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PREFACE

This treatise on the theory of highway traffic signals is the culmina-
tion of work which began some 35 years ago. 1 was first exposed to the subject
of transportation theory as a result of attending a couple of seminars at Brown
University about 1953 given by the late Professor William Prager. He had also
assembled a nearly complete bibliography on existing traffic theory, which,
however, consisted essentially of just one paper, the classic paper by John
Wardrop (1951), which summarized what had been done up to that time, mostly at
the Road Research Laboratory in England. This is the paper which contains
the famous "Wardrop equilibrium conditions" for traffic assignment, but it
also contained some of the preliminary results on delays at a fixed cycle traffic
signal, later described in more detail in the famous works of F. V. Webster
(Webster's formula).

Queueing theory was also in an early stage of development at that time,
but the mathematical techniques available then were not well suited to pro-
viding an analytic representation of the queues at a fixed-cycle signal. Web-
ster's formula was derived from a mixture of crude theory supplemented by
curve fitting to:results of simulations. One of my first challenges was to
try to obtain a more "elegant" alternative to Webster's formula.

I did not succeed in solving this problem until about 1964, by which time
I bad_alesa_ hecamacivr~Luedaie -8hternacive to Wepstér's formula.

I did not succeed in solving this problem until about 1964, by which time
I had also become involved in other aspects of traffic flow theory, including
some aspects of signal coordination. The analytic solution of this fixed
cycle signal problem was not, in itself, a major achievement; Webster's formula
was quite adequate for practical purposes, but it did represent a significant
departure from traditional methods in queueing theory. 'The introduction of
"deterministic" and "diffusion" approximations led-to a technique of analysis
for queueing problems from which one could attack a wide variety of more complex

practical problems including vehicle-actuated signals. The emphasis during this
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period, however, was more on mathematical techniques and "cute" results rather
than practical applications.

In 1965 I interchanged my hobby (transportation theory) and my profession
(applied mathematics) and joined the transportation engineering faculty at the.
University of California, Berkeley. Although I continued to work on traffic
signal problems for a while, I gradually got drawn into the complete spectrum
of theoretical problems in transportation, all modes and aspects. I did teach
part of a course devoted to traffic signals for several years in the early
1970's, but this course was dropped when enrollment by students of transporta-
tion engineering declined in the mid 1970's.

In 1984, Masao Kuwahara complained that there were not enough "advanced"
courses in transportation. We managed to assemble a group of about nine stu-
dents, many of whom were working on various aspects of computer modeling of
traffic control, to participate in a special topics course on the theory of
highway traffic control, mostly traffic signals but also some freeway ramp con-
trol. At that time I had not actively worked on traffic signal problems for
about ten years, so it was a unique challenge to look at the subject again
from a fresh point of view. In reviewing the literature, however, I was rather
disappointed thatlhardly any advances had been made in the theory during the
previous ten years and, indeed, in some respects the subject had gone backwards.
c—wwrloaasewhlad.scollprtipriafuacrithlad learuzac~2trenef gbot, Tuansulg cne
previous ten years and, indeed, in some respects the subject had gone backwards.

I assembled a collection of scribbled lecture notes of what I could put
together on short notice, essentially an expansion and reinterpretation of
notes which I had used in the early 1970's in a shorter course. Having already
invested considerable time to get back into the subject again, I decided to em-
bark on the present project of writing a systematic treatise on just about
everything I thought was worth doing on the theory of traffic signals. Even
in the 1970's I believed that there was no longer any major theoretical ob-

stacles to the analysis of traffic signal systems. It was simply a matter
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of systematically describing the logical consequences of existing theory. 1T
expected it to be tedious but straightforward. As it turns out, maybe it
wasn't quite as straightforward as I thought, however.

I had a sabbatical leave for the 1985-6 academic year and started the
project in the summer of 1985. I spent the fall semester of 1985 at Rensse-
laer Polytechnic Institute and the spring semester 1986 "in residence" at
Berkeley. The plan was first to put aside almost everything that had been
done before aﬁd start over. I completed a preliminary draft of the first three
chapters by the end of the summer 1986 and circulated it among some friends and
colleagues for comments.

Progress slowed considerably after that when I went back to full time
teaching, but I managed to finish a draft of Chapter 4 by the end of the summer
1987. 1In the fall, 1987, there were again enough new graduate students in-
terested in traffic signals to give a special topics course, but this time I
had the completed draft of Chapters l to 4. I was able then, while teaching
from the first draft, to start a second draft of Chapters 1 to 3. The project
was finally completed in summer of 1988.

It is a pleasure to acknowledge the assistance I have received during the
last three years from people who made comments on earlier drafts and who an-
swered my endless questions about what practitioners do.

First., I appreciate the patience of two classes of students who endured
swered my endless questions about what practitioners do.

First, I appreciate the patience of two classes of students who endured
being told sometimes the opposite of what they had been told by others. RPI,
and particularly Professor Pitu Mirchandani, offered a very pleasant atmbsphere
for me to do my work during the fall 1985.

Very helpful comments on early drafts were obtained from Van Hurdle, -

Chan Wirasinghe, Harold Garfield (Caltrans), Frederick Rooney (Caltrams),
Robert Shanteau, Dennis Robertson (TRRL, England), and Paul Ross (Federal

Highway Administration). Needless to say, some of these people were less
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than enthusiastic‘about what I had done and do not necessarily subscribe to
all the views expressed here. Particular thanks, however, go to Van Hurdle,
Robert Shanteau, I. Jeeva, and Alex Skabardonis who spent many hours sharing
with me their experiences in the real world applications, and explaining to
me current practice and what is in some of the computer programs for traffic
control.

Caltrans gave some financial assistance mostly for secretarial heip, and
Frederick Rooney has given me considerable encouragement. The one person who
never argues is Phyllis De Fabio, who patiently types whatever I give her.

The purpose of this project was mot just to carry out an academic mathe-
matical exercise. The purpose was, in part, to bridge the gap between the
theory (much of which was, indeed, rather academic), and the real world of
traffic control (much of which is based upon misguided logic). The style is
certainly not. that of a Traffic Engineering Handbook or the Highway Capacity
Manual. It is not a recipe book.

Unfortunately, most traffic engineers are trained to interpret formulas .
as something in which one substitutes numbers and are, therefore, a clumsy
substitute for a computer program which can carry out calculations at the push
of a button. To me, however, a formula is a "short hand" notation which de-
scribes a cause and effect relation among physical observables. Formulas are
O0r a puctun? ~ro Mey*uvhdcklt~doccrawsxnlsain <pmetbine.
scribes a cause and effect relation among physical observables. Formulas are
just part of the text which tries to explain something.

In the future, I plan to concentrate on some specific situations in which
the present theory conflicts seriously with what is described in handbooks or
computer programs, translate the formulas into numerical examples, show where
I believe that current practices are deficient, and give some altermative
recipes. At the present stage, however, my goal was to investigate the pos-
sible consequences of just about anything ﬁhich may or may not be relevant to

traffic control, limited, however, to the common right angle two or four



directional intersection for ome-way or two-&ay streets (although, perhaps,
.T -junctions could be considered as a special case). Before I start to
challenge the profession, I wanted to be sure that no one could say: but you
did not consider this or that effect. I believe that I have looked at just
about everything which might be relevant to the theory. That is why this
treatise 1is so long; it includes an analysis of many things which, in fact,
are typically not important in order to show why they are not (or when they
might be) important.

It is not possible to summarize here all the things which are discussed
in this report. I will confine my comments to those things in the text which
are at variance with current trends.

Chapter 1 gives a brief review of traffic flow theory and queueing theory.
The main purpose here is to identify those aspects of the theory which are rele-
vant to traffic control and (more important) which are not. Much of the theory
of signal control is indopendent of the details of how people drive. This is
fortunate, because existing theories of traffic flow are notoriously unreliable.
About the only information one needs to know accurately is how the number of
vehicles leoving an intersection per cycle in any direction (at saturation) de-
pends on the phase interval. This one can observe directly in the field, or
one can use some empirical recipes to relate this to lane width, porcent of
pends on the phasé€ intérvdl. This one can observe directly in the tield, or
one can use some empirical recipes to relate this to lane width, porcent of
trucks, etc., as described in the Highway Capacity Manual.

Any computer simulation models which describe the motion of individual
vehicles requires all sorts of irrelevant input data and gives estimates of
delay which are no more accurate than the accuracy with which the model can
reproduce the actual output from a signal. The actual output, however, can
be measured directly with greater accuracy and less effort than is required
to measure all the parameters in the simulation models. For a coordinated

signal system, one wWill also need to know some appropriate trip times between
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intersections, but, agaiﬁ, it is easier to observe what is relevant than to
evaluate it from some questionable model.

Chapter 2 gives a very detailed development of the theory of the four
way isolated intersection (uniform stochastic arrivals) with no turning traffic
for fixed-cycle (F-C) and vehicle-actuated (V-A) control (devoid, however, of
derivations of the queueing formulas). It then goes on to describe extensions
of this theory including turning traffic with or without turn signals.

It would be much too tedious to describe in detail how the delays to all
vehicles at even a single intersection depend on the arrival and departure
rates for all traffic movements (including turning traffic) and on the signal
strategy. I have tried, however, to describe enough of the theory to suggest
that it is, in principle, straightforwafd, and that the practical issues are
well defined. I do not see any serious problem in describing anything one
would wish to know about how the performance of any isolated intersection de-
pends on the signal strategy and any parameters characterizing the system.

This chapter contains some minor extensions and variations of existing
theories for the F-C signal, but there is probably no serious conflict here
with current recommended procedures. There is, however, some serious disagree-~
ment with common procedures for the operation of V-A signals serving méderately
heavy traffic (several vehicles served per phase). The delay for a V-A signal
is very sensitive_to whether or nat a_sienal_nbacs frerminatsc.coremngimoubtaccay
heavy traffic (several vehicles served per phase). The delay for a V-A signal
is very sensitive to whether or not a signal phase terminates promptly when
the queue vanishes in some appropriate direction. If oné does not terminate
the phase promptly, the advantage of the V-~A signal over a F-C signal may be
entirely lost. Indeed most signal phases may run to the maximum extension so
that the signal actually behaves like a F-C signal.

To terminate a phase promptly, the location and type of vehicle de-
tectors is very important. Unfortunately, the traffic enginéering literature

regarding the location of detectors and the strategy for terminating signal
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phases is completely chaotic and devoid of much logic, particularly for multi-
lane approaches. My expectation here is that a properly designed V-A signal
system could typically reduce the delays by perhaps 1/2 as compared with current
practice (with simple equipment, no microprocessors, artificial intelligence,

or whatever).

Chapter 3, dealing with coordination of signals on a one-way arterial, is
also rather long because it gives the background for much of the analysis for
two-way arterials and networks in Chapters 4 and 5.

For a pretimed strategy, one should first identify the most critical inter-
section and choose the cycle time C and splits more of less as one would if
this intersection were an isolated intersection. Other signals may operate on
a cycle time C or C/2, but, in any case, signals downstream of the critical
intersection should-be set so that a vehicle leaving the critical intersection
at the end of the green interval will barely clear the downstream intersections
during the green interval, i.e., the "off-sets" should be based on the termina-
tion of the green interval (not the start). The length of the green intervals
downstream should then be chosen so as to accommodate any vehicle which can pass
the critical intersection, with appropriate adjustments for changes in flow due
to vehicles tﬁrning onto or off the arterial.

Similarly, signals upstream of the critcal intersection should be set so
to vehicles turning onto or off the arterial.

Similarly, signals upstream of the critcal intersection should be set so
that a vehicle leaving an upstream intersection at the end of a green in;erval
will arrive at the critical intersection at the end of the green. The dura-
tion of the green intervals should be barely enough so as virtually to guarantee
that the critical intersection is kept busy whenever there is a stochastic queue
at any upstream intersection. |

This strategy is perhaps not much different from what a traffic engineer
might devise as a resylt of "fine-tuning" some scheme in the field, but it is

not necessarily consistent with what would result from some computer programs.
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Most computef programs grossly overestimate the amount of stochastic queueing
and éerhaps also thé "platoon spreading." They do not even recognize the very
important fact that the fluctuations in the number of vehicles which pass one
intersection are highly correlatéd with the number which pass neighboring in- _
tersections. Estimated reductions in delays evaluated from these computer pro-
grams may be due mostly to a reduction in a fictitious stochastic delay
at noncritical intefséétions. ;
It is possible to reduce considerably the (actual) stochastic delay of a
pretimed strategy by means of traffic responsive strategies, but by a scheme
which 1s almost the opposite of what some people have proposed. To do so !
one should start the arterial green interval according to a pretimed plan, f
j
promptly terminate the arterial green (particularly at the critical intersec-
tions) as soon as the platoon passes (or some preset maximum time expires),
} and give any excess time t§ the cross street. Most other proposed schemes
| terminate the cross street green when the queue vanishes on the cross street '
and gives the excess time to the arterial.
Chapter 4 treats a single two-way arterial and begins with a discussion
l of conditions under which one can provide through bands in both directions
M% wide enough to accommodate specified flows in the Fwo direcfions (which is
l usually not possible). Most of the analysis, however, is directed toward
wide enough to accommodate specified flows in the Fwo directions (which is
J usually not possible). Most of the analysis, however, is directed toward
¥ strategies in which one provides a progression in one direction, as for the
one-way arterial, and then partitions the remaining time between the cross
street and the opposing arterial direction in some advantageous ways. Much
B of the theory is, therefore, an extension of that described in Chapter 3.
Chapter 5, dealing with networks, discusses the constraints induced by
"loop conditions," and certain idealized geometries of square or rectangular
street grids in Which one can have a good progression on all streets or at

least some subnetwork. Most of the discussion is descriptive rather than
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analytical, however, and emphasizes the view that the distribution of traffic
over tﬁe network will depend on the.signal coordination scheme. One should
choose a scheme so as to induce the traffic to disperse and utilize all the
facilities provided for it. I do not subscribe to the.view that one should

try to minimize the delays (or other objective) subject to given values of

the flows.




1. PRELIMINARIES

1.1. Introduction

Ideally, a scientific approach to the theory of highway traffic signal
‘control should start from some "fundamental equations"” describing the interac-
tion between cars and their dependence on any extermal control system. Given
some possible objective function, one would then try to determine signal set-
tings which minimize some "cost” of travel. Unfortunately we do not have any
"fundamental equations" for traffic behavior. We have a vast collection of
empirical data, much of which is difficult to interpret. Neither do we have
a well-defined "objective function." It is not clear what society wants, in
particular how to balance one person's gain against another person's loss.

The system exists, however, and, despite the fact that there is no possi-
bility of formulating a highly precise logical framework, the traffic engineer
is expected to make the system work in a socially acceptable way.

There are certain causes and effects, and there are at least quélitative
_gbals and issues. Fortunately these goals are often rather insensitive to
the detailed behavior of individual cars, which is very difficult to describe
anyway. Much of the art of traffic signal theory involves identifying_ggiz
those aspects of traffic behavior which are relevant to the questions being
asked, and disregarding those aspects which are not relevant. |

The purpose of any "theorv” is to predict an outcome of some_sxnerimepnt
asked, and disregarding those aspects which are not relevant.

The purpose of any "theory" is to predict an outcome of some experiment
which has not been dome. In the present context we might wish to describe how
traffic would move through some signalized network which is being designed but
has not been built. More likely, however, we would be concerned with how the
traffic behavior in an existing system would change if we should modify the
control strategy. The latter type of problem is typically much easier than

the former because one can make direct observations on the existing system,

measuring transit times between intersections, rates of acceleration, etc;
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anything that might be relevant but, in particular, certain aspects of thg
traffic behavior which we expect do not depend upon the control strategy. One
need theﬁ theorize only about those aspects of the traffic behavior which do
éhange with the control strategy. One typically does not need a "comprehensive

theory of traffic flow" for this purpose.

1.2. Time-Space Diagrams

If one wished to analyze the behavior 6f traffic in an.existing network,
most aspects of the system could be recorded by taking a moving picture from
an aircraft. Although such a record may ndt show the height of vehicles or
other measurements in a direction perpendicular to the ﬁwo-dimensional surface
of the road network (which we assume to be irrelevant to any question which
we will pose), it would include a vast amount of irrelevant or redundant in-
fsrmation.

Presumably, during any period of observations, the roads and buildings
do not move. Anything that does not change with timé can be observed, measured,
identified, etc., from a single picture frame and erased from ahy subsequent
plctures. If a vehicle appears on mzny successive picture frames, any physical
features of the vehicle (it is a car, truck, bus, etc.) can also be identified
from a single frame. In any subsequent pictures, it suffices to identify this
vehicle by some number j and to identify its "position" by the location of
from a single frame. In any subsequent pictures, it suffices to identify this
vehicle by some number j and to identify its "position" by the location of
some identifiable reference point (the middle of its front bumper, for example).
If one introduces a rectangular coordinate system (x, y) in the two-dimen-
sional plane, the location of the jth vehicle at time ﬁ can be represented
by a point (Xj(t) s yj(t)).

If one introduces a three-dimensional space (t, x, y), one can describe
the motion of the jth car by drawing a "trajectory," i.e., a curve (t, xj(t),

yj(t)) . One can easily construct such a three-dimensional curve by

|
!
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separating each picture frame of the movie picture and stacking them on top
of each.other with a sheet of glass between each frame. The trajectory of
vehicle j is now drawn by passing a smooth curve through the identifying
‘point of the jth vehicle in each picture frame.

Traffic signals do not physically move; their actual locations can be
identified from a single picture frame. On any subsequent frames it suffices
merely to identify any relevant aspecfs of the signal (red, yellow. green) by
means of any code; for example, one could put a point on the film at scme

reference location if the signal is red but no point if it is green. It makes

no difference where one writes the code on the film as long as ome knows what
the code means. ' '
In the (t, x, y) space it is possible to draw the trajectories of all |
vehicles j =1, 2, ... and the time-dependent aspects of all signals. This,
along with any iﬁfo:mation about the geometry of roads, physical characteris-
tics of the vehicles, etc., which can be recorded separately or seemn on a
single film frame, will give a complete description of everything that is
happening.
There are certain situations in which it may be useful to sketch some
trajectories in this three-dimensional (t,lx, y) space, particularly if omne
hés some complicated turning movements at intersections or ome wishes to
illustrate some network synchronization patterns. Most of the time, however,
has some complicated turning movements at intersections or ome wishes to
illustrate some network synchronization patterns. Most of the time, however,
we will deal with two-dimensional trajectory curves. Although vehicles do
move on a two-dimensiénal physical surface, they are usually constrained to
move along certain channels (highway lanes). If one wished to illustrate
how vehicles stay in their lanes, the details of how they change lanes, or
various conflicts for turning movements, then one would want to analyze move-

ments transverse to the direction of the channel. If one is not concerned about

these things, however, ome could introduce a separate coordinate system for each



channel with one of the coordinates measured along the center line qf the
channel. The other coordinate would be transferse to this directiom but, if
we are not concerned about movements in this direction, the "location" of a
vehicle can be identified by a single coordinate, its longitudinal position.

If one is concerned with the movement of vehicles in some network of roads
but not with the details of how vehicles stay in lanes or switch lanes (in-
cluding turning ﬁovgments), one could observe from a single photograph the
geometry of the network, label (number) whatever one decides to interpret as
"channels," and identify where and which movements are permitted between chan-
nels (lane changes or turning movements). These are presumagly all time-in-
dependent (except that the times at which turns are allowed will depend on
the signal phase). Instead of idenﬁifying the position of a jth vehicle
at time t by two. continuous variables xj(t) and yj(t), we now identify
it with only one continuous variable, which we -will also label as xj(t), al-
though this symbol will now mean a coordinate along the channel, and a dis-
crete variable lj(t) identifying which channel the vehicle is in at time t.

Instead of drawing trajectories of vehicles (t, xj(t), y.(£)) in a
three-dimensional space (t, x, y) we now draw them in a space (t, x, ) of
two continuous variables (t, x) and one discrete variable £ . The geometric
meaning of x depends on  so there is no reason to think of 2 as a dis-
crete version of the "y". Rather, we interpret the space (t, x, L) simply
meaning of x depends on £ so there is no reason to think of £ as a dis-
crete version of the "y". Rather, we interpret the space (t, x, ) simply
as a finite collection of two-dimensional (t, x) spaces. Indeed, if we are
concerned about the movement of vehicles in a single channel, we may not
explicitly specify the £ but assume that its value is understood.

In the analysis of traffic signals we will make extensive use of two-

dimensional trajectory curves, so it is important that we be able to '"read"

and interpret them. One simple way to construct vehicle trajectories for a

:
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straight‘channel is to project a movie film onto a sheet of graph paper so

that the channel projects-in the vertical (x) direction of the graph paper

as in figure 1.1. Make a dot on the graph paper at the identifying point of

distonce -x
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frame
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Fig. 1.l - Construction of trajec-
tories from movie film frames.

each vehicle, i.e., for fixed t (picture frame) one marks ;he points xj(t)
ou the film for each vehicle j . One may wish also to label each point with
the vehicle number j . Now translate the graph paper a unit distance (time)
sa the lafsn Lor~iact sbha.ezw+ gifas-va fmar-~wzpo.tbacocor.and.mazk. bo.ner .o ..
the vehicle number j . Now translate the graph paper a unit distance (time)
to the left, project the next picture frame on the paper and mark the new
locations of each vehicle. Repeat this for each film frame and then draw a
smooth curve through the points for the same vehicle.

To "sed' the movie piéture one simply reverses the above construction.
Place a sheet of paper with a narrow vertical slit over the graph paper and
imagine that each line segment of a2 trajectory crossing the slit is a vehicle.

Now keep the slit stationary and slide the graph paper to the left at a comstant




speed. (or keep the graph paper fixed and move the 'slit to the right). The
"vehicles" will now appear to move doyn.the road.

It is advantageous that ome should learn to read a trajectory plot in this
way to take advantage of one's natural familiarity with visual perception. It
may even be advantageous that one has eliminated from the trajectory plot all
irrelevant informatién of color, size, etc., so fhat one sees only the motion
of the "vehicles.” The main advantage of a trajectory plot, howeﬁer, as com-
pared with the original movie picture is that one can measure the speed of the

vehicle.

vj t) = dxj ¢t)/dt

at any time t directly from the graph as the slope of the trajectory. Thus
one can also "see" the speed.
For multi-lane highways one can use the same coordinate x to measure

the longitudinal position in all lanes of the highway simultaneously (even for

two~directional traffic). One typically will want to identify which lane a
vehicle is in and could do this by drawing separate trajectory curves for each
lane. 1If a vehicle switches lanes, its trajectory will suddenly terminate in
one (t, x) graph, but it then must continue in a second (t, x) graph. If
one superimposes the graphs for the two.lanes the superimposed trajectory pieces
will form a continuous curve, the same curve as one would obtain if ome thought
one superimposes the graphs for the two lanes the superimposed trajectory pieces
will form a continuous curve, the same curve as one would obtain if ome thought
of the two lanes as a single lane. Alternatively one can identify lane numbers
on a single graph by using solid or broken lines, color codes, etc., for the
trajectory segments. Vehicles traveling in opposite directions can be identi-
fied by the fact that their trajectories will have positive or negative slopes.
Typically for heavy traffic it will be advantageous to draw the trajectories
separately for different lanes because lane changing will be relatively rare

and the dominant interaction between vehicles is between successive vehicles
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in the same lane. For light traffic, most traffic will be in the outer lanes

and it would typically be convenient to show.passing vehicles in the same (t, x)
graph. If one draws graphs for each lane on transparent paper, one can, of course,
overlay the graphs or not as one pleases..

Figures 1.2 and 1.3 show some hypothetical trajectory plots. In figure 1.2
there afe traffic signals at (or near) lane coordinates yl and Yy The time-
dependence of these signals is indicated by drawing a horizontal line segment
when the signai is red andfnothing when it is green (a yellow interval could be
represented by a dotted line segment if it is relevant). That a vehicle cannot
pass the signil when it is red means that the vehicle trajectory cannot intersect
the horizontal line segments at yl, yé ee« » In this figure vehicle 1 approaches

the signal at y1 during a red interval and comes to a complete stop (the tra-

jectory has a horizontal segment). After the signal turns greem, this vehicle

7

Y| | time -t

lane coordinabordinate -«

Fig. 1.2 - Trajectories for vehicles passing through traffic signals.




accelerates (the trajectory slopé increases) and moves toward the signal at Yy

At the second signal the vehicle decelerates but does not come to a complete Stop,
As shoﬁn, vehicle 2 also stops behind the first signal but at a location slightly
upstream of the first vehicle. Vehicle 3 decelerates as it approaches the stopped
vehicles but does not come to a complete stop. This trajectory plot is typical of

vehicles following each other in a single channel with no passing.

loane coordinate ~x%

Fig. 1.3 = Typical trajectories for light traffic.

Figure 1.3 shows a typical pattern for light traffic. Vehicle 1 is stopped
LR U . Valiala 7 4o keawraline foctar and nvertakes vehicle 1 but cannot

Figure 1.3 shows a typical pattern for light traffic. Vehicle 1 is stopped
by the signal. Vehicle 2 is traveling fastér and overtakes vehicle 1 but cannot
pass in the same lane. The broken curve segment of the trajectory for vehicle 2
means that it switched lanes to pass vehicle 1 and then returned to the original
lane. Vehicle 3 passes the signal with no interference from the signal or other
vehicles (it has a constant slope). Vehicle 4 is moving in the reverse direction
(negative slope) and in a separate lame. If there are only two lanes, vehicle 2

would be using the same lane to pass vehicle 1 as is used by vehicle 4. Since
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vehicles 2 and 4 cannot be in the same place at the same‘tﬁme, the broken line

segments for these two trajectories cannot intersect.

’ . Although these trajectory plots are representative of what one might see

d in a real traffic pattern and illustrate some of the rules of traffic behavior,

£ a we do not interpret ﬁhis as a "theory." It is meant as an illustration of what

| .one might observe in an existing pattern rather than a prediction of what will
happen in some proposed system. The rules of what ome can or cannot do, however,
are sufficiently strict that one can see many qualitative features of any proposed

signal system even if one cannot’ predict in detail the trajectories of individual
. .

¥

vehicles.

1.3. Point Observations, Cumulative Counts

In the previous secfion we assumed that one observed traffic by taking a
moving picture, each picture describing the location of vehicles at a fixed time;
a vertical slice in the (ﬁ, x) space. Since it is often difficult to find a
place where one can take pictures and tedious to énalyze them if one can take
them, traffic engineers are more likely to observe traffic by recording events
5 over time at ome or more fixed locatioms, a horizontal slice in the (t, x)

r plane. Potentially, one could record, at any location x , the time tj(x)

at which vehicle j passes - x , and any releﬁant-physical characteristics of

G LTS

the vehicle.

—= weQna.gaxticnl grlp_covyganiagt waveaf rencesauting.tbis data_graohicallv_ atr -

i LT

the vehicle.

One particularly convenient way of representing this data graphically at

Ry TR TR

some location x 1s to draw a curve of

n(t, x) = cumulative number of ﬁehicles to (1.3.1)
pass X by time ¢t ‘

as in figure l.4. If we number the vehicles comsecutively so that

0 <t (@) Lt,(x) < vun s (1.3.2)
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Fig. 1.4 - Graphical représentation of events at two locatioms.

n(t, x) 1is a step function which increases by one unit at each time tj(x)
when a vehicle passes x . On a trajectory plot, the tj(x) are the times

at which trajectories cross a horizontal line at height x and n(t, x) 1is
Y

the total number of crossings from some time O to time t%./
«

Although we will sometimes find it convenient to think of the function

n(t, x) for fixed x as if n were the "dependent variable" and t the

1

"independent variable," at other times it will be convenient to think of the

ey ~xy~.8r—otica" nalating £ ra__n___Fageptiallv in ficura 1.4 we identify
p

"independent variable,"

at other times it will be convenient to think of the
"inverse function" relating t to n. Essentially in figure 1.4 we identify

a horizontal strip of unit height with a particular vehicle. We can even write

~on this strip any identifying features besides the counting label which is already

assigned to it; for example, 'car", or "bus," etec. On this strip we insert a
vertical line segment at the time tj(x) when that vehicle passed x .
Actually this inverse relation is perhaps more basic than (1.3.1), be-

cause we could potentially number the vehicles in any order whatsoever and
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gtill draw the inverse graph showing the times tj(x) at which the jth ve-
hicle passes x as a function of the "count" j (actually the label). The
special feature of the graph identified with the ordering (1.3.2) is that
n(t, x) 1s a monotone nondecreasing function of ¢t .

Suppose now that we have two observers located at positions x and x',
x!' > x observing veﬁicles traveling in the direction from x to x' . It is

' or

possible that vehicles could pass each other in traveling from x to x
that some vehicles could leave or enter the road section betweem x and x'.

If there are no exits or entrances between x and x' , then any vehicle which

1
v

passes the observer at x must also pass the observer at x' at a later time.
If the first observer places an identifiable label on each vehicle as it passes
him (the number j , for example), then the second observer could note the time

tj(x') ﬁhen this same vehicle passes him and draw a vertical line segment at

time tj(x') in the jth strip of figure l.4.

We now see one of the advantages of drawing a graph such as figure l.4.
The transit time of the vehicle from x to x' 1is tj(x') - tj(x) . This
subtraction can be done graphically and is identified with the horizontal
"distance" between the vertical segments at times tj(x) and tj(x')

One can also readily evaluafe the count of vehicles between the observers
at x and x' at time t from figure l.4. If tj(x) <t < tj(x') (and no
vehicles can enter or leave between x and x'), this means that the vehicle
at x and x' at time t from figure l.4. 1If tj(x) <t < tj(x') (and no
vehicles can enter or leave between x and x'), this means that the vehicle
jJ has passed x by time ¢t , but not x'. It must, therefore, be between the
two observers. Geometrically, if we shade in the strip between times tj(x)
and tj(x'), and a vertical line at.time t (broken line) crosses the shaded
area, then vehicle j is between the two observers. One can also add line
segments graphically. If we shade in all horizontal stripsbetween the tj(x)

and tj(x’), the total number of vehicles between the observers is the total
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height of shaded area cut by the vertical line at time ¢t .

