 

large zero-power counts (y-intercepts) and a negative 𝑥1 parameter (Fig. 1.5.3). 
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Figure 1.5.3. Quadratic fit to the Anti-

Stokes intensity-dependence of a different 

dimer, for vibration 1 (1640 cm-1). Though 

quadratic fits appear at first glance to 

describe the laser intensity-dependence of 

the anti-Stokes vibrations, two issues arise 

upon closer inspection. First, extrapolation 

to zero laser power, which should return 

zero counts, give artificially large values (up to 66% of the median counts in the series here). 

Furthermore, fits to the function 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 consistently return a negative 𝑏 parameter.   

 

1.6: Metallic Temperature and Comparison with the Molecule  

 To extract metallic temperature, the anti-Stokes decaying tail is fit to the Fermi 

Dirac distribution (with ω3-correction): 

𝑓(�̅�) = (
�̅�𝐿

�̅�𝐿+�̅�
)
3

(
𝐴0

1+𝑒
− 

�̅�
𝑘𝑇

) + 𝑦0    1.6.1 

where the sign reversal in the exponential flips the function to match the direction of 

decay of the anti-Stokes tail. The spectra shown in the power-dependence results of 

Figs. 1.4.1 and 1.4.2 have been baseline corrected, which is commonly performed by 

finding the absolute minimum in spectral intensity, and subtracting this value from all 

other points. This process poses a unique problem for the exponential tail: introduction 

of a constant offset, whether positive or negative, will introduce an artificial curve in the 

resulting semi-log plot. To correct for this, the anti-Stokes region is separated into two 

equally sized cuts. For example, for dimer D1, the full spectral AS range corresponds to 

two cuts, the first from -2750 to -1520, and the second from -1520 to -440. Cut 1 is then 
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shifted to the same spectral range as Cut 2, and subtracted from it. This process 

effective corrects for any artificial offset in the data, and is illustrated in Fig. 1.6.1 for D1 

under 532 nm, where the lack of molecular AS makes the interpretation clear. 

 

Figure 1.6.1. Left: The shift-and-subtract method of eliminating constant offsets in the anti-

Stokes exponential decay, as illustrated for dimer D1. The left plot shows the two cuts the 

region is separated into; cut 1 is then shifted to match the spectral region of cut 2, and 

subsequently subtracted from it. Right: The resulting shifted-and-subtracted AS tails for six 

representative powers in the series.  

 

The resulting metallic temperature extracted in this way for D1 under 633 nm is 

also shown in Fig. 1.6.2, and it is noted that zero-power extrapolation yields a realistic 

temperature of 312± 10K. As earlier alluded to, it is evident that the dimers heat up 

substantially faster under 532 nm. Unfortunately, the lack of 532 nm molecular AS 

signal prevents the use of the molecular thermometer, but treatment of the metal alone 

yields a heating rate of nearly double that of 633 nm, at ~0.9 K/μW/μm2. 
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Figure 1.6.2. Extracted temperatures for the six molecular vibrations of interest from dimer D1, 

according to Eqn. 1.5.1. When the requisite ω3-correction is implemented, all vibrations yield 

zero-intensity intercepts at or around room temperature. Furthermore, the metal (black trace) is 

shown to be consistently in thermal equilibrium with all molecular vibrations.  

 

 It has long been standard to employ a ω4-correction to the data, rather than the 

ω3-correction used here. The reason for deploying ω3 is two-fold. First, it more 

accurately describes the way modern measurements are made. While ω4-corrections 

are appropriate for energy-based detection methods, any photon counting collection 

methods (such as the CCD detector used herein) require instead ω3-corrections. 

Secondly, using ω3 leads to more physically meaningful temperature values. Under ω3, 

all extrapolations to zero-intensity yield temperatures at or around room temperature 

(±~10K), while ω4-corrected data consistently runs ~15K colder, leading to sub-300K 

temperatures at zero laser intensity.  

 

 

 Intercept Slope (K/μW) 

Vib 1 298± 10K 0.054 

Vib 2 297± 10K 0.056 

Vib 3 296± 10K 0.055 

Vib 4 302± 10K 0.055 

Vib 5 299± 10K 0.056 

Vib 6 303± 10K 0.054 

metal 312± 10K 0.058 
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1.7: Mathematical Formulation: Electronic Raman Scattering 

While a formal description of the ERS of the metallic plasmon is squarely rooted 

in quantum mechanics, it can be rationalized via the straightforward formulation 

presented below. For simplicity, the derivation is presented in one dimension, at a single 

metal-vacuum interface. Extensions to bare (metal-vacuum-metal) and functionalized 

(metal-molecule-metal) geometries follow naturally from this treatment. Here, the 

background is attributed to the inelastic electronic scattering of the metal, mediated by 

the collective charge density oscillations of the plasmon. This process is realized 

through intraband electronic transitions, which are typically disallowed due to the 

orthogonality of the bulk momentum (k-) states of the individual electrons [45]. Here, 

however, there is a simple but critical distinction. Rather than individual intraband 

electron scattering events, in which an electron within the s-band is promoted to an 

unoccupied intermediate hole state before relaxing into a final s-band hole state, the 

ERS is facilitated directly by the collective, multi-electron plasmon state. The plasmon is 

comprised of individual electron states and so each comprising state necessarily has a 

non-zero projection into the collective plasmon wavefunction (e.g., the states are no 

longer orthogonal).  

It is well understood that at the optical frequencies of interest, particularly where 

the dielectric response is negative, the limited penetration depth of electromagnetic 

fields into metals immediately implies that the standard Raman effect will be feeble and 

instead dominated by scattering on collective charge density oscillations. In contrast 

with shape-determined elastic light scattering spectra, which are adequately described 

under classical electrodynamics, the inelastic ERS process is quantum mechanical in 
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origin. As such, this background is expected to probe the sought-after quantum aspects 

of the surface plasmons, a phenomenon which is further elaborated on in this section. 

 

1.7.1 Describing the plasmon 

For a plasmonic surface charge density, we are only interested in the charge 

distribution (𝜎𝑠) across the metal-vacuum junction, i.e., normal to the metal surface 

(along �̂�): 

𝜎𝑠 = 𝛿𝑛(𝑟⊥) = 𝛿𝑛(𝑧) = 𝜑𝑝𝑙
∗(𝑧) ∙ 𝜑𝑝𝑙(𝑧),   1.7.1 

which is described in terms of the differential charge, 𝛿𝑛(𝑧), across the interface. This is 

recast in terms of the of the plasmonic wavefunction 𝜑𝑝𝑙(𝑧), the square modulus of 

which determine charge distribution. To calculate the plasmon wavefunction explicitly, 

we recognize that the plasmon is simply the response of the metal to the applied field 

(𝐹 = 𝑒𝑧𝐸): 

𝛿𝑛(𝑧) = 𝑛𝐹=0 − 𝑛𝐹=𝑒𝑧𝐸 = 𝜑𝑝𝑙
∗𝜑𝑝𝑙|𝐹=0 − 𝜑𝑝𝑙

∗𝜑𝑝𝑙|𝐹=𝑒𝑧𝐸 .   1.7.2 

This is done numerically using the relevant parameters of gold (Fermi level, work 

function, etc.): the wavefunctions in both the unperturbed (𝐹 = 0) and perturbed (𝐹 =

𝑒𝑧𝐸) cases are determined by solving their respective Hamiltonians and the difference 

density computed. Qualitatively, the application of the field bends the potential barrier 

causing a redistribution of electron k-states that becomes particularly pronounced at 

higher energies. As the plasmonic charge density is a result of all participating 

electrons, it can be decomposed into its individual electron components: 

𝛿𝑛 = |𝜑𝑝𝑙(𝑧)|
2
 = |∑ 𝑎𝑖𝜓𝑖(𝐸)𝑖 |2     1.7.3 
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where 𝑎𝑖 are the coefficients that weight the contributions of each single electron 

wavefunction 𝜓𝑖(𝐸) into the collective plasmon state 𝜑𝑝𝑙. The plasmon is generated 

from optically accessible states from 𝐸𝐹 down to 𝐸𝐹 − 𝐸𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛:  

�̃�𝑝𝑙(𝑧)  ≈ ∫ 𝑎(𝐸)𝜓(𝐸, 𝑘) 𝑑𝐸
𝐸𝐹

𝐸𝐹−𝐸𝑒𝑥𝑐
    1.7.4 

where it is recognized that the density of electronic states in a metal approaches a 

continuum. The form of 𝑎(𝐸) can now be computed from �̃�𝑝𝑙 and 𝜓(𝐸, 𝑘), which are just 

the electron Bloch states. The computed 𝛿𝑛(𝑧) and projections 𝑎(𝐸) are shown in (Fig. 

1.7.1a. It is found that the weighting coefficients depend exponentially on the difference 

in energy between the state and the Fermi, ∆ (Fig. 1.7.1b): 

𝑎(𝐸) ≈ 𝑁𝑒
𝐸

∆ .      1.7.5 

From here, the Raman scattering process can now be formulated via the collective 

plasmonic wavefunction.  
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Figure 1.7.1. (a) The wavefunction of the plasmon generated at a metal-vacuum interface (z=0), 

𝛿𝑛(𝑧), computed by subtracting the electron density generated under the applied field from the 

unperturbed density. (b) The weighting coefficients, 𝑎(𝐸), which give the projections of the 

single-particle states onto the collective plasmon wavefunction.  

 

1.7.2: Describing plasmonic Raman scattering  

Mathematically, non-resonant Raman scattering processes are conveniently 

expressed in the for of Fermi’s Gold Rule for transition rates between discrete states: 

𝑊(𝜔𝑖𝑠) =
2𝜋

ħ
|⟨𝑓|�̂�|𝑖⟩|

2
 𝛿[(ℏ𝜔𝑖 − ℏ𝜔𝑠) − (𝐸𝑖 − 𝐸𝐹)].   1.7.6 

Consider just the matrix element ⟨𝑓|�̂�|𝑖⟩, which determines the nature of the states that 

participate in the scattering process. In the ERS process, an electron starts in an 

occupied electron state (𝑒) and, through participation in the collective plasmon 

oscillation, ends up in an available hole state (ℎ): 

⟨𝑓|�̂�|𝑖⟩ = ⟨ℎ|�̃�𝑝𝑙⟩⟨�̃�𝑝𝑙|𝑒⟩.     1.7.7 

This subtle distinction is the crux of the intraband transition model presented here. 

Rather than a separate k-state serving as an intermediate for the transition, which is 
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prohibited due to the orthogonality of Bloch states ⟨𝑒𝑗|𝑒𝑖⟩ = 0, the electron is projected 

directly into the plasmon state with which it has non-zero overlap. 

 The states of Eqn. 1.7.7 can be recast in terms of their energy given that the 

electron starts at state 𝐸 and scatters into a final state of 𝐸 + 𝜀 (where 𝜀 may be positive 

or negative for Stokes and anti-Stokes processes, respectively). Also note that the 

“dressed” plasmon state �̃�𝑝𝑙 is simply 𝜑𝑝𝑙 under the application of an external field to 

write: 

⟨ℎ|�̃�𝑝𝑙⟩⟨�̃�𝑝𝑙|𝑒⟩ = ⟨𝐸 + 𝜀|�̂�|𝜑𝑝𝑙⟩⟨𝜑𝑝𝑙|�̂�|𝐸⟩.    1.7.8 

The field-induced potential is of the form �̂� = 𝑒𝑧𝐸 = 𝐴 ∙ 𝑝 = −𝑖ℏ𝐴 ∙
𝜕

𝜕𝑧
. The final form here 

will be particularly useful as the electron states of �̃�𝑝𝑙 are unperturbed, given in terms of 

their Bloch functions, 𝜓~𝑒𝑖𝑘𝑧 – here, the action of the momentum operator will simply 

pick out k. Additionally, in the long-wave limit, 𝐴 → 𝐴0 ≡ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. This reduces the 

matrix element to  

⟨𝐸 + 𝜀|�̂�|𝜑𝑝𝑙⟩⟨𝜑𝑝𝑙|�̂�|𝐸⟩ = ℏ2𝐴0
2𝑘(𝐸)𝑘(𝐸 + 𝜀)⟨𝐸 + 𝜀|𝜑𝑝𝑙⟩⟨𝜑𝑝𝑙|𝐸⟩. 1.7.9 

The terms ⟨𝐸 + 𝜀|𝜑𝑝𝑙⟩ and ⟨𝜑𝑝𝑙|𝐸⟩ project the plasmon back into the individual electron 

states and are therefore simply the weighting functions, 𝑎(𝐸 + 𝜀) and 𝑎(𝐸): 

⟨𝐸 + 𝜀|𝜑𝑝𝑙⟩⟨𝜑𝑝𝑙|𝐸⟩ = 𝑁2 ∫ 𝑒(𝐸+𝜀)/∆𝑒𝐸/∆𝑑𝐸    1.7.10 

which is nothing more than a correlation of the form 𝑒−|𝜀/∆|. This matrix element can now 

be plugged back into Fermi’s Golden Rule (Eqn. 1.7.6) along with the relative 

electron/hole density of states expressions 𝜌𝑒/𝜌ℎ and a quick recasting of the 

momentum 𝑘(𝐸) = √𝐸 

𝑊(𝜔𝑖𝑠) ∝ ∫√𝐸 √𝐸 + 𝜀𝜌𝑒(𝐸)𝜌ℎ(𝐸 + 𝜀)𝑒−|
𝜀

∆
| 𝑑𝐸.   1.7.11 
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The energy root terms can be ignored as they are dwarfed by the exponential term. 