If the first observer numbers the vehicles in order as in (1.3.2) and ve-
hicles do not pass each other, they will also pass the second observer in the
same order. The times tj(x') will then define a monotone nondecreasing curve

n(t, x') and the number of vehicles between the two observers at time t wil] |
be

number in road section = n(t, x) - a(t, x') (1.3.3)
which can be identified as the vertical distance between the curves n(t, x)

and n(t, x') at time ¢t .

Some of the graphical interpretations above can be generalized for situa-

tions in which vehicles may leave or enter the road section. The problem here |

is that we were trying to number the vehicles in some logical order, but this is
rather difficult if some vehicles disappear (from our road section). We could
number,in any arbitrary order,all vehicles which may at some time appear in our
road section and assign a horizontal strip as in figure 1.4 to each vehicle.
We can also mark vertical line segments at times tj(x) and/or tj(x') if
the jth vehicle passes both or either observer. If a vehicle does not pass
either observer, we just have an empty strip, which is no problem. If a ve-
hicle passes both observers, we can deal with it as before. But if a vehicle
passes only one observer, we obviously cannot evaluate a transit time tj(x') -
hicle passes both observers, we can deal witn 1t as velorer-+dac .veu~culd_at
passes only one observer, we obviously cannot evaluate a transit time tj(x’) -
tj(x) . If we knew when the vehicle entered or left the section, we could at
least shade in a time strip when the vehicle is in the section and keep account
of the number of vehicles in the section.

If we had observers located at arbitrarily close spacing (essentially
at every x), we could record everything that happens to every vehicle at all
times. We could comstruct a complete trajectory plot in essentially the
and t

same way as was done from a movie picture except that the role of x

would be reversed.
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1.4. Theory of Traffic Flow

Over the last 30 years or so many attempts have been made to develop
theories of traffic flow." 1In principle, it should be possible to develop a
theory which would predict the time-dependent behavior of every vehicle if one
knew when each vehicle entered the network, the type of vehicle, and certain
behavior characteristics of each driver. Since different drivers behave in dif-
ferent ways (and indi?idual drivers behave differently at different times), one
would not care to describe in detail how the motion depends on which drivers
are selected. In any such theory, one would try to predict only certain average
system behavior, avéraged over some random selection of drivers and iimes when
they enterea the network.

If ome had such a theory, it would obviously be computationally quite
tedious to calculate the (average) motion of the vehicles, but that is not the
problem. The problem is that there are so many different types of maneuvers
(passing, merging, following, etc.) which drivers perform that any comprehensive
theory designed to describe all effects which might be relevant in all situations
would require so much "input data" (parameters which must be observed) that it
would be virtually impossible to apply. It is particularly important in ana-
lyzing traffic in signalized networks that one does not try to describe anything
more than 1s necessary to answer specific questions. We will introduce various
types of specific models for vehicle motion as they are needed in the context of
more than 1s necessary to answer specific questions. We will introduce various
types of specific models for vehicle motion as they are needed in the context of
specific problems, but we can make a few general comments here;

If some vehicles are stopped at an intersection as in figure 1.2, let £y

t represent the times at which the vehicles pass this intersection rela-

g2 ves
tive to the start of the green. These times will depend upon the vehicle types
and characteristics of the driver (which we will typically model by sampling at

random from some population), but it is reasonable to postulate that the times

t, for cars which are stopped during the red time and pass during the

£y &
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subsequent green time do not depend on
a) the duration of the red interﬁal,
b) the dﬁration of the subsequent green interval, or
c) the shape of the trajectories of these vehicles upstream of

the signal.

This refers only to those vehicles which are stopped. Of course, the

number of vehicles which are stopped depends on the duration of the red interval,

and whether or not they will pass the intersection during the subsequent green
interval depends on the.duration of the green interval. Even if a vehicle does
not come to a complete stop but must decelerate in order to follow a preceding
vehicle, we still expect that the crossing time of the vehicle will be nearly
the same as if it had been stopped.

Furthermore, we expect that the trajectories of any of these vehicles
downstream of the intersection will be nearly independent of a), b), or c)
at least until vehicles start to pass each other or one platoon catches up
with another.

One might argue that a driver who has waited a long time may be less (or
more) patient than one who has waited a short time but we do not expect that
this is a serious issue. One might also need to make some qualifications for
right-turning vehicles which can "turn-on-red after stop" or left—turning ve-
this is a serious issue. One might also need to make some qualirications for
right-turning vehicles which can "turn-on-red after stop" or left—turning ve-
hicles which may block the intersection if there is no left turn bay.

These assumptions will be very important because we will be mostly con~
cerned here with the consequences of changing the signal timing. If, for ex-
ample, we should simply delay the start of a green interval, the effect of this
on the vehicles which are stopped.is that their subsequent trajectories are
displaced to a later time, regardless of what the actual shape these trajec-

tories may be, i.e., independent of any theory of vehicle dynamics.
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Fig. 1.5 = Typical cumulative counts at a traffic signal.

Suppose now that one were to draw a graph of the cumulative number of

e et o e . st P A

vehicles to pass an interéection, @(t, x), with denoting some reference
P -

point in or near a signalized intersection and t measuring the time from the

start of the green as in figure 1.5. Suppose, also, that there is no turning

traffic and we are obsérving a single lane. The assumption is that the times

t t, » ... of the steps in n(t, x) £for vehicles which are stopped may de-

]
pend on the type of vehicles and drivers, the geometry of intersection, and

t t of the steps in n(t, x) for vehicles which are stopped may de-

g » v

pend on the type of vehicles and drivers, the geometry of intersection, and

1,

X but not on the past history of the vehicle trajectories.

We could continue the curﬁe n(t, x) over many cycles. If the signal
has a constaﬁt cycle time C and green interval G , n(t, x) will have a flat
portion between times G and C and then some more steps during each subsequent
green intervals. Alternatively, we could cut out only that portion of the curve
for 0 <t < C and then imagine that we started a new experiment by resetting
the clock to 0 at timg C and the counter also to 0 . Thus, we can generate

repeated observations of n(t, x) for 0 <t < C ,
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Different signal cycles will contain different vehicles but we might
imagine that the vehicles behavg as 1f the vehicles in each cycle were se-
lected at random from some population of possible vehicles. If each cycie
contains several (say, at least four or five) stopped vehicles and we evalu-

ate the arithmetic average of the ua(t, x) over N cycles, i.e.,

‘N
A, ) =3 L ool 0, (1.4.1)
k=1 .

with n#(t, x) the curve far the kth cycle, then we expect that for suffi-
ciently large N, n(t, x) will be a smooth (noninteger) function of t of
the form shown in figure 1.6. This curve should be nearly reproducible; if
we came back to the same location another day and evaluated n(x, t) again,

we should obtain nearly the same curve.

e
=}
o
Q
Q 7
> g
T = S a <Z-
F x slope s.
g = p ~/
é 1= /, v
S = lope s —/— —7‘—
S x slo -
g = p ~/
= c
(5]
Q
o
()
=
g 2
/
e G ] ~ U time-t
effective effective c
start end

Fig. 1.6 - Average counts at a traffic signal, interpretation
of effective green time.
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We expect (and should verify) that the slope of the curve rises gradually

1’ 5

in successive cycles, but after the first few cars have passed there is a nearly

after the start of the green interval due to differences in the times t

linear portion of the curve with slope s while the queue continues to dig-
charge. After the queue vanishes (which may not be at the same time in each
cycle), the slope of n(t, x) should decrease possibly to another nearly linear
segment, but then drop to zero rather sharply at the end of the green time.

The term "flow" will be used here to demote "the number of vehicles passing
some point per unit time."” If the "flow" is varying with time either due to
traffic signals or,on a coarser time scale, ﬁo variations in demand, the inter-
pretation of this term is rather tricky. Since counts are integer-~valued and
also fluctuate duekto "randsm" effects, it is necessary to count a rather large
number of vehicles in order to obtain an observation which is reproducible. If,
hdwever, one counts vehicles over a time interval long enough to contain many
vehicles, the interval may be so long as to average out the time—dependence omne
is trying to observe.

One can "smooth out" fluctuations or, in effect, increase the size of count
by repeating observations under '"identical conditions.” Conceptually, this is
straightforward and this is what is implied in (1.4.1). 1If one chooses N
large enough, the curve n(t, x) should be sufficiently reproducible that ome
caon_tgke_s_subinterval of the cvclé time and define a slope of the curve at
large enocugh, the curve n(t, x) should be sufficiently reproducible that ome
can take a subinterval of the cyclé time and define a slope of the curve at
(or near) some time t . We will interpret an "instantaneous flow" q(t, x)

as the slope of n(t, x) at time t , i.e.,
3 —
q(t, %) =5 n(t, x) . . (1.4.2)

The slope s in figure 1.6 will be called the "saturation flow."
If a queue is sufficiertly long that all vehicles passing an intersection

have been stopped, the linear portion of the curva n(t, x) should extend nearly
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to the end of the green interval, and the number of vehicles n(G, x) to pass
during the green interval should be a linearly increasing function of G , with

slope s .

The shape of the curve n(t, x) near the start or end of the green interval

will depend on where one is observing the counts within the intersection, the

location of the stop line, geometry of the intersection, etc., but not on signal
timing. There may be some important issues relating to where one should locate
the stop line, removal of sight restrictions, etc., which could influence "start - %

up'"' times, but we will not be concerned with such issues. We will be concerned

mostly with how many vehicles pass the intersection and the approiximate times

el e g

when they pass, and for this purpose it usually suffices to approximate n(x, t)

A

by a piecewise linear curve. If there is a linear portion with slope s , we

will extrapolate this backwards in time until it intersects the line n = 0 and

]

we will interpret the "effective" start of green to be this time of intersection

as shown in figure 1.6. Similarly, at the end of the green, we can make a linear
extrapolation of any linear part of ﬁ(t, x) until it intersects a horizontal
line at height n(6, t). We will then define the "effective" green interval as

the time interval between these intersection points. Unless otherwise specified,

"ot T

or ""green

we will hereafter use the terms, "start of green," "end of green,'

interval” to mean these effective times; in particular, the symbol G will here-

"ot T

or "green

we will hereafter use the terms, "start of green," "end of green,'

interval"” to mean these effective times; in particular, the symbol G will here-
after refer. to the effective green interval. Essentially, by definition now, {
the average number of vehicles which can pass the intersection during the effec-

tive green interval G , if there is a long queue, is sG .

Although the key postulaté here, that the curve n(t, x) has a linear por-
tion of slope s , is fairly standard, it may be subject to question. Obviously
there will be problems if left turning vehicles block the intersection. Also,
if there are slow moving vehicles (particularly trucks) one may obtain some gaps

in the traffic and the gaps are likely to be longer toward the end of the cycle
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than at the beginning, i.e., the (average) flow q(t, x) may decrease with ¢t
toward the end of the green e&en though all thicles had been stopped.

The Highway Capacity Manual or various handbooks contain extensive empirical
daté relating the saturation flow (or the flow per hour of green) to lane width,
percent of trucks, etc. In fact, these depend also on local habits of driving.
They certainly vary from one country to anpther, but they may even vary within
the same city or with the time of day for reasons other than those classified
in the Highway Capacity Manual. If one really wants to know the characteristics
of some particular intersection, one should measure the relevant properties
directly.

Another important property of the nk(t, x) 1is the variation of this count

from one cycle to the next, particularly the variation in the final.count nk(G,x)

when there is a queue during the whole cycle. Typically, one would measure this

by the (sample) wvariance

(NE 1} Ig l:r_lk(G; x) - n(G, x):|2

k=1

but actually it is more convenient to measure the ratio of the variance to the

=,

r N _ 2
[N — 1’} kzl [nk(G, x) - n(G, X)]
I = . (1.4.3)

n(G, x)

mean

I 12

2
(G’ X) - H(G’ X)]
b

ucall

If each driver should choose a headway tj(x) - tj— (x) independent of

1
other drivers, the variance in the time for n vehicles to pass the intersection
should be nearly proportional to n and the mean time for n vehicles to pass
should also be nearly proportional to n . Also, the variance of the count in

a given interval G should be nearly proportional to G as is the mean count.

If both the numerator and denominator of (l.4.3) are nearly proportional to G,
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the ratio should be nearly independent of G . If the probability distribution
for the count nk(G, x) had a Poisson distribution, ID would be exactly 1, in-
dependent of the counting interval.

Of course, vehicles leaving a traffic signal do not have a Poisson distri-

bution. Typically the value of ID is appreciably less than 1, perhaps comparablef

with 1/4 to 1/2. There is no theory which would predict a value of ID but 1t ] |
can be measured. In principle, it should be straightforward to make numerous

measurements of the counts during cycles when all vehicles are stopped or counts
in fractions of cycle: times if only some vehicles are stopped. The value of the
ID’

practice, it typically requires a rather large number N of observations to

however, is quite sensitive to "outliers': turning cars, trucks, etc. In

S ST S e e

obtain a reproducible observation of \ID . One does not usually need to know

this very accurately, but it is useful to have some estimate. The main conjec-
|

ture here is that the value of ID is (nearly) independent of the period of ob- %

servation (G, for example).

1.5. Objective Functions

Although certain aspects of traffic signal theory depend on how people T

drive, we saw in the last section that some obviously important aspects of the

theory are insensitive to the detailed dynamics of the vehicles. Our goal is
to obtain some rational basis for selecting traffic signal settings, but the

theory are insensitive to the detailed daynamiés oI tné verdicies. “vul gual .s

to obtain some rational basis for selecting traffic signal settings, but the
complexity of any theory and, in particular, its semsitivity to the dynamic
behavior of vehicles depends very much on what we choose as an "objective
function.”

Any individual would like to travel from hié origin to his destinatiom
with no interference from traffic signals or other vehicles, but he would not
like to pay what it would cost to provide this service. 1In effect, he agrees

(through taxes, voting, or whatever) to share the cost and use of some facilities
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in which he must take his turn using them. Not all drivers pay the same taxes
and some woul& be willing to pay for special service, but there is ngo mechanism
whereby drivers can be charged for each service they receive. Even if there
were, it probably would not be socially acceptable. In the final analysis, one
has a reasonable objective function if the use of this objective function leads

to strategies which a majority of voters is willing to buy.

One can attach prices to certain things; travel time, stops, fuel consump-
tion, pollution, etc. It is usually assumed that these costs are additive, i.e.,
the total system cost can be expressed as the sum of costs to individual travelers,
‘or in the case of pollution,or other environmental consequences, as the sum of
effects caused by individual travelers. No matter what simple mathematical
structure one proposes for a ''cost', however one can find some coﬁtradiction;
something people do for good reason which is not consistent with the proposed
minimum cost. The additive cost structure, for example, immediately implies
that one unit of cost (Such asdelay) to each of ten travelers is equivalent to
10 units of cost to one trav;ler. Society, however, typically favors sharing
costs among many people rather than forcing the costs on a few. " One might
propose some mofe general cost structure to reflect this preference, but then
one must ask how many units of cost to one person is equivalent to one unit of
cost to each of 10 people (and all other combinations)? Obviously no one knows
how to quantify all these things.
cost to each of 10 people (and all other combinations)? Obviously no one knows
how to quantify all these things.

Another very unpleasant aspect of any "optimization" scheme is that any
improvement in travel along some route will generally cause an increase in de-
mand for that route. Some of this increase may be due to diversioﬁ of traffic
from other routes, but some may be newly generated traffic. One might be able
to attach some numerical value to the benefits for those travelers who switched
routes, but whether or not one wishes to generate new trips or longer trips

is highly controversial or, in any case, its value is difficult to quantify.
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We will, for thé most part, try to avoid any issues related to "elasticity
of demand." By implication, at least, we will assume that any strategy which
reduces the cost of travel for a fixed demand will generally lead to a net bene-
fit to society even if the demand does change. This obviously is not always
true; but if people shift routes or make new trips, they do so because they re-
ceive some benefit (possibly at someone else's expense). We are more concerned
with devéloping strategies which are-likely to be "beneficial"” than with trying

to attach some numerical value to the benefit.

We will not explicitly consider fuel consumption, pollution, or other en-
vironmental effects because to include these in an objective function without
considering elasticities of demand would imply that a reduction of these effects
for a fixed demand would also yield a reduction with an elastic ‘demand. Actu-
ally the final result is likely to be the opposite. If people are willing to
spend a certain fraction of their time traveling, then the faster they can
travel, the farther they will travel and the more fuel they will consume. In
effect, we will assume that people would like to travel with fewer delays and
fewer stops despite possible adverse consequences.

We will, for the most part, be concernmed here with strategies which mini-
mize total travel time (delay) and/or the number of stops for a fixed demand,
but, at the same time, being conscious of possible conflicts with other objec-
mize~cu R~lcexVei~c hu definjfion, spv_axrass_travel _ time relative to some
but, at the same time, being conscious of possible conflicts with other objec-
tives. '"Delay" is, by definition, any excess travel time relative to some
idealized (zero delay) travel time, so travel time and delay are, in effect,
equivalent. A "stop" is not as well defined since drivers who Will be "de-
layed" due to a signal or other vehicles may have an option of jusﬁ traveling
slower or coming to a complete stop. We will typically just count the sum of
the number of vehicles which are delayed by all signals, whether the vehicles
actually stop or not. This is somewhat arbitrary, but we do not necessarily

attach any economic value to this. We are merely identifying some possible
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measure of performance.

Total travel time is a particularly convenient quantity because, on the
one hand, it is a meaningful measure of performance while, on thé'other hand,
it is highly insensitive to the details of the vehicle dynamics, so much so,
in fact, that the signal settings which minimize total travel time are often
not unique. Thus, ameng strategies which minimize total travel time, it is

often possible to specify also a secondary objective.

Whether or not a vehicle is stopped (or delayed) by a signal is also in-
sensitive to details of the vehicle trajectories. The total number of stops
is a meaningful performance measure in that it is highly correlated with fuel
consumption, accidents, and driver irritation. One should not, however, use
the number of stops as a primary objective, because minimization of thelnumber
of stops usually leads to enormous delays to a few dr;vers so that other drivers
have no delay.

We could consider some appropriate linear combination of travel time and
stops as an objective function. Indeed the total "cost" of travel includiﬁg
time, fuel, inconvenience, etc., could typically be approximated by such a
linear combination. If, however, ome is concerned with how the "optimal solu-
tion" will vary with the price of fuel, for example, one must evaluate both the
travel time and stops separately as a function of the strategy (which is what
we propose to do).
travel time and stops separately as a function of the strategy (which is what
we propose to do).

To see why the total travel time of all drivers is quite insensitive to

. driver behavior or to certain strategies of control, suppose we are concerned

" with the travel time of vehicles along a single highway with no turning traffic.

Vehicles enter the highway by passing one traffic signal and they exit at
another traffic signal, but there might be any number of traffic signals in
between. Suppose we station observers at the two ends of the highway, at lo-

cations x and x', and they observe the times tj(x) . cj(x') when each
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vehicle passes .as described in section l.3. The total travel time for a speci-
fied number n of vehicles can be written as

n

Total travel time = ) [t,(x") - t, (x)]
jo1  J b
n n
= 7 ot,&H -} t®&. (1.5.1)

If the first observer numbers the vehicles in order as they pass him, he

can draw a graph of n(t, x) as in figure l.4. The quantity 3 g

I e~8

t. (%) _
j=1 A

can be identified with the area on this graph enclosed by the curve =u(t, x),

the vertical line t =0 and two horizontal lines at height 0 and n . The ; |

~curve n(t, x) , however, will have a shape as im figure 1.5. If we were to | |
repeat the observations over many days and take the average, ;(t, x) , it would
appear as in figure 1.6 for each signal cycle.

The time tj(x') is the time when the vehicle labeled as the jth ve-
hicle at x passes location =x' . If vehicles can pass each other enroute
from x to x' the tj(x') will not necessarily be in order. The quantity

n

) tj(x') , (1.5.2)
j=1

n
Yot , (1.5.2)
j=1

however, does not depend on the order in which the tj(x') are numbered.
This would have the same value if the observer at x' renumbered the tj(x')
in order of increasing time. If he constructed a graph of n(t, x'), (1.5.2)
would again have the interpretation as an area to the left of the curve

n(t, x'),provided, of course, that the second observer saw the same n ve-

hicles. The total travel time (1.5.1) would then be the area between n(t, x)

and n(t, x') and two horizontal lines at height 0 and n .
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There could be traffic signals between x and x' and we could station
other observers at intermediate locatioms, and draw curves for n(t, y) at any
y

 locations, x <y < x' . The trip time from x to =x' could be written as

the trip time from x to y plus that from y to x' and the total trip
time of all vehicles from x to X' could be written on the sum of that from
X to y and from y to x' , i.e., the area between u(t, x) and n(t, x')
is the sum of the areas between n(t, #) and n(t, y), and between n(t, y)
and n(t, x') (all between heights 0 and n).

Obviously the trip time of vehicles and conmsequently (1.5.1) will depend

upon any signals that may exist between x and x' but the expression (1.5.1)

does not explicitly contain the observations at intermediate locatioms. Further-

more the shape of the curve Ekt, x") felative to the start of some green time
at x' should be similar to that of figure 1.6 and insensitive to the details
of how vehicles arrive at this intersection. This insensitivity of n(t, x')
to arrival times at x' also implies an insensitivity of (1.5.1) to certain
types of strategies at intermediate points. If a driver has an "appointment”
to leave x' at a certain time which requires that he must wait somewhere, it
makes no difference where he waits as long as he arrives at x' in time for
his appointment.

The use of the total travel time as an "objective function"vhas some ob-
wions, advantages in terms of mathematical simplicity; but its insensitivity to

The use of the total travel time as an "objective function"vhas some ob~
vious advantages in terms of mathematical simplicity; but its insensitivity to
certaln strategies sometimes implies some equivalences which are not consistent
with accepted préferences. For example, (1.5.1) is insensitive to Interchange
of the ordering 6f vehicles. If two vehicles which suffer one unit of delay
each were to swap pasitions, it might result in having one vehicle suffer no
delay but the other vehicle two units of delay with no change in (1.5.1).
»Soéiety, however, obviocusly prefers the former not only because people prefer

that everyone be treated equally but also because they do not believe that two
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units of délay is worth twice as much as one unit of delay. One might also
question whether a person who will be delayed 10 minutes is' equally willing

to wait ten minutes at the same location or one minute at each of ten locations.

_ ]
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2. 1SOLATED INTERSECTIONS (UNIFORM ARRIVALS)

2.1. - Introduction

A platoon of vehicles leaving a signalized intersection will gradually
spread as vehicles pass each other or adjust to more cautious headways. Eventu-
ally the platoons from successive signal cycles will spread enough as to overlap
and form a steady traffic stream. It is likely to requiré many miles of travel
_ for this to occur, but, if this traffic stream should now approach a sécond’
traffic signal, the behavior of the traffic at the second signal should be in-
dependent of the timing of the first traffic sigmal.

Despite_the fact that this is not the situation at most traffic signals,
we will begin our more detailed anaiysié of traffic intersections by considerihg

the behavior of traffic at "isolated intersections,"

which, by definition, means
intersections at which the approaching traffic flow is (nearly) uniform over a
cycle time. This will allow us to introduce a number of issues, which may also
apply to networks, but which involve relatively few parameters.

When vehicles approach an intersection, a queue will form during a red in-
terval and this queue.will propagate upstream. The assumption that the approach-
ing traffic stream is time-independent means that an observer located suffi-
ciently far upstream that the back of the queue does not reach him will observe
a steady flow q , i.e., a curve n(t, x) , appropriately smoothed or averaged
over manv rebgtitions. will have _a constant_slane..a ... ;-u,u G Waas UUSSLVE
a steady flow q , i.e., a curve n(t, x) , appropriately smoothed or averaged
over many repetitions, will have a constant slope q . |

An idealized trajectory plot might appear as in figure 2.la. Ve have
drawn tﬁis as if vehicles passed somé point, x , at time intervals of (exactly)
1/q and all had the same approach vélocity v but actually it suffices if
only the average time interval between vehicles is 1/q . The velocities need
not be exactly equal, but we do not expect there to be much passing near an
intersection. The corresponding averaged curve n(t, x) is as shown in figure

2.lb. If x =20 denotes the location of the intersection, the curve n(t,0) -
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Fig. 2.la - Interpretation of expected time of arrival,
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Fig. 2.1b - Graphical interpretation of queue length and delay.
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is drawn as in figure 1.6. As described in section 1.2, the horizontal distance
between -n(t, x) and n(t, 0) represents the average transit time from x

to (past) zero for some jth vehicle and the vertical dista@ce between the
curves at time t represents the number of vehicles between locations x and

0 at time t .

The trib time from location x to 0 for ény jth vehicle and the number
of Vehicles in this seétion of road at time t depend on the locaton x . If
the distance |x| is larger than the space occupied by the queue and the
approaching traffic is stationary, both the trip time and the number of vehicles
in the road section’ should increase linearly with the distance |x| . Specifi-
|x| 1f v, 1is the (time-

h| h|

cally, the former will increase proportional to Vv
average) Eéﬁgﬁ of the jth vehicle, and the latter will increase proportional
to k|x| » 1f k 1s the spatial density of vehicles (the number of vehicles;
per unit length of road). If different vehicles have different velocities, we
can define an average velocity v as the length of a road section divided by

the average trip time of all vehicles traversing that road section. The gq, k,

and v will then by related by
q=kv . (2.1.1)

By assumption, q, k, and v are all independent of time,even though the
trip time from x to O and the number of vehicles between x and O are
By assumption, q, k, and v are all independent of time,even though the
trip time from x to O and the number of vehicles between x and O are
both time-dependent.

It is customary to subtract a term v|x| from the trip time from x to
0 and a term k|x| from the number of vehicles in tge road section. We de-

fine

W(t) = "waiting time" or ''delay" of a vehicle which leaves

x =0 at time t

(trip time of this vehicle from x to 0) - ;Wx| , (2.1.2)
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and
Q(t) = "queue length" at time

= (nuTber of vehicles between xand O at time t) (2.1.3)
- k|x| .

The W(t) and Q(t) should be independent of the shape of the vehicle tra-
jectories near the intersection provided |x| is sufficiently large that the
signal does not disturb the motion of the vehicles at x .

Equivalently, we could imagine some hypothetical vehicle trajectories for
which vehicles continue their steady motion until they reach x = 0 . They then
stop Instantaneously, but leave the intersection at the times described by the
actual trajectories, i.e., we replace the trajectories for x < 0 by the broken
line extrapolation of the constant speed trajectories shown in figure 2.la. We
refer to the times at which these broken line trajectories reach x = 0 as the
"arrival times" or "expected arrival times." We can also draw in figure 2.1lb
a curve (broken line) corresponding to the (average) cumulative number of
"arrivals" at x = 0 . The waiting time of a vehicle which passes the intersec-
éion at time t 1is now the horizontal distance between this cumulative arrival
curve and the curve n(t, 0) for the departures as shown in figure 2.1b.

The "queue length' at time t is the vertical distance between the arrival
and departure curves of figure 2.1b. It is actually the number of vehicles
which are expected to arrive by time t 1less those which have actually left.
The latter_is directlv obsgrvable but the former must be inferred from observa-
which are expected to arrive by time t 1less those which have actually left.
The latter is directly observable but the former must be inferred from observa-
tions at locations x < O wupstream of the queue, as described above.

One should not confuse the '"queue length" as defined here with what one
might observe as a ''physical queue,' the number of vehicles (upstream of
x = 0) which appear to be slowed by the signal or are actually stopped. The
latter is always larger because it includes those vehicles which have already
reached the end of the physical queue but would not.yet have "arrived" at

x = 0 if they could have continued moving. The value of the "physical queue"
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can be easily eévaluated during the red interval of the signal when (nearly) all
vehicles are either moving at their approach speed or are stopped. If kj (jam

density) is the density of stopped vehicles, then

physical queue at time t = Q(t)/(1 - k/kj), - (2.1.4)

which could be larger than Q(t) by as much as a factor of 2.
After the signal turns green, the number of vehicles in the physical queue

should decreasé, but the space occupied by the queue may continue to increase

len
. for a while (until a starting wave can reach the end of the physical queue).
:en We may be concerned with the space occupied by a physical queue when we consider
e the possibility of "blocking" in synchronized signal systems, but otherwise this
e is irrelevant for the purpose of evaluating delays.
It is common practice among traffic engineers in making ""delay studies" at
an intersection to collect much more information than is necessary. Some people
. follow individual vehicles by means of moving pictures, or compare license
1 plate numbers of vehicles as they pass two observation points (at x and 0).
Othersmay record the number of vehicles actually stopped near the iﬁtersection
val or the total time spent by vehicles in some road section during some time period.
It is clear from figure 1.4 or 2.1 that the time spent by vehicles in the
: road section ffom X to 0 during the tiﬁe.interval t' to t' + dt' is
X ; equal to dt' times the number of vehicles in this section, n(t', x) - n(t', 0),
: road section from x to O during the time interval t' to t' + dt' is
X ; equal to dt' times the number of vehicles in this section, n(t', x) - n(t', 0),

3 at time t' . Over some time period, say from time O to time ¢t , the total time

spent by vehicles in this section is
t
[ [n(t', x) = n(t', 0)]dt’
0

i.e., the area between the curves n(t, x) and n(t, 0) within the time O to
t . This is valid independent of how vehicles move from x to 0 or even if
vehicles may pass each other in the section.