Additionally, the density of states expressions can be replaced by the Fermi-Dirac filling 

factors 𝑓(𝐸) to yield, finally,  

𝑊(𝜔𝑖𝑠) ∝ ∫𝑓(𝐸)(1 − 𝑓(𝐸 + 𝜀))𝑒−|𝜀/∆| 𝑑𝐸.   1.7.12 

The simple expression given in Eqn. 1.7.12 can be used to reproduce the responses 

from a variety of samples, excitation energies, and geometries (note that no geometric 

considerations were invoked here – this treatment relied only on the behavior of a 

metallic charge density at an interface). 
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CHAPTER 2: Orientation-Dependent Handedness of Chiral Plasmons 

 

2.1: Raman Optical Activity: Chirality and Handedness 

2.1.1: Definitions  

Raman optical activity (ROA) refers to the differential scattering of chiral 

molecules under right (RCP) and left (LCP) circularly polarized light [51]. This is 

distinguished from the optical activity presented herein, which while still within the 

framework of Raman scattering, instead is plasmonic (rather than molecular) in nature. 

Dichroism is the differential absorption of polarized components of the incident light [10]. 

The proceeding sections will deal with differential scattering of both linearly polarized 

light (LPL), and circularly polarized light (CPL). While these are strictly linear and 

circular ROA, since they involve real resonances where Raman consist of absorption 

and re-radiation, they will interchangeably be referred to as linear dichroism (LD) and 

circular dichroism (CD), respectively. Both effects arise from chirality of the light-matter 

interaction. The definition of chiral in the framework of these experiments refers to 

broken reflection symmetry; handedness refers to the polarization of light the sample 

preferentially scatters. The extent of dichroism is calculated by taking the difference in 

scattered intensity between spectra collected under +45°/-45° polarized light for LD, and 

RCP/LCP for CD. Typically, this this value is exceedingly small for molecules – on the 

order of parts per thousand [10]. It is attributed to cross terms in the multipolar 

polarizability tensor of the scatterer [52]. Though the dichroism presented here 

originates from plasmonic optical activity, it will be shown that it can be treated in 
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entirely the same way – namely, by careful formulation of the sample polarizability 

tensor. 

 

2.1.2: Chiral connectedness 

 The definition of chirality in terms of non-superimposable mirror images, since 

based on a discrete transformation, leads to difficulty when attempts are made to 

quantify the extent of chirality. These considerations are exacerbated by the paradox of 

chiral connectedness. Based on its historical definition a mirror symmetric object should 

have a chirality of zero. For a non-mirror-symmetric object, its two enantiomers should 

be of opposite sign so that the sign of one exactly flips upon reflection into the other. In 

practice, however, any continuous object may be taken continuously from one 

enantiomer to the other without ever passing through a state of zero chirality. These 

considerations constitute the paradox of chiral connectedness, and for many years 

hampered efforts into the quantification of chirality. 

 A rigorous mathematical definition for the quantification of chirality and 

handedness was given by Efrati and Irvine [53]. In this work, the authors construct the 

handedness of an object such that it depends on the direction from which the object is 

viewed. In this way, an object can be considered left or right handed depending on how 

it is oriented in the plane parallel to excitation. By incorporating this orientation-

dependence into the object’s handedness tensor, chiral connectedness is now fully 

accounted for: this treatment allows for objects that both lack mirror symmetry/have no 

net chirality and have mirror symmetry/have net chirality. The orientation-dependent 



31 
 

handedness of chiral plasmons, which will be explored in this chapter, allows a direct 

investigation of these principles.  

 

2.1.3: Two- and three-dimensional chirality  

 One last statement to be made regarding chiral response is the distinction 

between two- and three-dimensional chirality. Three-dimensional (bulk) chirality is 

defined by the lack of any mirror symmetry in a continuous object – no matter how the 

object is rotated in 3D space, it can never be brought into congruence with its mirror 

image. Two-dimensional (planar chirality) is an object that maintains its chirality in two-

dimensions only – in other words, it can be brought into agreement with its enantiomer if 

it is lifted out of the plane.  

The disparate nature of 2- and 3-D chirality manifests in markedly different 

optical responses. For one, any object with bulk chirality obeys the Lorentz reciprocity 

theorem, in that it maintains its handedness even when the direction of excitation is 

reversed (�⃑� → −�⃑� ). In contrast, planar chiral objects are not governed by Lorentz 

reciprocity and reverse their handedness upon light path reversal. According to previous 

analysis [54], plasmonic nanostructures are capable of sustaining both bulk and planar 

chiral response. Furthermore, the two are readily disentangled by a straightforward 

decomposition of the scattering matrix into its symmetric and anti-symmetric 

components. More details on the nature of the scattering matrix are given in the next 

section. In general, though, any square matrix 𝑀 can be decomposed into its symmetric 

(𝑠) and anti-symmetric (𝑎𝑠) components through use of the matrix transpose, 𝑀𝑇, as: 

𝑀 = 𝑀𝑠 + 𝑀𝑎𝑠 =
𝑀+𝑀𝑇

2
+

𝑀−𝑀𝑇

2
.    2.1.1 
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The anti-symmetric component follows Lorentz reciprocity and is therefore responsible 

for the 3D chiral response. For the symmetric component,  

𝑀𝑠 = (
𝐴 𝐵
𝐶 𝐷

),      2.1.2 

any 2D chirality will be given by 𝐼𝑚 [
2𝐵

𝐴−𝐷
]. These relations will eventually be used to 

disentangle the chiral response experimentally observed in the nantenna. 

 

 

2.2: Framework: Multipolar Raman Scattering on Plasmons 
 

Since the measurements are carried out in the far-field, the electric and magnetic 

fields are strictly transverse and therefore fully characterized by two-element spinors, 

which for propagation along �̂� are: 

𝜀̂ = (
𝜀𝑥

𝜀𝑦
)      2.2.1a 

ℎ̂ = (
ℎ𝑥

ℎ𝑦
) = �̂� × 𝜀̂ = (

−𝜀𝑦

𝜀𝑥
)    2.2.1b 

Since the measurements are limited to the electric field the relation between scattered 

and incident fields is completely determined by a 2x2 matrix, with inherent ambiguity 

since the electric and magnetic components are wrapped into a single 2x1 vector 𝜖̂: 

𝜖̂ = (
𝜖𝑥

𝜖𝑦
) = (

ℎ𝑦

−ℎ𝑥
)     2.2.2 

The scattering matrix that connects the incident (𝜖𝑖) and scattered (𝜖�̂�) fields is given by 

the wavelength-dependent polarizability tensor 𝛼(𝜆) of Raman scattering theory. 

Formally, the scattered intensity that results from this interaction is mediated by the 

excitation and emission potentials, 𝑉𝑒𝑥𝑐 and 𝑉𝑒𝑚, as 
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𝐼 = |𝑉𝑒𝑚 ∙ 𝑉𝑒𝑥𝑐|
2 = |⟨𝜖�̂�|𝛼(𝜆) |𝜖�̂�⟩|

2    2.2.3 

Here, 𝛼 is a complex-valued, 2x2 matrix contained in the SU(2) vector space. Because 

𝛼 is the culmination of an excitation-emission process, it can further be decomposed 

into the product of two separate 2x2 matrices which act on their respective fields: 

𝐼 = |𝑉𝑒𝑚 ∙ 𝑉𝑒𝑥𝑐|
2 = |⟨𝜖�̂�|𝛼(𝜆) |𝜖�̂�⟩|

2 = |⟨𝜖�̂�|𝑎𝑒𝑚 ∙ 𝑎𝑒𝑥𝑐 |𝜖�̂�⟩|
2   2.2.4 

In most cases 𝛼 is symmetric, such that 𝑎𝑒𝑚
† = 𝑎𝑒𝑥𝑐, and dipolar, such that  

𝛼 = 𝑎𝑒𝑚
† ∙ 𝑎𝑒𝑥𝑐 = |𝑎|2 = (𝑑

2 0
0 0

).    2.2.5 

It will be shown presently that neither of these assumptions hold in the case of the 

nanosphere dimers. Unique identification of the elements of 𝛼 is done by combining 

measurements in circular and linear polarization bases, which allow for unambiguous 

determination of each active matrix element. This is enabled by the experimental design 

in the next section.  

Meanwhile, a full description of the optical activity of the nanosphere dimers 

necessitates consideration of the light-matter interaction potential that mediates the 

Raman scattering process. For a structure with length scale comparable to the 

wavelength of light, the plane wave approximation of the long-wave limit breaks down 

and field gradients cannot be ignored. Expanding the light-matter interaction �̂�~𝐴 ∙ ∇⃑⃑  to 

first order in spatial dispersion [9, 55]  

�̂� ~ �̂� ∙ 𝜖̂ +
𝑖

2
𝜁(�̂� × 𝜖̂ ∙ �̂� + 𝜖̂ ∙ �̂� ∙ �̂�)    2.2.6 

where 𝜁 = |𝑘𝑟| is the smallness parameter, and the terms in the parenthesis are the 

magnetic dipole 𝑚 and electric quadrupole 𝑞 terms that for 𝜁~1become comparable to 

the standard electric dipole 𝑑 interaction. The details of this derivation are presented in 
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the Appendix. Although formally 𝑉 involves polar axial and dyadic vectors for �̂�-

propagation, it can be completely represented by the 2x2 scattering matrices 𝛼. As 

before [55], for a uniaxial object with multipoles 𝑑, 𝑚, and 𝑞 along the dimer principal 

(long) axis, and for long axis along the laboratory �̂�: 

𝑑𝑥 ≡ 𝑑 = (
𝑑 0
0 0

) , 𝑞𝑥𝑧 ≡ 𝑞 = (
𝑖𝑞 0
0 0

) , 𝑚𝑥 ≡ 𝑚 = (
0 −𝑖𝑚
0 0

)  2.2.7 

The most general interaction matrix then contains a linear combination of these three 

terms such that it is of the form 

𝑎𝑑𝑞𝑚 = (
𝑑 + 𝑖𝑞 −𝑖𝑚

0 0
).    2.2.8 

Presently, it will be shown that chiral response arises from the broken symmetry 

between excitation and re-radiation, where the excitation proceeds through all available 

multipolar channels (𝑑, 𝑞,𝑚 above), and the emission is strictly dipolar (𝑑). In this case, 

the 𝛼 matrix becomes 

𝛼 = 𝑎𝑒𝑚
† ∙ 𝑎𝑒𝑥𝑐 = (

𝑑 0
0 0

) (
𝑑 + 𝑖𝑞 −𝑖𝑚

0 0
) = (

𝑑(𝑑 + 𝑖𝑞) −𝑖𝑚𝑑
0 0

). 2.2.9 

In the subsequent sections, it will be shown that this matrix explains both the linear and 

circular dichroic response of the BPE-functionalized dimers. 
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2.3: Linear Dichroism 

Linear dichroism (LD) is investigated by continuously monitoring the SERS 

response of the dimers to linearly polarized light. Here, a half-wave plate (HWP) is used 

to rotate the polarization angle 𝜙 of the incident field, which is initially horizontally 

polarized. The backscattered Raman signal is collected through the same plate, which 

reverses its action. The double-pass geometry ensures the backscatter light polarized 

parallel to the incident field appears horizontal (ℎ) while perpendicular scattering 

appears vertically polarized (𝑣). In most measurements a polarized beam splitting cube 

is used to simultaneously record the spectra in these two orthogonal polarization 

channels. The signal is dispersed onto a CCD array using a 0.5-m monochromator 

(Shamrock 500i, Andor). A microscope objective with NA=0.65 is used to record spectra 

on individual dimers, which are rotated such that they are horizontal (parallel to initial 

polarization). The overall polarization extinction of the optical train is >100:1. See Fig. 

2.3.1 for details. 

 

 

 

 

 

Figure 2.3.1. Experimental design for the linear dichroism experiments. Linearly polarized light 

from a continuous wave laser source first passes through a linear polarizer (LP) so that it is 

oriented along the horizontal. The light is then incident on a notch filter (NF) centered at the 

laser wavelength which acts as a mirror. The light then passes through a halfwave plate (HWP) 

at angle φ which rotates the light by angle 2φ. After interaction with a single dimer, the 
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backscattered Raman signal passes back through the HWP, which effectively reverses the 

original rotation, and through the NF onto a polarizing beam splitter (PBS). The PBS 

decomposed the signal into components parallel (h) and perpendicular (v) to the original 

polarization (h). 

 

An example of a complete LD measurement in shown in Fig. 2.3.2 for dimer D1. 

It consists of recording complete spectra at incident polarization angles 𝜙 between 0° 

and 360° with 2° intervals, over the course of 2 hours total acquisition time. We consider 

the background-subtracted molecular lines as well as the two characteristic spectral 

components highlighted in Fig. 2.3.2: the blue wing of the continuum, integrated 

between Raman shifts of 1900 cm-1 and 2100 cm-1, and the red wing of the continuum, 

integrated between 350 cm-1 and 550 cm-1. The color-coded polar plots of these 

segments are presented in Fig. 2.3.2f-k. In all such plots, 𝜙 =0° corresponds to incident 

polarization aligned with the long axis of the dimer. To the extent that the graphs 

maintain reflection symmetry about both x- and y-axes, the response is classified as 

achiral. The small asymmetric deviations of the data from the fits can be taken as 

chirality in response that is practically ignorable.  

  In addition to a small, wavelength-dependent isotropic term that persists across 

much of the spectrum (𝑐(𝜆)), the red and blue wings of the continuum contain unique 

scattering terms which can be readily deconstructed. The blue wing is strictly dipolar, 

with polarization matrix given by Eqn. 2.2.5 and scattering intensity 

[
𝐼∥(𝜙)

𝐼⊥(𝜙)
] = 𝑑4 [

cos 𝜙4

sin 𝜙2 cos𝜙2] ≡ 𝐼𝑑(𝜙).   2.3.1 
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The red wing of the continuum of an individual dimer displays an additional, transverse 

feature along the dimer short axis (φ=90°, Fig. 2.3.2 (j)) in the parallel channel, with no 

new features materializing in the perpendicular channel. These two observations are 

sufficient to uniquely assign this component as strictly magnetic scattering, with 

polarizability 

𝛼𝑚 = 𝑀2 (
𝑖 0
0 −𝑖

)     2.3.2a 

and observable scattering intensity 

[
𝐼∥(𝜙)

𝐼⊥(𝜙)
] = 𝑀4 [

(cos𝜙2 − sin𝜙2)2

4 sin𝜙2 cos𝜙2 ] ≡ 𝐼𝑀(𝜙).  2.3.2b 

While the perpendicular channel response retains the same characteristic symmetric 

four-lobe pattern along the ±45° axes as in the dipolar scattering of Eqn. 2.3.1, the 

parallel channel contains both long (φ=0°) and short (φ=90°) axis response. No mixing 

is observed between this channel and the dipolar response given by 𝐼𝑑, which is 

assured by adding the sum of the two independent channels together. The total 

intensity of the three overlapping bands can be expressed and fit to: 

[
𝐼∥(𝜙)

𝐼⊥(𝜙)
] = 𝑎(𝜆)𝐼𝑑(𝜙) + 𝑏(𝜆)𝐼𝑀(𝜙) + 𝑐(𝜆)    2.3.3 

where 𝑎, 𝑏, and 𝑐 are the wavelength-dependent coefficients that weight the respective 

terms. The relative contributions of each of these three components vary from dimer to 

dimer, but the overall picture does not change. Remarkably, the Raman spectrum of the 

magnetic component 𝑀, which is isolated at φ=90° in the parallel channel, does not 

contain any molecular lines. Instead, the molecular SERS is entirely excited and 

broadcast through the dipolar plasmon. 
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In all cases, the polarization of the molecular lines exactly follows that of the blue 

continuum. Due to the higher signal-to-noise afforded by the molecular signature, as 

well as its faithful reporting on the metal polarization, all subsequent polar plots will be 

integrated under the strongest vibrational peak (1640 cm-1) unless otherwise indicated. 

Fig. 2.3.3 shows the angular plots of the polarized SERS from three different 

dimers, D1, D2 and D3. While dimer D1 appears achiral, the reflection symmetry in the 

perpendicular channel is broken for dimers D2 and D3. They both show linear dichroism 

with opposite handedness: the scattering intensity is larger at +45° for D2, while D3 

shows largest response along -45°. The observed LD is readily reproduced by using the 

polarizability matrix in Eqn. 2.2.9, which incorporates the electric quadrupole and 

magnetic dipole terms in addition to the previous electric dipole: 

𝐼𝐿𝐷 = [
𝐼∥(𝜙)

𝐼⊥(𝜙)
] = 𝑑2[𝑑2 cos𝜙2 + |𝑞 cos𝜙 + 𝑚 sin𝜙|2 ] [

cos 𝜙2

sin𝜙2]  2.3.4 

Full spectral decomposition is now possible by the weighted sum 

𝐼(𝜆, 𝜑) = 𝑎(𝜆)𝐼𝐿𝐷(𝜑) + 𝑏(𝜆)𝐼𝑀(𝜑) + 𝑐(𝜆)    2.3.5 

where the previous special case of achiral dipolar scattering 𝐼𝑑 has been replaced with 

the asymmetric {𝑑,𝑚, 𝑞} response of linear dichroism, 𝐼𝐿𝐷. The color-coded spectrum of 

Fig. 2.3.2 clarifies that all molecular lines follow the same chiral response – the 

molecule couples to the far-field via the chiral plasmon of the dimer. The resonance, 

which was apparently dipolar on D1, is now chiral on D2 and D3. The additional 

magnetic band assignment does not change.  
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Figure 2.3.2. (a) Transmission electron micrograph image of an isolated dimer formed by two 

relatively spherical dimers. (b) Prolonged exposure (either to optical or electron beams) reveals 

a fusing of the two spheres. Plots (c) and (d) show the Raman spectra as a function of time 

recorded for the linear experiment in the parallel and perpendicular channels, respectively, while 

a representative spectrum is shown in (e). Several spectral slices are presented here, and the 

color-coded wings represent the quadrupolar (red) and dipolar (blue) wings of the continuum. 

Polar plots are presented for the most intense vibrational line, 1640 cm-1 (f, g), the blue 

continuum (h, i), and the red continuum (j, k) in the parallel (left column) and perpendicular (right 
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column) channels. The molecular lines strictly follow the polarization of the dipolar (blue) wing in 

every case, and do not impart any distinct signature of their own.  

 

 

 

 

 

 

 

 

 

Fig. 2.3.3. The results of the linear experiment are presented here for three dimers: D1, of Fig. 

2.3.2, as well as two new particles: D2 and D3. (a) While D1 showed clear reflection symmetry 

in its perpendicular channel response (red trace), (b) D2 and (c) D3 show a broken symmetry 

that favors either +45° or -45° in their perpendicular channel response (red traces). This effect 

constitutes linear dichroism. 

 

 

 

  

(b) (c) (a)  D1 D2 D3 
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2.4: Circular Dichroism 

Circular dichroism (CD) is investigated by continuously monitoring the SERS 

intensity of the dimers under excitation in a circularly polarized basis. Here, a quarter-

wave plate (QWP) at angle φ induces a phase shift of 𝑒𝑖2𝜑 between x- and y-

components of the field [56]. As the QWP is rotated, the polarization changes 

continuously from horizontal (φ=0°), to right circularly polarized (RCP, φ=45°), back to 

horizontal (φ=90°), and to left circularly polarized (LCP, φ=135°). The QWP is rotated 

through a full 360° and the Raman response is recorded every 2°. The polarization 

states generated as a function of this rotation are shown in Fig. 2.4.1. 

 

 

 

 

 

 

 

 

Figure 2.4.1. Polarization states generated as a function of the angle the fast axis of the 

quarterwave plate makes with the original linear polarization, φ. When the two are aligned 

(φ=0°, 90°, 180°, 270°) the polarization is unchanged. φ=45°,225° generates RCP, while 

φ=135°,315° generates LCP. At intermediate angles elliptical polarization is generated, with the 

handedness defined by the CP of that quadrant. 
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 The experimental geometry is shown in Fig. 2.4.2. There are a few differences 

between the experimental design for the QWP measurements here and the HWP 

measurements of Fig. 2.3.1. First, the QWP is placed in single (rather than double) pass 

geometry. Additionally, due to the complex (and constantly evolving) state of the light, 

the signal is not decomposed into orthogonal channels – the total scattering intensity is 

recorded instead. 

 

 

 

 

 

 

Figure 2.4.2. Experimental design for the circular dichroism experiments. Linearly polarized light 

from a continuous wave laser source first passes through a linear polarizer (LP) so that it is 

oriented along the horizontal. The light is then directed towards a quarterwave plate (QWP, λ/4) 

at angle φ which induces phase shift 𝑒𝑖2𝜑 between the x- and y-components of the field. After 

interaction with a single dimer, the backscattered Raman passes through a notch filter (NF) 

centered at the Rayleigh wavelength, and the full, open-channel signal is recorded. 

 

 An example of a complete CD measurement is shown in Fig. 2.4.3. Here, the 

dimer is oriented horizontally such that it is aligned with the initial horizontal polarization 

generated at 𝜑 = {0°, 90°, 180°, 270°}, which accounts for the large response at these 

points. Intermediate angles of 𝜑 = {45°, 135°} report on the handedness of the dimer. 

Evidently, the dimer presented in Fig. 2.4.3 is left-handed based on its increased 
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response at 𝜑 = 135°. It should be repeated here that, while the polar plots are typically 

constructed by integrating under the molecular line, it is the plasmonic dichroism that is 

being observed here. In every case for the CD experiments, in analogy with the LD 

results of Fig. 2.3.2, the molecular lines exactly follow the polarization of the antenna on 

which they reside and as such, the response is strictly that of the nantenna.  

 

 

 

 

 

 

 

 

 

Figure 2.4.3. A complete circular dichroism (CD) measurement performed on a single dimer (D3 

from Fig. 2.3.3) showing its continuous response as function of the QWP angle, φ. As the dimer 

is oriented horizontally, the increased response along 𝜑 = {0°, 90°, 180°, 270°} is due to 

alignment of the dimer long axis with the linear polarization generated at these angles. The 

differential scattering along 𝜑 = ±45° instead reports on the handedness of the antenna. Here, 

preferential response along 𝜑 = −45, which corresponds to LCP, indicates that the dimer is a 

LH object. 

 

 The response is fully reproducible using the same multipolar 𝛼 matrix of Eqn. 

2.2.9. While the cross-term between 𝑞 and 𝑚 was responsible for the extent of LD, CD 
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is dictated by the cross term between 𝑑 and 𝑚. Consequently, as the two dichroisms 

are controlled by entirely different terms, the linear and circular experiments as 

performed on a single dimer can be joint-fit to a set of shared {𝑑, 𝑞,𝑚} parameters.  

 Both the sign and magnitude of the handedness observed is entirely dimer 

dependent. In fact, repeated measurements on dozens of dimers reveal that the 

handedness is almost perfectly evenly split between left- and right-handed response. 

The magnitude of the CD, as defined by the differential intensity of the scattering under 

RCP and LCP, 

𝐶𝐷 =
𝐼𝑅𝐶𝑃 − 𝐼𝐿𝐶𝑃

𝐼𝑅𝐶𝑃 + 𝐼𝐿𝐶𝑃
 

is found to be as large as 𝐶𝐷 = |0.6| in some cases. Such a pronounced response 

(~parts per ten) is orders of magnitude larger than the CD typically observed in 

molecules (~parts per thousand). This is the first inclination that plasmonic handedness 

is surprisingly distinct from the more familiar molecular CD.  

 

2.5: Orientation-Dependent Handedness 

 In addition to the markedly stronger extent of CD observed in plasmons, they 

also display an entirely unique in-plane orientation-dependent handedness (ODH). 

Though this ODH is apparent in both CD and LD, its appearance in CD will be of 

particular interest here. Indeed, the ODH that manifests in the LD experiments is rather 

straightforward and expected in uniaxial objects such as the nanoscale dimers. The CD, 

though counterintuitive, has important implications which will be explored in detail here. 
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2.5.1 Orientation-dependent linear handedness 

In-plane orientation dependence in the LD signal is easy to rationalize: as the 

long axis of the dimer controls the direction of the radiation, the observed polarization 

pattern is expected to rotate with the nantenna. This is illustrated in Fig. 2.5.1, whereby 

a 90° rotation of the sample in the plane perpendicular to the direction of excitation 

rotates the parallel and perpendicular channel response by the same 90°. While 

apparently straightforward, this rotation has the effect of inverting the linear handedness 

– while this dimer showed preferential response along the -45° in the perpendicular 

channel originally, after the rotation it now scatters more strongly along +45°. 

Mathematically, this effect can be achieved by simply rotating the polarizability matrix 

(originally 𝛼+45)  using the 2D rotation matrix 𝑅𝜑 = (
cos𝜑 − sin𝜑
sin 𝜑 cos𝜑

): 

𝛼−45 = 𝑅𝜋/2
𝑇 ∙ 𝛼+45 ∙ 𝑅𝜋/2    2.5.1 

which effectively flips the sign of the linear dichroism term, 𝑚𝑞, from (+) to (-). 
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Figure 2.5.1. Observed orientation-dependent handedness in the linear dichroism (LD) 

experiments. As the direction of the scattered signal follows the dimer long (inter-particle) axis, 

any in-plane rotation φ of the sample cause a corresponding rotation of the polar plots by the 

same angle φ. Though intuitive, such a rotation as that shown here (φ=90°) has the important 

effect of directly inverting the linear handedness. 

 

2.5.2 Orientation-dependent circular handedness 

 Less intuitive is that this effect of 90°-ODH is mirrored in the circular experiments. 

Here, the same 90° rotation in the plane perpendicular to excitation effectively takes the 

same dimer from a LH to RH scatterer. This is shown explicitly in Fig. 2.5.2 
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Figure 2.5.2. Observed orientation-dependent handedness in the circular dichroism (CD) 

experiments. Here, a 90° in-plane rotation of the sample effectively takes the dimer (D3) from a 

left-handed (LH) to right-handed (RH) scatterer.  

 

This effect is so counterintuitive based on the very definition of chirality, whereby 

a mirror reflection is strictly necessary to transform a chiral body from one enantiomer to 

its other in three dimensions. That a simple in-plane rotation can transform handedness 

in such a way is indicative of a higher order transformation. To see this, consider the 

case of a two-dimensional chiral body, such as a flat “L” written on a piece of paper. To 

transform the “L” from it’s left-handed (native) enantiomer into its mirror image, it can 

simply be lifted off the page and rotated around a 180° arc. While this transformation is 

occurring continuously in three dimensions, it looks strange when projected onto the 
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two-dimensional plane of the original page. Indeed, to a two-dimensional observer, 

there seems to be no way that such a continuous action should be possible.  