In figure 2.1 we have separated this area into two parts, the area between
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n(t, x) and the broken line, and the area between the broken line and u(t, Q).
The former area is interpreted as the time that would be spent by vehicles in
this section if there were no signal (which depends on the location x), and the

latter t

J' Q(t")at"
a
is interpreted as the total "delay" to all vehicles during the time 0 to t

(which is, supposedly, independent of x ).

The total time spent by vehicles in x to 0 or the total delay during

time O to t «can also be represented as the sum over all vehicles of the time

spent in this section during the time period by each vehicle. Thus, in figure
1.4 it would be represented as the area of all horizontal strips such as the
shaded strip in figure 1.4 but between two vertical lines at times 0 and t.
For givén times at which vehicles pass the intersection, i.e., for a given curve
n(t, 0), this total time spent by vehicles in the section depends only on the
n(t, x) and n(t, 0), as evaluated by the first method above. Thus, this total y
time, if evaluated from a figure analogous to figure 1.4 must be independent of
whether or not vehicles pass each other or not (in figure 1.4 it would be inde-
pendent of whether the times tz(x') and tl(x') were the times at which ve-
hicles 2 and 1 respectively passed, or the times at which vehicles 1 and 2 passed).
To evaluate the total time spent in the section or the total delay or the aver- é
hicles 2 and 1 respectively passed, or the times at which vehicles 1 and 2 passed).

To evaluate the total time spent in the section or the total delay or the aver-

age delay per vehicle, it suffices to comnstruct the curves n(t, x) and n(t, 0)

(provided that there are no entrances or exits between x and 0O so thét

any vehicle which passes x must also pass Q). It is not necessary to ob-

serve license numbers or follow vehicles on a film so as to determine whether

or not vehicles pass each other (unless one is also interested in the distribu- !
tion of the delays over vehicles). One does not need to know precisely the

trip time of each vehicle in order to evaluate the average.
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For the purpose of estimating the approximate delay, one does not need to
.know precisely the times at which each vehicle passes x or 0O . We expect
that vehicles that pass x or O during some five or 10 second interval will
be more or less evenly distributed over the time interval. If one observes the

count n(t, x) only at certain discrete times (every five or 10 seconds), one

d—

could interpolate or draw a smooth curve through the observed points. Besides,
one 1s only interested in certain average properties, averaged over many cycles
of the signal or over many vehicles. One is not interested in recording proper-

ties of the system which are not reproducible.

® If,'however, one knows or observes that the arrival rate is independent
of time, it suffices to measure just the q , plus perhaps the magnitude of cer-
tain~ stochastic deviations of the actual curve n(t, x) from a straight line of
slope q . Similarly for the curve n(t, 0), it suffices to observe the satura-

© tion flow s and the effective start of green. One need not observe the actual
departure times of each vehicle.

1 If we disregard for now the possibility that the queue of vehicles may

B

clear the intersection during some green intervals but not in others (due to sto-~
chastic effects), we can approximate the actual arrival and departure curves by
their averages. We assume that any vehicle which arrives after the queue vanishes

ied). '
ed) . will not be delayed.

r- . . . -
ave If the queue vanishes during a time when the curve n(t, 0) has slope s ,

ed). <

will not be delayed.

avers If the queue vanisﬁes during a time when the curve n(t, 0) has slope s ,
it will vanish at a time T after the start of the effective green such that
the cumulative departures after the start of green sT 1is equal to the cumula-
tive arrivals since the start of the preceding red time (C - G + T)q. Thus

S o

T=q(C-6G)/(s - q)
Q2 :

3 3 a
SEELIN

zThe'%raction of vehicles which are delayed is (C - G + T)/C or

d -6/0)

O = q/3) (2.1.5)

fraction of vehicles delayed =
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A necessary condition for this to be valid'is that iﬁ be less than 1, i.e.,
q/s < G/C . (2.1.6)
If several vehicles contribute to the average delay, it Qilldnorimagg
“ much difference if we approximate the departure curve by a straight line even

for the first ome or two vehicles. The delay to succeeding.ééhiéies wiil de-

crease at a constant rate from a maximum of (approximately) C ~ G to zero with

e e ;

e N

an_average value'of (C - G)/Z for each vehicle which is delayed. The averzgé

T

delay for all vehlcles is this multiplied by the fraction delayed. §

2
average delay per vehicle = W =-%[ 1 - %-J ?I—:EE7§7 5 2.1.7)

5

provided that (2.1.6) is true. ? |
Formulas similar to (2.1.5) and (2.1.7) have been in existence almost as }
long as traffic signals have existed. They appear even in works of McClintock[l], |
Matson[z], and others as early as 1925, but in some of the earlier works people
worried about the wrong things. They tried to relate the delays to thewdetails
of accelerations of vehicles duringwthémstargrup time, for example. The use _ K
here of an "effective green interval” eliminates much of this complexity at the
expense of only a small error. This error is of little consequence since delay
is only a crude measure of performance anyway. |
There are two more serious deficiencies of these formulas. One is that |
it neg)eétsstochasticeffec;s, which we will discuss in more detail later. The .
There are two more serious deficiencies of these formulas. One is that |
it negleﬁtsStochaSticeffects, which we will discuss in more detail later. The :
other is that it deécribes the delay only upstream of the signal but disregards
any effects downstream of the intersection.
There is no satisfactory way of estimating delays to vehicles downstream
from an isolated signal. If a jth vehicle approaches a traffic signal with
a nearly constant velocity vj and eventually returns to the same velocity
far downstream of the intersection,one could, in principle, extrapolate the

(nearly) linear trajectory of the vehicle downstream of the intersection back
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to the intersection in a manner analogoﬁs to what we did in figure 2.1a up=
stream of the intersection. We could thus define an effective departure time
of this vehicle from the intersection and interpret the total delay as the
difference between the arrival and departure times. This is what one would
like to do since the total delay should certainly be interpreted as the time
displacement of the final trajectory with velocity vj from the extrapolation _
of the initial trajectory (presumably the hypothetical trajectory that the ve-~
hicle would follow if there were no signal).

If the flow q were sufficiently small that each signal cycle would stop
at most one or two vehicles (qC < 1), ome could observe the actual trajectories
of a sample of vehicles and measure directly the time lost by a vehicle during
acceleration downstream of the intersection until it reaches a steady velocity
vj (provided the velocity did actually return to its initial value upstream of
the intersection). For any vehicle which comes to a complete stop, the delay
downstream of the intersection should, presumably, be independent of how long
the vehicle was stopped. The total delay of.all vehicles downstream of the
intersection should, therefore, be nearly proportional to the number of vehicles
stopped or the fracﬁion (2.1.5) of vehicles stopped. Iﬁ some economic cost
objective function the contribution of this delay would have a similar dependence
on the signal parameters as fuel consumptién.
vujetfve cdaceloatene twn.or.tbree vehicles_per, cvele. the_second or third
on the signal parameters as fuel consumptién.

If a signal stops two or three vehicles per cycle, the second or third
vehicle may need to pass the first vehicle in order to achieve its final ve-
locity. The existence of the signal does not in itself increase the number of
passing maneuvers. If the second vehicle wishes to pass the first vehicle, it
would have done so someplace even if the signal were not there, but if passing
is prohibited in the vicinity of the intersection, a fastef vehicle will have
to follow a slower car for a longer time before it can pass. The evaluation

of such delays is rather tedious. One might expect, however, that they would
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be relatively small for light traffic.
wl3, 4]

There are some '"car—following" and "fluid theories of vehicle dy-
namics designed to describe vehicle motion when traffic is so dense that there
is negligible passing (or lane-changing). These theories are of questiomable
accuracy even under these conditions. One might use them to describe the motion
of vehicles near the intersection, but wé are concerned with the total delay
until some final eqﬁilibrium. The ranges of steady flow q which can pass an
intersection (satisfy (2.1.6)) are typically well below the capacity of the
highway itself and, in the final equilibrium downstream.of the intersection . would
be considered as "moderately light."

[5]

Actually,calculations have been made of the total delay due to a traffic
signal based on the fluid theory of Lighthill and Whitham. This theory would,

in effect, imply that vehicles do not pass each other. The final equilibrium

would obtain only after platoons had spread so much as to have joined those from
adjacent signal cycles and all irregularities of the flow generated by the signal
had been smoothed out (after a distance which would certainly be many miles). If
vehicles approach the signal at a constant flow q , eventually again achieve a
constant flow q at x > « , and cannot pass, then all vehicles will experience
the same total delay. The final trajectories are simply a uniform translation
from the inifial trajectories. The value of this displacement was found to be
the same total delay. The final trajectories are_simply a uniform translation
from the inifial trajectories. The value of this displacement was found to be
C - G (the effective red interval), independent of q or s (provided that (2.1.6)
is valid)!

If G were equal to C/2 , this fluid theory would predict a total delay
per vehicle of C/2 but the same theory would also be compatible with (2.1.7)
and predict that the delay upstream of the intersection would vary between C/8
and C/4 as q/s 1increases from O to 1/2 . We are thus led to the strange

conclusion, from this theory, that the delay downstream of the intersection is

R T e ¢ e
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a decreasing function of q/s , varying between 3/4 and 1/2 of the total delay.

For small values of q/s this conclusion is unacceptable. It is a strange

‘consequence of a hypothesis that vehicles cannot pass each other. If one ve-

hicle is delayed, so is every other vehicle delayed (by the same amount). But in
a more realistic theory one would conclude that, for sufficiently small gq/s ,
the vehicles do not interact with each other and there would be no further delay
downstream of the intersection for vehicles which experience no delay upstream.
For values of q/s closer to the saturation level, the fluid theory might
be more reasonable. It does describe a potentially important fact that vehicles

which manage to clear the intersection after the queue has vanished will -subse-

quently overtake the platoon of vehicles which had been stopped. These vehicles,

which suffer no delay upstream of the intersection will suffer delays downstream
of the intersection when they are slowed to the speed of the platoon. It is also
true that the lead car of a platoon moves into a (temporarily) empty highway and
may travel faster than it could while approaching the intersection at a flow q .
This vehi¢cle may, therefore, recover some of its loss (until it overtakes the
platoon from the previous cycle).

Despite the above uncertainty about delays downstream of the signal, we
will use the delay upstream of the signal or some linear combination of this
and the number of stopped vehicles as an "objective function" for isolated sig—
nals _altbaueb_we, do_.potr_claim that this is necessarilv a true measure of total
and the number of stopped vehicles as an "objective function" for isolated sig—
nals, although we do not claim that this is necessarily a true measure of total

"CQSt-"

2.2. Deterministic Approximations for a Four—-Way Intersection

The reason for installing a traffic signal at an intersection is that one
has a certain section of pavement which must be shared by two or more traffic
streams which cannot use it simultaneously. There must be some strategy for

sequencing users to avoid collision and/or excessive delays.
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One might use a traffic signal primarily to allow pedestrians sufficient

time to cross the road. If one uses it primarily to control vehicles, however,

the reason for using a traffic signal rather than stop or yield signs is that
one can typically achieve higher average flows from serving a sequence of ve-
hicles traveling in the same direction than if one serves them in some alter-

nating sequence. Thus, one uses a traffic signal primarily in situations where

there is some potential congestiom.

- Ui
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I
|
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|
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Fig. 2.2 - A four-way intersection.
Fig. 2.2 - A four-way intersectiof.

To illustrate some of the issues, we consider first the typical four-way

intersection shown in figure 2.2 with no turning traffic. We number the lanes .

|
as shown with odd numbers in one direction, even numbers in the cross direction.
Each traffic stream reacts to the same traffic signal, but otherwise there

|

is no intersection between the four traffic streams. If there are multiple lanes|

i
in any direction, but no turning traffic, we will assume that vehicles distribute!
themselves among the lanes in such a way that the queue in adjacent lanes vanish |

i
I
|
|
1
|

at (nearly) the same time. We will treat the multiple lanes as if there were a

g
1
g
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single lane with a saturation flow s, , i =1, 2, 3, 4 equal to the combined

1
flow of all lanes for that direction. This is an "isolated" signal, so we assume
that the approach flows are time~independent in all directioms. Let 4y > i=1,
2, 3, 4 be the combined flow in all approach lanes for direction i.

For each direction' i , we can define an (effective) green interval Gi as
described in section 1.4, and evaluate the fraction of vehicles delayed and the
average delay per vehicle in this direction By inserting a subscript 1 on the
qg> S, and G in equations (2.1.5) and (2.1.7). The cycle time C is, of course,

the same for all directions; and if all legs are undersaturated, it is necessary

that
qi/si < Gi/C for 1 =1, 2, 3, 4 . (2.2.1)

Presumably traffic directions 1 and 3 (or 2 and 4) see the same actual green
interval (for no left-turning traffic with "leading" or "lagging' turn phases).
It is reasonable to agssume that they also have (nearly) the same effective green

1 3 2 4 °

directions we label as 1 or 3, we will define direction 1 so that

intervals, i.e., G, =G, and G, =G Since it is arbitrary which of the

a3/84 < q;/8, - (2.2.2)
Similarly, we will define direction 2 so that

q4/s4 < q2/s2 . (2.2.3)

OLlOLidLLy 5y WS Wihdi Sonatie wome—— o
q4/s4 < qz/s2 . (2.2.3)

Directions 1 and 2 are the more critical directions in the sense that if (2.2.1)
is valid for i =1 and 2 , it is also valid for i =3 and & .

One can define both (effective) green intervals Gl and G2 from the cumu-
lative departure curves for directions 1 and 2 respectively, as illustrated in

figure 1.6. The sum of these, G1 + G2 » will, of course, be less than C .

We can, therefore, define an (effective) lost time per cycle as

L=2¢C-~ G1 - G2 >0 . (2.2.4)
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One could decompose the L into various compoments. It includes time when
the signal may be yellow (for two signal changes) and some loss due to ''start-up"
times for both directions. The value of 1L depends on the geometry of the in-
tersection, vehicle types in the traffic streams, etc., but it is not likely
to change if one changes the (actual or effective) green intervals. The value
of L 1is likely to be comparable with 10 seconds. .To analyze the properties
of any particular intersection, however, it would bé desirable actually to con-~
struct some cumulative departure curves for directions 1 and 2 over several
cycles, evaluate some (average) values of Gl’ GZ’ and calculate the L from
(2.2.4); also evaluate the ) and s, - One could then assume or verify ex~
perimentally that the value of L (also sy and 52) stay approximately the
same if one changes the cycle times, the (actual) green times, or the arrival
rates 90 9y - The implication here 1s that this would be true.

Various formulas for delays, stops, etc., will depend on the value of L
but they will not depend upon any decomposition of L into parts identified
with the switch of the signal from direction 1 to 2 and from 2 back to 1. Any

change in the partition of I between the two signal switches will, in effect,

merely change the time origin for directions 1 and 3 relative to 2 and 4 but

will not change the relative times between events in the ith traffic direction.

If, for given values of the SPEREH and L , one has the option of changing .

will niot chdngé tne refarive’ timed vecwéeu-eveuls tu~cde?~zendreranf. ./

If, for given values of the 9 8y and L , one has the option of changing

Gl = G3 and G2 = GA (and the values of s, » L are independent of Gl’ GZ)’

the admissible ranges of Gl and G2 which satify (2.2.4) and (2.2.1) are de-

fined by the inequalities.

L < (s;/q; - )G -G

. 2 (2.2.5)
L < (sz/q2 - l)G2 - G1

In a space (Gl, Gz) , the region defined by (2.2.3) is bounded by two

straight lines as illustrated in figure 2.3 by the shaded region. A necessary
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condition for there to be any admissible values of Gl and G2 is that the

-1
slope (sl/ql - 1) 1is larger than the slope (sz/q2 -1y ", i.e.,

or, equivalently,

q q
2+t <. (2.2.6)
1 2
The relation (2.2.68) has A q‘imn'lq internretatrinn cince n /e ie tha
— +—= < 1. (2.2.6)
°1 52

The relation (2.2.6) has a simple interpretation since ql/sl is the
fraction of the cycle time needed to serve the traffic in direction 1, and
q2/s2 the fraction of the cycle time needed to serve direction 2. At the
intersection of the two lines, equality signs apply in (2.2.5) which means

that
1 - q1/sl - q2/s2 = L/C , (z.2.7)

i.e., the fraction of time not needed by either directions 1 or 2 is equal to

fraction of time consumed in switching, L/C .
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Quite aside from any questiéns of "optimal strategy,”" (2.2.7) already de-
scribes some important facts. First of all, there is, so far, only one given
parameter with dimensions of time, namely L, and any other times such as Gl’
G,, or C could be measured in multiples of L . This immediately suggests that

2
a fluid type of theory applied to rather light traffic, say ql/sl + qz/sz < 1/,

is likely to lead to "optimal” cycle times which are so short as to violate the

hypothesis that the number of vehicles served during a green interval can be ap-

proximated by a continuous variable siGi (the calculated value of siGi could

e LA R T

be less than 1l).

If, on the other hand, the approach flows are so large that one must use
at least a 60-second cycle time to accommodate the traffic with L = 12 sec,
for example, then one is using less than 1/5th of the cycle time for switching

losses, By doubling the cycle time to at least two minutes, one can reduce the

T N T P T -
o BN R LG Y i e R e

loss to 10 percent, -which means that one can handle at most 10 percent more traffig
This 10 percent may represent a significant improvement; but if one doubles the

cycle time again to four minutes (which drivers would probably consider in-

tolerable), one can gain only another five percent. Although it is true that ;

one can increase the "capacity' of a signalized intersection by using a longer

cycle time, the gains are typically rather small as compared with possible im~

provements that one might achieve by increasing the s and/or S, (ban parking
near the intersection, restripe the lanes, or widen the highway).
provements that ome might achieve by increasing the s and/or S, (ban parking
near the intersection, restripe the lanes, or widen the highway).

Equation (2.2.7) also illustrates another important point. If direction 1

is a multilane highway but direction 2 has only a single lane, the capacity of

s To

the intersection will be more sensitive to changes in S, than P

accommodate an increase in q; » it may be more advantageous to ban parking or

whatever on the highway in direction 2 so that ome can shorten G2 and increase i

G than to try to make improvements in s;
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Figure 2.3 also gives a convenient way of illustrating the effects of
constraints due to pedestrian crossing times. The time Gl. is often con-
strained to be larger than some value Gml » the time allowed for a pedestrian

to cross the highway in direction 2,4. Similarly, G2 must be larger than

some number G . The G » G depend on the geometry of the intersection
m2 ml m2 .

but are independent of each other and independent of the 9y - The existence
of such constraints further restricts the allowed region of figure 2.3 to the
intersection of the shaded region with the quarterplane above and to the right
of the two broken lines G1 = Gml s G2 = sz .

As one can see from figure 2.3, there are many possible geometries for the
intersection of these two regions, depending on the relative values of the Gml s

sz » and L , and the slopes of the two solid lines. For any particular in-

w

tersection with specified values of the s, , G , and L , one should sketch
af fig i’ mi

the lines of figure 2.3 and see how the allowed region varies with typical
values of the q - There is no causal connection, however, between the ratio
GmZ/Gml and the slopes of the two lines in figure 2.3. Except for low flows

q; » ome would not typically expect that the intersection point (Gml s sz)

of the two broken lines would be inside the shaded area. 1If, as illustrated

in figure 2.3, it_lies above the shaded area, then that part of the shaded area

ng

with G2 > sz already implies that G1 > Gml . Similarly, if the point

LB rigule 2.031%2¢c kzdsatbeccbadad.azea .tba,cbadad._area_with_ _G.. > G__._ im-
ng :

with G2 > sz already implies that G1 > Gml . Similarly, if the point

(G » G:,) lies below the shaded area, the shaded area with G, > G_, im-
1 ml m2 . 1 mi

plies that G2 > sz . Thus, we typically expect that only one or the other

| of the two constraints G1-> Gml , G2 > sz will be binding.
To determine a possible optimal Gl and G2 for given 9 » Sy and

L, we can write the total delay per unit time as the sum of the delays per

1se

unit time in all directions, i.e., (from (2.1.7) and (2.2.4)).
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total delay per = qliﬂ + qzﬁé + q3W3 + q4W4

unit time
1 : 2 4 93
= (G.+1L) |: — + ] (2.2.8)
2(Gl+-G2+-L) 2. 1 ql/sl 1 q3/s3
2 i) A
+ (G, +1) [ - + — ]
.l 1 - qz/s2 o1 q4/s4

and the total number of stops per unit time as the sum of those on all legs, i.e,,
(from (2.1.5)).

total number =-—E—f;la—q;ib (GZ+-L) [ 1 < q¥/s + 1 - q3/s ]
of stops per ( 1 2 475 . 43793
unit time (2.2.9)

1, 1,
‘ +
+ G+ D) [ 1 - qz/s2 1 - q4/s41

1 2

It is possible to minimize (2.2.8) or any linear combinaticn of (2.2.8) and

Both (2.2.8) and (2,2.95 are simple ratiomnal functions of G and G

(2.2.9) with respect to Gl and G2 » subject to the given constraints illus-

trated in figﬁre 2.3, but the quantitative results for typical values of L

are not very interesting.

If one changes Gl and G2 by the same amount, i.e., moves along a 45°

direction in figure 2.3, one can show that (2.2.8) is a montone increasing func-

tion of Gl’ G2 . This means that the minimum delay in the allowed region occurs

arcectron’nrigurd 2.3, one €an sndw tnat (z2.2.8) 1s 4 montoné increasing tunc-

tion of Gl’ G2 .

on a boundary; at least one of the legs of the intersection will operate with

This means that the minimum delay in the allowed region occurs

its minimum green interval. Actually, the minimum delay usually occurs at a
corner with both directions operating at their minimum green.

One can also show, in the absence of pedestrian constraints, that if
(2.2.8) has a minimum with direction 2 at saturation but not direction 1, for
example, then the value of G2 will be appreciably less than L . For typical

values of L this is, of course, meaningless because the value of will

)

be too small to justify a continuum approximation. Nevertheless, this formal

e
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result is trying to describe a potentially important issue. If direction 2 is
a minor road intersecting a major road_and qz/s2 is small, then interrupting'
the major road traffic even for a minimum time of L will cause considerable
delay. It may, therefore, be advantageous to continue the green on the major
road after the queue has vanished until enough vehicles (at least one) have
arrived on the minor road to justify another interruption of the major road
traffic.

As frequently happens when one tries to make simple approximations in
some optimization problem, the minimization of the approximate objective func-

tion drives the solution into a region where the approximations are not valid.

_If the cycle time is reduced so that there is barely enough green time to serve

the average queue, then fluctuations in arrivals and departures will cause the
queue frequently not to clear during the green interval. Thus, the above solu-
tion is incorrect even if it leads to long enough cycle times that the vehicles
can be treated as a continuum. In most cases, however, it leads to cycle times
which are so short that the signal is serving only one or two vehicles per cycle
(or fractions of a vehicle). The formulas (2.2.8) may, however, give reasonable
approximations if the Gi are constrained by the Gmi .

If we now consider the number of st;ps per unit time (2.2.9), we see that,
for a fixed cycle time, the number of stops is least if one assigns any excess
time all to one traffic direction: namelv, to that direction which has the
for a fixed cycle time, the number of stops is least if one assigns any excess
time all to one traffic direction; namely, to that direction which has the
largest flow. Thus, this objective functionlwould also lead to a signal setting
with one of the traffic directions at saturation. 1In contraét with the objec-
tive (2.2.8), however, minimizing the number of stops per unit time favors ar-
bitrarily long (infinite) cycle times. If there is no penalty associated with
the duration of delays, only with the number of delays, the goal would be to
maximize the fraction of time when there is no queue. The fractiom of time

needed to serve the traffic at flows s and s

1 , 1is ql/sl + qz/s2 » independent
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of C., so to maximize the fraction of '"free time" one should minimize the frac-

tion of time spent on switching L/C , i.e., make C infinite. Obviously, one

should not use the number of stops alone as an objective functionm.

—

If one were to minimize some lineaf combination.of (2.2.8).and (2n2.9i
there would be some éompetition between the two objectives with the former
favoring short cycle times and the latter long cycle times. It is immaterial
what price one may assign to a unit of delay. In forming a linear combination
of (2.2.8) and (2.2.9), one need only assign a relative weight to thgse two‘
quantities. The two quantities, however, have different physical units;

(2.2.8) is dimensionless (time per unit time), but (2.2.9) has dimensions

of (time)_l. If we add o times (2.2.9) to (2.2.8), the o must have dimen-

sions of time. Specifically, one would interpret o to be the amount of delay

which would be considered as the equivalent of one stop.

One could include in « §gggﬂfypical value for the delay downstream of

e i

the intersection caused by a stop and the time equivalent of the fuel consump-

tion and pollution caused by a stop. The latter, of course, depend on the

value of people's time and the price of fuel (or at least their relative values),
but a reasonable equivalence would be of the-order of 1§‘secdghs. The delay

. downstream of the intersection might be somewhat less than this but of comparable -
magnitude. We noted previously that the only time unit in (2.2.8) was the L ,

. downstream of the intersection might be éomewhat less' than this but of comparable -
magnitude. We noted previously that the only time unit in (2.2.8) was the L ,

which is rather small compared with typical cycle times for signals. We now have

T ST S U D DRI DI I NP

another time unit a, but it is of comparable size to L .
The optimal cycle time for our new objective function is some rather compli- L
cated function of the relative values of ql/qz, but for a symmetric intersection

with 4 = qy» q3 = Qs S; = S, and s, = s the optimal split would be for

3 4

5 ¢ In this case, the optimal cycle time would be given by

c? = L(L + 4a) (2.2.10)
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independent of q, or s provided, however, that this cycle time satisfies

1 .
the constraints (2.2.5), which in this case impliés that

L

C>rm—m——F7.
1 - 2q1/s1

(2.2.11)

The value of C given by (2.2.10) is not very sensitive to the o and is
expected to be less than 30 seconds.

Generally, we will find that the inclusion of stops as part of the objective
function does not'héve a large effect on the optimal strategy for ranges of flow
where one needs a traffic signal. The reason is that for such ranges of flow
where one cannot afford to spend much time in switching the signal, neither can
one afford to operate the signal at a flow of 9 rather than S, - One can

reduce the number of stops only by a very sizeable increase in the cycle time.

2.3. Stochastic Approximations for Fixed-Cycle Signal,
Four-way Intersection

We saw in the last sectioﬁ that if one Ereated the vehicle flow as if it
were a continuous deterministic fluid and tried to set the cycle time so as to
minimize the total delay, the cycle time would be driven to a value such that
the (average) queue barely vanished at the end of a green for at least one direc-
tion (in the absence of pedestrian constraints). At this point, however, the
formulas for delay are inaccurate becausé some vehicles will often fail to clear
during the green interval. The question we will try to answer now is: how
chomb.es~.or~uezlky &be zunaleutiwe befaze.rboze 'shochastiz_effecta'_ouwervower___
during the green interval. The question we will try to answer now is: how
short can one make the cycle time before these "stochastic effects'" overpower
the other advantages of short cycle times? We will still presuppose, however,
that the cycle time is long enough so that many vehicles pass during each signal
phase.

If a queue fails to vanish during some green intervals, the observed cumu-

lative arrival and departure curves might appear as in figure 2.4 rather than

" as in figure 2.1. If the signal is close to saturation, i.e., qC 1is close
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arrivals
n(t,x)

departures
n(x,0)

Fig. 2.4 - Typical cumulative curves with stochastic

arrivals.

time -t
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to sG for some traffic direction, there will not be much excess time available
during a green interval to accommodate any residual vehicles which may have been
left from the previous cycle. Fluctuations in arrivals or departures may cause

a residual queue to persist for many consecutive cycles.

(?f vehicles are served in ordef of their arrival, a vehicle which fails to
clear the intersection in one cycle is likely to pass in the next cycle because -
it moves toward the- head of the lineﬁ} The total queue léhgth and the total de- 1////
lay to all vehicles, however, are independent of the order in which vehicles
are served. For purposes of evaluating queue lengths or delays, it may be con-~
venient to imagine a hypothetical queue behavior in which vehicles are served
in the reverse order. Any vehicle which is delayed in one cycle will not be
served in the next cycle unless and until there is some extra time left in the
next cycle, after all the new arrivals have been served. Since the new arrivals
will céﬁsume most (if not all) of the green interval, the residual vehicle will
almost certainly wait all or nearly all of the next cycle time. The total delay
during any cycle can thus be written as approximately tﬁe delay to the new ar-
rivals as evaluated in (2.1.7), i.e., qCW, plus C times the average queue
Q at the start of the red. Thus

average delay E-% [ 1 —-g

2

. C Q

—_— = . 2.3.1
per vehicle ] 4 -a/s) q ( )

T T

average delay * = 1 - < (2.3.1)

Thora ie a werv ovtencivae lita :arnrnGralatincz,to the Gvaluation of the
- -+ = .
2 ( C (1 -aq/s) ¢

per vehicle

TP AT

There is a very extensive literature relating to the evaluation of the
Q . Results of early attempts to evaluate it appear already in the classic

[6]

g paper by Wardrop (1951) The most commonly quoted work, however, is that

of Webster (1958)[7] . There are now several different formulas of comparable
accuracy, but it suffices here to describe some of the main features, their
interpretations, and limitations;

The original argument of Webster was that, if one looks at the queue Q(t)

only at the start of successive red times, Q(0), Q(C), Q(2C) , ... , the changes
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in these queue'lengths from cycle to cycle would be the (actual) number of

arrivals less the number of departures during one cycle. As long as Q(mC),

[
]

m =0, 1, ... remains positive, the number of departures in a cycle is the
number which can leave during the whole green interval. If we ignore fluctﬁa—
tions in this from cycle to cycle aﬁd equate it to sG, then this number would
be the same as if the vehicles departed at equally spaced time intervals of

length C/sG throughout the entire cycle time C .

If the arriving vehicles form a Poisson process of rate q and they could
leave at constant headways of C/sG, the average queue at thé times mC would
be the same as for the '"well-known" queueing systém with Poisson arrivals and
constant service times. For such a system

2 : 3

=—P »,
Q=T oy (2.3.2)

in which p 1is called the "traffic intensity” in the queueing theory literature 1

or the "degree of saturation" in the traffic signal literature.

p = qC/sG . (2.3.3)

As applied to a fixed-cycle signal with Poisson arrivals and no fluctua-
tions in departures, (2.3.2) overestimates the queue length because it does } j
not account for the fact that if a queue vanishes during the green interval, ? E
it stays zero until the end of the green. It does, however, correctly de- !
not account for the fact that if a queue vanishes during the green interval, f g
it stays zero until the end of the green. It does, however, correctly de-
scribe the "equilibrigm" average queue length if p is sufficiently close

|
i
|
to 1 and remains (nearly) constant for a sufficiently long time, in which case L ’
we could also approximate (2.3.2) by ]

1

Q ;'E?ff:_gf . (2.3.4)

Thus, as the degree of saturation approaches l, the equilibrium queue

becomes infinite. Actually, it takes an infinite time for an infinite queue to

(8]

form. One can show that if the arrival rate is "slowly'" increasing at a
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flow q(t) and degree of saturation p(t), it would be necessary that

dp(t) ‘ 3
T(0)dt << [1 =" p(t)] (2.3.5)

in order for the (averagé queue at time t to be given by (2.3.4) with p
equal to the prevailing value of p(t) . -

The left hand side of (2.3.5) represents the change in p(t) pér inter-
arrival time 1/q(t)'. We would certainly expect this to be "smallﬁ if p(t)
is "slowly varying,".but "small" would mean small compared with 1. If, however,

po(t) = 0.9, 1 - p(t) = 0.1, then [1 - p(t)]3 = 10-3 . The condition (2.3.5).

. would require that the change in p be small in the time for lO3 arriﬁals

(for highway traffic this typically means for a time of the order of onme hour).
As a practical matter, one does not expect p(t) to v;ry slowly enough for any
equilibrium queueing formula to be valid for 1 - p(t) < 0.1 , i.e., for a degree
of saturation larger than about 0.9. If during a rush hour p(f) should come
this close to 1, chances are it would at some time exceed 1, i.e., the signal
would be temporarily but predictably oversaturated. We will discuss this situa-
tion later but, for now, we will suppose that the p(t) stays less than about
0.9. In any case, however, one would certainly not want to reduce the cycle
time so as unnecessarily to cause Q to be equal to 1, as implied by the de;er-
ministic fluid theory.

There are two types of modifications one may wish to make in (2.3.2) or
ministic fluid theory.

There are two types of modifications one may wish to make in (2.3.2) or
(2.3.4). First, one may wish to generalize the formula to situatioms in which
the arrival process is not necessarily a Poisson process and the fluctuations
in the departures are not negligible. Second, one may wish to make corrections
for the fact that the Q(t) may vanish before the green interval ends.,

If the arrival process is stationary but vehicles cannot pass each other
freely, vehicles may arrive in "clusters" of two or three at a time (cars which

are obvously following each other). Whereas for a Poisson process, the variance
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of the number of arrivals in one cycle should be exactly equal to the mean,

namely qC , for this more general type of pracess the ratio of the variance .
A

-to the mean is often larger than 1 (but nearly independent of the time period

of counting). Suppose this is true and we define

variance of the number of arrivals.per cycle (2.3.6)

IA = qC

Suppose, also, that .the ratio of the variance to the mean for the number of
departures during a fully utilized green interval is nonzero, having a value
ID as in (1.4.3).

If now p 1is sufficiently close to 1, the equilibrium éueue length is

(8]

approximately

- . i
R T IR N (2.3.7)

i.e., it.is larger than in (2.3.4) by a factor I = IA + ID . If, in par-
ticular, one has Poisson arrivals and no fluctuations in departure IA =1

and ID =0 and (2.3.7) reduces to (2.3.4). One can measure the IA and ID
but they are difficult to predict from any theory of driver behavior. One might
typically expect IA to be somewhat larger than 1, but probably less than 2,

and ID to be perhaps 1/4 to 1/2. Thus, (2.3.7) might often be larger than

(2.3.4) by about a factor of 2, although no one seems to have made any serious
study of this.
(2.3.4) by about a factor of 2, although no one seems to have made any serious
study of this.

For any particular intersection, one can easily evaluate the 'TX\ experi-
i )
\ /

mentally. If the arrival rate q is stationary, one simply evaluates the sample

variance of the number of artrivals during successive cycle times as observed at
some location sufficiently far upstream of the intersection that the physical

queue does not back up past the observer. Since the IA should be insensitive

to the cycle time, one could also evaluate the I from the sample variance of

A TSR et
s e

of counts in any sequence of equal time intervals long enough to contain several

vehicles in each interval. . One must be careful, however, to make sure that the
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variation in counts in successive intervals are due to "stochastic" variationms,

not due to some systematic trends in a time~dependent ‘arrival rate or pulsed

due to some neighboring signal. The ID can be evaluated from a sample. vari-

ance of the number of departures during fully utilized green intervals. For-

e

tunately, for our purp5§€§f'6ﬁe"does not need to know these parameters very

accurately (estimates within(ZO or 30;percent would be quite adequate).

If p 1is not sufficiently clos; to 1, all of the above formulas tend to
overestimate the queue length. 1In order for there to be a significant proba-~
bility that the queue will fail to clear during the green interval, it is neces-

sary that the fluctuations or uncertainty in the difference between the actual

number of arrivals and the number of departures during any cycle exceed the

average number that could be served during any excess green time. According
to the above hypothesis, about the variances, the standard deviation of these
fluctuations is (IsG)l/2 . Thus, the condition for there to be a significant

queue (at the start of red) is

sG - qC < (IsG)l/2 s

or

1 -0 < (1/s0)t/2 . | (2.3.8)

We are assuming here that sG 1s sufficiently large that the number of
vehicles served during a green interval can be treated as a continuous variable,

We are assuming here that sG 1s sufficiently large that the number of

vehicles served during a green interval can be treated as a continuous variable,
i.e., sG >> 1. For a sufficiently large value of sG there would not be a
significant probability of the queue failing to clear during the green unless
p is "very" close to 1 . Actually, typical "large'" values of sG (say 10 or

20) are such that (sG)l/2

is not very large (maybe 3 or 4), so one may typi-
cally start to have some overflow of the green interval if p exceeds about 0.7.

One can obtain a very accurate estimate of Q (more accurate than one needs,

considering the typical errors involved in measurement of the relevant parameters)
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if one multiplies. (2.3.7) by a correction factor of the form H(u) which
is a function only of

/2

L= (- p)(se/)t (2.3.9)

y (9]

the ratio of the two sides of (2.3.8). The function H(u is analytically

quite complicated, but it has been tabulated. It is a function which has the
value 1 for u =0 (p close to 1), decreases smoothly with U , and decays ﬂ
very rapidly for u ‘much larger than 1.

The actual numericgl values of the delay are not very important in them-
selves. We are mainly concerned with how the inclusion_of the stochastic

effects might influence one's choice of "optimal' green intervals.

S > M

If the goal is to choose G1 and G2 so as to minimize the total delay

per unit time in all directions of the intersection, we should add to (2.2.8)

the stochastic part of the delay per uﬁit time; namely, Ql + Q2 + Q3 + Q4 s
with- Qi the value of Q as described above for the ith direction. To do
this minimization accurately leads to some very tedious algebra. Most investi- ;

gators have resorted to numerical methods to evaluate the minimum, but, since

there are so many parameters in the formulas, any numerical method will tend

to obscure some of the relevant issues.

If directions 1 and 2 are sufficiently close to saturation that stochastic
effects are important, the same is not likely to be true of directioms 3 and 4. :

If directions 1 and 2 are sufficiently close to saturation that stochastic
effects are important, the same is not likely to be true of directioms 3 and 4.
To simplify the analysis, we also neglect the terms of (2.2.8) involving direc-
tions 3 and 4. -

In the special case of a symmetric intersection 9, =4, » §; =5, , we
would clearly choose Gl = 02 . If we use (2.2.8) along with the approxima-
tion (2.3.7) for Q,

(L + 01)2 4 I
' +
(L +26)) (I -q;/s) 1= (q/s)@+26)/G

deiay per =
unit time

(2.3.10)
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If the traffic signal were close to saturatiom, i.e., 1l - 2q1/s1 << 1,

so that one was forced to use a long cycle time with s G1 >> 1 , then the

fluctuations in the number sof arrivals per cycle (of order (slGl)l/Z) would

be small compared with the mean number of arrivals (approximately slGl) .

One might think that if the fractiomal fluctuations in the number of arrivals
per cycle were small compared with 1, the deterministic approximation would be
"accurate." However, the size of the queue is determined by the relative mag-
nitude of the fluctuations as compared with thg ability of the system to accom-
modate these fluctuations, i.e., with the excess capacity. As noted before,
increasing the cycle time from a value which is already large compared with L
does mot increase the capacity very much. Indeed, increasing the cycle time
will not necessarily eliminate the stochastic queue.

This competition between the fluctuations and the capacity is illustrated

in the denominator of the second term of (2.3.10).

R S >[ ]
-— (L+26)=]1=-2—=1]-
51G1 1 s1

q,L

$16

The first tefm, (1 - 2q1/sl), is the fraction bf time available for serving
the fluctuations or switching the signal. It is assumed to be small compared
with 1 . The second term must be less than the first if the system is under-
saturated, but even making G1 infinite would not eliminate this term.

For 1 - 2ql/s1 << 1 we cannot simplify the second term of (2.3.10) very
saclir&cea, puc evén dEdLrng™ ’\:f" L rarcetwoaza-uwve—darwthace camditicas

For 1 - 2ql/s1 << 1 we cannot simplify the second term of (2.3.10) very
much but we can simplify the first'term because, under these conditions
L << Gl , and ql/sl = 1/2 . Thus, the first term of (2.3.10) will be approxi-

mately qul . With this approximation, it is now easy to determine a G1 so

as to minimize (2.3.10); namely

(]
2

1

(q,/s L 1 1Y/2-
L2 ['(f_:_EEITEJT ( 1+ 2 [ o ] ’ , (2.3.11)
- -

which gives a minimum value of (2.3.10) of approximately
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2

(q,/s;)L g b2
minimum delay' = ql m'—‘ 1 + 2 [ fs—- J (2.3.12)
per unit time 171 1 -

We recognize that the first factor of (2.3.11) is the minimum allowed green
interval, the optimal green interval in the deterministic approximation. The
effect of fluctuations (I > 0) is to increase the optimal green interval (and
the cycle time) by a numerical factor, the second factor of (2.3.11). The
le represents the humber of vehicles which could be served during a time L.
For a single lane road with headways of 2 seconds (s1 =1/2 sec_l), L =12
seéonds, le =6, and I = 1.5, the second factor of (2.3.11) is 2, iﬁ%i, the
optimal green interval is approximately twice the minimum green interval. For multi-
lane highways le- would likely be larger than 6, but increasing S by a

factor of 2 decreases 511/2 only by a factor of 2-]'/2 .

The seéond factor
of (2.3.11) is not very sensitive to changes in the I, L, or s; -

Wébster[7’ 10] did extensive numerical calculatiﬁns with more accurate
formulas for Q and also arrivéd at a simple recipe that the optimal cycle i
time, with sfochastic effects, was approximately twice the minimum cycle time |
(his calculations were with I = 1, however).

One should also take notice here that the goal is not to determine the
optimal value of G1 within some specified error. The goal is to find a
nearly minimum total delay. At the minimum delay, however, the delay as a
optimal value of G1 within some specified error. The goal is to find a
nearly minimum total delay. At the minimum delay, however, the delay as a

function of G1 has a vanishing derivative. Typically, the fractional devia-

tion of the delay from its minimum is comparable with the square of the frac- E

tional deviation of Gl from the optimal, i.e., a 10 percent error in Gl :
will cause only about a one percent increase in delay. It suffices to have .
only some crude estimates of the optimal G; .

In (2.3.12), the first two.factors represent the minimum delay for the

deterministic approximation I = 0 . The last factor is the square of the
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corresponding factor in (2.3.11). Thus, for typical values of the parameters,
the inclusion of stochastic effects increases the average delay per vehicle
or per unit time by approximately a factor of 4!

The deterministic approximation was not only mathematically inaccurate,

it also gave cycle times which were often unrealistically small; for example,

a cycle time of about 20 seconds for 2ql/s1 =1/2 . Actually thé range of
"acceptable" cycle timeé is not very large. Even without any restrictions due
to pedestrian‘crossiﬁg times,one would not likely choose a cycle time less than
30 seconds ,i.e., an (effective) green interval less than about 10 seconds. But
. (for a two-phase signal) one.WOuld not likely use a cycle time much more than
o two minutes. Thus, we are admitting only about a factof of 4 range of acceptable
cycle times. The inclusion of the’stochastic effects at least puts the typical
"optimal" cycle time into a reasonable range. If, for Zsyql = 1/2 , we take
twice the minimum cycle time we obtain a 40-second cycle time, which should be

acceptable. On the other hand, one would not find it advantageous to use a
cycle time grgater than two minutes unless 1 -~ 2ql)s1 < 1/5 which is rather
heavy flow for an undersaturated signal (p = 0.9) .

It is possible to generalize'(Z.Bfll) to nonsymmetric intersections. If
we still neglect the flows in directions 3 and 4, one can show that the optimal

cycle time is

r S o1 a -j1/2
cycle time is
~ I s -11/2
c= |- L 1+ 172
(1 - ql/s1 - qz/sz)- Lqu(s1 + 52)_
(2.3.13)
B Izs1 -|L/2
+ s

qu(s1 + sz)

in which Il and I2 are the values of'thé I for directions 1 and 2, re-~

spectively. The first factor is the minimum cycle time. The value of the

second factor is typically similar to the corresponding factor in (2.3.11),
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although somewhat larger if the values of ql/sl and q2/s2 differ by a
large amount (a factor of & perhaps). '

The more interesting question for an asymmetric interé?ction is how omne
should partition any excess capacity between the two traffic directions., If
1 - ql/sl - q2/s2 is small, one does not actﬁally have much "free" time to
partition. For any cycle time C , one needs a time qu/sl to serve the
a§erage number of arrivals in directioﬁ 1, a time qulsz to serve those in
direction 2 and one loses a time L in switching. For a‘cycle time C given

by (2.3.13), the only free time one has to distribute per cycle is

- -1/2
. . I.s
c(lt -q,/s;, -q,/s,) -L =L 12
171 2°72 qu(sl + 52)
- . (2.3.14)
B I.s 172
+ 271
. qu(sl + sz)
b - F

The quantity on the right hand side is typically comparable with L , 1.e.,
about 10 seconds.

Since thé amount of free time one has to distribute for C/L >> 1 , is
small compared with C one might say that, to a "first" approximation, the
optimal value of Gl is just qu/sl (plus a small amount) and that the ratio
Gl/GZ is approximately (ql/sl)/(qz/sz) . If we chose to partition the cycle
time exactly in this ratio, this would imply that we were also partitioning the
Gl/GZ is approximately (ql/sl)/(qzlsz) . If we chose to partition the cycle
time exactly in this ratio, this would imply that we were also partitioning the
free time (2.3.14) in this ratio. This is the usual recipe given in traffic

(7,

engineering books for partitioning the cycle time. Webster 10} has also

shown from some numerical optimization that the optimal ratio of Gl to G2
is approximately this.
Actually, the total delay is quite sensitive to how one partitions the

free time. This "free time" is not an observable time. It represents (by

definition) a hypothetical average time per cycle when the signal would be

St e bt
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completely idle if all vehicles which arrived when the queue was zero could be
served at a rate sj instead of qj'. This "free time' is.thus equivalent
to an addition to the lost time L . Since the cycle time is some (large)
multiple of L , this can be interpreted as the reason why the introduction
of a free time of a magnitude comparable with L itself will increase the C
by a substantial factor. The reason for introducing this free time was to re-
duce the stochastic queueing but, of course, one should distribute this free
time so as to reduce the queues in each of the two directions bf similar amounts.
The two terms on the right hand side of (2.3.14) are in fact the optimal
amoints of free time to be assigned to directions 1 and 2 respectively. One
should distribute this free time not in the ratio of (qllsl)/(qzlsz) but in

the ratio

1/2
Il(qllsl)

WZ—) . Co | (2.3.15)

Thus, for I, = I, s if the minimum green intervals are in the ratio (ql/sl)/
(q2/sz) of say 2 to 1, one would split the free time in the ratio of V2 to 1.
If, in the deterministic approximation, one were to choose the Gl and
G2 so as to minimize the total delay, sﬁbject to the condition that the cycle
time C was assigned some value larger than its minimum ﬁalue, one would cer-
tainly give any excess green time all to the same direction; namély, that with
the larger 4 - One of the interesting features of the result (2.3.15) is
tainly give any excess green time all to the same direction; namély, that with
the larger qj . One of the interesting features of the result (2.3.15) is
that it depends on the (qj/éj) but not on the qj's themselves. The reason

for this strange result is that the residual queue at the start of red, the Q

of (2.3.7), depends on the degree of saturation p but is otherwise independent

of q and s . Thus, if one had a two-lane approach intersecting a one-lane
approach so that sl = Zs2 » for example, one also had ql = 2q2 so that
ql/s1 = qz/s2 and one split the cycle time so that Gl = G2 , then both di-

rections would have the same value of p and therefore the same value of Q .
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Since both queueé contribute the same to the total delay, it is equally important
that one try to reduce them both. %

In the above formulas, we have neglected the effect of any traffic in di-
recﬁions 3 and 4. In the (unlikely) symmetric situatiom in whicﬁ q =45 »
S; =83, 9, =49, and Sy, =8, » the delays would be the same in directions
1l and 3, and in directions 2 and 4, for any signal setting. The total delay
would be just twice ‘that for direction 1 and 2 alone, so the optimal signal
setting would be the same as described above for just two traffic directions
(a3 =9, = 0 .

It is interesting to compare the above illustration with s, = 252 s
9 = 2q2 » 4y = q, = 0 Vith a case in which S] =S, =55, 9 =4, =d,
and q, = 0 . In the former situatiom we, in effect, have two lanes of traffic
in direction 1, each carrying a flow équal to Uy s with a saturation flow per
| lane Qf S, ; but no traffic in direction 3. In the latter situation we have
the same flow per lane, but thg flows are in opposing directioms (1 and 3).
The difference between the two situations is that, with two adjacent lanes, ve-
hicles can switch lanes and keep the signal busy as long as there is a queue (in
either lane). For two lanes in opposing directions, howeﬁer, one can have a
(residual) queue in direction 1l during some signal cycles when there 1s none in
direction 3, or vice versa.

(residual) queue in direction 1l during some signal cyclés when tnerd is’mone-za
direction 3, or vice versa.

There is no way that a vehicle traveling in direction 1 can take advantage
of any excess green time for direction 3. As the formulas show, the latter case
has twice as much stochastic queueingin directions l plus 3 as the former has
.in direction 1. With equal queues in directions 1, 2, and 3 (but not 4) one

would, of course, tend to partition more green time to directions 1 and 3 than
to directions 2 and 4.
The more likely situation is that q3/s3 and q4/54 are smaller than

ql/sl and q2/s2 , respectively, by enough so that the Q3 and Q4 are much

DT TR R
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-smaller than. Q1 and Q2 , because the Qi are very sensitive to the degree
" of saturation in the ith direction. To reduce the detérministic part of the

queue in direétions 3 and 4, however, these traffic directions would favor a

shorter cycle time, or, in particular, direction 3 would prefer a smaller G2
(a shorter red time for direction J) and direction 4 would prefer a smaller.Gl.
In the special case of symmetric flows 4, =4, 5 S; TS, q3 = 44 » Sy =

s, one can easily show that the generalization of (2.3.1l) for d, >0 gives

4

(q,/s))L
1| - 2q,/s))

I 9

. (2.3.16)
Ls, (q1 + q3)

1/2
1 +.2[ ]

In effect, one simply replaces the I of (2.3.1l1) by Iql/(q1 + q3) . Since
this factof is inéide the square root, and q, < q; » 43 can reduce this term
by at most 1//2 , possibly reducing the second factor of (2.3.1l) from a valué
of 2 to 1.7. This conclusion, however, is based upon an objectiﬁe iﬁ which de-
lays are weighted equally for all vehicles and also linearly in the length of the
delay. Actually traffic engineers (and presumably society generally)'would tend
to assign more.weight to long delays than to short delays. They would prefer

to reduce the longer delays in directions 1l and 2 than to reduce the delays in
directions 3 and 4. The& might e?en disregard the delays in directions 3 and 4
completely.

_____ Far_a pousymmetric_jntersection. the flows. a. and a. would together
completely.

For a nonsymmetric intersection, the flows, 95 .and 9 would together
want to reduce the cycle time but if q3> q, the flow 4y might favor splits
giving somewhat lesé green to directions 2 and 4. If one assigns more weight
to the longer delays in directions 1l and 2, however, one may choose to ignore
the delays in directions 3 and 4.

As was discussed in the previous section, we could take as the objective

function some weighted sum of delays and stops.



02

The existeﬁce of stochastic queueing has no effect on the fraction of the

cycle time when there is no queue, i.e., on the fraction of vehicles which are

not stopped. The total number of vehicles which are stopped per unit time is,

therefore, still given by (2.2.9). However, this formula would assign only one

stbp to any vehicle which was stopped during one cycle but had to wait several

cycles before it could leave. Since a vehicle which fails to clear the inter-

section during the cycle of arrival will need to start and stop during each

cycle as it moves forward in the queue, one may wish also to add a penalty for

each of these stops.

The dverage number of stops per cycle oflthe latter type is simply ﬁhe
residual queue Q at the start of the red time and the‘number of suéh stops
per unit time is Q/C (or Qi/C for direction i) . If one wished to assign
an equivalent delay time of &' for each such stop, one.should add a'Qi/C
to the objective function. The o' _is not the same as the & of the last
sectioﬁ because the o presumably represents the effectiﬁe cost of stopping
from the approach speed v and accelerating back to this speed, plus any.time
lost downstréam of the intersection. The 0' includes only fuel consumption,
p&llution, etc., needéd to stop and go in the queue but not any actual delay.

Since the expression for delay per unit time already contains a term Qi s
a stop and go cost would simply enlarge this term by a factor of (1l + a'/C)
with a value of q' probably less than ten seconds. Inclusion of this factor
a stop and go cost would simply enlarge this term by a factor of (1l + a'/C)
with a value of q' probably less than ten seconds. Inclusion of this factor
in the objectiﬁe function would tend to increase the optimal cycle time (so as
to reduce the effects of queueing), but obviously not by Qery much (typically
by a factor of only about (1 + a'/2C), probably less than five percent).

If we add to the objective function a multiple & of the number of (pri-
mary) stops per unit time (2.2.9), this would also tend to increase the optimal
cycle time; but not very much. Even though stops may represent a significant

part of the social cost, nearly all vehicles are stopped no matter what the cycle




time may be if 1 - ql/sl - qz/s2 is small. It might be better to represent

this part of the.objective function as a(ql + q, + qq + q4) less @ times the
number of veHicles per u?it time which are not stopped. The'fractioﬁ of vehicles
which are not stopped, however, is, at most, comparable with L/C . Actually,
the inclusion of stops will increase the cycle time only by a factor of approxi-
mately (1 + La/Cz) in which both L/C and &/C are expected to be small
comparéd with 1. It will also tend to favor gi?ing a little more of the free
time to the traffic-direction with the largest 9 > but this is also a small

effect,

One of the interesting facts that one should notice about the theory pre-
sented so far (for an isolated signal with moderately Heavy demand but no turns)

is that a rational choice of the green intervals Gl and G, is sensitive to oanly

2
a relatively small number of parameters which one might use to describe the system.
We have actually introdgced 15 parameters, 9 s Sy Ii 1i=1, ... , ), L, a
and o' but some of tﬁese (particularly the L and Ii) themselves describe
only certain relevant aspects of the traffic behavior which might have been de-
scribed in terms of many more parameters. We have argued, howe&er, that the
traffic in directions 3 and 4 and the number of stops typically have little in-
fluence on the choice of Gl and G2 . This reduces the number of relevant
parameters to 7, q; » S5 Ii (i =1,2) and L .

The minimum cycle time depends on ql/s1 s q2/s2 » and L whereas the
parameters to 7, q; » S5 » Ii (i =1,2) and L .

The minimum cycle time depends on ql/s1 s q2/s2 ,» and L whereas the
relevant aspects of the stochastic behavior, (2.3.13) and (2.3.15), depend on
these plus Il s I2 , and L(sl + 52) , only six parametefs. The formulas do
not also depend on 81/52 . Actually, the choice is not very sensitive to the
L I2 and L(sl + 52) , it depends mostly on just the ql/sl , q2/s2 s
and L .
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So far, we have been concerned with the minimization of the total delay
with no constraints due to pedestrians. If we think of the total delay as

some function defined on'the space Gl’ G2 of figure 2.3, we do not need to

impdse explicitly the condition that Gl’ G2 must be in the shaded region of

figure 2.3 because the stochastic queueing terms become infinite along the
boundary of this region. The analytic minimization automatically gives a solu-

tion in the interior of this region. If, however, we further impose a condi-

tion that G1 > G1m and/or G2 > sz, the unconstrained minimum might not satisfy

these conditions. If it does (for sufficiently large qi) there is no problem,
but if it does not, then surely the constrained optimal setting would be on omne

of the constraint boundaries, G, =G and/or G, =G .
1 Im 2 2m

In the shaded region of figure 2.3, the total delay is most sensitive to
the two stochastic queueing terms for directions 1 and 2. Whether we consider
the sum of these terms along a line corrésponding to a fixed value of C, Gl’
or G2 » one is led to nearly the same condition, namely that any excess time

allocated to direction 1 above the minimum needed, Gi - (qi/si)C, should be

split as in (2.3.15),

6 - G@/spe 16 /sp 2

Gy = (q,/5,)C - 12(q2/52)_

. (2.3.17)

In the Gl’ G2 space, (2.3.17) is the equation of a straight line con-
: "’ VAV L2 27727 |
In the Gl’ G2 space, (2.3.17) is the equation of a straight line con-
tained in and passing through the corner of the shaded region of figure 2.3.
The unconstrained minimum for the total delay, of course, lies on this line

1 im

G2 > sz exclude this point, the constrained minimum delay will be at the

at a cycle time given by (2.3.13), but if the constraints G, > G and/or

intersection of the line (2.3.17) with the boundary'of the constrained regionm.
The customary procedure for choosing splits with pedestrian constraints,

presumably is to match the degree of saturation in directions 1 and 2. This
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would correspond to replacing the line (2.3.17) by a line of slope (ql/sl)/
(qz/sz) passing through the cormer éf the shaded region of figure 2.3 and also
through the origin. i

We will postpone a discussion of the effect of turning movements until the
end of this chdpter not because they are typically of minor importance,
but because the number of potentially important parameters expléaes. Not only

does one need at least four more parameters to describe the fractiomns of (left)

turning traffic in the four directions, but the delays and strategies may now

be sensitive to the q3/s3 and q4/s4 as well as ql/s1 and q2/s2 .

2.4. Time-dependent Arrivals, Oversaturated Intersections

In the previous section, we imagined that the arrival rates q; were
time—independeﬁt, although they never are. We have, ﬁowaver, defined a time-
dependent flow qi(t) in (1.4.2) as the time derivative of a "smoothed" cumu-
lative arrival curve, smoothed by averaging counts over many similar days or
by some artificial recipe. Although this smoothing averages out stochastic
fluctuations, it will not averége out any time-dependence which is reproducible
from day to day (or week to week) such as rush hour effects. The typical pat-

tern is that qi(t) will rise to a maximum during morning and evening peaks

giving maximum values of ql(t)/s1 + qz(t)/s2 possibly close to or exceeding 1,

but very small values in the middle of the night. We expect, however, that the
o 2
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but very small values in the middle of the night. We expect, however, that the
o 2

W
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qéffiff},,33}§N335f5333§3*x£5y much during any cycle time (a few minutes). ™ X
We have previously interpreted a "fixed-cycle" (F-C) signal as ome with “ &

time-~independent values of Gl R G2 and C = G1 + G2 + L , but we will now

interpret this to mean any signal strategy which is based upon the qi(t)/si

(and Ii(t) if the Ii are not constant). Wekassume that any relevant informa-

tion about the qi(t) is obtained from occasional traffic surveys (manual

counts or counts from temporarily installed counters) or estimates based on
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typical rush hour profiles. The traffic signal operates on the same daily or
weekly pattern, possibly for several months or until one has reason to believe
that the qi(t) has changed significantly. The signal is driven by a clock
and some predetermined pattern.

In contrast with this, a vehicle;actuated (V-A) signal by definition in-
cludes equipment to detect information about current traffic conditions. Pre-
sumably the signal system could also retain any relevant information extracted
from the vehicle defectors, including historical data. It could evaluate and
update estimates of the qi(t) s, among other things, for any traffic directions
or lanes where there are detectors (although standard equipment does not do
this). 1In principle, a V-A signal could be programmed to out perform a F-C
signal according to any specified criteria because it has more complete data
with which to operate. A V-A signal, however, costs more to install and main-
tain than a F-C signal (approximately twice as much). The difference in annual
cost (including interest on the investment) is of the order of a few thousand
dollars and the savings in delays, etc., does not always justify this expense.