 To understand what type of “hidden” transformation is occurring, consider the 

sample matrices required to reproduce the LH and RH scattering response. The 

handedness is dictated by the sign of the CD term, 𝑚𝑑. For a horizontally-oriented 

particle, the RH response is given by (letting 𝑞 = 0 as it does not directly factor in to the 

CD): 

𝛼𝑥,𝑅𝐻 = (𝑑
2 𝑖𝑚𝑑
0 0

).       2.5.2 

If this matrix is rotated by 90° using standard 2D rotation matrix 𝑅𝜋/2, the resulting 

matrix, which is now oriented vertically, is still RH – that is, the standard in-plane 

rotation, which is what is presumably being enacted in the lab, is not sufficient to 

described the observed ODH which transforms 𝛼𝑥,𝑅𝐻 into 𝛼𝑦,𝐿𝐻: 

 𝛼𝑦,𝐿𝐻 ≠ 𝑅𝜋/2
𝑇 ∙ 𝛼𝑥,𝑅𝐻 ∙ 𝑅𝜋/2 = 𝛼𝑦,𝑅𝐻.    2.5.3 

In order for the RH matrix 𝛼𝑥,𝑅𝐻 to be transformed into its LH enantiomer, the matrix 

must undergo a complex conjugation in addition to the standard 90° rotation. In analogy 

with Eqn. 2.5.3, the requisite transition is instead 

𝛼𝑦,𝐿𝐻 = (𝑅𝜋/2
𝑇 ∙ 𝛼𝑥,𝑅𝐻 ∙ 𝑅𝜋/2)

∗
.    2.5.4 

These transformations are illustrated in Fig. 2.5.4. 

 The necessary complex conjugation that accompanies the solid body rotation is 

immediately indicative of a particular type of symmetry – namely, that of time reversal. 

In order for the dimer to remain invariant upon the coordinate transformation, it appears 

that time must simultaneously be inverted [57]. This signals that the response is PT 
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(parity-time) invariant, which can be understood by considering the microscopic (and 

hence, quantum mechanical) origins of CD.  

The CD response can be reduced, as was done in Eqn. 2.5.2, into a pair of 

colinear polar (electric dipole) and axial (magnetic dipole) vectors. The pair is readily 

identified as PT-invariant if it is first recognized that parallel 𝑑 and 𝑚 described a RH 

helix (𝜓(𝑅)) and anti-parallel 𝑑 and 𝑚 describe a LH helix (𝜓(𝐿)). Under the parity 

operator �̂�, 𝑑 is odd and 𝑚 even such that �̂�(𝜓(𝑅)) = 𝜓(𝐿) (Fig. 2.5.4). Under time 

reversal �̂�, it is now 𝑑 that is even and 𝑚 that is odd; similarly, �̂�(𝜓(𝑅)) = 𝜓(𝐿). In total, 

the combination of parity and time reversal gives �̂�[�̂�(𝜓(𝑅))] = −𝜓(𝑅). In this way, the 

complex conjugation is identified as the time reversal under the rotation, necessary to 

conserve PT invariance of the dimer. 

 

 

Figure 2.5.3. (a) Results of the circular dichroism experiment for dimer D3 at its original, 

horizontal orientation, where its scattering is preferentially left-handed. (b) Predicted response of 

D3 after 90° physical rotation of the sample (R(90)), which re-orients it along the vertical but 

retains the original LH response. (c) Actual response of the 90° in-plane rotation, which in 

addition to orienting the particle along the vertical, also inverts its handedness to RH response. 
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This can only be achieved by a subsequent complex conjugation (C.C.) of the sample scattering 

matrix. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.4. The effects of the parity and time operators on a system consisting of a pair of 

colinear electric and magnetic dipoles. A stationary observer sees a right-handed (R) helix from 

the combined effect of an electric dipole along 𝑥 and clockwise-moving magnetic dipole. Under 

the parity operator 𝑃, which inverts all spatial coordinates, the electric dipole is now along −𝑥 

while the magnetic dipole maintains its clockwise sense of rotation. From the same observation 

point, this construction now gives rise to a left-handed helix (L). The time reversal operation 𝑇, 

which takes all 𝑖 into −𝑖, is treated similarly, noting that while the electric dipole maintains its 

orientation along 𝑥, the magnetic dipole is inverted to a counter-clockwise rotation. The 

combined effects of a PT operation, then, is to leave the original handedness unchanged.  
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2.6: Statistics and Origins of Chirality 

 

The Raman optical activity of a large number (>50) of dimers have been mapped 

out fully, both at 532 nm and 633 nm excitation, with linear and circularly polarized light. 

A summary of the joint linear and circular results is given in Fig. 2.6.1, in the form of a 

scatter plot of 𝜁𝑚 vs. 𝜁𝑞. Every entry in the scatter plot corresponds to a fitted parameter 

pair (𝜁𝑚 = 𝑚/𝑑 and 𝜁𝑞 = 𝑞/𝑑) that simultaneously reproduces both the linear and 

circular measurements at the respective excitation colors (green for 532 nm and red for 

633 nm). The pairs of measurements on any individual dimer are connected with solid 

lines in order to highlight the color dependence of the multipoles of a dimer. All dimers 

show chiral response to a different degree – indeed, achiral is a singularity that is rare in 

measurements on nanostructures using light of comparable wavelength.  

Figure 2.6.1. A brief statistical representation 

of the extracted fitting parameters (𝜁𝑚, 𝜁𝑞) for 

~60 dimers. In 𝜁𝑚 − 𝜁𝑞 space, circular 

dichroism (CD=〈𝑚𝑑〉) and linear dichroism 

(LD=〈𝑚𝑞〉) are easily visualized. The scatter 

plot contains (𝜁𝑚, 𝜁𝑞) values obtained from 

join linear and circular measurements at 

corresponding excitation color (green for 563 

nm and red for 633 nm). Measurements on a 

single dimer are connected by solid lines. 
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Clearly there is a structural origin to the observed giant chiral response and 

ODH. This has been explored through rigorous COMSOL simulations [58] which have 

identified the nanojunction itself as the origin. Using explicit simulations for the Rayleigh 

response on dimers, no effects arise from deviations from sphericity in the global shape 

of the nanospheres. It is only when the junction contact is shifted from the symmetry 

axis of the dimer that optical activity in analogy with the linear experiments appears (Fig. 

2.6.2).  

 

 

 

 

 

 

 

 

Figure 2.6.2. Results of simulations performed in COMSOL showing the linear dichroism 

generated in the parallel (blue) and perpendicular (red) channel for a variety of nanodimer 

geometries. When the dimers are entirely symmetric (a) or contain a symmetric junction, 

regardless of the global symmetry (b), no dichroism is observed. It is only when the axis of the 

junction is shifted from the interparticle axis (c) that the requisite asymmetry is generated along 

the ±45° line in the perpendicular channel. Reprinted with permission from [58]. 

 

The junction, then, controls the bulk of the chirality of the response: while its 

vorticity dictates the observed chirality, the natural impedance matching is established 

(a) (b) (c) 
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with the nm-scale interparticle hot-spot, which allows for the appearance of molecular 

SERS. This has important implications in the recent experiments in using plasmonic 

nanojunctions to assess molecular chirality – the results shown here indicate that the 

response of the nantenna itself cannot be ignored and must be fully understood before 

any conclusions regarding the state of the molecule can be drawn. 

 

 

2.7: Analysis of Plasmon Interaction Matrix 

2.7.1 Excitation-emission asymmetry 

As has been established in the preceding sections, the interaction matrix of Eqn. 

2.2.9 describes fully the response of the nantenna to any polarization of incident light. In 

total, the interaction is governed by the action of the excitation and emission matrices 

(𝑎𝑒𝑚 and 𝑎𝑒𝑥𝑐, respectively) on the incident and scattered fields (𝜖�̂� and 𝜖�̂�): 

𝐼 = |𝑉𝑒𝑚 ∙ 𝑉𝑒𝑥𝑐|
2 = |⟨𝜖�̂�|𝛼(𝜆) |𝜖�̂�⟩|

2 = |⟨𝜖�̂�|𝑎𝑒𝑚 ∙ 𝑎𝑒𝑥𝑐 |𝜖�̂�⟩|
2.  2.7.1 

These interactions are mediated by the respective excitation and emission interaction 

potentials, 𝑉𝑒𝑚 and 𝑉𝑒𝑥𝑐. As presented in Eqn. 2.2.9, the only matrix construction that 

effectively reproduces all of the observed data is given by 

𝛼 = 𝑎𝑒𝑚 ∙ 𝑎𝑒𝑥𝑐 = 𝑎𝑑 ∙ 𝑎𝑑𝑞𝑚 = (
𝑑(𝑑 + 𝑖𝑞) −𝑖𝑚𝑑

0 0
).   2.7.2 

Such a construction highlights a very unique asymmetry in the excitation-emission 

process: while the plasmon can be excited through all available multipolar channels, it is 

only able to radiate via the electric dipole. While dimers free of LD and CD response are 

sufficiently described by a pure electric dipolar response (𝑞 = 𝑚 = 0 in Eqn. 2.7.2), 

those demonstrating chirality are only adequately describable when all terms are active. 
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As previously discussed, LD explicitly requires the cross-term 𝑚𝑞, while CD is controlled 

by 𝑚𝑑. The Feynman diagrams for these transitions is shown in Fig. 2.7.1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7.1. Top: Achiral plasmons, which lack any significant LD and CD (shown here for LD 

specifically), are adequately described by a pure electric dipolar transition. Bottom: For dimers 

which display dichroism, however, multipolar scattering channels are required in order to 

reproduce the observed response. In the case of LD, both 𝑚 and 𝑞 are necessary to explain the 

scattering asymmetry in the perpendicular channel (red trace).  
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2.7.2 Orthogonal Pauli decomposition of the interaction matrix 

Recall that Raman is fourth order in the interaction process: as the 

measurements are made on the total intensity 𝐼, it is the square modulus of the 

interaction that is of interest. This further squares the polarizability matrix 𝛼, which 

effectively mediates the interaction as 

|𝛼(𝜆)|2 = |𝑎𝑒𝑚 ∙ 𝑎𝑒𝑥𝑐|
2 = |

𝑑(𝑑 + 𝑖𝑞) −𝑖𝑚𝑑
0 0

|
2

   2.7.3a 

= 𝑑2 (
𝑑2 + 𝑞2 −𝑚𝑞 − 𝑖𝑚𝑑

−𝑚𝑞 + 𝑖𝑚𝑑 𝑚2 ).                        2.7.3b 

In this form, the interaction matrix |𝛼(𝜆)|2 is a member of the SU(2) vector space. In 

addition to serving as the foundation for the quantum mechanical treatment of two-level 

systems, the SU(2) vector space is also heavily utilized in Jones calculus of optics. 

Here, the incident and scattered fields are related through complex 2x2 Jones matrices. 

The strength of the Jones formalism lies in its direct formulation from the Maxwell 

equations, which retains information about the relative phases of the field components 

and material response. In analogy with the quantum mechanics of two-level systems, 

Jones vectors are confined to describing fully polarized states in the same way that 

wavefunctions describe coherent states.  

The SU(2) space is completely spanned by the identity matrix 𝜎0 and the optical 

Pauli matrices {𝜎1, 𝜎2, 𝜎3}, which are related to the standard spin matrices of quantum 

mechanics {𝜎𝑥, 𝜎𝑦, 𝜎𝑧} as [56]  

𝜎0 = (
1 0
0 1

) = 𝐼, 𝜎1 = (
1 0
0 −1

) = 𝜎𝑧, 𝜎2 = (
0 1
1 0

) = 𝜎𝑥, 𝜎3 = (
0 −𝑖
𝑖 0

) = 𝜎𝑦. 2.7.4 

Any complex-valued 2x2 matrix 𝑀 is subsequently decomposed in the Pauli basis by: 
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𝑀 = ∑𝑠𝑖𝜎𝑖

3

𝑖=0

= 𝑠 ∙ 𝜎  

where 𝑠  is the vector of the coefficients 𝑠𝑖 that weight the corresponding Pauli matrices, 

condensed into vector notation as 𝜎 = (𝜎0, 𝜎1, 𝜎2, 𝜎3)𝑇. For matrix |𝛼(𝜆)|2, these 

coefficients are given by 

𝑠0 =
𝑑2

2
(𝑑2 + 𝑞2 + 𝑚2) = 𝑁    2.7.5a 

𝑠1 =
𝑑2

2
(𝑑2 + 𝑞2 − 𝑚2) = 𝑁′   2.7.5b 

𝑠2 = −𝑑2 𝑚𝑞 ∝ −𝑚𝑞    2.7.5c 

𝑠3 = −𝑑2 𝑚𝑑 ∝ −𝑚𝑑.    2.7.5d 

The set of coefficients are known as the Stokes parameters and are defined by the 

differential intensities between horizontal (ℎ), vertical (𝑣), ±45°, and right/left handed 

circularly polarized light (𝑅𝐶𝑃, 𝐿𝐶𝑃) [56] 

𝑠0 = 𝐼ℎ + 𝐼𝑣      2.7.6a 

𝑠1 = 𝐼ℎ − 𝐼𝑣      2.7.6b 

𝑠2 = 𝐼45 − 𝐼−45     2.7.6c 

𝑠3 = 𝐼𝑅𝐶𝑃 − 𝐼𝐿𝐶𝑃     2.7.6d 

Parameter 𝑠0 therefore describes the total intensity of the scattered light while 𝑠1 

determines the extent of horizontal/vertical anisotropy. Parameters 𝑠2 and 𝑠3 are of 

particular interest as they determine the linear and circular scattering dichroism, 

respectively, of the sample. For matrix |𝛼(𝜆)|2, it is evident that while linear dichroism 

arises from the relative signs of 𝑚 and 𝑞, circular dichroism is defined by the familiar 

cross-term of 𝑚 and 𝑑. 
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Stokes parameters are not relegated to describing optical elements alone – any 

polarization state of light can also be described in terms of the differential intensities 

presented in Eqns. 2.7.6a-d. The set of four Stokes parameters that describe either an 

optical element or a polarization state is known as a Stokes vector. Transformations can 

be carried out directly with the Stokes vector equivalents in the Mueller calculus 

formalism. Now, linear transformations are represented by scalings and rotations of the 

four-element Stokes vector in O(3). Rather than the complex 2D field vectors of Jones, 

Mueller calculus deals strictly with light intensities [56].  

The pure polarization states of Eqn. 2.7.1 is readily recast in terms of the 

projection of the sample Stokes vector, 𝑠 , onto the polarization state 𝑆 : 

|⟨𝜖�̂�|𝛼(𝜆) |𝜖�̂�⟩|
2 = ⟨𝑠 |𝑆 ⟩     2.7.8 

The true utility of this formulation is realized when the interaction is cast on the Poincare 

sphere. The three orthogonal axes of the sphere are defined by the Pauli matrices 

{𝜎1, 𝜎2, 𝜎3} = {𝜎𝑧 , 𝜎𝑥, 𝜎𝑦}, with 𝜎0 setting the radius to unity. Based on their corresponding 

Pauli matrix definitions, the three axes 𝜎1, 𝜎2, 𝜎3 of the sphere represent the 

horizontal/vertical, +45°/-45°, and RCP/LCP polarization states. Stokes parameters 

{𝑠1, 𝑠2, 𝑠3}  give the projection of a vector (be it light or optical element) onto each axis of 

the sphere, thereby defining its polarization state. Using the Stokes parameters of 

scattering matrix |𝛼(𝜆)|2 (from definitions given in Eqns. 2.7.6a-d), we can construct its 

normalized Stokes vector as follows. 

𝑠 |𝛼(𝜆)|2 = 𝑠 x =
1

𝑠0
(

𝑠1

𝑠2

𝑠3

) =
𝑑2

𝑁
(
(𝑑2 + 𝑞2 − 𝑚2)/2

−𝑚𝑞
−𝑚𝑑

) =
𝑑2

𝑁
(

𝑁′

−𝑚𝑞
−𝑚𝑑

)   2.7.9 
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This vector is illustrated in Fig. 2.7.2, for {𝑑 = 𝑚 = 𝑞 = 1}. Any subsequent interactions 

are represented by projecting the sample vector onto the Stokes vector of the 

polarization state with which it interacts. For unitary transformations this corresponds 

simply to a rotation of the light vector, though more generally it may also be scaled by 

its interaction with matter.  

 

 

 

 

 

 

 

 

 

Figure 2.7.2. Representation of sample scattering vector 𝑠 x on the Poincare sphere. Sphere 

axes are defined by the Pauli spin matrices {𝜎𝑧, 𝜎𝑥, 𝜎𝑦}, with corresponding polarization states as 

indicated by the kets. The projections of the vector onto each axis are determined by the Stokes 

coefficients {𝑠1, 𝑠2, 𝑠3}, the forms of which are given in purple. The resultant of a light-matter 

interaction is determined by projecting the sample vector 𝑠 x onto the vector of the light 

polarization state. 

 

The optical trains for both the LD and CD experiments can be readily constructed 

in both Mueller or Jones formalism. While much of the preceding analysis was confined 

to Jones algebra, the Stokes construction can be rapidly deployed as well. For the both 



59 
 

experiments, horizontally polarized light is incident on either a horizontal HWP (linear) 

or QWP (circular), which is subsequently rotated in angle φ, respectively. Briefly (see 

Appendix for details), these result in the following Stokes vectors. 

𝑆 𝐻𝑊𝑃 = 𝐻𝑊𝑃(𝜑) ∙ ℎ = (

1
cos(4𝜑)
sin(4𝜑)

0

)    2.7.10a 

𝑆 𝑄𝑊𝑃 = 𝑄𝑊𝑃(χ) ∙ ℎ = (

1
cos(2χ)2

cos(2χ) sin(2χ)
sin(2χ)

)   2.7.10b 

When cast onto the Poincare sphere, as shown in Fig. 2.7.3, the nature of the two 

experiments is made more apparent. The linear experiment is confined to the equator, 

sampling only the horizontal/vertical and +45/-45 axes as evident by the lack of any 

circular polarization generated here. In the circular experiment, the polarization traces 

out a complete figure eight as a function of φ. Starting first at the state of pure horizontal 

polarization, the polarization then sweeps up in a counterclockwise direction toward the 

RCP north pole, circles back through horizontal, subsequently down to the LCP south 

pole, and finally back once again to the horizontal. Note here that a single figure eight 

corresponds to rotation of the QWP from 0° → 180° only; a full 360° rotation simply 

traces this pattern twice.  

Recalling that the sample scattering can be described in terms of its 

corresponding Stokes vector 𝑠  (Fig. 2.7.2), it is immediately obvious that the interaction 

is 3D in nature. The linear experiment probes the projections of 𝑠  in the equatorial 

plane: it never has projection onto the RCP/LCP axis and so the Stokes parameter 𝑠3 is 

not directly accessible. To see this more clearly, project a general sample scattering 



60 
 

matrix       𝑠 = (𝑠0 𝑠1 𝑠2 𝑠3)𝑇 onto both the HWP and QWP polarization states 

generated above: 

𝑠 ∙ 𝑆 𝐻𝑊𝑃 = 𝑠0 + 𝑠1 cos(4𝜑) + 𝑠2 sin(4𝜑)   2.7.11b 

𝑠 ∙ 𝑆 𝑄𝑊𝑃 = 𝑠0 + 𝑠1 cos(2χ)2 + 𝑠2 cos(2χ) sin(2χ) + 𝑠3 sin(2χ)  2.7.11b 

While all four Stokes parameters are retained in the QWP experiment, the HWP 

experiment cannot access the final 𝑠3 term of circular dichroism in a total intensity 

measurement. While the QWP experiment essentially samples all four Stokes 

parameters, it is indifferent to the sign of the LD term 𝑠2 due to the even nature of 

cos(2χ) sin(2χ). It is for this reason that experiments into both the linear and circular 

response of the dimer are crucial in order to elucidate its complete nature.  

 

 

 

 

 

 

 

 

 

Figure. 2.7.3. The resulting paths on the Poincare sphere traced out by the linear (red) and 

circular (blue) experiments. While the linear experiment circles the equator of the sphere only, 

the circular experiment has projection onto all three of the Pauli axes, therefore accessing all of 

the necessary Stokes parameters. 

𝑆𝑄𝑊𝑃 

𝑆𝐻𝑊𝑃 
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2.7.3 Symmetric and anti-symmetric components and 2D versus 3D chirality 

 The distinctions between 2- and 3-D chirality, including their matrix construction 

and eventual optical response, were introduced in Section 2.1. For matrix |𝛼(𝜆)|2 such a 

decomposition is particularly revealing. Taking the 𝑥-oriented particle and dropping the 

common 𝑑2 term for clarity, the matrix becomes 

|𝛼(𝜆)|2  = (
𝑑2 + 𝑞2 −𝑚𝑞 − 𝑖𝑚𝑑

−𝑚𝑞 + 𝑖𝑚𝑑 𝑚2 )   2.7.12 

and its corresponding symmetric and anti-symmetric components are as follows. 

|𝛼(𝜆)|2 (𝑠) = (
𝑑2 + 𝑞2 −𝑚𝑞

−𝑚𝑞 𝑚2 )    2.7.13a 

|𝛼(𝜆)|2 (𝑎𝑠) = (
0 −𝑖𝑚𝑑

+𝑖𝑚𝑑 0
)    2.7.13b 

While the 3D chiral response naturally arises from the circular dichroism (with 

handedness given by 𝑚𝑑) of the anti-symmetric matrix, the fully real nature of the 

symmetric component immediately precludes any 2D chiral response.  

 That the chiral response is three-dimensional makes the observed circular ODH 

all the more peculiar – though some degree of ODH is to be expected in 2D cases, 3D 

responses, by their very definition, can never be brought into congruence with their 

enantiomer.  
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2.8: Extensions to Chiral Connectedness 

 As discussed in Section 2.1, the paradox of chiral connectedness states that any 

continuous object may be taken continuously from one enantiomer to the other such 

that the object never passes through a state of zero chirality. While this has historically 

been difficult (if not impossible) to realize experimentally, the ODH of the nanosphere 

dimers presents a unique opportunity to explore this phenomenon further. Since the 

optical response sustains both CD and LD, it is possible to choose Stokes trajectories 

that connect the optical enantiomers without passing through a wholly achiral state. 

Thus, identifying the chiral index of the material polarization by handedness for CD, ℎ =

𝑚𝑑/|𝑚| |𝑑| and footedness for LD, 𝑓 = 𝑚𝑞/|𝑚| |𝑞|, it is possible to choose trajectories 

such that the zero-crossings of ℎ and 𝑓 do not coincide. This can be done, for example, 

by rotating the initial linear polarization of light with respect to the QWP fast axis. 

Effectively, this action translates the figure-eight of Fig. 2.7.3 around the equator of the 

Poincare sphere. 

Examples are shown in Fig. 2.8.1, where data recorded along continuous Stokes 

trajectories are mapped as LD versus CD on the 𝜎𝑥𝜎𝑦 plane (Fig. 2.8.1c). The only 

trajectories that pass through the achiral origin are those that involve polarization states 

normal to the 𝜎𝑥𝜎𝑦 plane, namely the | ± 45°⟩ states. Had the second component of LD 

also been considered, the horizontal/vertical (rather than | ± 45°⟩) differential response, 

the achiral state would be reached only when the Stokes vector is orthogonal to the 

measurement state, ⟨𝑠|𝑆⟩ = 0. This cannot be avoided in 2D vector space, e.g., when 

measurements are limited to linear polarization and the interaction lacks projection 
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along 𝜎𝑦. Otherwise, rather than paradoxical, chiral connectedness is the general rule: it 

is an exceptional trajectory that connects optical enantiomers through the achiral state. 

 

 

 

Figure 2.8.1. Chiral connectedness as illustrated in the nanosphere dimers. (a) Measured 

backscattered intensities as a function of rotation angle of the QWP for four initial orientations of 

the linear polarizer relative to the long axis of the dimer: 𝜑 = 0° (red), 𝜑 = 30° (orange), 𝜑 = 60° 

(green), 𝜑 = 90° (blue). (b) Color-coded trajectories of the incident Stokes vector on the 

Poincare sphere. (c) Projection of the measurements on the 𝜎𝑥𝜎𝑦 plane, which corresponds to 

the map of footedness (LD) versus handedness (CD). 

 

2.9: Chiral Plasmons 

 Ever since the introduction of the hybridization model [29], plasmonic resonances 

of the nanodimers are identified in analogy with diatomic molecules. Paralleling the 

construct of a linear combination of atomic orbitals, the |𝑙1,𝑚1 = 0⟩ ± |𝑙2, 𝑚2 = 0⟩ and 

|𝑙1, 𝑚1 = 1⟩ ∓ |𝑙2, 𝑚2 = 1⟩ combinations of nanosphere Mie resonances are assigned to 

the bonding and anti-bonding dipolar and quadrupolar plasmons, with interaction 

energies given by the Coulomb integral of surface charge distributions. A dense 
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manifold of |l, ml> states cover the spectral range of the four molecular orbitals shown in 

Fig. 2.9.1a. The measurements described here are entirely limited to the spectral range 

of what is nominally considered quadrupolar states, but is here revealed to consist of 

additional electric and magnetic dipole (and hence, chiral) resonances. These would 

have been anticipated by considering the leading dipole-dipole tensor that couples 

plasmons on two spheres in its irreducible representation [59]. The second rank tensor 

leads to nine states, 𝐷(1)⨂𝐷(1) = 𝐷(2) + 𝐷(1) + 𝐷(0) which correlate with 𝛥 +2 𝛱 +3 𝛴 

states of angular momentum Λ = |𝑚𝑙,1 + 𝑚𝑙,2| = 2,1,0 along the principal quantization 

axis (Fig. 2.9.1b). On nanospheres, these symmetry-adapted states describe surface 

current: The 𝛥 states, |±1,±1⟩ is magnetic, with current cocirculating around the 

intersphere axis. The 𝛱 state, |±1,0⟩+|0,±1⟩ is helical, with united sphere limit 𝑌2,±1 ≈

(𝑥 ± 𝑖𝑦)𝑧. The three 𝛴 states with Λ=0 come in two flavors: the binding dipolar plasmon, 

|0,0⟩, and the vortex states, |±1,∓1⟩ that approximate magnetic monopoles. To the 

extent that cylindrical symmetry is maintained, Λ ≠ 0 states are doubly degenerate, and 

the superposition of degenerate Λ± states leads to the Cartesian multipoles of the 

hybridization model (Fig. 2.9.1a). This prevails on achiral nanodimers, e.g., Fig. 2.9.1, 

where the excitation may be assigned to 𝑞𝑥𝑧 ∝ 𝑌2,1 + 𝑌2,−1 in the united sphere limit. 