The formulas of the last section have given some possible choices of G1
and G2 as a function of the parameters qi/si » etc. If the parameters are
slowly varying with time, one could select values Gl<t) . Gz(t) based upon
current values of the parameters, selecting slight different values in each
successive cycle. Most F-C traffic signals are mnot equipped to follow con=-
current values of the parameters, selecting slight different values in each
successive cycle. Most F-C traffic signals are mnot equipped to follow con-
tinuously a predetermined 24-hour or weekly program, but such equipment could
be built. They can at least switch cycle times a few times each day (either
manually or automatically).

The formulas of the last section, however, apply oﬁly over a range of
values for ql/s1 + q2/s2 from about 0.4 to O.?. For values below this range,
the proposed cycle time is likely to be less than about 30 seconds. One has

the option then of either choosing some minimum acceptable cycle time or using

a flashing red and yellow, i.e., in effect, converting the signal into a two-way

I T
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stop sign. Actually, this choice is seldom made with much consideration of delay
to vehicles. If it were, greater use would be made of the latter option.
It is quite common for ql/sl + qz/s2 to exceed 0.9 or even 1 during
peak demand. Indeed, a highway network which has no congestion even during the.
peak period is overbuilt. Also in this range of demand,-commonly used strategies
of control are based upon criteria other than minimizing total délays or stops.
If ql(t)/sl + qz(t)/s2 should actually exceed 1 , there is some rather
complex queue behavior during the "transition period" when ql(t)/sI + qz(t)/s2
has a value between about 0.9 and 1. No matter how one Qaries the cycle time
during this transition, the time-dependent queue cannot keep pace with the chang-
ing equilibrium queue behaﬁior and when ql(t)/sl + qz(tl/'s2 exceeds 1 there
is no equilibrium. The signal is o?ersaturated and queues will grow until the

demands drops below this critical value.

Suppose one can construct_from historial data a curve of E;(t) , I =1,
es. &, the (average) cumulative number of vehicles to arrive in direction 1
by time t » on a time scale covering the whole rush hour, and they have shapes
such as shown in figure 2.5 for i =1, 2. We can also sum the graphs in any
combinations but, in particular, we will wish to consider graphs of Ei(t) +
n,(t) and W () +3,(t) +1(e) + 7, (t) .

For any signal strategy we could also draw graphs of the-corresponding
(average) cumulati&e number of vehicles to leave in each direction or combina-

For any signal strategy we could also draw graphs of the corresponding
(average) cumulati&e nunber of vehicles to leave in each direction or combina-
tions thereof (or piecewise-linear approximations to such curves). TFor a fixed-
cycle strategy one has the option of switching the signais at any time based upon
the properties of these averaged curves {ghereas for a V-A signal one chooses the
switching times on any day depending on the actual curves ni(t) for Fhat day) .

Prior to the time when the signal becomes nearly saturated, it is possible
to switch signals in Such’a way that the queue vanishes at the ené of the green

interval during at least some signal cycles, and, in any case, so that the average
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queue at the start of red has some (negrly) equilibrium value if the qi(t)
stay (nearly) constant. This would be true for all traffic directions i .
When the system becomes oversaturated, however, this is no longer possible, but
one can illustrate the consequences of any proposed strategy on a figure like
figure 2.5.

When the signal is green in directions 1 and 3, the departure curves in
directions 1 and 3 will have slopes s and s3 » respectively, as long as
the queue is positive. Similarly, when the signal is green in directions 2
and 4, the departure curves in directicns 2-and 4 have slopes S, and s, Te-
spectively. During the (effective) lost time L there‘are no departures in

any direction. The departure curve for directions 1 and 2 will alternate be-

tween slopes s and s

1 but with zero slope during a total time L for

2
any switch from one direction to the other and back, provided both queues stay
positive. The combined departure curves for directions 3 plus 4 behave simi-

larly except that in these directions it is likely that the queues will vanish
in each cycle, if they are undersaturated. The departure curve for the sum of
1 + Sq and S, + S, but with Sy

replaced by qi(t) if the queue in direction i vanishes.

all directions will switch between slopes s

If the objective were to minimize the total delay during the whole rush'
hour, one would want to minimize the area between the curves for the combined
svrivale and.dgrvartvres.in diractimns.l o 4...Sipce_the.curyes.._n.(t)_ are_
hour, one would want to minimize the area between the curves for the combined

arrivals and departures in directions 1 to 4. Since the curves ﬁi(t) are

- assumed to be given, this objective is equivalent to moving the combined de-

parture curves for i =1 to 4 as high as possible (specifically maximizing

the area under the departure curve) through appropriate choice of switching

" times, but recognizing that the slope of an individual departure curve will

drop from Sy to qi(t) if the queue vanishes in direction i .
If directions 3 and 4 are undersaturated, most of the delay would be in

directions 1 and 2 identified by the area between the curves for arrivals and

20
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departures in just directions 1 and 2. Suppose, for now, we disregard the ve-
hicles in directions 3 and 4.

If one has followed some strategy until some time ¢t , the signal is green
in direction 1, there 1is a‘positive queue in direction 1 (for certain, every

day), S > s,, and one wishes to minimize total delay, then would not switch

2

the signal to direction 2 at time t and suffer a lost time in switching the

signal to operate at a lower flow s The proof of this intuitively plausible

9 ¢
conclusion is illustrated in figure 2.6. If the depérture curve for directions

1 plus 2 had slope ) at time t , one switched the signal time at time t so

for some period of time G, and then switched back to

as to give a slope s 2

2

direction 1, the departure curve would be as illustrated by the solid line of
figure 2.6. 1If, however, one could postpone the switching time to time ¢t + €

> one could give the same green interval G, to di-

and maintain the flow s 2

1

rection 2 as before and follow the broken line curve of figure 2.6 until it re-

joined the solid line curve in the next cycle. If s, > s,, the broken lime

1 2

curve is everywhere higher than the solid line and therefore gives less total
delay. The conclusion is that, to minimize the delays in directions 1 pius 2,
one will always hold the signal green for direction 1 at least until the averége
queue is so small that there will be a zero queue on a significant fraction of

days causing the average departure rate to drop below s

queue is so small that there will be a zero queue on a significant fraction of

days causing the average departure rate to drop below $;

If one were to hold the signal green in direction 1 after the queue van-

ished, the departure rate would drop from s to ql(t) within a short (com-

1

pared with C) time. From figure 2.6 it appears that there might be a temporary

5 but, unlike figure 2.6, one

does not now have a strategy which will return the system to the same state as

reduction in delay, particularly if ql(t) > s

the solid line in the next cycle. Operating with a flow less than s during
one green interval reduces the time during which the signal can operate with a

flow s, 1in later cycles. Except in very unusual circumstances, the net result

1
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is an increase in to;al delay. One should not allow the flow to drop below
si during any green interval since this is essentially equivalent to an in-
crease in the effective lost time L .

The next question is: having switched the signal to direction 2 (with
sz‘< Sl)’ how long should one extend the green time for direction 2? Since,

presumably, q2(t)/s2 < 1l , one could extend the green until the queue in di-

rection 2 is nearly zero. Indeed, one could follow a strategy of switching

the signal only wheﬁ the queue is nearly zero, for both directions 1 and 2,
throughout the whole rush hour. This is, in fact, the strategy which minimizes
the sum of delays in directions 1l and 2 if S, =Sy $ince the argument of
figure 2.6 applies for both directions.

If one were to follow such a strategy, successive cycle times would increase
until the total demand rate was less than the average service rate. If the
qi(t) varied only slowly with time, the number of arrivals in direction 1l during
a cycle time C would be approximately ql(t)C and the subsequent green inter-
val G! needed to serve them would be G! = ql(t)C/s1 . Similarly for direc-

1 1

tion 2. The next cycle time would then have a value

cl GI ) ql(t) qZ(t) )
= + + '
1 F6, L 5] + s C+1L. (2.4.1)

[}

L/C (the signal is oversaturated), C'> C.

Thus, 1if ql(t)/sl + qz(t)/s2 > 1
) - L 71 2

Thus, if ql(t)/sl + qz(t)/s2 > 1 - L/C (the signal is oversaturated), C'>.C.
Despite the fact that this is the strétegy which minimizes total delay for

s; = s, (and q5 ='q4 = 0), this is not the type of stratégy commonly used, and

it is doubtful that travelers would accept it. A typical intersection which is

oversaturated during the rush hour is likely to generate queues causing delays

of five or ten minutes (or more) to individual vehicles. With the above strategy,

however, this is the magnitude of C . One should also notice that any vehicle

which is stopped (namely all of them during this period of cversaturation) will



72

clear the intersection during the cycle of its arrival. "Thus, this strategy also
minimizes the'numbe; of stop and go movements in the queue (namely, zero).

Maybe if the traffic engineer published a schedule of the signal timing
(like a bus schedule), travelers would learn how to adjust to this strategy so
as to reduce their uncertainty of travel time. Perhaps travelers should also
make reservations. Otherwise, it seems that travelers would prefer to move in
the queue every minute or two, so that they haﬁe a feeling of making some
progress eﬁen if this results in increased delay kwhich the tra&eler does not
appreciate since he cannot control it) and increaséd fuel consumption.

One could artificially assign‘a maximum §a1ﬁe'to C (two minutes, for
example) and then devise a strategy to minimize delay (or other cost) subject
to this constraint. This is what is commonly proposed but this, in effect,
adds a zero penaltﬁ for any cycle time leés than the maximum and an infinite
penalty for a cycle time larger than the maximum. This does not seem to be a
very realistic interpretation of what society likes. On the other hand, it
is very difficult to determine what travelers would prefer. Since one cannot
eliminate the congestion by simply changing the signal timing, travelers will
complain no matter what one does. There seems to be no way of formulating
and measuring an objectiﬁe function which describes what society dislikes the
least.
anu wE€dsulbrug-am vujeLtars [.and-.a.a.. #ufu.=_Q)_._the shave_strateev of switching
least.

1f, however, s > 52 (and q3 = q4 = 0) , the above strategy of switching
the signal from direction i only when the queue is (nearly) zero in direction
i for i =1 and 2 is not the strategy which minimizes the total delay. One
would still do this for i = 1, but while the signal is green for direction 2, the
queue 1s growing in direction l. There may come a time (before the queue vanishes
in direction 2) when it is advantageous to pay the penalty for switching the sig-
nal back to direction 1 to take advantage of the larger service rate Sy in

direction 1.
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Suppose that at (approximately) time t when the arrival rates are qi(t),
one chooses a cycle time C(t) but partitions it so that the queue vanishes in

direction 1, i.e., so that
G, (t)s; = C(t)q, (t)
and
Gz(t) = C(t) - Gl(t) -L=cC()[l - ql(t)/sl] -L.

The queue in direction 2 will now grow from one cycle to the next by approxi-

mately an amount

[q,(e) .. q,(t)
!L; A S
1 2

C8)ay () - G,(t)s, = s, {C(c)

Or at an average rate per unit time of this divided by C(t) , i.e.,

~

rate of increase = { = =
of the queue in 1 2
direction 2

(2.4.2)

ql(t) qz(t) L)
+ -1 +'E?ET}SZ .

The queue in direction 1 clears every cycle but it has an a&erage value of
approximately half its maximum,

(06, (8) a5 (e)C(e)
; 1 1 _ 1

average queue in 2 5 73 .
direction 1 _ 1

(2.4.3)

One still has the option of choosing the cycle time C(t) at various times
direction 1 _ L
One still has the option of choosing the cycle time C(t) at various times
during the rush hour and ome could do this in such a way as to minimize the sum

of the delays in directions 1 plus 2 throughout the whole rush hour. The solu-

tion of this optimization problem is somewhat complicated and not worth describing

in detail, but the qualitative aspects are fairly simple and illustrate some im-
portant issues.
The previous strategy in which the queues clear in each direction is a

special case of the present strategy in which the cycle time increases fast



74

enough so as to absorb the increase in the queue (2.4.2), but the implications
in the approximate reiations above is that C(t) will not increase this rapidly.
One will allow a queue to grow in directiom. 2.

That it is more desirable to let the queue grow in direction 2 than in
direction 1 can be seen from (2.4.2). If we had reversed the roles of the two
directions and allowed the queue to vanish in direction 2 instead of 1, we
would have the same formulas but with the indices 1 and 2 reversed. The first
factor of (2.4.2) is.independent of the order of the indices 1 and 2 but the
factor S, would be.replaced by si . Thus for any specified Cc(t) and

s the growth of the queue will be less if ohe assigned the growth to

17 520
direction 2 than to direction 1. ‘Mdre generally,suppose one were to specify
the C(t) but had the option of selecting the partition of it between Gl(t)
and G2(t) . If there‘were queues in both directions,any shift of some green
time from direction 2 to direction 1, i.e., G, G, +€ and G2 - G2 - g,

1

would give an increase of (s, - sz)a in the number of departures during the

1
cycle and a corresponding decrease in the total queue. Clearly, if the objective
is to minimize the total delay and a queue is to.accumulate somewhere, it should
be in the direction with the smaller s; -

As' regards the choice of the cycle time itself, the competition is between
the delay in lane 1, (2.4.3), which isproportional to C(t) and the L/C(t)
term of (2.4.2). The L/C(t) is a relatiﬁely "small” term (one cannot increase
the delay in lane 1, (2.4.3), which isproportional to C(t) and the L/C(t)
term of (2.4.2). The L/C(t) is a relatiﬁely "small" term (one cannot increase
the capacity of an intersectién ﬁery much by increasing C , if C 1is already
large compared with L) but any decrease in the queue length at the start of
the rush hour will persist. until the queue vanishes at the end of the rush hour.
The contribution of this term in (2.4.2) is "weighted" by the duration of the
rush hour. If, for example, by increasing C(t) one eliminated one switching

time L , one could reduce the queue by s L vehicles (typically about 5) for

2

the remainder of the rush hour.
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The optimal C(t) will generally decrease with t but the typical value
near the start of the rush hour will be such that Cz(t) is comparable with
[slszL/qi(t)]' times the duration of the rush hour. If, for example, L = 1/5
minutes, ql/s1 =1/2, ql/s2 =1 and the.oversaturated queue lasts for 20 minutes,
c(t) would be about (20 X 2/5)1/2 ~ 3 minutes. Such a cycle time may be some-
what higher than travelers would tolerate, but, at the optimal C(t) , the delay
is not very sensitive to the ﬁalue of C(t) . Perhaps the use of a cycle time
of only two minutes would not increase the total delay Qery much. It is worth
noting, howe?er, that to reduce the total delay it is more important to take some
action early when the queue first starts to grow then to wait until the queue

is already large, because any addition to the queue will last for the rgmainder

of the rush hour.

The-aspect of the abdve strategy which is most controversial is that it
forces most of the delays onto the travelers in direction 2 (the direction
with the smaller Si~’ i=1, 2). This comes about because we assume, for
example, that one minute of delay to each of ten traveiers in direction 1 is
equivalent to ten minutes of delay to one traveler in direction 2. Since
travelers in direction: 1 use their green time more efficiently than those in
direction 2, we give them priority.

One could propose a more reaiistic objective function in which the effective
direction 2, we give them priority.

One could propose a more reaiistic objective function in which the effective
"price'" of a unit of delay for a traveler who has already waited a time w -,
p(w) , is an increasing function of w . As the delays increase in direction 2,
they may reach a state such that p(wl)/s1 = p(wz)/s2 in which W) and v,
are the waiting times of the travelers at the front of the queue in directions 1
and 2 respectively. At this stage both signal phases would reduce the value of
time in the queue at the same rate and one would no longer give complete priority

to direction 1. Such a cost structure would also increase the penalty for long
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cycle times with large oscillations in the waiting time; of travelers. For appro-
priate choice of the p(w) and an objective function equai to the sum of the costs
to all travelers, ome could probably formulate an "optimal strategy" which is
compatible with what society is willing to accept.

The problem with such a theory is that it is mathematically rather complicated
but also logically‘difficult to apply. Since one does not know p(w) and would
have difficulty measufing it directly (since travelers themselves do not know what
they like and different travelers behaée differently), one would probably have to
infer an effective ﬁalue of p(w) by "calibrating" the theory so that it gave re-
sults consistent with what one belieﬁes is acceptable. But if one knows what is

acceptable, one does not need a theory.

Although assigning nearly all of the delays to direction 2 may not be acceptable,f

one can certainly argue'that some preference should be given to travelers who
use the intersection more efficiently. Not only would this reduce the total
delay for an inelastic demand; but if the demand is elastic, one does not want
to attract more tra&elers who use the system inefficiently and cause-long-delays
to others.,

Traffic engineering books suggest that the green intervals be split in the
ratio of ql/sl to qz/s2 . DPresumably this recipe is meant for undersaturated
signals but, since this is not explicitly specified, traffic engineers would
ratio of ql/sl to qz/s2 . Presumably this recipe is meant for undersaturated
signals but, since this is not explicitly specified, traffic engineers would
likely use this even if the signal is oversaturated. The consequence of such
a strategy is that'the queue lengths in directions 1 and 2 grow in the ratio
4, to g, but the waiting times in queue are nearly the same in both direc-
tions (independent of the si!). This may be very "democratic" but it also
means that to achieve this, one is willing to trade a unit qf delay to one
person in direction 2 for a unit of delay to each of more than one peréon in

direction 1. This makes no sense either.
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In the discussion above we have neglected the traffic in directions 3 and
4. If, for the signal setting chosen on the basis of the traffic in directionms
1 and 2 only, the queue vanishes in directions 3 and 4 every cycle, the delays
in the latter directions will be small compared with those im directions 1 and
2. Aithough directions 3 and 4 would likely prefer a shorter cycle time, they

would typically have little effect on the optimal setting. There are exceptioms,

 however, actuallya large number of them, since we have postulated only that

ql(t)/sl < q3(t)/s3 and qz(t)/s2 < q4(t)/s4 . It is possible (but unlikely),
for example, that ql(t)/sl is nearly equal to q3(t)/s3 or qz(t)/s2 is
nearly equal to sA(t)/s4 . Also, it is possible that Sy > s and/or

S '8

9 *

For any choice of a cycle time C(T) it would be desirable to partition

4 >

the time so as to minimize (or reduce) the rate of groﬁth of the total queue,
i.e., to maximize the number of vehicles served per cycle. The number of vehicles
served in direction 1 per cycle is siGi(t) or an average-of siGi(t)/C(t)

per unit time, provided there is a queue in this direction throughout the green
interval; otherwise the number is qu(t) per cycle or q; Per unit time, inde-
pendent of any changes in the signal setting.

One could have some very complex strategies if the relative ordering of
the qi(t)/si values changed during the rush hour. We will assume this does
not happen.
the qi(t)/si values changed during the rush hour. We will assume this does
not happen.

When the signal first becomes oversaturated, one should give preference to

direction 1 if s, > s, , but give direction 1 barely enough green time to clear

1 72
the queue. To give direction 1 more than this, for a fixed C(t), would decrease
the rate of service sZGZ(t)/C(t) in direction 2 but would not increase the

rate q; in direction 1. Since q3(t)/s3 < ql(t)/s1 , the queue would certainly

vanish in direction 3 if it vanishes in direction 1. Since also q4(t)s4 < qz(t)/s2
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and qz(t)_/s2 is only slightly larger than Gz(t)/C(t), presumably q4(t)s4 is, at

first, less than Gz(t)/C(t) » so that the queue.vanishes in direction 4 also. -
1f we continue to give preference to direction 1l as ql(t)/sl increases,

Gz(t)/C(t) will decrease. As a result of this, there may come a time when

q4(t)/s4 = Gz(t)/C(t) ; direction 4 is at the brink of saturation. If we

allow queues to form in direction 1, 2, and 4, the rate of departures in direc-

tions 2 plus 4 will be (s, + 54)G2(t)/C(t) while that in directions 1 plus 3

2
is slcl(t)/C(t) + dq If, for fixed C(t) , we now should shift an amount

. €. of green time from direction 1 to direction 2, this would increase the total

departure rate by (s2 + s4 - sl)e . If 8y > 8, + S, we would still give

preference to direction 1l but if s + s, » We would prefer to give more

)

green time to directiomns 2 and 4.

In the latter case,the conclusion is that one would give directions 2 and 4

barely enough green time to prevent a queue from growing in direction 4, i.e.,
choose Gz(t) so that Gz(t)/C(t) = q4(t)/s4 s> but allow a queue to form in

both directions 1 and 2. One could object to this strategy on the grounds

-that one 1is still trading longer delays to one person against shorter delays

to many people. Travelers in direction 2 still suffer the most, but they
would view direction 1 as their competitors and perhaps would not complain
if travelers in direction 1 were also delayed. They may think it somewhat
would view direction 1 as their competitors amdd pernaps wouLrd moc Compraiif
if travelers in direction 1 were also delayed. They may think it somewhat
arbitrary that their delays are dictated by the traffic in direction 4 (if
they realize that this is true) but any other strategy would also be '"somewhat
arbitrary.”

If the flows qj(t) should continue to increase, they might reach such
a value that direction 3 and 4 are at the brink of saturation. If a queue
forms in all four directioms, the departure rates in directionms 2 plus 4 and

1 plus 3 would be (52 + s4)G2(t)/C(t) and (s, + SB)Gl(t)/C<t) . One would

1
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aow give preference to directions 1 plus 3 if sy + Sy > Sy + S, » allowing
queués to grow ounly i; directions l, 2, and 4. Otherwise one allows the queue
to grow in directions 1, 2, and 3.

As the queues decrease toward the end of the rush hour, one can follow
the same sequence of strategies in reverse order. TFor example, if with
8 < Sy + s, and ng'queue in direction 3, one had kept Gz(t)/C(t) = q4(t)/s4
but the queue should Qanish in direction 1; one would switch to the strategy
of giving direction 1 only enough time to clear the queue, Gl(t)/C(t) =

ql(t)/s1 .

2.5. Vehicle Actuated Signals - General Properties

A V-A signal system has vehicle detectors on some or all approach lanes
to an intersection. Information from these detectors is transmitted to a’

control system which, in principle, can switch the signal according to any

strategy based upon current or historical data obtained from these detectors
plus any other relevant data such as the timé of day, day of the week, or spe-
cial events, and any time-independent information such as the geometry of the
intersection, location of detectors, or supplementary data obtained from traffic
surveys (for example, turning movements whiéh cannot be obéerved from the ve-—
hicle detectors). A F-C signal could presumably use all of the same data except
for the data obtained from the thicle detectors.

hicle detectors). A F-C signal could presumably use all of the same data except
for the data obtained from the thicle detectors.

The primary éurpose of a traffic signal is to avoid collisions between ve-
hicles which are following the legal rules for drivers and even to minimize the
chance of collision between vehicles which are not quite following the rules.
Vehicles traveling in different directions must be serﬁed in some sequence and
one typically wishes to do this so as to minimize delays, stops, or some other
objective. The purpose of the vehicle detectors is to provide information which
may be relevant to reduce the deiays or stops (without increasing the risk of

collision).



80
.

It is possible to collect vast amounts of irrelevant or redundant informa-
tion. One could place detectors every 20 feet or so in every lane of every
approach aﬁd even within the intersection to detect turning movements, but
detectors are expensive to install and also expensive to méintain. Unfortunately,
most vehicle detectors are not as reliable as one would like them to be and are

not generally equipped to detect their own failure. The system should certainly

be designed to collect only information which is most relevant to a rational de-
cision of when to switch the signal and to collect this information as cheaply
as possible. Although microcomputers could be programmed to store information
and follow complex procedures, it would also be desirable to keep the logic
simple, if it is effective. : 4
Almost any detector (pressure pad, photocell, or induction loop) can be

used to record the time at which some part of the vehicle passed some point

on the highway. Most of them can also record how long a ﬁime a vehicle is over
a detector, and induction loop detectors can record if there are any vehicles
in some section of the highway. TFrom the shape of pulses one may possibly also
infer some information about the type of vehicle (truck, bicycle, car). Not
all this information may be relevant, so we will not comment further on the
details until we see what information we want.

There is some information that would be useful which one cannot obtain.
details until we see what intormation we want.

There is some information that would be useful which one cannot obtain.
A driver who will be instructed to stop at the intersection must be informed of
this in time for him to decelerate to a stop, but the decision must be based on
whether or not the intersection will be clear of other conflicting vehicles at
the time he would arrive if he did not stop. One would thus like to have pre-
cise information about where vehicles will be five or ten seconds in the future.
If one observes the velocity of a vehicle, one could extrapolate ité motion into
the future, but one must use a signal strategy which is safe even if tﬁe driver

does something unusual (but legal). Gathering more information about present
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or past behavior will not necessarily improve one's prediction of what could
happen in the immediate future.

Another potentially useful type of data is the length of the queue. If,
however, the physical queue extends so far back from the signal that the end
of the queue fails to cross the detector even during the green interval of the
signal (as in an oversaturated condition), the detector will merely record the
periodic flow induced by the output from the signal.. This flow will be essen~
tially independent of the queue length and consequently give no information
about the queue length. The detectors will merely verify whether or not vehicles
are leaving the intersection at the expected rate (there are no stalled vehicles,
accidents, slow trucks, or whatever).

The result of any strategy is simply a decision to switch a signal or not.
A V-A signal can be very effective for the control of light traffic in which the
signal would merely act to resolve conflicts between individual vehicles, but the
primary purpose is to control moderate to heavy (undersaturated) traffic (a V-A
signal is too expensive as a control for only light traffic but offers no spe-
cial advantage for the control of oversaturated intersections). As compared with
a F-C signal, a V-A signal might be able to (a) reduce the effective lost time
L in switching and/or (b) respond more effectively to fluctuations in the number
of vehicles to arrive from one cycle to the next, which causes stochastic queue-

ino_far the F={ siopal. _,
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of vehicles to arrive from one cycle to the next, which causes stochastic queue-
ing for the F-C signal.

As regardsthe former issue, consider some hypothetical vehicle trajectories
as shown in figure 2.7 for vehicles passing an intersection during one cycle in
a single lane. We are primarily interested here in when to switch the signal
from green to yellcw andkfrom yellow to red, but the figure shows possible tra-
jectories for the entire cycle because any information which one could obtain
about the details of these trajectories might be relevant to the decision of

when to switch the signal. The typical pattern is that when the signal turns
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red, a queue propagates upstream. Figure 2.7 illustrates a situation in which
there is no residual queue initially. The approximate location of the end of
the physical queue is indicated by the broken line. After the signal turns
green, vehicles accelerate and acceleration waves propagates upstream. The
rear of the queue, which had been moving upstream, gradually reverses direc-
tion. When the vehicles are moving, however, we would describe them as a
"platoon.” New vehicles are still overtaking and joining the platoon as the
rear end of the platoon passes the intersection and proceeds downstream (if
the signal is séill green).

For a F-C ;ignal we do not know if the;e is a residual queue at the start
of red (for the optimal signal setting and moderately heavy traffic, there
usually will be one) and we do not know whether or mot the platoon in the cur-
rent cycle will clear the intersection. At some time ty when the signal
switches from green to yellow, vehicles may be passing the intersection at a
speed v_ typical of vehicles in the platoon (corresponding to a flow of approxi-
mately s) or, if the platoon has already passed the intersection, at a speed Vv
typical of the approach speed (corresponding to'a flow of approximatély q).

At the time ¢t there may be vehicles so close to the intersection that
they cannot possibly stop, and there may be other vehicles whose drivers are
uncertain as to whether or not they can or should stop. For any speed v , one
tney ‘cdrnuc ‘fussilri ~dvup, staening. distance” and a "legal stopping distance"
uncertain as to whether or not they can or should stop. For any speed v , one
could identify a "minimum stopping distance” and a "legal stopping distance"
from the intersection. Anyome beyond the latter distance at time ty who
fails to stop would be considered to be in violation of the law.

For a F~C signal, one does not know where the vehicles may be when the
signal turns from green to yellow. The duration of the yellow must therefore
be chosen so that a vehicle which is anywhere within the legal stopping distance

(in particular the furthest point) and traveling at a safe and legal speed can

legally enter the intersection before the signal turns red. If one could
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reasonably expect vehicles to decelerate at a rate a and they are traveling
~at a speed v when the signal turns yellow, the stopping distance would be
approximately v2/2a . The yellow interval should be approximately the time

to travel this distance without stopping (at velocity v). Thus
yellow interval ~ v/2a (2.5.1)

Actually, the yellow interval should be a bit longer than this. The above formula
does not make allowance for the reaction time of the driver or the fact that a
vehicle must either stop behind thé stop line of the intersection or clear some
point within the intersection before the signal turns red.

For a = 8ft/sec2 and v = 80 ft/sec, the time (2.5.1) is about 5 sec
(high speed road) but for v = 50 ft/sec it would be about 3 sec (urban area).
It is an increasing function of v which means that one would need a somewhat
longer yellow interval if the signal switched after the platoon had passed the inter-
section than if the signal switched.while the platoon was still crossing the
intersection. For a F-C signal, however, one does not know if the platoon will
clear the intersection (it certainly will in some cycles, if the intersection
is undersaturated) so one must choose the yellow interval on the basis of the higher
(approach) speed. Of course, if the drivers knew the duration of the yellow
interval and they are in a platoon when the signal switches, they may realize
that they can "sneak through” the yellow without violating the law even though
interval and they are in a platoon when the signal switches, they may realize
that they can "sneak through” the yellow without violating the law even though
they are able to stop. There have been extensive experiments done on driver
reaction to a yellow signal, but the driver behavior may be different in dif-
ferent locations. Also it is difficult to determine whether one is choosing
the yellow interval in response to driver behavior or driver behavior is a
reaction to customary choices of the yellow interval.

The lost time L for the F-C signal was defined in terms of "effective

green intervals," but it obviously includes parts of two yellow intervals plus
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the effects of start-up times. The optimal cycle times and waiting times
were, however, all multiples of L . 1If, for a V-A signai, one could, in
effect, reduce the L by even one or two seconds per phase change, this
could give a nontrivial reduction in the average delay per vehicle.

Actually for a F-C signal the "effective lost time" may vary somewhat
depending on whether or not the queue vanishes during one or both green inter-
vals., In any case, when the signal turns yellow there will typically be ve-
hicles so close to the intersection that they cannot stop. Particularly if
the queue does not vanish during the green interval, one can expect that the
flow through the intersection will remain at approximately s for part of the
yellow interval. This is a "flow" averaged over many cycles because this flow
lasts for only about 2 seconds of the yellow interval and therefore represents
an average of only about one vehicle (per lane).

Drivers in specified positions should respond to the signal changes in the
same way whether the signal is a F=C or V-A signal. The advantage of the V-A
signal is that it can poténtially choose the times ty and tr when the signal
switches from green to yellow and from yellow to red, respectively, based upon _
any prior information from the detectors. We will verify later (at least for
the intersection of two one-&ay streets) that it is usually advantageous to
choose ﬁhe time ty at approximately the time when the rear of the platoon
vasses the intersection. For a F=C signal one_dnes not know if _ar_when_this
choose ﬁhe time ty at approximately the time when the rear of the platoon
passes the intersection. For a F-C signal one does not know if or when this
happens and, for a V-A signal, this depends on the fluctuations in the cumulative
arrivals during the current and previous signal cycles.

For a V-A signal it is still true that if a vehicle is (barely) within a
legal stopping distance of the intersection at the time ty and traveling at
speed v , then it should be able to enter the intersection before the signal
turns red at some time £ - Thus, if this is a possibility, one must provide

the same yellow interval for a V-A signal as for a F-C signal.
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There are two ways in which a V-A signal might achieve a shorter (average)

lost time per cycle than a F-C signal, First, one might be able to choose the

time ty so as to give a higher likelihood that the flow through the intersec-
tion will maintain a value of approximately s for a short time (about 2 sec-
onds) after the time ty . To do this;, the signal must switch to yellow at
least about 2 seconds before the end of the platoon is expected to reach the

intersection. This will already be the case for a significant fraction of the

cycles for a F-C signal. One might not be able to do much better with a V-A signal
than for a F-C signal, but, if one is not careful, the;V-A signal might give an
appreciably larger lost time than a F-C signal by switching the signal so late
that the flow drops below s too soon after the time ty or (even worse) be-
fore the time ¢t |

The other possible way of reducing the lost time is to terminate the yellow

interval whenever one can be certain that no vehicles could (legally) pass the

intersection during the remaining scheduled yellow interval. One might be able
to reduce the scheduled yellow interval. if one can be certain that any vehicle
which might enter the intersection during the yellow would do so at the speed
vp rather than v. Better yet, one might be able to observe the time t* of |
figure 2.7 when the last vehicle which could legally pass the intersection actu- § 'ﬁ
ally does so, and switch the signal to red as soon as this vehicle has legally
rIgore .y -whiefl"tAe "LdST veullle wLlCl CUULU LlEpdlly pass Lue LILeLSeCLlull aciu=
ally does so, and switch the signal to red as soon as this vehicle has legally
entered the intersection.

The benefit from these (small) savings in time is not just that the vehicles
queued in the cross direction can save a little time (which would itself be of

little consequence). The main benefit derives from a '"chain reaction". If, at i

the time the signal switches to red, one knows that no vehicle will arrive for
a short time interval, then this means that the queue will not start to grow %
immediately during the next red interval. Also, if the queue on the cross direc-

tion is served earlier, the signal in the original direction will switch to green 3
j
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earlier in the next cycle, and in all subsequent cycles. The effect of a re-
duction of tﬁe lost time for the V~-A signal is analogous to the reduction of
the scale of time for the F-C signal.

It is fairly clear what one would like to achieve with a V-A signal. The
next question is: how can one do 1t? 1In particular, one would like to know
when the last vehicle in the platoon will pass the intersection, preferably at

. least 2 seconds before it actually happens.

The simplest type of V=-A signal systems would have at most one vehicle
detector in each approach direction or lame. It might be either an "impulse"
degector which records the passing times of each vehicle or a loop detector
which would record the presence or absence of vehicles over some length of
roadway. . In either case, one might expect that, for moderately heavy traffic,
the physical queﬁe would propagate upstream of the detector during the red
interval. When this happens, the detector can no longer record the expected
arrival times of new vehicles and consequently cannot determine the cumulative

number of vehicles to join the queue since the start of the red interval, so

as to estimate the approximate amount of green time needed to serve the queue.
After a signal turns yellow, the controller could record the cumulative

count of the number of vehicles which are likely to be stopped between the de-

1=

tector and the intersection. After the queue overruns the detector, however, an
impulse det=ctor would see a very "long headway" (no vehicles passing the de-
tector and the intersection. After the queue overruns the detector, however, an
impulse det=ctor would see a very "long headway" (no vehicles passing the de-

tector) whereas a loop detector would record that the loop is occupied. After

.es
the signal turns green, a starting wave propagates upstream and, when it reaches
the detector, vehicles start to cross the detector again, possibly with a couple
of relatively long headways at first. After a while, however, the headways
should approach a mean value of about 1/s , and vehicles should be traveling
. at nearly a constant mean speed vp between the detectér and the intersection.

In this situation, no information from possible cumulative counts of vehicles
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passing the detector or the intersection is of any help in predicting when

the end of the queue will pass the detector or the intersection. The detector
cannot colleét any useful information about the end of the platoon until the
end of the platoon has crossed the detector on its way to the intersection.

The detector observes individual vehicles; it does not measure "flows.'

To measure a flow with any precision one would need to observe several suces-
sive headways and take their average. If, however, one must wait until several
vehicles have passed the detector after the end of the platoon has passed be-
fore one can make a measurement of the flow and infer that the flow has iédeed
dropped to some value q less than s (typically about half of s), the end
of the platoon may have long since passed the intersection before the inference
hés been made. It is necessary, therefore, that one make such an inference

as quickly as possible, even at the risk that the inference is incorrect.

The usual method for doing this with an impulse detector is to observe the
elapsed time since the last vehicle passed the detector. 1If vehicles are pass—
ing the detector at a flow s , the mean headway between vehicles is 1/s (about
2 seconds for one lane) and this elapsed time should seldom be much larger than
1/s (at most 3 seconds, perhaps). As soon as the detector has recorded an elapsed
time exceéding some specified value R (perhaps 3-i/2 or 4 seconds), it is quite
likely that the preceding vehicle was the last vehicle in the platoon and that
subsequent vehicles will pass with a meap_-hasadu=u af- Li~- Sectheds, st 1> JuliLe
likely that the preceding vehicle was the last vehicle in the platoon and that
subsequent vehicles will pass with a mean headway of 1/q (perhaps 4 seconds).
There is, of course, a danger that the long headway is "accidental," caused
by some slow vehicle which failed to keep up with the platoon, but that subsequent
headways will again be approximately 1/s .

Suppose, iﬁstead, one were to use a loop detector of a length RBv_ , and
vehicles were traversing the loop at a constant speed vp . If some vehicle
crossed the outer edge of the loop and no other vehicle followed it within a

time £ , then the loop would be empty as soon as this vehicle crossed the inner
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edge of the loop. Whereas the'impulse detector would observe a headway larger
than some minimum 8 , the loop &etector would observe a spacing larger than
some minimum va . If the velocity of vehicles are indeed conétant, the two
types of detectors would respond in essentially the same way. The impulse de-
tector has the advantage that one can easily change the R at different times
of the day, if this is desirable, but it is difficult to change the length of
the loop. The impulse detector has the potential disadvantage that when ve-
hicles are accelerating immediately after the starting wave passes, the impulse
detector may record a couple of long headways (which it should ignore). The
s%acing between such vehicles, however, will likely be  shorter than BVP s SO
there is less danger that a loop detector would falsely infer that the end of
the platoon was passing.

If one uses the above strategy (with either type of detector), it is im-
portant that the detectors be sufficiently far from the intersection and that
8 not be too large. One should not switch the signal from green to yellow
until the controller has recognized the end of the platoon, a time at least
B after the end of the platoon passes an impulse detector or at the time it
passes the inner edge of a loop detector. If the objective is to switch the
signal.when the end of the platoon is within a minimum stopping.diétance of
the intersection, then the inner edge of the loop detector should be this far
from the intersection. The outer edge of the loop detector or an impulse de-
the intersection, then the inner edge of the loop detector should be this far
from the intersection. The outer edge of the loop detector or an impulse de-

tector should be a distance

va + (minimum stopping distance for ,Vp) (2.5.2)

from the intersection. For B = 3-1/2 seconds and vp = 30 ft/sec (for
an urban intersection), va is about 100 ft (by present standards a rather

long loop) and the stopping distance is about 60 ft, the impulse detector
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should be about 160 ft from the intersection.

Choosing a B which is larger than necessary is inefficient for two reasonms,

First, for an impulse detector, it would require that one place the detector
further from the intersection. Second, and more important, the controller might
permmit one or more vehicles to pass the intersection after the end of the pla-
toon with headways larger than 1/s but less than £ , causing an average "flow"
less than s imme&iately after the signal switches and possibly even before it
switches. Even if the B were chosen as 1/q , for example, and the controller
failed to respond to a headway slightly less than 1l/q , but then the next head-
way was also slightly less than 1/q , one should conclude that one has probably
already made a mistake; the platoon has already passed the detector but one has
not yet seen a headway larger than B . For B > l/q, of course, this situation
would occur quite frequently. With a detector as far away from the intersection
as (2.5.2), however, one might argue that, if the control allowed just one ve-
hicle to pass the detector with a headway of about 1/q , this vehicle might

be able to catch up with the end of the platoon before the platoon passes the
intersection.

We next turn to the question as to whether or not one might be able to
terminate the yellow interval short of the usual yellow interval for the velocity
v , again under the situation in which the queue has propagated upstream of the
terminate the yellow interval short of the usual yellow interval for the velocity
v , again under the situation in which the queue has propagated upstream of the
detector during the preceding red interval. For this, one must distinguish
between two situations depending upon whether the distance (2.5.2) is larger
or less than the legal stopping distance for velocity v . At an urban inter-
section these two distances are likely to be similar but, for a high speed rural
road, the latter distance would be larger.

Suppose first that the legal stopping distance for velocity v 1is less
than the distance (2.5.2) from the detector to the intersection. Figure 2.8

illustrates some possible trajectories for vehicles near the end of the platoon
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Fig. 2.8 - Vehicle trajectories mnear a signal at the termination of green,
detector farther away than the legal stop distance.

as they approach the intersection. At time t0 vehicle 1 , the last vehicle

in the platoon, passes the detector at speed approximately vp » but the de-

tector does not recognize that this is the last vehicle until time t, + B .

0

If the detector is located as in (2.5.2), vehicle 1 reaches its minimum stop-

ping distance at this time and the signal switches to yellow at time ¢t

tO + B . 1If a vehicle 3 were to pass the detector anytime after time t

ping distance at this time and the signal switches to yellow at time ty
tO + B . If a vehicle 3 were to pass the detector anytime aftrer time ty
and the legal stopping distance were closer to the intersection than the de-
tector, this vehicle would be required to stop.

The usual yellow interval would be defined by a hypothetical trajectory 2
whiéh passes the legal stopping distance at the time ty and velocity v .
But if the signal switches because no vehicle crossed the detector between
times t and t. + B , then there is no such vehicle. The signal could

0 0

safety switch to red at time t#* after vehicle 1 passes the intersection.
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In the above situation one cannot predict exactly when vehicle 1 will
reach the intersection because the detector is an appreciable aistance from
the intersection. One does know, however, that vehicle 1 was following anotHer
vehicle with a headway less than £ and therefore was traveling at some speed
vp less than the approach speed v . Also the time ty was chosen so that
this vehicle should be so close to the intersection at time ty that it could
not stop. If, for some reason, this vehicle was traveliné slower than expected
and was far enough away from the intersection at time ty that it could stop,
it would be necessary to provide at most a safe yellow interval for a speed v
and switch the signal to red at a time t; < £, -

This strategy would already guarantee that the flow remains at a value of

approximately s for part of the yellow interval and also has a yellow interval

for speed vp rather than v . One could do even better than this if omne had

a second detector closer to the intersection, which could accurately evaluate

the time t* when vehicle 1 actually passed the intersection. This is where

BIT 5 e e

a loop detector would be particular effective. As soon as a loop detector

close to the intersection observes that there are no vehicles within a certain

distance of the intersection (at most the legal stopping distance for vp) 7
after time ty » 1t could infer that vehicle 1 had passed and the signal could %

switch to red. Such a strategy would virtually guarantee a flow of approxi- ?
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switch to red. Such a strategy would virtually guarantee a flow of approxi-

mately s throughout the yellow interval and even save an additional fraction

e S s 2

of a headway because the yellow terminates with the actual passage of a vehicle.
The main constraint here is that the loop detector should not be so long that,
when vehicle 1 leaves the detector, a following vehicle which is decelerating
to stop should not yet have reached the outer edge of the detector.

Now suppose that the legal stopping distance for velocity v 1is larger
than the distance (2.5.2) to the detector. Figure 2.9 illustrates some possible

trajectories. Again vehicle 1 is the last vehicle in the platcon but it is not
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Fig. 2.9 - Vehicle trajectories near a signal at the termination of green,
detector closer than the legal stop distance.

recognized as such until time to + B8 , at which time the signal switches to

. yellow. Now, however, a vehicle which crosses the detector (immediately) after

time tO + B (such as vehicle 2) is not legally required to stop, but it might

overtake the platoon 3gnd be_slawerd.dour ... Toda=d.e ueticlor” (Ihhearlately) altter

time ty + B (such as vehicle 2) is not legally required to stop, but it might
overtake the platoon and be slowed down. Indeed a vehicle 3 which has barely
reached the legal stopping distance at time ty must also be allowed to con~
tinue. Note that trajectories 2 and 3 are limiting individual trajectories.
As drawn, the trajectories are too close together for there to be vehicles
following both trajectories simultaneously.

In contrast with figure 2.8, the fact that no vehicle passed the detector
between times t, and tg + B does not itself guarantee thét one can reduce

the yellow interval below the usual value for velocity v . If, perchance, the
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detectors observed that no vehicles passed it during the longer time interval
until after trajectory 3 of figure 2.9 passed, then the signal could switch

to red at this time or at the time trajectory l passes the intersection, which-
ever is later (one cannot use information until after one obtains it). Other-
wise, it will be difficult to save any yellow time based on information from
this single detector alone. Any vehicle between trajectories 2 and 3 of
figure 2.9 should easily pass the intersection before time tr (or stop), but
it is difficult to estimate when the last one reaches the intersection since
gsome vehicles may be decelerating as they approach the rear of the platoon.
One would need another detector closer to the intersection to gather more re-
liable information.

Figure 2.9 illustrates one of the key problems. If one tries to choose
the time ty so as virtually to guarantee that the last vehicle in the platoon
will clear the intersection (it is within a minimum stopping distance for speed
vp at time ty), then one also risks the possibility that a vehicle of velocity
close to v will arrive at such time as to force a delay in the switch to red
(it is within a legal stopping distance for speed v at time ty)' If the
arrival rates qi of vehicles are sufficiently close to (but less than) satu-
ration, however, it may be more important to reduce the time lost in switching
the signal than to hold the signal until the platoon has completely passed. If
one switches the signal while the platoon is still crossing the intersection,
the signal than to hold the signal until the platoon has completely passed. If
one switches the signal while the platoon is still crossing the intersection,
the velocity of the vehicles would be approximately vp and one could pre-
sumably set the yellow interval at approximately vp/Za based on a legal stop-
ping distance for the velocity vp rather than v . One would still typically
want to allow most or all of the platoon to clear the intersection, but perhaps
the criteria should be that the last vehicle to pass 1s traveling at velocity
vp rather than that the last vehicle of the platoomn is certain to clear the

intersection.

et ey e Sl
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If one wishes to switch the signal to yellow earlier than in figure 2.9,
one must detect the end of the platoon earlier, which means that the detectors
must be still further away from the intersection. .Suppose, as in figure 2.10,
we place the detectors either at the distance (2.5.2) as in figure 2.8 or at
the legal stopping distance for velocity v as in figure 2.9, whichever is
further, and we switch the signal to yellow as soon as we detect the last pla-

toon vehicle to pass the detector at times t, + B of figure 2.10. Now, as in

0

figure 2.8, the first vehicle to pass the detector after the platoon passes,

is legally required to stop (vehicle 2 in figure 2.10), ev%n.though this ve-
hicle might have been able to overtake the platoon before it reached the inter-
section and might, therefore, have been able to maintain a flow of approximately
s for a little longer.

If the detector is further from the intersection than (2.5.2), then, at
time ty » vehicle 1 will certainly be further from the intersection than the
minimum stopping distance for vp . Depending on the various parameters v ,
vp » B, etc., the vehicle might also be further away than the legal stopping
distances for vp » in which case one can expect this vehicle to stop also.

Any vehicles located at time ty between the minimum and legal stopping dis-
tances would have an option of stopping or continuing, but in any case the maxi-
mum yellow interval t; - ta can be chosen as thé yellow interval for

velocity v, o

mum yellow interval t; - t, can be chosen as the yellow interval for

velocity vp .

Information from the single detector located as in figure 2.10 is not
sufficient to predict accurately when the last continuing vehicle will pass
the intersection. It cannot even predict.which vehicles will continue. A
second detector located close to the intersection could provide more accurate
information. As described previously, the purpose of the near detector would

be to switch the signal to red as soon as possible after the last continuing

vehicle passes the intersection, and thus reduce the yellow interval even more.
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Fig. 2.10 - Vehicle trajectories neér a signal at the termination of green, ‘ ﬂ
detector at the legal stop distance.

Fig. 2.10 - Vehicle trajectorles near a signai at thne CErMLIOdCLUIl UL glLeell, :
detector at the legal stop distance. E
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So fér, the discussion has been limited to strategies for reducing the
lost time (for a single lane of traffic), when it is known that the queue ovef-
runs the detector during the red time. Wiéh an impulse detector as far away
from the intersection as proposed here, however, the queue for an efficiently
designed V-A signal would likely overrun the>detector only if the system is

quite close to saturation (there would typically be room for 6 or 7 stopped

vehicles between an imﬁulse.detector or the outer edge of a loop detector and
the intersection.

Some of the earlier types of V-A controllers were designed to give a cer-j i
tain minimum greén Gm and then to extend the minimum green only as long as |
vehicles kept passing an impulse detector with a headway less than 8 , or as
long as a loop detector was occupied (provided thé green interval did not ex-
ceed some preset maximum GM). With an impulse detector and no mechanism for
counting vehicles between the detector and the intersection there is a serious
problem. If the queue did overrun the detector, one would need to delay looking
for a minimum gap in the traffic until after at least a couple of vehicles had
crossed the detector following the start of green, so that the controller would
not falsely interpret a long start-up headway as the end of the queue. But
having chosen a Gm large enough to provide this protection, one is forced
to use the same Gm even if there is a queue of only 1 or 2 vehicles.

With a loop detector one does not have as serious a problem because the
to use the same Gm even if there is a queue of only 1 or 2 vehicles.

With a loop detector one does not have as serious a problem because the
loop would stay qccupied as long as any queued vehicles were on the loop. The
distance between the inner edge of the loop and the intersection would store
only a couple of vehicles at most. One would need to choose a Gm only large
enough to serve ome or two vehicles (which one would likely do anyway). Ac-
tually, the usual practice was to place the inner edge of the loop detector near
or at the stop line, but this virtually guarantees that no vehicles pass the

intersection during the early part of the yellow interval. The impulse detectors
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‘were also typically located too close to the intersection to be effective in
limiting the lost time in switching.

Current designs of controllers (NEMA controllers) are capable of counting
the number of vehicles which pass an impulse detector during the yellow plus
red intervals and are programmed to provide at least enough green time ("ini-
tial green") for these vehicles to pass the intersection. (This initital green
may also have a preset maximum which presumably should be set equal to the time
needed to clear a queue that extends from the intersection to the detector.

.This maximum initial green, however, is redundant since the counter would count

at most only as many vehdcles as can be stored between the intersections and the
detector). These controllers were not specifically designed to do what is pro-

posed here; namely, to terminate the green interval about two seconds before the
end of the platoon reaches the intersection, but (with detectors in appropriate

locations) they could (possibly) be set to do approximately this.

If no new vehicles pass the detector after the start of the green, the
green will terminate after the imitial green. Whether one provides a bare
minimum or an ample minimum initial gréen time to serve the vehicles which arrived
during the yellow plus red intervals and are known to be in the queue at the start
of green is not important, because in this situation the traffic must be so light
that one would not care. If, however, there are several vehicles in the queue
at the_atarr.of thpvctdn'c, betat®Be zn-cn.s-situacion tne trarfic must bé so light
that one would not care. If, however, there are several vehicles in the queue
at the start of the green, but the queue has not overrun the detector, it is
almost certain that one or more vehicles will pass the detector during the ini-
tial green. Present NEMA controllers would not add these vehicles to the count
and extend the initial green, but neither would they terminate the initial green
early if these vehicles passed the detector with a headway larger than B8 . The
controller will, however, terminate the green when a headway larger than @&
occurs after the initial green.

There are two problems that may arise with this scheme. First, if the
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the initiél green, the controller may not provide adequate time to serve these
vehicles. The detector may find a gap immediately after the initial green and
terminate the green before these vehicles can be served. Second, if the queue
does overrun the detector (possibly after the green has already started), the
initial green may terminate before a start-up wave can reach the detector and
the flow across the detector increases to a value comparable with s . The
detector may misinterpret a long start-up ﬁeadway as the end of the platoon.

In addition, if either of the above happens and some vehicle fails to clear
the intersection, the controller will not know this. 1In the next cycle, the
controller counts only the new arrivals during the yellow plus red intervals.
The overflow vehicles could, therefore, accumulate from cycle to cycle. The
system could even become oversaturated unnecessarily.

There are ways to overcome these problems. If one uses only impulse de-
tectors, the controller should count not just the vehicles which cross the
detector during the yellow plus red. It should continue counting the vehicles
which pass the detector after the green starts and keep extending the initial
green until the controller infers that there is no vehicle which, if traveling
at speed v from the_detector to the intersection, could reach the intersection
by approkimately the end of the extended initial green interval. The controller
could then start looking for a gap of duration at least f and terminate the
greep _when _ove_jis found. Theoretically, this should eliminate both of the
could then start looking for a gap of duration at least B and terminate the
green when one is found. Theoretically, this should eliminate both of the
problems described above, but there is still the danger that, if the detectorx
misses a vehicle or the the counter makes an error, some vehicles might fail
to clear the intersection and the controller would never know that there is a
residual queue.

The most common type of "impulse” détector is actually a small loop de-

tector which is capable of recording the first passage time of a vehicle over

-
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any part of the detector and also whether or not, at any time, some part of

a vehicle is over the detector. If the loop is shorter than the length of a -
vehicle, each vehicle initiates a new pulse so thé controller can count ve-
hicles and also check for the presence of vehicles on the detector. The con—-
troller, instead: of seeking a gap £ between the initiation of pulses can

look for a minimm time R' that the detector is unoccupied. The B' would

be equivalent to the R less the typical time a single-vehicle would occupy

the detector (approximately v times the length of the vehicle plus the length
of the loop). This type of detector gives some protection against having the
green terminate before vehicles start moving over the detector, because the
signal will not switch if a stopped vehicle is over the detector.

Some systems would also have a second (larger) loop detector close to

the intersection. The signal will not terminate a green unless the second
detector is unbccupiéd, and the first detector records a gap of B . This second
detector would certainly eliminate the problem of leaving a residual queue at

the intersection, but if the inner edge of the loop is too close to the_inter—
section, it will cut off the flow during the yellow interval.

None of the above problems arise if one uses a single long loop detector

{of length va) or at least two small loop detectors over the same section

of highway. With small loop detectors, the outermost detector could look for
(ui“Teug bl pbﬁ7 Sk-~ad~teasc~.ic uynazerndegd and_also_ocive.come pratection against
of highway. With small loop detectors, the outermost detector could look for

a time RB' when the detector is unoccupied and also give some protection against
terminating the green before vehicles have started to move. The inner loops
would give further protection against terminating the green when there was a
queue, and also make sure that the vehicle which initiated a minimum gap had
actually moved out of the section (and not be stalled by a queue). Instead of

a single long loop, one could aiso use a series of small loops with spacing less
than the length of a vehicle so that any vehicle within the section of highway

would activate some detector. With more than two small loop detectors, the
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system would have some redundancy. The system could be designed‘so that it

would operate well even if one of the detectors fails -and alsec send out an

alarm to the operator that something is wrong. With such a system, it is ﬁnneces-
sary to count vehicles which cross the detector during the red interval even
though the inner edge of the detector system is spaced about a 2-second trip

time from the intersection. One could also install another loop detector closer
to the intersection to initiate a possible early switch from yellow to red.

We have considered, so far, only how one would switch a signal from green
to yellow and from yellow to red if the signal controlled traffic in only one
direction and only in a single lane. In practice, of course, & V-A signal typi-
cally would control more than one traffic lane per direction and/or two traffic
directions simultaneously. We will postpone considering possible turn phases
and imagine that we have only through traffic in directions 1 plﬁs 3 or 2 plus 4.

There are some possible complications if the green interval needed by direc-
tions 1 and 3 (or 2 and 4) are neaély equal (we will discuss this in section
2.7) but, for now, let's assume that the queues will (almost always) empty in
directions 3 and 4 before they empty in directions 1 and 2 respectively. Iﬁ
this case, we anticipated that one would like to terminate the green for direc-
tion 1 when the queue vanishes in direction 1 (again using as much of the yellow
interval as possible and/or keeping the yellow interval as short as possible).

I1f one always provides a usual yellow interval for velocity v in direc-
interval as possible and/or keeping the yellow interval as short as possible).

I1f one always provides a usual yellow interval for velocity v in direc-
tion 3, one can switch the signal from green to yellow at any time, independent
of where vehicles may be in direction 3 (a; one would do for a F-C signal).

In particular, one can terminate the green interval for direction 3 at the
optimal time for terminating the green for direction 1. For this strategy one
does not need vehicle detectors in direction 3 except that maybe, at another"

time of day, the role of directions 1 and 3 may be reversed.
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This is indeed the proper strategy for terminating the green for direc- -
tion 1 (except maybe for very light traffic). The complication here is that,
if the queue vanishes in direction 3 before it vanishes in direction l, and one
switches the signal to yellow for directions 1 and 3 at time ty =t + B8 as
in figures 2.8 or 2.10, there may be a vehicle traveling in direction 3 at speed
v which is locéted (barely) within the legal stopping distance at tiﬁe ty .
One does not typically want to extend the green or yellow intervals for such a
vehicle in direction 3, but, by the time thé detectors in direction 1 have called
for a switch to yellow, it is already too late to do anything about the vehicle
in direction 3. The yellow time must be extended to allow this vehicle safe
passage.

One could try to switch the signal to yéllow for direction 3 earlier than
in direction 1 so as to stop any vehicle in direction 3 which would cause an
extension of the yellow interval beyond that needed for direction 1. To do
this, however, one must anticipate when one wishes to switch the signal to yellow
in direction 1 in time to switch the signal in direction 3. This would require
that one either place the gap detector in direction 1 even further from the
intersection, or have another detector further upstream. This is probably not
practical for most intersections.

Suppose, however, one had some (presence) detectors in direction 1 to
pracéztasr~ror*avsi~zaiersefzunss ~=3 ~len a Tons detenbar nmaav tha dnkavaantdan
Suppose, however, onme had some (presence) detectors in direction 1 to
initiate the termination of green and also a loop detector near the intersection

which could detect the absence of vehicles near the intersection during the
yellow, and one had similar equipment in direction 3. When the outer detectors
in direction ! become unoccupied and the controiler switches the signal to
yellow for both directions 1 and 3, the outer detectors in direction 3 could
observe whether or not there is a vehicle in its section which might require an
extension of the yellow interval.

If the outer detectors extend out to a legal stopping distance, one is

O IR |
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reasonably certain that no vehicle in direction 1 will need a full yellow
interval, but, in any case, loop aetectbrs near the intersection could be designed
s0 as to terminate the yellow as soon as the last vehicle in either direction

1 or 3 had safely passed some point in the intersection (initiated by the ab-
sence of vehicles on the inner loops in both directions 1 and 3). 1If in doubt,
one would provide, at most, the usual yellow interval.

If one has multilane approaches, in direction 1 for example, it would be
reasonable to assume that the queue vanishes at nearly the same time in all
lanes, because drivers would tend to join the lane with the shortest queue and
perhaps even jockey between lanes if one queue is moving faster: than the another.

If one had separate detector systems in each lane (preferably presence de-
tectors), one might, in principle, determine the times for each lane when a
vehicle is within a minimum.stopping distance of the intersection and is fol-
lowed by at least some minimum time or spatial gap, indicating that the last
platoon vehicle in that lane is approaching the intersection. Soon after one
has observed such an event in one lage, one should presumably observe it also
in the other lanes. If the signal switches to yellow when the first such event
occurs in any lane, the signal might cut off one or two vehicles from platoons
in other lanes. Newly arriving vehicles in the next cyele, however, should
distribute themselves among the lanes so as (mearly) to equalize the queues
in othet ianes.™ Newly arriving vehicles in tfe hext cyele, however, should
distribute themselves among the lanes so as (nearly) to equalize the queues
in all lanes. There 1s no danger that a residual queue in some lane will accumu-
late from cycle to cycle (if the detectors are presence detectors).

For nearly saturated conditions, the optimal strategy would be to terminate
the green as soon as one expects a drop in the combined flow of all lanes, i.e.,
when a platoon first passes in any lane. If, however, the end of the platoon
passes at nearly the same time in all lanes, this is not of critical importance.
Indeed, if there is a possibility of "accidental gaps," it may be advantageous

to continue the green until the detectors have observed a gap in a second lame
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(not a simultaneous gap in two lanes). On the other hand, the system should

operate quite efficiently if there were detectors in only one lane (probably

the outer lane).