Splitting of Λ± states is necessary to observe handed response, and the deviation of the 

nanosphere junction from sphericity is the origin of broken symmetry as was shown in 

Fig. 2.9.1. This hidden asymmetry resolves the contradiction of an achiral structure 

showing chiral response and at the same time exposes the true challenge of quantifying 

chirality.  
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Figure 2.9.1. Plasmonic resonances. (a) The hybridization model [29] considers the interaction 

between Cartesian dipoles; (b) the symmetry adapted states of the dipole−dipole interaction in 

its irreducible spherical representation implies circulating surface current, therefore plasmons 

that carry angular momentum. The 𝛥 state is the magnetic plasmon, with cocirculating current 

|±1, ±1⟩. The 𝛱 state is helical, with current that involves simultaneous circulation and 

translation |±1, 0⟩ + |0, ±1⟩ as in Figure 1. The 𝛴 state comes in two flavors, the |0, 0⟩ state 

equivalent to the lowest energy bonding dipolar plasmon in (a) and the counter circulating vortex 

states |±1, ∓1⟩ that approximate magnetic monopoles. 
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CHAPTER 3: Extensions to Bi-Isotropic and Negative Index Media 

 

3.1: Introduction: Negative Index in Linear Media 

 In this chapter, the multipolar terms derived in Chapter 2 will be extended and 

brought into congruence with familiar material parameters, such as the electric 

permittivity 𝜀 and magnetic permeability 𝜇. It will be shown, rather straightforwardly, that 

the simultaneous excitation of 𝑑, 𝑞,𝑚 terms in the plasmonic nantenna allows for the 

generation of a novel type of negative index which arises from a bi-isotropic medium. 

Before these considerations can be discussed at length, however, a brief overview of 

general isotropic media, as well as the history, applications, and current strategies in 

negative index media (NIM) is presented. 

In the case of a standard linear (reciprocal, achiral) material, the constitutive 

equations 

 �⃑� = 𝜇�⃑⃑�      3.1.1a 

�⃑⃑� = 𝜀�⃑�      3.1.1b 

give rise to an index of refraction governed by [60] 

𝑛 = √𝜀𝜇.     3.1.2 

NIM, which exhibit a negative refractive index 𝑛 over some frequency range, were first 

proposed by Victor Veselago in 1967 [61]. In this theoretical paper, he investigates the 

optical properties of a then-unrealized material with simultaneously negative 𝜀 and 𝜇 

(note that if only one parameter is negative, 𝑛 = √−𝜀𝜇 = 𝑖𝑛 and the wave becomes 

entirely attenuating and therefore does not propagate). He noted a number of 

fascinating properties that would arise in such a medium, including a reversal of the 
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Doppler effect and direction of the Cherenkov radiation cone. Perphaps most important 

for general applications, though, was his finding that negative index generates a system 

in which {�⃑� , �⃑� , �⃑⃑� } form a left-handed set. To see this, recognize that material parameter 

𝜇 connects the cross-product �⃑� × �⃑�  with the direction of the magnetic field �⃑⃑�  as follows: 

�⃑� × �⃑� ∝ 𝜇�⃑⃑� ⇒ −�⃑⃑�      3.1.3 

Here, the direction of propagation, defined by �⃑� , is directed opposite to that exhibited by 

a normal, right-handed medium. Additionally, the Poynting vector 𝑆  which defines the 

direction of energy flux opposes the direction of propagation in a NIM, as 𝑆 ∝ �⃑� × �⃑⃑� . For 

this reason, NIM are also sometimes called “left-handed” or “backwards” media.  

 

 

 

 

 

 

 

Figure 3.1.1. (a) Positive index media (𝜀 and 𝜇 > 0) exhibit a right-handed relationship between 

the vector set {�⃑� , �⃑� , �⃑⃑� } and wavevector �⃑�  is parallel to the Poynting vector 𝑆 . (b) For negative 

index media (𝜀 and 𝜇 < 0), {�⃑� , �⃑� , �⃑⃑� } forms a left-handed set and �⃑�  is perpendicular to the 

direction of energy flux 𝑆 . 

 

 The effect of negative index on other material parameters can be determined 

through similar means. Consider, for example, Snell’s Law [62]: 

�⃑⃑⃑�  

�⃑⃑�  

�⃑⃑�  

�⃑⃑�  

�⃑⃑⃑�  

�⃑⃑�  

�⃑⃑�  

�⃑⃑�  

(a) (b) 
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sin𝜃1

sin𝜃2
=

𝑛1

𝑛2
,      3.1.4 

which describes the angle at which light is bent (𝜃2) as it travels from medium 1 (with 

angle of incidence 𝜃1) into medium 2. When one of the two media is replaced with a 

NIM, Eqn. 3.1.4 is still satisfied, but under strange conditions: Snell’s law for light 

traveling from a positive index medium (𝑛+ with angle 𝜃+) into a negative index medium 

(𝑛−) bends at the following angle 

𝜃− = sin−1 (
sin𝜃+𝑛−

𝑛+
).     3.1.5 

Here, the direction of the light ray in the NIM is mirrored about the surface normal 

compared to the positive index case, as depicted in Fig. 3.1.2. 

 

 

  

 

 

 

 

 

 

 

Figure 3.1.2. Snell’s Law, illustrated for an incident ray (red) traveling from one positive medium 

into (a) another positive medium and (b) a negative medium. Apparently, the direction the ray is 

bent is directly inverted in a negative index material.  

 

(a) (b) 

Negative 
index 

Positive 
index 

Incident 
ray 
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As a consequence of their potential for bending light in non-standard ways, 

Veselago’s suggested in his original paper that NIM could be used as a so-called 

“superlens”. The principle is illustrated in Fig. 3.1.3. Little else was said regarding the 

use of NIM as lenses until 2000, when J. B. Pendry posited that a negative index 

material slab could be used as a perfect lens – that is, a lens capable of overcoming the 

diffraction limit, allowing for the resolution of sub-wavelength features [63]. Briefly, to 

understand how planar NIM are able to focus light, consider a source some distance 

𝑑 from a negative-positive index interface. As dictated by Snell’s Law, light impinging on 

the interface and entering the negative material will be refracted at an angle of −𝜃− with 

respect to the surface normal. If the width of the NIM 𝑤 is such that 𝑤 > 𝑑, the light 

focuses within the medium and subsequently diverges until it reaches the second 

interface. Here, the light is refracted back at an angle of +𝜃+ in the positive medium, 

where it reaches a second focus at distance that 𝑤 − 𝑑 from the interface. This 

refocusing effect is made possible by a phase reversal that occurs within the medium, 

as demonstrated by the transmission coefficient 𝑇. Taking propagation along �̂�, the 

transmission coefficient through the medium is given by 

𝑇 = 𝑒𝑖𝑘𝑧
′𝑑 = 𝑒

−𝑖√𝜔2𝑐2−𝑘𝑥
2−𝑘𝑦

2𝑑
    3.1.6 

where the sign reversal (𝑘𝑧 → −𝑘𝑥,𝑦) is a natural consequence of the propagation 

direction opposing the direction of energy flow (+𝑘) [60].  

To demonstrate sub-wavelength imaging capabilities of such a NIM slab, Pendry 

calculated the transmission coefficients for the cases of both S- and P-polarized waves 

traveling through the slab. In vacuum, the evanescent components of the waves have 

imaginary wavevectors 𝑖𝑘𝑧 such that the waves are defined by exp(𝑖(𝑖𝑘𝑧)𝑧) =exp(−𝑘𝑧). 
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For the case of negative index, Pendry showed that, in theory, the transmission 

coefficient for either S- or P-polarized waves through the slab scale as exp(−𝑖𝑘𝑧𝑑) and 

so are amplified within the medium. Now, both propagating and evanescent waves 

factor into the image resolution, and, as sub-wavelength information is carried within the 

evanescent component, the diffraction limit is effectively circumvented.  

 

 

 

 

 

 

Figure 3.1.3. Refraction of light at a positive-negative index interface causes the ray to bend at a 

negative angle with respect to the surface normal. If the thickness of the material is chosen such 

that it is larger than the distance between the source and interface, the light will converge within 

the medium, diverge until it reaches the second interface, and subsequently re-focus at a 

second point. Adapted from [64]. 

 

Materials demonstrating simultaneously negative 𝜀 and 𝜇 have yet to be found in 

nature. Instead, these parameters are achieved by highly structured meta-materials. 

Metamaterials are manmade structures consisting of repeating subunits whose 

construction based on the application at hand – for example, small metal spheres are 

used to increase the dielectric response beyond natural materials, while split-ring 

resonators are used to achieve artificial magnetism [65]. Typically, a large number of 

NIM 

source image 
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subunits are stacked together along the wave propagation directions, in approximation 

of a homogenous medium, to generate appreciable material response. 

Even in artificially engineered metamaterials, the condition for negative index, 

that both 𝜀 and 𝜇 be simultaneously negative, has proven difficult to achieve 

experimentally. Though there are several ways to obtain negative 𝜀 [66] and 𝜇 [67, 68] 

independently, obtaining both for the same frequency range (particularly in the visible 

regime) has proven challenging. Many of these approaches attempt merely to hybridize 

standard negative 𝜀 materials (such as thin wire media) with negative 𝜀 materials (like 

the split-ring resonators). In each case, the media are highly lossy and have only a 

narrow range of frequencies for which both 𝜀 and 𝜇 are negative, limiting their 

applications to rather specific instances [69, 70, 71].  

In the rest of this chapter, a method for generating NIM through use of a bi-

isotropic (BI) medium is explored. Though BIM have been vaguely identified as a 

possible candidate for generating NIM, no suitable materials have yet been identified. 

By making connections between the multipolar terms derived in Chapter 2 and the well-

known material parameters of electromagnetism, it becomes clear that uniaxial 

scatterers such as the dimer nantenna present an attractive and readily realizable 

alternative to the previous NI methods.  

 

3.2: Generalization Using Constitutive Equations 

 From inspection of the effective sample scattering matrix given in Eqn. 2.7.3b, it 

is evident that two terms generate electromagnetic cross coupling: the linear (𝑚𝑞) and 

circular (𝑚𝑑) dichroism. A material comprised of such uniaxial scatters will then be, in 
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the most general case, bi-isotropic (BI). For a general BI medium, this cross coupling 

between the electric and magnetic field components in the medium is described by the 

well-known constitutive equations [60]  

�⃑� = 𝜇�⃑⃑� + (𝜒 + 𝑖𝜅)�⃑�      3.2.1a 

�⃑⃑� = 𝜀�⃑� + (𝜒 − 𝑖𝜅)�⃑⃑�      3.2.1b 

where 𝜒 and 𝜅 are the dimensionless non-reciprocal and chiral terms, respectively, and 

𝜀 and 𝜇 are the standard electric permittivity and magnetic permeability, respectively. 

Essentially, Eqns. 3.2.1a-b indicate that the electric field induces magnetic polarization 

in the medium, and the magnetic field induces electric polarization. Indeed, if 𝜒 and 𝜅 

are set to zero in the above equations, they return to the standard constitutive equations 

for linear media. While a general BI material has both 𝜒 and 𝜅, two important 

subclasses emerge based on their values. These are described in detail in the 

proceeding sections.  

1. Materials with 𝜒 ≠ 0 and 𝜅 = 0 are called Tellegen media and are characterized by 

their non-reciprocal, achiral response. Here, the electric response in the medium 

induces a change in the magnetic component (and so is called an electromagnetic 

effect). One of the most striking effects of such a coupling is the backward 

propagation of waves within the medium. The existence of pure Tellegen media has 

been heavily debated int eh past 20 years (in fact, one of the first links on a Google 

search of “Tellegen Media” is called Do Tellegen particles really exist? [72]). 

2. Materials with 𝜅 ≠ 0 and 𝜒 = 0 are called Pasteur media and are characterized by 

their chiral, reciprocal response. In chiral media, the magnetic component of the field 

induces a magnetic current, which in turn affects the electric component of the field 
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(magnetoelectric effect). Chiral object, from molecules to metamaterials, have been 

an area of active research since their first description by Lord Kelvin over 100 years 

ago.  

 

3.3: Wave Propagation and Negative Index in Bi-Isotropic Media  

 One of the most immediate features of BI media is their birefringence – e.g., 

polarization-dependent refractive index. To see this clearly, a simple derivation of the 

wave propagation in BI media, leading to split index of refraction, is presented here. 

Starting with the source-free Faraday and modified Ampere’s laws from the Maxwell 

Equations [73]:  

∇⃑⃑ × �⃑� = −
𝜕

𝜕𝑡
�⃑�      3.3.1a 

∇⃑⃑ × �⃑⃑� =
𝜕

𝜕𝑡
�⃑⃑� .      3.3.1b 

Inserting the BI constitutive equations (Eqn. 3.2.1a into Eqn. 3.3.1a and Eqn. 3.2.1b into 

Eqn. 3.3.1b) gives, respectively, 

∇⃑⃑ × �⃑� = −(𝜒 + 𝑖𝜅)
𝜕

𝜕𝑡
�⃑� − 𝜇

𝜕

𝜕𝑡
�⃑⃑�    3.3.2a 

∇⃑⃑ × �⃑⃑� = (𝜒 − 𝑖𝜅)
𝜕

𝜕𝑡
�⃑⃑� + 𝜀

𝜕

𝜕𝑡
�⃑� .   3.3.2b 

Now, taking the curl of Eqn. 3.3.2a, and noting that the curl commutes with the time 

derivative ([
𝜕

𝜕𝑡
, ∇⃑⃑ ×] = 0), 

∇⃑⃑ × ∇⃑⃑ × �⃑� = −(𝜒 + 𝑖𝜅)
𝜕

𝜕𝑡
∇⃑⃑ × �⃑� − 𝜇

𝜕

𝜕𝑡
∇⃑⃑ × �⃑⃑�   3.3.3 

and substituting Eqn. 3.3.2b gives 

∇⃑⃑ × ∇⃑⃑ × �⃑� = −(𝜒 + 𝑖𝜅)
𝜕

𝜕𝑡
∇⃑⃑ × −𝜇𝜀

𝜕2

𝜕𝑡2
�⃑� − (𝜒 − 𝑖𝜅)

𝜕

𝜕𝑡
(

𝜕

𝜕𝑡
𝜇�⃑⃑� ). 3.3.4 
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Rearranging Eqn. 3.3.2a in terms of 𝜇�⃑⃑�  and inserting into Eqn. 3.3.4 above yields, 

finally, 

∇⃑⃑ × ∇⃑⃑ × �⃑� = −(𝜒 + 𝑖𝜅)
𝜕

𝜕𝑡
∇⃑⃑ × �⃑� − 𝜇𝜀

𝜕2

𝜕𝑡2
�⃑� − (𝜒 − 𝑖𝜅)

𝜕

𝜕𝑡
[−∇⃑⃑ × �⃑� − (𝜒 + 𝑖𝜅)

𝜕

𝜕𝑡
�⃑� ] 

= −2𝑖𝜅
𝜕

𝜕𝑡
∇⃑⃑ × �⃑� + (𝜒2 + 𝜅2 − 𝜇𝜀)

𝜕2

𝜕𝑡2 �⃑� .     3.3.5 

Based on the definition of the Fourier Transform, 
𝜕

𝜕𝑡
= 𝜔, Eqn. 3.3.5 can be written 

0 = ∇⃑⃑ × ∇⃑⃑ × �⃑� + 2𝑖𝜅𝜔∇⃑⃑ × �⃑� − 𝜔2(𝜒2 + 𝜅2 − 𝜇𝜀)�⃑� .  3.3.6 

Eqn. 3.3.6 describes the propagation of electromagnetic waves in the BI medium, which 

is governed by the solutions 

𝑘± = 𝜔(√𝜇𝜀 − 𝜒2 ± 𝜅)    3.3.7 

with corresponding refractive indices 𝑛 = 𝑘/𝜔 of 

𝑛± = √𝜇𝜀 − 𝜒2 ± 𝜅.     3.3.8 

Inspection of Eqn. 3.3.8 reveals immediately the advantage of BI media: namely, that 

the conditions necessary for generating negative refractive index are significantly 

relaxed compared to the standard double-negative material (𝜀 = 𝜇 = 0). If |𝜅| >

√𝜀𝜇 − 𝜒2, the index is inherently negative for 𝑘−. Though not necessary, the inclusion of 

non-zero 𝜒 further relaxes the conditions as smaller values of 𝜅 now lead to −𝑛, as 

compared to those required for Pasteur media.   

 To case these results in terms of the excitable plasmonic modes {𝑑, 𝑞,𝑚} of the 

dimer nantenna, we return to the effective interaction matrix of Eqn. 2.7.3b: 

Σ𝑥 = (
𝑑2 + 𝑞2 𝑚𝑞 − 𝑖𝑚𝑑

𝑚𝑞 + 𝑖𝑚𝑑 𝑚2 ).    3.3.9 
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Based on the bi-isotropic nature of the interaction, the output polarization goes 

succinctly as 

(
𝐷
𝐵
) = (

𝑑2 + 𝑞2 𝑚𝑞 − 𝑖𝑚𝑑

𝑚𝑞 + 𝑖𝑚𝑑 𝑚2 ) (
𝐸
𝐻

)   3.3.10 

which is analogous to the constitutive equations, cast into matrix representation as 

(
𝐷
𝐵
) = (

𝜀 𝜒 − 𝑖𝜅
𝜒 + 𝑖𝜅 𝜇

) (
𝐸
𝐻

).   3.3.11 

By comparison of the constitutive relations with the sample scattering matrix above, the 

material parameters {𝜀, 𝜇, 𝜒, 𝜅} are equated with the multipolar resonances {𝑑, 𝑞,𝑚} as 

𝜀 = 𝑑2 + 𝑞2     3.3.12a 

𝜇 = 𝑚2     3.3.12b 

𝜒 = 𝑚𝑞     3.3.12c 

𝜅 = 𝑚𝑑     3.3.12d 

with split refractive index (from Eqn. 3.3.8) 

𝑛± = √(𝑑2 + 𝑞2)𝑚2 − (𝑚𝑞)2 ± 𝑚𝑑 = 𝑚𝑑 ± 𝑚𝑑.  3.3.13 

The final indices, 𝑛+ and 𝑛−, are then given by 

𝑛+ = 2𝑚𝑑 = 2𝜅    3.3.14a 

𝑛− = 0      3.3.14b 

with corresponding propagation factors 𝑘+ = 2𝜔𝑚𝑑 and 𝑘− = 0. Evidently only one 

Eigenmode (here, 𝑘+, typically distinguished as right-handed circularly polarized light) 

propagates within the medium, with the sign of the index defined solely by that of 𝑚 

relative to 𝑑. The effect of non-reciprocity, while interesting in its own right, does not 

explicitly factor into the final index. 



76 
 

This is a particularly interesting case of chirality only defining the index of 

refraction, one that is distinct from chiral nihility where 𝜀 = 𝜇 = 0 but 𝜅 ≠ 0 – both 𝜀 and 

𝜇 still exist, they have just canceled out. In the case of formal chiral nihility, negative 

index is indeed achievable but there are still two Eigenmodes that persist in the material 

with equal but opposite propagation constants. Here, only one mode persists while the 

other is entirely attenuated.  

 

3.4: Applications  

 The most immediate application of such a material is in the generation of 

orientation-dependent negative index films. Given that the sign of 𝑚𝑑 and thus, 

handedness, of the dimers is defined by their orientation, a simple in-plane rotation will 

take the film from positive to negative index continuously. In this case, the material 

would consist of stacked films, with each film containing an array of nanodimers 

embedded in a non-interfering matrix (such as silicon nitride or sol-gel). As the junction 

asymmetry is what dictates the handedness at a given orientation, dimers can be batch 

fabricated to have identical structural features. One method of doing this is through 

photolithography, which has been extensively used to generate asymmetric structures 

of various shapes and sizes. 

 Though such a film would only display variable index under CPL, it shows a 

much broader active spectral range than previously reported materials. As shown in Fig. 

3.4.1, gold nanodimers have a large scattering cross section (which is necessary to 

generate the large SERS-based chirality) that extends throughout the near-UV and into 

the visible and near-IR range [58].  
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Figure 3.4.1. Scattering and absorption cross-section (red) and field enhancement (blue) 

spectrum of a symmetric nanodimer excited with light polarized along its long (inter-particle) 

axis. Reprinted with permission from [58]. 

 

 In addition to the negative index that can be sustained in such media, the zero-

index mode is of equal interest as it has applications in optical circuits and quantum 

computing. Further studies will have to be done to verify the validity of these indices, but 

the treatment here has provided a general proof-of-concept that illustrates the utility 

plasmonic nantenna have in the world of metamaterials and applied optoelectronics.  

 

 

 

 

 

 

 



78 
 

CHAPTER 4: Summary and Conclusions 

The confusion regarding the appearance of backgrounds in SERS spectra has 

been resolved here through careful disentanglement of the metallic and molecular 

response of the decorated nantenna. This work has shown that the background can be 

assigned to inelastic light scattering on the gold nantenna itself, which has been termed 

electronic Raman scattering (ERS). Upon this realization, information such as metallic 

and molecular temperature can be cleanly extracted directly from the SERS spectra. 

Additionally, experiments into the power dependence of SERS spectra reveal that while 

the metal response increases linearly with excitation intensity, the non-linear response 

in the molecular lines can be treated by consideration of the molecular partition function. 

Finally, while ERS can be described straightforwardly by consideration of the population 

of thermal hole states (which serve as the terminal state in the ERS process), a richer 

wealth of information is provided through the full quantum mechanical treatment that 

was presented here.  

Furthermore, the phenomena of ODH and chiral connectedness and the 

distinction between chirality and handedness find satisfactory resolution in the 

presented CD and LD measurements on individual nantenna. The contradiction of a 

nominally achiral structure showing giant optical activity does not have a formal 

resolution, due to the lack of a quantitative continuous measure of chirality. The 

challenge may be reduced to the more mundane question of how spherical (achiral) is a 

nanosphere? The typical gold nanosphere of ∼50 nm radius fails to qualify, as 

evidenced by the giant chiroptical response of its dimer. Besides the gross size scale ζ 

≈ 1 essential for retardation to play a role, nanostructuring on much finer scale controls 
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the definite handedness of their interaction with light. This is ultimately traced to the 

broken degeneracy of Λ ≠ 0 plasmons, which emerges from the treatment of dichroism 

as the quantum interference between resonantly prepared electric and magnetic 

plasmons. although the treatment is formally first order in the spatial dispersion [74], 

terms up to ζ4 contribute to the dichroism in the limit ζ ≈ 1. This generates previously 

unexplored rich physics and suggests the manipulation of quantum superpositions of 

plasmons as a powerful paradigm for novel materials applications. A more specific 

application of chiral plasmons is to amplify the CD of molecules, which otherwise is a 

feeble effect in the ζ ≪ 1 limit [75-78]. Rather than molecular activity, polarization-based 

methods are likely to probe the nantenna. Chiral induction should be possible to transfer 

from the vortex core of plasmons to molecules located at the nanojunction, where a 

second scaling factor applies: ζg =2𝜋𝑟/𝑔, given by molecular dimensions, 𝑟, and gap 

length, 𝑔. This information is encoded in the spectra, as already realized by the 

observation of magnetic and quadrupolar vibrational Raman spectra at the hot spot of 

nanojunctions [23]. There will be a significant concentration of chiral current and vorticity 

at the junction, with associated large optomagnetic dipoles and monopoles that should 

be possible to harness. A fully quantum treatment of plasmonics on irregular structures 

would be invaluable for a rigorous understanding of their dynamics and control over 

their active optical response. 
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APPENDIX 

 

A1. Light-Matter Interaction Derivation 

The goal here is to determine the nature of the quantum mechanical modes of 

the scatterer that couple to the exciting field. The general form of the light-matter 

interaction potential, which mediates the material response, is given by [9]: 

�̂� =
𝑖ℏ𝑒

2𝑚
(∇⃑⃑ ∙ 𝐴 + 𝐴 ∙ ∇⃑⃑ ) +

𝑒2

2𝑚𝑐2
𝐴 ∙ 𝐴 .     A1.1 

The second term arises from an interaction that does not induce any change in energy – 

it is an elastic process and therefore attributable to Rayleigh scattering. As the primary 

interest of this treatment is in the inelastic Raman process, the second term is ignored 

and the derivation will proceed with the first term only. In the Coulomb gauge, ∇⃑⃑ ∙ 𝐴 + 𝐴 ∙

∇⃑⃑ = 2𝐴 ∙ ∇⃑⃑ , and so Eqn. A1.1 becomes 

�̂� =
𝑖ℏ𝑒

𝑚
𝐴 ∙ ∇⃑⃑ .      A1.2 

The vector potential 𝐴  is in the form of a plane wave and therefore given 

straightforwardly by 𝐴 = 𝐴0𝑒
𝑖(𝑘∙𝑟−𝜔𝑡). With this in hand, the now-oscillatory Eqn. A1.2 

can be input into to Fermi’s Golden Rule which allows for identification of the allowable 

transitions (from 𝑏 → 𝑎). 

⟨𝑏|𝑉(𝑡)|𝑎⟩ =
𝑖ℏ𝑒

𝑚
𝐴0𝑒

−𝑖𝜔𝑡⟨𝑏|𝑒𝑖𝑘∙𝑟 ∙ ∇⃑⃑ |𝑎⟩   A1.3 

For simplicity, the problem will be reduced to two dimensions with propagation 

along �̂� (�⃑� = 𝑘𝑧�̂�) and polarization along �̂� (∇⃑⃑ =
𝜕

𝜕𝑥
):  

⟨𝑏|𝑉(𝑡)|𝑎⟩ =
𝑖ℏ𝑒

𝑚
𝐴0𝑒

−𝑖𝜔𝑡 ⟨𝑏|𝑒𝑖𝑘𝑧 ∙
𝜕

𝜕𝑥
|𝑎⟩   A1.4 
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Typically, the spatial portion of the vector potential 𝑒𝑖𝑘∙𝑟 is taken only to zeroth 

order, 𝑒𝑖𝑘∙𝑟 ≈ 1, due to size considerations. This holds true for the case of molecular 

scattering, where the size of the object (~1 nm) is much smaller than the k-vector of the 

field and  𝑘 ∙ 𝑟 =
2𝜋𝑟

𝜆
~0. This is the basis for the dipolar approximation that predicates 

much of molecular Raman theory. For the case of the 100 nm dimers, however, this 

assumption is no longer valid as 
2𝜋𝑟

𝜆
~1 – spatial dispersion cannot be ignored here, and 

to that end the vector potential is expanded to first order in spatial dispersion: 𝑒𝑖𝑘∙𝑟 ≈

1 + 𝑖𝑘 ∙ 𝑟 = 1 + 𝑖𝑘𝑧. This expansion serves as the basis for multipolar Raman scattering, 

and is necessary to justify the observed dichroism. Using this, A1.3 becomes  

⟨𝑏|𝑉(𝑡)|𝑎⟩ =
𝑖ℏ𝑒

𝑚
𝐴0𝑒

−𝑖𝜔𝑡 ⟨𝑏|(1 + 𝑖𝑘𝑧) ∙
𝜕

𝜕𝑥
|𝑎⟩   A1.5a 

=
𝑖ℏ𝑒

𝑚
𝐴0𝑒

−𝑖𝜔𝑡 [⟨𝑏|
𝜕

𝜕𝑥
|𝑎⟩ + 𝑖𝑘 ⟨𝑏|𝑧 ∙

𝜕

𝜕𝑥
|𝑎⟩].      A1.5b 

Working first with the zeroth-order electric dipole term, the first term in the 

brackets of Eqn. A1.5b. The spatial derivative is transformed by the commutator of the 

Hamiltonian and position operator, by recognizing that [�̂�, �̂�] = −
𝑖ℏ

𝑚
�̂�𝑥 = −

ℏ2

𝑚

𝜕

𝜕𝑥
 so that 

⟨𝑏|
𝜕

𝜕𝑥
|𝑎⟩ = −

𝑚

ℏ2
⟨𝑏|𝐻𝑥 − 𝑥𝐻|𝑎⟩.    A1.6 

The Hamiltonian effectively picks the energy of states 𝑎, 𝑏 so that Eqn. A1.6 becomes 

⟨𝑏|
𝜕

𝜕𝑥
|𝑎⟩ = −

𝑚

ℏ2
⟨𝑏|𝐸𝑏𝑥 − 𝑥𝐸𝑎|𝑎⟩.    A1.7 

 

Now, defining the energy difference in terms of frequency 𝐸𝑏 − 𝐸𝑎 = ℏ𝜔𝑏𝑎 allows Eqn. 