Most V-A signals on multilane approaches treat the multilane traffic stream
as if it were just a single traffic stream. An impulse detector stretched over
all lanes records the passage of any vehicle in any lane. A "headway" would
then be- observed as 'a time between the passage of a vehicle in some lane and
the next vehicle in any lane. Such a system would have all the problems de-
scribed previously for impulse detectors on a single lane regarding vehicles being
caught between the detector and the intersection if the queﬁe does not overrun
the detector. Some V-A systems have long loop detectors in two or more lanes
(particularly for a double left turn lane), but they typically Sehave as 1f
the multiple detectors were a single detector covering all lanes. The signal

will stay green as long as there is a vehicle on any loop and will switch only

if the longitudinal spacing between vehicles in the superimposed traffic stream
exceeds the length of the detector. : ' i

Whether one uses impulse detectors or loop detectors, to seek a time or
spatial gap in the superposition of two (or more) traffic streams is not a very : 4
efficient mechanism for determining the end of a platoon. Suppose, for example,
that there were two lanes,and vehicles in the queues pass the detector with f |
efficient mechanism for determining the eha or a pIlatdoit. SuppUses rul-esaupic,
that there were two lanes,and vehicles in the queues pass the detector with
nearly equal headways of 2 seconds in each lane. Vehicles in the two lanes ‘ j
would not pass in any particular relative position, so the "heédway” in the
superimposed traffic stream could have any values between 0 and 2%seconds (uni-
formly distributed) with a mean of 1 second.

The ends of the platoon are likely to pass the detectors at nearly the
same time in béth lanes, after which the flow will drop to the value q , for

example about s/2 with a mean "headway' at least of 2 seconds. If one does
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not want to risk terminating the green interval while the queue is still passing,
one would need to choose a minimum gap, B , of at - least 2 seconds even if the
headways in a single lane were exactly 2 seconds. If there is some variability
in the latter, one would need to choose a B of at least 2-1/2 or 3 seconds.

One is trying, however, to maintain a flow s (with a mean "headway" of 1 second)
and to respond és quickly as possible when a platoon passes. If one must wait
for a "headway'" of 2-1/2 or 3 seconds in a stream with a mean '"headway'" of about

2 seconds, several vehicles will likely pass (with headways between about 1 and

2 seconds) before the controller recognizes that the flow has dropped.

Suppose, on the other hand, that one observed the vehicles in only one of
the lanes. While the platoon is passing, the headways in a single lane would
not likely be less than 1-1/2 seconds or more than 3 seconds. The mean headway
after the platoon passes would probably be at least 4 seconds. If one observers
a headway larger than 3;1/2 seconds, it would likely mean that the platoon has
passed, but it is not likely that more than one or two vehicles will pass,
after the platoon, before onme finds a headiway of at least 3-1/2 seconds.

Most traffic controllers are designed so that one can reduce the gap B
after some specified time. 1If the objective of the controller is to switch the
signal as soon as possible after the platoon passes, this "gap reduction" does
not seem to serve any useful purpose.

2. 8. wVabiclomactrpted.LSienalecs Ralaye_ for.Npesway,treete . - _____ ———
not seem to serve any useful purpose.

2.6. Vehicle-actuated Signals - Delays for One-way Streets

We saw in the previous section that a V-A signai could be designed so
as to reduce the effective lost time as compared with a F-C signals, but actu-
ally most V-A signals do not do this (they may even increase the lost time).
The main difference between V~A and F-C signals, however, is-.the manner in which
they respond to fluctuations in the number of vehicles which arrive from one

cycle to the next.
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1f, for a F-C signal, more than an average number of vehicles should

arrive during a red interval, the queue may not clear during the subsequent greep
interval. The overflow carries over into the next cycle which may then cause
an overflow in the second, third, etc., cycles until there is some excess

green time to serve the queue or there is a fluctuation in the opposite direc-
tion (fewer than the average arrivals in some cycle) and some extra time to
handle the residual queue. If the system is undersaturated, the queue will
eventually clear during some green interval. On the other hand, if one had

less than the average number of arrivals during a cycle in which there was no
residual queue, the signal would stay green after the queue vanishes even though
vehicles may be waiting in the cross direction.

A V-A signal will typically terminate the green (approximately) when the
queue vanishes. If more than the average number of vehicles should arrive
during some red interval in direction 1, for example, the subsequent green in-
terval would be extended to accommodate the extra vehicles. This would initiate
a "chain reaction.” The longer green would cause a longer queue to develop in -
the cross direction (direction 2). Presumably the green for direction 2 would
then be extended to accommodate these vehicles which in turn would imply a longer
concurrent red interval for direction 1, a longer subsequent green, etc. Thus,
the cycle time will automatically increase as if the "arrival rates" a; had
concurrernt red 1ntétval Idr airéctidm i; a’ilnder ~suosequetic~gkdehs~cvel -~ nbay
the cycle time will automatically increase as if the "arrival rates" a; had
increased temporarily. The cycle time is likely to stay at a higher wvalue than
the average until there is a fluctuation of the opposite sign. Correspondingly,
a deficiency in arrivals during some cycle may cause the cycle time to drift to
a value below the average.

As noted previously in section 2.4, one could allow the cycle time for
the ¥~C signal to vary with time éccording to prevailing values of the qi(t)
measured by averaging the cumulative artivals over many days. It would not,

however, respond to "fluctuations'" in the arrivals on any particular day relative




er

lve

107

to the average over many days. The main.difference between the V-A and a
F-C signal (with time-dependent cycle time)‘is fhat a F-C signal accommodates
fluctuations in arrivals by keeping a predetermined cycle time but allowing a .
fluctuating overflow queue. The V-A signal accommodates fluctuatioms in ar-
rivals by allowing fluctuations in the cycle time but a predetermined size of
the overflow queue, namely zero. For an undersaturated V—A signél one, of
course, does not need to know the qi(t) since the average cycle time will
automatically adjust to the (average) qi(t) . This gives the V-A signal a
big practical advantage over a F-C signal which is restricted to only a few
choices of the cycle time in any 24-hour pericd.

It seems clear, at least for the intersection of two one-way streets,
that a V-A signal should give substantially less delay than a F-C signal.
Certainly if one had some excess vehicles 1in direction 1, with s1 > s2 R
it would make no differenée why one had this excess; if it were due to fluctua-
tions from some average over many days or it were predictable. As long as the
output flow from the ;ignal had a value s > it would not be advantageous to
suffer é lost time to switch the signal to direction 2 whére ﬁhe flow would
be at most S, » if the objective were to decrease the total queue in direc-
tions 1 and 2 at the maximum rate. One would not want to switch the signal
just because the F-C green interval had expired. Also, if the signal were green
in direction 2, the queue had vanished in direction 2, but there was a queue
just because the F-C green interval had expired. Also, if the signal were green
in direction 2, the queue had vanished in direction 2, but there was a queue
in direction 1, nothing can be gained by extending the green in direction 2
and keeping the queue zero while the queue continues to gfow in direction 1,
just because ;he F-C green had not yet expired.

As observed in section 2.2, in the deterministic approximatiom, the optimal
F-C signal would operate at its minimum allowed cycle time and consequently the
F-C and V-A signals would behave in the same way, if they both had the same

lost time L for switching. The difference between the two relates primarily
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to the manner in which they respond to fluctuations. For the F-C signal the
fluctuations cause stochastic queﬁeing which gives delafs proportional ﬁo the
magnitude of.the fluctuations (the stochastic queue in (2.3.10) is proportional
to I). TFor the V-A signal there is an analogous term to be added to the de-
terministic approximation, also approximately proportiomnal to I . Whereas

in the deterministic approximation, the total delay could be described as

the area between arrival and departure curves as illustrated in figure 2.1,
the area of a set of equal size approximate triangles; for the V-A signal

the total delay can be similarly descfibed but the size of the triangles will
be unequal. The extra delay due to fluctuations is associated with the fact
that the average area of a collection of unequal size triangles is larger than
for the same number of equal size triangles over the same total time period.
Specifically if the cycle time C is considered as a random variable with
expectation (average) E(C), the average waiting time with unequal cycle times

would be larger than with equal cycle times by a factor of approximately

£(c?) = 4 Jaxr© (2.6.1)
[E(C) 12 [E(C)]?

in which Var(C) is the variance of C .
The literature on the theory of V-A signals and the related theory of

"queues with alternating priorities" is very large. It begins in the early

1950's but much of it was published in the 1960's. Unfortunately very little
"queues with alternating priorities" is very large. It begins in the early
1950's but much of it was published in the 1960's. Unfortunately very little
of this literature is of direct practical value and much of it is actually
"incorrect." The ﬁueueing theory literature deals mostly with mathematical

techmiques for analyzing "exactly" models which are too idealized to be very

realistic. On the other hand, most of the literature on optimal control postu-~

lates an objective functionm including delays only over a "finite horizon"

namely during the next one or two signal cycles. It fails to recognize that
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the consequences of any action will persist for many cycles, parficularly if
the demand is close to saturation. Even the computer programs for "optimiza-
tion" are based on questionable models and objectives and shed little light
on the issues. Actually the issues are too complex to be described by amy
"comprehensive" theory which is simple enough to be useful. One can, however,
describe some qualiﬁative behavior that should ser&e to gi&e some guidelines.

(13]

Tanner in 1953 was the first to apply queueing tﬁeory techniques to
a model of a V-A signal. He postulated that vehicles arrived as Poisson pro-
cesses of rates ql' and 4, in directions 1l and 2, and left at time inter-
vals of l/si during the green intervals. When a queue vanished, the signal coula
switch but there would be a predetermined lost time associated with each switch.
He tried also to consider the fact that if there were no vehicles waiting in
direction 2, for example, when the queue Qanished in direétion 1, the signal
would be idle. It would presumably stay green for direction l.at least until
a vehicle arrives in direction 2.

Actually it is not clear what one wishes to do if the signal is temporarily -
idle. It may be advantageous for the signal to "home" in the direction with the

large q; - Even if the detectors are placed far enough away from the inter-

section so that a signal which is red will switch to green before a vehicle

nust start to decelerate, one would probably still prefer to indicate a green
as early as possible _to as many vehicles as possible.

must sﬁart to decelerate, one would probably still prefer to indicate a green
as early as possible to as many vehicles as possible.

Another common strategy, however, is to have the signals '"rest on red” si-
mulpaneously for all directioms, iso thatit can switch to green for whichever
traffic direction first actuates.a detector. The advantage of this strategy
is that there would be no need to imsert a yellow interval for directiom 1,
for example, before the signal turuns to green for direction 2 if a vehicle ar-
rived in direction 2 while the signal was idle but resting on green for direc-

ticns 1 and 3. For this strategy to be efficient, however, one definitely
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should have the detectors at least a legal stopping distance from the inter-
section (for all directions). If,however, there is only one vehicle stopped
or decelerating in direction 2 when the queue vanishes in direction 1, but
another vehicle in direction 1 has already passed the detector, one may choose
' to continue the green in direction Ll on the grounds that the vehicle in direc-
tion 2 is certain to be stopped no matter what one does, but, at the expense
of a slight delay to this vehicle, one may be able to avoid stopping a vehicle
in direction 1.

What one does when a signal is idle or there are only two vehicles compet-
ing for the signal is not of great importance, and there is no well-~defined ob-
jective. The signal would not have been installed primarily to control vehicles
at flows sufficiently low that this would be an issue anyway. Té include such
effects in any theory causes a considerable increase in the complexity of any
formulas for cycle times, delays, etc., because the formulas would include a
term depending upon the probability that no vehicle arrives in direction 2,
for example, during the time needed to serve the queue in direction 1. The
latter time, however, is one of the "unknowns" in the equations. To evaluate
even the average cycle time requires the solution of some very cumbersome equa-
tions which also contain many parameters (ql, 9y 8; 5 Sy > and L).

4]

In 1964 Darroch, Newell, and Morris[1 managed to avoid the mathematical

caonlicatian_of_+tbe.idle sigpng_bu_assuminq‘Ehaqzthelsign?l_would switch to

4]

In 1964 Darroch, Newell, and Morris[1 managed to avoid the mathematical
complication of the idle signal by assuming that the signal would switch to
green for direction 2 after the queue vanishes in direction 1, regardless

of whether or not there were any vehicles waiting in direction 2 and vice versa.
Except for Qery light traffic, there would almost certainly be a vehicle waiting
in one direction when the queue vanished in the other direction but, in the ex-
treme situation with zero flows, the signal would switch back and forth with

a cycle time equal to the total lost time per cycle for switching, L (whereas

in Tanner's model the cycle time would be infinite because the signal would

TN
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never switch). Thgrg was no minimum green inteval Gm -pr maximum GM in
these models.
It was again assumed that vehicles arrived as Poisson processes of rates
9 and 9, - During a green interval when a queue was discharging, the times
between departures were interpreted as independent identically distributed random

variables with means 1/s (any start-up delays were presumably‘absorbed.in the

i
lost times). After the "queue vanished,”" i.e., the number of departures during
the green interval first become equal to the number of arrivals since the start
of the previous red, the green interval in direction 1 was extended until
there was a gap of at least Bi in the Poisson arrival stream. During this
extended green interval, vehicles departed with zero délay; a queue would not
reform no matter how short the headways in the Poisson arrival stream. The
signal would now switch, but there would be a (possibly random) lost time Li
from the time the last vehicle passed in lane 1 until_the start of the (effec-
"

tive) green for the other directions. These lost times were assumed to be ''given"

but independent of the Bl s 82 .

This model is mathematically "well-defined" but not necessarily a realistic
representation of a real V-A signal. For this "fairly general" class of mathe-
matical models, however, it was possible to obtain explicit '"exact" formulas
for the mean cycle time and the mean waiting time (also higher moments) as a
function of the 4y 95 Sys Sy Bl, 82 and Ls L2 (and higher moments of
for the mean cycle time and the mean waiting time (also higher moments) as a
function of the 4y G5 Sps Sy Bl, 82 and Ls L2 (and higher moments of
the departure headways and lost times where relevant). Needless to say, the
formulas involving this many parameters were rather Fumbersome. Although one
could make some minor extensions of this class of mohels, it is about as com-~
plex a class as one could expect to evaluate 'exactly."

Typically in modeling some complex physical system such as a V-A signal,

the more accurately one formulates the model, the more approximations one must

make in the mathematical analysis of it. In the present case, if ome does not
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want to make any mathematical approximations (except possibly numerical
approximations of known accuracy in the final solution), then one may be
forced to make rather crude models of the physical system. Of course, the
ultimate goal is to use the model to make inferences about the real world
for which the errofs are the combined errors for both the model and the
analysis. Exact formulas for idealized models may not be very useful for
making direct numerical predictions about the real world, but they may be
useful in identifying the relatiﬁe dependence of the solution on the various
parameters (which, with a large numﬁer.of parameters,is difficult to do
by numerical tabulation from more realistic models that can only be evaluated
numerically) and for suggesting or illustrating the effects of various mathe-
matical approximations that one might use in the analysis of more complex
models.

The main weaknesses of the idealized model described above relate to its
representation of the mechanism of switching. The L, and L, must be inter-

1 2

preted as some appropriate "effective" lost times because the model does not

explicitly identify any start-up times or yellow times. In the model, the L1
was simply described as the time from the last vehicle leaving in direction 1 during
the green until the '"start of green" for direction 2 (the first vehicle leaves
at a headway time later). Obviously the "effective" value of L1 + L2 will
the green until the ‘“‘start ot gréen” for diréctidén z (tne Iirst véricie Ldaves
at a headway time later). Obviously the "effective" value of L1 + L2 will
depend on some of the more detailed issues of switching strategy discussed in
the last section.

Another weakness relates to the assumption of Poisson arrivals. This may
be reasonable for some purposes but it is not very realistic for the purpose of
evaluating individual headways immediately after a platoon passes the inter-

section or for selecting values for the Bi . For a Poisson process the head-

ways have amn expomential distribution which admits arbitrarily short headways.
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Obviously ome should extend the green interval if ome has a headway less than

1/si . In this model it is possible to choose the £, so that, with non-

i

zero probability, there is a flow greater tham s, after the "queue vanishes."

i

There is actually an "optimal” B8, for this model, but it is dictated mostly

i
by this unrealistic property of the model. Indeed the optimal value of Bi is
only slightly larger than 1/si .
Despite these obvious weaknesses, the model does illustrate some important

facts which we expect to be true also for more realistic models. For example,

the average cycle time has a form

L*
1 - q1/s1 - q2/s2

E(C) = (2.6.2)

in which L#* is some effective average lost time (depending on the Bi) but
typically comparable with or perhaﬁs less than that for a F—C signal. Thus,

the mean cycle time is comparable with the minimum cycle time for a F~C signal,
independent of the magnitude of the stochastic fluctuations in the arrivéls

and departures.

A formula of this type would be valid for essentially any type of V-A
signal (with only two directions of traffic) which switches almost immediately
whenever a queue vanishes (or before it vanishes). This follows simply from
the fact that, over a long period of time, the signal will spend approximately
whenever a queue vanishes (or before it vanishes). This follows éimply from
the fact that, over a long period of time, the signal will spend approximately
a fraction qi/Si of its time serving vehicles in direction 1 but will
spend all the rest of its time, a fraction L*/E(C), in switching. Thg indi-
vidual cycle times will, of course, fluctuate around this average (actéélly
with the magnitude of the fluctuation comparable with the mean). This is
valid, however, only under the assumption that there is no minimum green in-
terval, Gm’ and no pedestrian constraints, which might cause the flow from the

signal to drop from Sy to 9y if the queue vanished before the end of the green
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and also the signal switches from direction 1 to 2, for example, even if there
is no vehicle waiting in direction 2.

For the F-C signal we concluded that a cycle time of this magnitude would
be unacceptable for moderately light traffic, say for ql/Sl + q2/s2 <1/2,

because it would lead to cycle times less than about 2L , typically about 20

or 30 seconds with effective green intervals of maybe five seconds. At this
level of flow the signal is serving only one or two vehicles per signal phase.
Under these conditions the assumption in the theory that successive departure
headways are nearly equal (except for a single start-up time absorbed in the
L*) is not very accurate, but the conclusion that one would serve only one

or two vehicles per signal phase is still valid. Aside from pedestriam con-
straints, the objection to having a F-C signal operate at this short a cycle
time is perhaps associated mostly with the fact that if the F-C signal had a
green interval only long enough for two vehicles to leave but three were waiting,
the third driver would be rather irritated if he was stopped even if it were
virtually certain that he would be served in the next cycle and the queue would
also clear in the next cycle. For a V-A signal there is no obvious reason why

the signal should continue a green interval in direction 2, for example, after

the queue has cleared if there are vehicles waiting in direction 1 (independent
of how many vehicles had been served during the green interval in directiomn 2).
we yUeuernas~crla. darar~eched hare jo.tba_bebaviar_nf_ thae_svstem for flows
of how many vehicles had been served during the green interval in directiom 2).
We are mostly interested here in the behavior of the system for flows
close to but below saturation. In this case (2.6.2) is quite accﬁrate (pro-
vided one knows the L*), and it demonstrates the sensitivity of the average _ H
cycle time (and thus also the waiting times) to L* . The average cycle time

can be reduced by the same percentage by which one can reduce the L1* . Note

that one cannot increase the ''capacity" of an intersection by reducing L* ,
at least not in this model for which the saturation flows s; are maintained

no matter how long it takes to discharge the queue. The "capacity" is still
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dictated by the condition that ql/s1 + qz/s2 <1, Reduéing L* simply
allows one to distribute the excess capacity into more lost times and thus
reduce the mean cycle time.

Since the mean waiting time depends upon the second moments of C , the
"exact" formula for the average waitingtime from the above model was a very
complex expression involving the variances of the departure headways, the
times to find a gap, and L1 R L2 > plus all the first moment variables, 4>
s> E{Li} » and Bi .” For moderately light traffic any of thesé variables
could haﬁe a significaﬁt effect on Var(C) and the mean waiting time but for
nearly saturated conditions, with- E(C) much larger than L* , relatively
few combinations of these variables are important.

The length of a red interval in direction 1 corresponds to the sum of the
times in direction 2 needed to serve the queue, wait for a gap, and switch the
signal. The variance of this red interval, given the previous history of the
signal behavior, is essentially the sum of the variances of these three com-
ponents. .The variance of the time needed to serve the queue, however, is pro-
portional to the mean number of vehicles served and, effectively, to the co-
efficient I of section 2.3, whereas the other two variance terms are inde-
pendent of the number of vehicles in the queue. For sufficiently long mean
cycle times, the first of these terms will dominate the others. Indeed the
variance_of _the _times pneeded_to_find a ecan and the variances of ,L.. L. con-
cycle times, the first of these terms will dominate the others. Indeed the
variance of the times needed to.find a gap and the variances of Ll, L2 con-
tribute very little to the variance of C . The variance of C is, however,
proportional to the square of the first moment, i.e., even for arbitrarily
long mean cycle times, the magnitude of the fluctuations in C (as measured,
for example, by the standard deviation) are comparable with E(C) itself.

The rather formal maqhematical tools (involving generating functions) used

to evaluate the moments for this model, however, did not provide a very clear

explanation of why this is so. Another deficiency of "exact solutions"” is
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that the techniques of solution are often so complex that it is difficult to
understand qualitatively why the solution comes out the way it does.

A less formal but approximate approach to the theory of the V-A signal
under nearly saturated conditions was formulated im 1969[15]. It was argued
there that, if the average cycle time was large compared with L*, statistical
fluctuations in the number of arrivals or departures during a single cycle

would typically be fractionally of order [E(M)]-l/2

with M equal to the
number of arrivals in a single cycle. This, in turm, would cause the cycle
time to Vary.from one cycle to the next only by this same (small) fractional
amount. An increase in the cycle time due to an excess of arrivals during one
cycle, however, would cause an increase of comparable size to a large number
of subsequent cycle times. If, before the effects of this fluctuation had
decayed, one experienced another positive fluctuation in the number of arrivals
during a subsequent cycle, this would cause the cycle time to increase still
more. The net effect of fluctuations in the number of arrivals over many
cycles is that the cycle time "drifts" with an amplitude proportiomal to the
sum of the fractiomal fluctuations in arrivals over many cycles. Indeed the
amplitude of the drift is comparable with the mean value.

The analogou; phenomena for a F-C signal predicts that, if the signal
is sufficiently close to saturation, the average residual queue at the start
nf rad. (+tha. O cin L2.3.0and f?2.3.20) Lwrill hp. laxge,romaeyad.rrish tha.ay-
is sufficiently close to saturation, the average residual queue at the start

of red (the Q in (2.3.1) and (2.3.2)) will be large compared with the ex-

pected change in the average queue from one cycle to the next. Thus, the

residual queue tends to drift "slowly" in the sense that it changes fractiomally
very little from one cycle to the next, but over a large number of cycles it
may drift from values close to zero to values of perhaps two or three times
the mean.
It is this slow drift of the cycle time which causes the mean waiting time

for the V-A signal to be appreciably larger thanm if there were no stochastic
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effects. The main issue, however, ié the compariéon of delays for a V-A
signal with those for a F-C signal (with an optimal choice of green intervals
for the two directions). Even approximate formulas for the delays at a V-A
or F-C signal are quite complex functions of the 9 Sy and Ii » so detailed
comparisons of all cases would be quite tedious. One can obtain some typical
results, however, by comparing delays for a symmetric intersection with

9 T4, =4 S| =8y =8, and I1 = 12 =1 . In this case one can show
that the average delay for a F-C signal, with the cycle time chosen to give

a minimum delay, is larger than the average delay for a V-A signal by a

factor of approximately

2
2[1 + (qL/ZI)l/zl
1 + (qL*/1)

(2.6.3)

This is a decreasing function of L* and we have argued that one should
be able to control a"V-A signal so as to make L* less than L . Even for
L = L%, howe?er, the factor (2.6.3) ié (appreciably) larger than 1. For
example, if we choose I =2 and qL = qL* = 3, this factor has a value of
approximately 3. Typically the delay for an optimal F-C signal will be at
least twice that for a V-A signal with L* = L (for nearly saturated flows
on one-way streets, 93 = 9, = 0).
We saw from (2.6.2) that a reduction in L* would decrease the mean cycle
siﬂouh“wayﬂaczee;Sr""qgﬂﬂ hZ whish Anae »adunno *ha Tk Tha frantdiamal »a
We saw from (2.6.2) that a reduction in L* would decrease the mean cycle

time by the same fraction by which one reduces the L* . The fractional re-

duction in the mean delay is not quite as large since the delay is proportional

to qL* + I . This results from the fact that as one reduces L#* the distri-
bution of the cycle times becomes more skewed.

The above theory is based on the hypotheses that there is no minimum green
interval Gm(Gm = 0) and no maximum green interval GM (GM = ), and the
arrival rates 9 and q, are (exactly) independent of time. If one should

choose a Gm > 0 but sufficiently small and a GM < o gufficiently large

N P - - P Y -, . e e LW - Y R T
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interval would almost always be between Gm and GM then, of course, the

Gm s GM would have a negligible effect on the behavior of the system.
' One may be required to have a nonzero Gm to accommodate pedestrians.

For certain types of detector systems one may also need to provide a minimum

green interval because the system is not capable of estimating when the queﬁe

will vanish, particularly for short queues.

As regards fhe-maximum GM » 1t has been stated in some books (but pri-
marily in relation to two-way streets) that the GM should be chosen comparable
with the optimal green interval for the F-C signal. For the intersection of
one-way streets with symmetric flows, this is certainly incorrect. Theoreti-
cally, the "optimal" GM in infinite for undersaturated stationary flows, if
the objective is to minimize total delay. Since drivers do not like very long
cycle times, however, one should choose the G.M as the maximum acceptable value
(perhaps one minute).

For asymmetric flows with s, > s, a strategy which minimizes the total
delay may be more complex. Certainly if ql/s1 + qz'/s2 < 1, an optimal
strategy would guarantee that neither traffic dire;tion is oversaturated so
as to cause either queue to increase systematically. One would certainly not
terminate the green interval in direction 1 before the queue has (nearly)
vanished and, if the system is close to saturation, one would not extend the
terminate the gréen intervai in' dareccioli-f uvclo.diractjoc.? nne would_npt ax-
vanished and, if the system is close to saturation, ome would not extend the
green interval after the queue has vanished. In direction 2 one would not ex-
tend the green interval after the queue vanishes either, but one may choose
to terminate it before the queue vanishes.

Suppose that one imposed a maximum green interval GM2 only in direction
2 with GM2 possibly dependent on the actual size of the queue at the start
of green and on the parameters s, 9y and L*. If the stochastic behavior

of the cycle time causes the cycle time to drift to a large enough value that

the queue in direction 2 does not clear in the interval GMZ > the green
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inter#al will terminate. The queue in direction 1 when the signal turns green
for direction 1 will now be quite close to the value ql(L* + GM2>’ and the
time needed to serve this queue will be nearly determined by the GM2 » to
within an error dependent only on the fluctuations in the arrivals and de-

paftures within a single cycle. Specifically, the green time G, in direc-

1
tion 1 will be approximately such that
= *
816 = 9 @* + Gy + G s
i.e.,
= %* -
G = (q)/s))@* + Gyy) /(A - q;/5)) . (2.6.4)

Thus, by imposing a maximum green interval only in direction 2, one, in effect,
also limits the green interval for direction 1. There is no reason to impose a

maximum green interval also for direction 1 unless the G, of (2.6.4) is un-

1
acceptably large. -
In principle, one has the option of choosing the GM2 dependent on the

length of the queue in direction 2 but, unfortunately, the length of the queue

is difficult to measure with conventional detector systems. Suppose, therefore,

- that one chose the GM2 dependent only on the 4 8; and L* (i.e., on the

time of day). If the queue in direction 2 fails to empty during the interval

GM2 for several successive cycles, the signal would appear to behave (tempo-

randlyd alypoer lilens F=C.signal__ _The_greep_interval_for direction 2 would be

GM2 for several successive cycles, the signal would appear to behave (tempo-

rarily) almost like a F-C signal. The green interval for direction 2 would be

9 and the green for direction 1 would be approximately Gl as in

(2.6.4). The advantage over a F-C signal is that there is no stochastic queueing

exactly GM

in direction 1. 1Indeed the delays in direction 1 are essentiaily as described
in sections 2.1 and 2.2. The penalty for this is that the overflow queue in
direction 2 must absorb not only the normal fluctuations in the number of
arrivals and departures in its own direction but aléo additional fluctuatioms

in the arrivals per cycle generated by the fluctuations in the green interval

e d2 m mdet maen 1
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The long time behavior of the above system is that it will operate like
the usual V-A system with each queue clearing during each green interval as
long as the cycle time stays shorter than approximately G1 + GM2 + L%, The
cycle time tends to drift, but any time it reaches and tries to surpass this

value, the drift will abruptly cease, and an overflow queue would form in

direction 2. The cycle time would stay at this wvalue until the odverflow queue
vanished and cycle time drifts to lowér values.

There will be a finite optimal value of GMZ for $; > Sy beéause, for
any q; and 4, » there is a nonzero probability that the cycle time and the

length of queue in direction 1 during the red interval will become so large for
GM2 = © that it is advantageous to sacrifice a lost time due to switching in
order to take advantage of the higher flow S1 in direction 1. The optimal
GMz will, however, depend on the qi R Si’ and L*.