A1.7 to simplify to 
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⟨𝑏|
𝜕

𝜕𝑥
|𝑎⟩ = −

𝑚𝜔𝑏𝑎

ℏ
⟨𝑏|𝑥|𝑎⟩     A1.8 

For the second term in A1.5b, start by adding zero in the form of 𝑥
𝜕

𝜕𝑥
: 

⟨𝑏|𝑧 ∙
𝜕

𝜕𝑥
|𝑎⟩ =

1

2
⟨𝑏|𝑧 ∙

𝜕

𝜕𝑥
− 𝑥 ∙

𝜕

𝜕𝑧
|𝑎⟩ +

1

2
⟨𝑏|𝑧 ∙

𝜕

𝜕𝑥
+ 𝑥 ∙

𝜕

𝜕𝑧
|𝑎⟩.  A1.9 

These terms correspond, respectively, to the magnetic dipole and electric quadrupole 

excitations. To see this more clearly, working first with the magnetic dipole term and 

using 𝑝𝑗 = −𝑖ℏ
𝜕

𝜕𝑗
: 

1

2
⟨𝑏|𝑧 ∙

𝜕
𝜕𝑥

− 𝑥 ∙
𝜕
𝜕𝑧

|𝑎⟩ = −
1

2𝑖ℏ
⟨𝑏|𝑧 (−𝑖ℏ

𝜕
𝜕𝑥

) − 𝑥 (−𝑖ℏ
𝜕
𝜕𝑧

) |𝑎⟩ 

=
𝑖

2ℏ
⟨𝑏|𝑧𝑝𝑥 − 𝑥𝑝𝑧|𝑎⟩ =

𝑖

2ℏ
⟨𝑏|�̂�𝑦|𝑎⟩           A1.10 

Where 𝑧𝑝𝑥 − 𝑥𝑝𝑧 has been identified as the angular momentum operator, �̂�𝑦. For the 

quadrupolar term, the commutator [�̂�, 𝑗̂] is once again called upon: 

1

2
⟨𝑏|𝑧 ∙

𝜕
𝜕𝑥

+ 𝑥 ∙
𝜕
𝜕𝑧

|𝑎⟩ = −
𝑚

2ℏ2
⟨𝑏|𝐻𝑥𝑧 − 𝑧𝑥𝐻|𝑎⟩ 

= −
𝑚𝜔𝑏𝑎

2ℏ
⟨𝑏|𝑥𝑧|𝑎⟩            A1.11 

Taking all three terms together, from Eqns. A1.8, A1.10, and A1.11, and 

substituting back into Eqn. A1.5b gives 

〈𝑉〉 =
𝑖ℏ𝑒

𝑚
𝐴0𝑒

−𝑖𝜔𝑡 [−𝑖𝑒𝜔𝑏𝑎⟨𝑏|𝑥|𝑎⟩ −
𝑖𝑘𝑒

2𝑚
⟨𝑏|�̂�𝑦|𝑎⟩ +

𝑒𝑘𝜔𝑏𝑎

2
⟨𝑏|𝑥𝑧|𝑎⟩]. A1.12 

From this, the three terms are readily recast using the standard definitions for the 

electric dipole, magnetic dipole, and electric quadrupole: 𝑒𝑥 = 𝜇𝑒 ,
𝑒𝐿

2
= 𝜇𝑚, 𝑒𝑥𝑧 = 𝑞𝑥𝑧. 

The symmetric nature of the transitions is also invoked here to transform 𝜔𝑏𝑎 = −𝜔𝑎𝑏. 

In total, Eqn. A1.12 (with a little regrouping) now becomes 

〈𝑉〉 = 𝑖𝜔𝑎𝑏𝐴0𝑒
−𝑖𝜔𝑡 (⟨𝑏|𝜇𝑒|𝑎⟩ −

𝑘

𝜔𝑎𝑏
⟨𝑏|𝜇𝑚|𝑎⟩ +

𝑖𝑘

2
⟨𝑏|𝑞𝑥𝑧|𝑎⟩).  A1.13 
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Recall that the quantum mechanical definition for the orbital angular momentum 

operator is inherently complex as it contains a linear momentum term (�̂� = 𝑟 × 𝑝 ). 

Forcing this term to be real by extracting the −𝑖 yields finally 

〈𝑉〉 = 𝑖𝜔𝑎𝑏𝐴0𝑒
−𝑖𝜔𝑡 (⟨𝑏|𝜇𝑒|𝑎⟩ +

𝑖𝑘

𝜔𝑎𝑏
⟨𝑏|𝜇𝑚|𝑎⟩ +

𝑖𝑘

2
⟨𝑏|𝑞𝑥𝑧|𝑎⟩).  A1.14 

The derivation of Eqn. A1.14 in three dimensions is show explicitly in [Schatz & 

Ratner]. Here, the polarization is generalized into the vector 𝜖̂, and the transition 

elements into corresponding vectors (𝑑 , �⃑⃑� ) and dyadic (𝑞𝑏𝑎); all prefactors remains the 

same. Using this, Eqn. A1.13 is transformed into three dimensions as 

〈𝑉〉 = 𝑖𝜔𝑎𝑏𝐴0𝑒
−𝑖𝜔𝑡 (𝜖̂ ∙ 𝑑 +

𝑖

𝜔𝑎𝑏
�⃑� × 𝜖̂ ∙ �⃑⃑� +

𝑖

2
𝜖̂ ∙ 𝑞 ∙ �⃑� )  A1.15 

As 𝜔 = 𝜔𝑎𝑏 on resonance and �⃑� = −
𝜕

𝜕𝑡
𝐴 , the quantity to the left of the parenthesis 

becomes �⃑� (𝑡). Scaling all terms left inside the parenthesis by the electric dipole leads to 

the unitless interaction potential: 

〈𝑉〉~𝜖̂ ∙ �̂� +
𝑖

2
(𝜁𝑚�̂� × 𝜖̂ ∙ �̂� + 𝜁𝑞𝜖̂ ∙ �̂� ∙ �̂�) 
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A2. Jones Matrices and Optical Trains 

 

A2.1 HWP (LD) experiment 

The HWP experiment consists of sending linearly polarized light through a 

rotating HWP, interacting with the sample, and decomposing the scattered signal onto a 

pair of orthogonal channels: one parallel to the incident polarization, and one 

perpendicular to it. This can be represented concisely by a rotating polarization state of 

incident light (starting horizontally polarized at 𝜑 = 0°): 

𝜖𝑖𝑛(𝜑) = (
𝜖𝑥(𝜑)

𝜖𝑦(𝜑)
) = (

cos𝜑
sin𝜑) 

The parallel and perpendicular channels are then defined as beig aligned and 

orthogonal to 𝜖𝑖𝑛(𝜑), respectively: 

𝜖𝑝𝑎𝑟𝑎(𝜑) = (
cos𝜑
sin 𝜑) 

𝜖𝑝𝑒𝑟𝑝(𝜑) = (
− sin𝜑
cos𝜑

) 

where the negative sign in 𝜖𝑝𝑒𝑟𝑝 is required to ensure orthogonality of the channels, 

𝜖𝑝𝑎𝑟𝑎 ∙ 𝜖𝑝𝑒𝑟𝑝 = 0. Recall that measurements are made on the total intensity of the 

interaction, which is the square modulus of the field. Using the sample matrix 𝛼 (Eqn. 

2.2.9), the measurement in the two channels can be constructed as 

𝐼𝑝𝑎𝑟𝑎(𝜑) = |𝜖𝑝𝑎𝑟𝑎(𝜑) ∙ 𝛼 ∙ 𝜖𝑖𝑛(𝜑)|
2

= 𝑑2 cos𝜑2 ((𝑑2 + 𝑞2) cos𝜑2 − 2𝑚𝑞 cos𝜑 sin𝜑 + 𝑚2 sin𝜑2) 

𝐼𝑝𝑒𝑟𝑝(𝜑) = |𝜖𝑝𝑒𝑟𝑝(𝜑) ∙ 𝛼 ∙ 𝜖𝑖𝑛(𝜑)|
2

= 𝑑2((𝑑2 + 𝑞2) cos𝜑2 sin𝜑2 − 2𝑚𝑞 cos𝜑 sin 𝜑3 + 𝑚2 sin𝜑4) 
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A2.2 QWP (CD) experiment 

The QWP experiment consists of sending linearly polarized light through a 

rotating QWP, interacting with the sample, and measuring the total scattered signal (no 

channel decomposition here). The input field 𝜖𝑖𝑛 is succinctly represented by sending 

horizontally polarized light 𝜖ℎ through an initially horizontal QWP, which is then rotated 

in angle 𝜑, 𝑄ℎ(𝜑): 

𝜖𝑖𝑛(𝜑) = 𝑄ℎ(𝜑) ∙ 𝜖ℎ = (𝑅𝜑
𝑇 ∙ 𝑄ℎ ∙ 𝑅𝜑) ∙ 𝜖ℎ

= ((
cos𝜑 sin𝜑

− sin𝜑 cos𝜑
) ∙ 𝑒

𝑖𝜋
4 (

1 0
0 𝑖

) ∙ (
cos 𝜑 sin𝜑
sin𝜑 cos𝜑

)) ∙ (
1
0
)

= (
(1/√2)(1 + cos(2𝜑)) 

−√2 cos𝜑 sin𝜑
) 

This input field is then incident on the sample, described by matrix 𝛼, given a total 

intensity that is described as follows. 

𝐼𝑄𝑊𝑃(𝜑) = |𝛼 ∙ 𝜖𝑖𝑛(𝜑)|2

=
𝑑2

2
((𝑑2 + 𝑞2)(1 + cos(2𝜑)2)

+ 2𝑚(𝑑 + 𝑞 cos(2𝜑)) sin(2𝜑) + 𝑚2 sin(2𝜑)2) 
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A3. List of Abbreviations Used Throughout 
 
Greek and Roman Characters 
 
𝜒……………………. ……... non-reciprocal (Tellegen) parameter 
𝑐……………………………. speed of light  
𝑑……………………. ……... electric dipole 

𝐸, 𝜖…………………….…….electric field 
𝜀……………………..………electric permittivity 
𝐻, ℎ………………………….magnetic field 
𝑖…………………….. …….. imaginary number 

𝑘……………………. ………wavevector 

𝜅……………………………. chiral (Pasteur) parameter 
𝑚…………………….…….. magnetic dipole 
𝑛……………………………. index of refraction 

�̅�……………………………. wavenumber (cm-1) 
𝜔…………………………… frequency (s-1) 
𝜇……………………………. magnetic permeability 
𝑞……………………………. electric quadrupole 
 
 
Mathematical Operations 
 

∇⃑⃑ ×…………………………. curl 
𝜕

𝜕𝑡
…………………………… time derivative 

[𝑎, 𝑏]………………............. commutator of 𝑎 and 𝑏 

�̂�………………................... parity operator, which inverts spatial coordinates 

�̂�………………................... timer reversal operator, which imparts a complex conjugation 
 

Abbreviations and Acronyms 
 
AS………………………….. anti-Stokes 
BI…………………………… bi-isotropic 
BPE………………….......... bipyridyl ethylene 
CD…………………............ circular dichroism 
CP…………………............ circularly polarized 
CW…………………........... continuous wave 
ERS………………….......... electronic Raman scattering 
fs………………….............. femtosecond 
HWP…………………......... halfwave plate 
LCP………………….......... left circularly polarized light 
LD…………………............. linear dichroism 
LH…………………............. left handed 
LP…………………............. linear polarizer 
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NDF…………………………neutral density filter 
NF…………………............ notch filter 
NIM………………………… negative index media/material 
nm…………………............ nanometer 
μm…………………............ micron 
μW…………………............ micro-Watt 
PBS………………….......... polarized beam splitter 
QWP…………………......... quarterwave plate 
RCP………………….......... right circularly polarized light 
RH…………………............ right handed 
SERS…………………........ surface enhanced Raman scattering 
SP…………………………. surface plasmon 
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