A detailed theory associated with this strategy has not yet been developed,
but this may be somewhat academic. It is certainly advantageous to use a
strategy of this type, but one might not care to choose the GM2 SO as to
minimize the total delay for the prevailing values of the qi(t)

First of all, a theoretical "optimal" GMZ would l?kely be evaluated om
the premise that the qi(;) vary so slowly.with t that they can be treated
as virtually constant, but the demand is sufficiently close to saturation that
the premise that the qi(;) vary so slowly,with t that they can be treated
as virtually constant, but the demand is sufficiently close to saturation that
the queue lengths can be treated as continuous (noninteger) variables. The
implication of this is that if one imposes a suitable maximum green GM2 and
the queue does not clear during some cycle, and possibly not during several
subsequent cycles either, because the actual number of arrivals per cycle is
(temporarily) higher than its average value, then eventually there will be a
fluctuation in arrivals of the opposite direction (less than the average number)
and the queue in direction 2 will vanish without any further control. One ié

willing to trade some excess delay in direction 2 in order to reduce the delays
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in direction 1. Typically this will mean that one is trading longer delays
to a few travelers in direction 2 in order to obtain a smaller benefit to
each of a large number of vehicles in direction 1. One might not be willing
to make such a trade even though it might reduce the total delay. Also, this
strategy would cause additional.stops to vehicles in direction 2 and to apply
such a strategy'one would need to know the qi(t) . The "optimal" GM2 would
vary throughout the day as the qi(t) change.

A more serious problem is that such a theory would probably not apply to
real situations anyway because, by the timé one would want to apply such a
control when the signal was close to saturation, the .qi(t) are likely to be
changing too rapidly for an "equilibrium" theory to apply. If one should ob-
serve an increase in the actual number of arrivals during a few successive time
intervals (five-minute intervals, for example), one has no way of knowing if this
is due to '"stochastic causes,” i.e., accidental, or to an ihcreasing qi(t)
unless one has observed the traffic.over many days so as to measure the qi(t).
The strategies one should usé in the two situations, however, are quite diffi-
rent. In the former case one would be more willing to let a queue form in
direction 2 by restricting the GM2 on the grounds that the queue would
probably not last very long; that the number of arrivals in later cycles would
likely be lower and the queue would dissipate. 1In the latter case, however,
probably not last very long; that the number of arrivals in later cycles would
likely be lower and the queue would dissipate. 1In the latter case, however,
one may anticipate that the signal is or will become oversaturated and that
any residual queue would persist for the remainder of the period of oversatura-
tion and be added to what would otherwise be there.

If a V-A signal becomes oversaturated, information from detectors may be
useful as a mechanism for minimizing the switching time L* but, as discussed
in section 2.4, any decision as to how one should split the cycle time between

directions 1 and 2 would depend on the queue lengths (which the detectors cannot

observe) and is nearly independent of any stochastic properties of the arrivals.
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Also, one is likely to use some criteria other than minimizing total delays and

stops.
Since the objective is rather ill-defined, one might consider some simpler

types of strategies which are easier to implement. If, during the rush hour,
ql(t)/qz(t) remains nearly constant as both vary with time, a reasonable strategy
might be to select some fixed values of the maximum greens for both directions,
GMl and GMZ , with GMZ/GMI somewhat less (maybe 10 or_20 percent) than the
ratio (qz/sz)/(qllsi) » and with G, + G, at some maximum acceptable value

(2 minutes perhaps).

Prior to the rush hour such a signal would behaﬁe like a conventional V-A
signal with the queues cléaring in each direction duriﬁg their respective green
intervals. As the qi(t) increase-éuring the rush hour, the average amount of
green time neéded in direction 2 may approach the value GM2 , 1.e.,

(qz(t)/sz)L*
T ql(t)/sl — qz(t)/sz = GM2 . (2.6.5)

At first one may experience some stochastic queueing, but then the queue will
grow systemagically when the left hand side of (2.6.5) exceeds GMZ .

With the green interval for direction 2 at GMZ’ the green interval for direc-
tion 1 will be approximately as in (2.6.4) but with q replaced by ql(t)
At-fifst, when (2.6.5) is true, the Gl iﬁ (2.6.4) will have a value of

approximately

At-fifst, when (2.6.5) is true, the Gl in (2.6.4) will have a value of

approximately

(ql(t)/sl)L*
1 - ql(t)/sl - qz(t)/s2 ’

which is less than the proposed value of GMI The green interval Gl(t) will,
however, increase as ql(t) increases, thereby reducing the fraction of time
allocated to direction 2 and further accelerating the growth of the queue in
direction 2. The queue will now grow at an average rate of

$,%02
+ Gl(t) + L* °

q,(t) -
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1f there is no mgximum greén GMl" Gl(t) will inc;ease to whatevei Qalue
is needed to clear the queue each cycle (since presumably ql(t)/sl < 1), but,
if one imposes a maximum gfeen, the éignal will behave like é F-C signal when
Gl(t) > GMl .

As the qi(t) decrease toward the end of the rush hour, the residual
queue in direction 1 will eﬁentually Qanish. The V-A conﬁrol wiil.now auto-
matically te;minate the green in direction 1 when the queue Qanishes with a
green interval again'given approximately by (2.6.4). As the Gl(t) decreases, the
fraction of time allocated to direction 2 will increase and the residual queue
in direction 2 will also decrease. The system will eveptually return to its
original behavior after both queues are gone.

The choice of G ./G is somewhat arbitrary, as is the choice of G +

M2 M1 M1

GM2 . If one wished to minimize thé total delay one would never terminate a
green for direction 1 if there were still a queue, i.e., one should choose

GMl = , At the 6ther extreme, one should not choose GMZ/GMl = (q2/52)/ql/sl)
{(or larger) because this would make the w;iting times essentially the same for
the two directions, but the number of vehicles in queue would be larger in
direction 1. Actually the waiting times in the two directioms are quite sensi-

tive to the split GMZ/GMl . If one does not wish to penalize the drivers in

/G "somewhat

direction 2 too severely, one would probably only drop the GM2 Ml

below" (qz/sz)/(ql/sl) .

direction 2 too severely, one would probably only drop the GMZ/GMI "somewhat

below" (qz/sz)/(ql/sl) .

2.7. Vehicle-actuated Signals ~ Two-way Streets

For an intersection with traffic arriving in four directions at rates q;>
dp» dg> and 4, (but no turning traffic) any models which might be analyzgd
exactly would give formulas for delay that are so complicated as to be vir-
tually useless. Simulation is also of questionable value because one could
not possibly tabulate the dependence of the delay on all the relevant parame-

ters. There are, however, some important issues that must be considered for
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two-way streets which do not arise for one-way streets.
1f ql/s1 > q3/s3 s q2/s2 > qA/SA and the 1nte?sect10n is undersaturated,
the queues in directions 3 and 4 will usually vanish before those in directions

1 and 2, respectively. When a queue vanishes in direction 4 before that in di-

rection 2, the combined output flow will drop from s, + s, to s, + 9 - To

decrease the total queue in all directions at the maximum rate, it might be
temporarily advantageous to switch the signal at this time to directions 1 and

+ s, >

3, if the queues in directions 1 and 3 are sufficiently large and sy 3

s2 + q, - One cannot continue to follow such a strategy indefinitely, however,
because it would cause the queue in direction 2 to grow from one cycle to the
next, Sooner or later one must serﬁe this queue. One cannot let it grow
forever.

In the abseﬁce of stochastic -effects, it seems clear that, with time-
independent arrival rates.'qi , an optimal steady-state strategy would follow
some repetitive pattern. One can indeed verify &hat seems intuitively obvious
that it is better to discharge the queues in directions 1 and 2 during every
cycle than leave some residual queues every cycle or to clear the queues only
every second or third cycle. |

If we include stochastic effects but assume that q5 and q, are "suffi-
ciently small)' then the strategy which minimizes the total delay should be

If we include stochastic effects but assumie “tnac * qj"and‘~q£*4aas 1.and_
ciently small]' then the strategy which minimizes the total delay should be
(nearly) the same as that which minimizes the delays in only directions 1 and
2. Since a V-A signal controlled by the vehicles in directions 1 and 2 only
gives considerably less delay in these directions than any F-C strategy, the
latter would certainly not be the preferred strategy. Any small values of qq
and q, should, at most, cause only a "small"_de&iation in the strategies for
directions 1 and 2, but certainly nothing could be gained by leaving small

residual queues in directions 1 or 2. The optimal stractegy should be to allow

s - |
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the queues to vanish in directions 1 and 2, independent of the q3 and q, -

As noted in Section 2.5, the presence of traffic in directions 3 and 4 may
affect the choice of yellow.intervals. If one tries to choose the yellow inter-
val for directions 1 and 2 based on the platoon speed vp , then one should
switch the signal to yellow for directions 3 and 4 earlier than for directions
1 and 2 so as to provide directions 3 and 4 with a yellow interval for the
appfoach speed v before the signals in directions 1 and 3 {(or 2 and 4) switch
to red simultaneouély.

Traffic in directions 3 and 4 does reduce the relative efficiency of a
V-A signal as compared with a F-C signal. If the queues in directions 3 and
4 empty every cycle, the delay per cycle in these directions will be nearly
proportional to the square of the effective red intervals for these directions as
described by the deterministic approximation (2.1.7). The green intervals and
the cycle times which are determined by the traffic in directions 1 and 2 will
drifc, however, and the long-time average.delay per vehicle in directions 3
and 4 will be proportional to the average ;f 02 . These delays will be larger
than for a F-C signal with the same mean cycle time by a factor (2.6.1). Cer-
tainly the vehicles in directions 3 and 4 would prefer equal cycle times to a
variable . cycle time with the same mean driven by and for the benefit of the
traffic in directions 1 and 2. Except in some very hypothetical situations

in which, for example, s and q are much larger than s

3 and 9 (even

1

traffic in directions 1 and 2. Except in some very hypothetical situations

in which, for example, s and q3 are much larger than s

3
though ql/sl > q3/33) the desires of the travelers in direction 3 will not

1 and 9 (even
carry enough weight to affect the optimal strategy.
If q3/s3 and q4/s4 are sufficiently close to (but less than) ql/sl
and qz/s2 , respectively, then occasionally the queues in directions 1 and/
or 2 may vanish before those in directions 3 and 4. One could still use a strategy
of switching the signalas soon as the queue vanishes in directions 1 and 2,

but if the queue has not vanished also in directions 3 and 4, respectively,
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there will be a residual queue in this direction. The queue may persist for
many cycles, but it will not continue to grow indefinitely. Indeed the queues
in directions 3 and 4 behave as if they had degrees of saturation or traffic
intensities of (q3/s3)/(q1/sl) and (q4/s4)/(q2/sz) , respectively. The
average values of the residual queues for directions 3 and 4 should be nearly

| the same as for a F-C signal with the same mean cycle time, i.e., from (2.3.7).

I3 14
Q3 5—2—(1—_-0_3) N Q4 52(1—-04_) s (2.,7.1)

with ,13 and 14 the sum of the IA and ID for directions 3 and 4, re-

spectively, and
0y = (q3/s3)/(qi/sl) s 0, = (9,78, /(a,/8,) - (2.7.2)

These formulas are only rather crude estimates, but they serve to illus-
trate the main qualitative issue. These queues become Qery large if p3 or
e, are close to 1. The V-A signal controlled by directions ! and 2 only
has reduced the mean cycle time to the minimum necessary to serve the vehicles
in these directions, but this may now be so short as to cause excessive sto-
chastic queueing in directions 3 and/or 4.

The "optimal strategy" in such situations is not obvious, but certainly
the total delay under any strategy will Be quite sensitive to the 03 and 04
if they are close to 1. If the signal is green in directions 1 and 3, it is
the total delay under any strategy will Be quite sensitive to the 03 and 04
1f they are close to 1. If the signal is green in directions 1 and 3, it is
unlikely that one would want to switch the signal before either queue has
vanished, while the flow is 84 + Sy - One would lose time in switching only
to achieve a temporary flow of Sy + S, - If q1/sl > q3/s3, the queue in
direction 3 will usually vanish before that in direction 1. If so, one would
not typically find it advantageous to switch the signal when the queue vanishes

in direction 3, despite the fact that the flow drops to sy + 43 - If one did

switch, the residual queue in direction 1 would carry over to the mnext cycle,.
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But in the next cycle it is even less likely that the queue in direction 1
will vanish before that in direction 3. 1If one continues to switch the signal
when the queue in direction 3 vanishes (or when the first of the two queues
vanishes) the queue will keep growing in direction 1. At some time one must
serve the queue while the flow is only sy + d4 and one is not likely to find
a better time to do it in the future than the present.

The difficult quesfion is what one should do if the queue in direction 1
vanishes before that in direction 3, despite the fact that ql/s1 > q3/s3 '
(which would be half the time if ql/s1 = q3/53) . If we consistently switched
the signal when the queue vanishes in direction 1, whether or not the queue in
direction 3 vanishes, the residual queue in direction 3 can eventually be
served during some subsequent cycle while the queue in direction 1 is being
served, but it may take many cycles before this happens. This is essentially
the situation described by (2.7.1). This will not be satisfactory if p3 is
too close to 1, similarly for direétions 2 and 4.

A "safe" strategy would be to hold the signal green until both queues
have vanished. If the queue in direction 3 almost always vanishes before that
in direction 1, these strategies would all be essentially equivalent. Suppose,
howéver, that q; = 9 and s, =s, . If ;ne waited for the last queue to

1 3
vanish, then one would be serving the total queue at a rate s + 43 = q + Sy
avn:v-cvﬂ1e~bofqion an timng_fhen_ghe first _and_last dqueue vanished. Relative
vanish, then one would be serving the total queue at a rate s + 43 = q + Sy
every cycle between the times when the first and last queue vanished. Relative
to the deterministic approximation for which the two queues would vanish simul-
taneously, having a flow of only 9 + Sq rather than sy + S, 1s equivalent
to adding an extra "lost time" per cycle of (s1 - ql)/s1 times the average
duration of this flow. The duration of the reduced flow, however, would be
proportional to the standard deviation of the number of arriving vehicles per

cycle, which in turn would be proportional to [E(C)]”2 . If the flows were
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sufficiently close to saturation, the average cycle time could be arbitrarily
large and comsequently this additional lost time could be much larger than the
L* itself. Indeed with this strategy the mean cycle time increases very rapidly

as the approach the saturated condition. Each increase in the cycle time

4
increases the effecti&e lost time per cycle which causes the cycle time to be-
come e#en larger. |

For ql/s1 > q3/s3 the magnitude of the above effect is very semsitive
to the relative values of ql/s1 and q3/s3 since it depends primarily on
the time spent waiting for the queue to vanish in direction 3 after the queue
has already vanished in direction 1; thus, it is more or less proportional also
to the fraction of cycles during which this happens. For q3/s3 sufficiently
close to ql/s1 (and/or q4/s4 sufficiently close to qzlsz) and for flows
close to saturation, i.e., ql/s1 + qz/s2 close to 1, the strategy of extend-
ing the green until the latter of the two queues vanishes will gi&é average
delays even exceeding those of a properly set F-C signal.[16]

Any "optimal' strategy for control of a signal with four traffic direc-
‘tions is likely to be quite sensitive to the qi[si (and any possible time~
dependence of them) and be quite difficult to apply, since it would require
accurate measurements of the qi(t) . The practical question is whether o;
not one can find some type of control which is easy ﬁo implement and fairly
accédirdte measurements of‘tﬁe‘-qi\uj e LUS PLALLLLAL YUSOLLULL ao mieciims ==
not one can find some type of control which is easy ﬁo implement and fairly
efficient under any conditions.

If the signal is serving only about five or less vehicles per cycle in
any direction, one would probably prefer to extend each green until both
queues had vanished, even though this may not minimize the total delay. To
reduce the time lost in switching, one may also wish to switch the signal

to yellow a bit earlier for that traffic direction in which the queue vanishes

first. This would also be a satisfactory strategy at higher flows if the
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queues in directions 1 and 2 almost always vanish before those in directioms

3 and 4 respectively (but the cycle time does not exceed some maximum acceptable
value), The problem is to find some suitable modification of this strategy
which will prevent excessive delays when fluctuations in the arrivals causé the
queues in direction 3 and/or 4 to last longer than those in directions 1 and/or

2 during a significant fraction of cycles.

(10]

Webster and Cobbe proposed that one select appropriate maximum green in-

tervals GMl and G, ,, in particular, that one choose them as the optimal values

M2
for the ¥-C signal. They did some simulations with ql/sl = q3/s3 and q2/s2 =

q4/s4 and verified that these were nearly the optimal values of the GMl and

GM2 . This was done,_however: before anyone realized that the delays were much

. more sensitive ﬁo the relative values of ql/s1 and q3/s3 (or qé/s2 and
q4/s4) than to the relative values of ql/sl and q2/s2 . This strategy at
least guarantees that the delays for the V-A signal are no larger than those
of the optimal F-C signal. But for such choices of the qi/si and nearly
saturated flows, the delays would be nearly the same for the two strategies
because there would be residual queues in all directioms during most cycles

and the green intervals would usually run to their maximum values.
> > . .
If ql/s1 q3/s3 and q2/s2 q4/s4 the optimal choices of the GMl

and GM are clearly not the values for the optimal F-C signal. In particular,

2

for small values of p, and p, the "optimal" values of .G,,, , G, are in-

Ll

and GM are clearly not the values for the optimal F-C signal. In particular,

2

for small values of p3 and p4 the "optimal" values of G are in-

w1 * Cm2

finite, subject only to restrictions on the maximum acceptable cycle times.

For and p4 close to 1, however, a strict adherence to a maximum green in-

P3
terval will often cause the green to terminate before either of the two queues

vanish. It is clearly not advantageous to switch the signal when the output

flow is sl + s3 or 32 + s4 .

A reasonable alternative to the above class of strategies would be to
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keep the signal green until both queues Qanish, provided that the resulting green
intervals do not exceed some specified values Gﬁl and Gﬁz (not necessarily
the values for the optimal F-C signal). 'If, however, the green interval reaches
Gﬁl or Gﬁz , it will terminate only if the queue has already vanished in
direction 1 or 2 (but not in directions 3 or 4), otherwise the green will be
extended until the queue does vanish in directioms 1 or 2 or the green interval
exceeds some maximum acceptable value. One could expect that the best choices

of the Gﬁl and Gﬁz are at least comparable with those for the optimal F-C
signal.

If, with this control strategy, the fluctuations in arrivals caused the
cycle time to drift to values below its average value primarily becauée of a
deficiency inarrivals for directions 1 and 2, the signal would still allow the
. queues in directions 3 and 4 to vanish, thereby preventing large. queues to
form in these ﬁirections just because the traffic in directions 1 and 2 needed
less time. If the fluctuation causes the cycle time to drift to values well
above the average, however, it would most likely be due to an excesé of arrivdls
in directions 1 and 2 (for Pq and 0, < 1) and it is also likely that the
queues in directions 3 and 4 would vanish before those in directions 1 and 2.

In this case, it is typically advantageous to extend the green until the queues
vanish. Otherwise, the residual queues in directions 1 and 2 might persist

In this case, it is typically advantageous to extend the green until the queues
vanish. Otherwise, the residual queues in directions 1 and 2 might persist

for many cycles. But 1if the cycle time is long, still due most likely to an
excess of traffic in directions 1 and 2 over several previous cycles, it is

still possible (particularly for and 94 close to 1) that during some

°3
cycles the queues in directions 1 and 2 will vanish before those in directioms

3 and 4. Now one must make a choice. If one extends the green for the vehicles
in direction 3 or 4, this will, in effect, increase the effective lost time.

Vehicles will be arriving in the cross directions during this time which ini-

tiates a chain reaction. The next green interval for the cross section will
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increase, then the subsequent green for the original direction, etc. If one

does not extend the green, there will be a residual queue in directions 3 or

4, which might carry over for several subsequent cycles. With Py and Py <1
and also a cycle time larger than the average, there will, however, be an average
excess of green time in subsequent cycles for direction 3 and 4. The residual
queue will dissipate faster than if they were in directions 1 and/or 2. The
proposed strategy wéuld select the second option whenever the green intervals

or G*

were larger than some G} N0

Ml
If there is a possibility that the intersection will become oversaturated,

we have the same issues as discussed in section 2.4 and 2.6. Presumably the

control system will also have a second set of maximum green times GMl and

GMz besides the Gﬁl and Gﬁz . The first set would be absolute maxima which

would not be exceeded even if the queues have not vanished. One still has the
option of choosing GMl + GM2 + L* as the maximum acceptable cycle time and

the GMl/GMZ so as to give preferential treatment to one direction or the

other. One would tend to favor the direction with the larger value of s, or

1

52 » or with the larger value of sl + 53 or 52 + 54 .

2.8, Semi-actuated Signals

Most of the theory described in the previous sections is based on the.
assumption that the flows 4 (or at least 9, and qz) are of comparable

Most of the theory described in the previous sections is based on the.
assumption that the flows 4 (or at least 9, and qz) are of comparable
magnitude. Whenever we applied a continuous approximation for ome traffic
direction, we did so also for the other direction or if the signal served
only one or two vehicles per cycle in ome direction, we implied that the same
was true also for the other direction. Sometimes, however, a signal is in-
stalied at the intersection of a major road with a minor road particularly if
the traffic on the major road is so heavy that it is difficult or dangerous for
a vehicle on the minor road to cross. The traffic on the minor road may be

so light that vehicles on the minor road must be served only one or two at a
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In such céses the signal should stay green for the major road except for
occasional interruptioﬁs to serve vehicles on the minor road. There is no
need to have vehicle detectors on the major road because one is not likely to
switch the signal back to the minor road as soon as the queue on the major road,
generated by a previous .Interruption, vanishes. A detector could be used to
observe when the queue vanishes, but that is not usually relevant. It could
look for gaps in thé traffic stream in an attempt to reduce the vellow time, but
if the major road has two-way traffic and possibly multiple lanes in each di-
rection, one is not likely to find a gap large enough to be of much use. The
vehicles are likely to be traveling at the normal approach speed, and so one
has no option but to provide a usual yellow time for that speed whenever the
traffic is interrupted..

One will need detectors on the minor road because the signal should not
switch unless a vehicle arrives on the minor road. A signal with detectors
on only the minor roads is called a semi-actuated signal.

If one were concerned with minimizing stops and delays to the minor road
vehicles, one cquld, theoretically, place the detector far enough away from the
intersection that a single vehicle crossing the detector could cause the main
street signal to switch to yellow and then to red by the time the minor road
vehicle reached the intersection without stopping. One would not, however,
street signal to switch to yellow and then to red by the time the minor road
vehicle reached the intersection without stopping. One would not, however,
wish to encourage minor road vghicles to cross the intersection at full speed
just as the signal turns green. The vehicles should stop and be prepared to
yield to any main road vehicles which had entered the intersection before the
signal turmed green for the minor road. Detectors are usually placed rather
close to the intersection. The vehicle on the minor road will be stopped anyway
and one is not too concerned about the possibility that one might save the ve-

hicle from being delayed a full yellow time if it could be detected one or two
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seconds before it reached the stop line. It is advantageous, however, to havé
the detector at least 50 feet or so from the stop line so that it can detect
the possible arrival of a secon& or third vehicle at the intersection when a
first vehicle is already stopped.

The issues. regarding semi-actuated signals are fairly straightforward.
One certainly should not interrupt the main street traffic while it is still
discharging a queue from a previous interruption. Presumably the "cost" of
an interruption per unit time is quite large compared with the cost per unit
time of delaying a minor street vehicle, but the cost of two overlapping inter-
ruptions is appreciably larger than non-overlapping interruptions. Also, if
these interruptions occur too frequently, there is a risk that the major road
will become o#ersaturated, i.e., the qﬁeue will never disappear.

If a vehicle shoﬁld arrive on the minor road when there is no queue on
the major road, one can eitﬁer sérve thié vehicle as soon as possible, or wait.
Presumably the cost of interrupting the major road is (nearly) independent of
how long it has been since the end of the previous interruption. The only
benefit one could realize from postponing service to the minor road is that
a second vehicle might arrive on the minor road and one could serve the two
vehicles nearly simultaneously instead of serving them with separate interrup-
tions. If the flow q, omn the minor road is sufficiently low (say an average
v€uzcicy-hialiys.tazcmievtst) .haveua~uv.~se.vz2ulnes x¥zca~sebdracem2at.c.up~
tions. If the flow q, omn the minor road is sufficiently low (say an average
of one vehicle in ten minutes), however, one could not reasonably expect a ve-
hitle to wait an average time of l/q2 until another vehicle arrives.

If we assume that the price p(w) for a unit of delay to a vehicle which
has already waited a time w is independent of w and seek to minimize the
total cost to all vehicles, we will be led to some unacceptable conclusions,
because we will be trading possibly long delays to a single vehicle against
short delays to a large number of vehicles. Suppose, therefore, that the

P(w) 1is an increasing function of w .
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If we ‘interrupt the major road for an effective red interval R, the number

of vehicles stopped (or delayed) is approzimately
q R/ (1 = q;/s))
and the total delay to all vehicles will be approximately
2
qR7/2(L = q /s ) .
The value of R , which includes the effective lost time, is typically
(at least) about 15 seconds. If we assume that p(w) = p(0) is nearly constant

for w less than R , then the total cost of the interruption will be approxi-

mately

p(0)q, R’ ap(0)q R
= - + R
2(1 = q;/sp) 1 - q,/8;

P (2.8.1)

with o , as in (2.2.10), equal to the time equivalent of one stop.

The two terms of (2.8.1) are likely to be of comparable size (with R ~ 15
sec, and o ~ 10 sec). TFor q; = 1200 vehicles/hr, l/ql ~ 3 seconds, and
ql/s1 small, P/p(0) would be about 3 vehicle-minutes, i.e., the cost is equiva-
lent to a total of about 3 minutes of short delays.

If there is one vehicle on the minor road and it has already been delayed
a time w , the cost (by definition) of delaying this vehicle an additional
time dw is p(w)dw . The benefit from waiting is that a second vehicle might
a time w , the’cost (by deriniction) 6r delayidg’'this veniélé an aaditional”
time dw is p(w)dw . The benefit from waiting is that a second vehicle might
arrive on the minor road during the time dw (with probability qzdw) . If
we use a strategy in which we will certainly switéh the signal if a second ve-
hicle arrives and assume that the cost of an intefruption for two vehicles is
nearly the same as for one vehicle, then, by waiting for a second vehicle, we
would save a cost P  to the major street as compared with interrupting the
major road f&r each vehicle individually. The expected benefit from waiting a
time dw is, therefore, qudw . The net benefit is [Pq2 -pw]dw , so it

is advantageous to postpone serving a minor road vehicle if
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(2.8.2)

This formula may not be quite correct because, if one served a single
vehicle, one would not be willing to ser?e a second thicle if it arrived
during the interruption caused by the first vehicle. This is unlikely to
happen, howéver, for the "small" values of q, of interest here. Also, the
strategy of switching if there are two vehicles waiting on the minor road may
not be optimal. But if 9, is large enough that one would likely wait until
three or more vehicles had arrived,kone would probably install a fully actuated
signal. This formula iS'aCCufate enough, howeﬁer, to illustrate some possible
issues.

Since p(w)/p(0) > 1 and incréasing in w, (2.8.2) implies first, that if
1/q2 > P/p(0) , then one.shOuld not wait gt all. For exaﬁple, with P/p(0) =
three minutes, one should serve each arriving vehicle as soon as possible if
the mean headway l/q2 is larger than three minutes. If p(w) were independent
of w, i.e., p(w)/p(0) =1, and l/q2 <P/p(®) , (2.8.2) would imply, con-
versely, that one should make the minor road vehicle Qait (at least) until a
second vehicle arrives, possibly an average of as much as three minutes.

Actually we do not have any realiétic data on the function p(w) but the
conclusion from (2.8.2) i; that, for 1/q2 < P/p(0) , one should delay serving
a minor road vehicle in the hope that a second vehicle will arrive. Ome will
concLiusion from (4.8.4)'1$ tnat, tor L/q2 < r/pPw) , dne snodrd ueidy “seLving
a minor road vehicle in the hope that a second vehicle will arrive. Ome will
not wait indefinitely, however. As w increases, so does p(w) and for some
w, there will be an equality in (2.8.2). If a second vehicle has not arrived

0
within a time W, » one will serve the vehicle alone. The fact that one would
not typically be willing to delay a vehicle more than one or two minutes implies
that the p(w)/p(0) must be rather large for such values of w . On the other

hand, if there is a reasonable chance that a second vehicle will arrive within

some tolerable waiting time, the vehicle should wait some tolerable time.
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The above theory suggests that a semi-actuated signal may be approprilate
if the traffic on the major road is sufficiently heavy that if is difficult for

a minor road vehicle to cross, but the flow on the minor road is such that an

average. of less than about one vehicle will arrive during an interruption time, i.e.,

1/q, 2R (typically a, % 250 vehicles per hour). If R < 1/q, < P/p0 (typi-
cally 20 S 49 < 250 vehicles per hour), one should interrupt the major road
only after two (or more) vehicles have arrived on the minor road or a single
vehicle has waited for some tolerable time (maybe at least 30 seconds). In
the higher part of this range of q, one might even insist that three or more
vehicles arrive before interrupting the major road. For q, below this range,
however, one should serve the minor road vehicles one at a time, as soon as
possiblé (but not within some minimﬁm time of a previous interruptionmn).

Any rule here ié somewhat arbitrary because it necessarily involves trading
longer delays to a few vehicles against shorter delays to many. Traffic engi-
neers generally seem to be more generous in their treatment of minor road traffic
than suggested here. Perhaps they are too generous.

For higher values of q, » i/q2 < R , one is likely to use a fully actuated
signal (or a F-C signal), but if there is an average of less than about two ve-
hicles arriving per cycle on the minor road (or in one direction of a two~way
road) ; one may wish to modify the strategy described in the previous sections
hicles arriving per cycle on the minor road (of in one airetcionm or-~d two=w&h=
road) , one may wish to modify the strategy described in the previous sections
for the V-A signal. Just before the queue vanishes on the major road when the
vehicle speed is vp s> One can use various strategies to minimize the'lost time
in switching the signal (such as using a yellow time for the speed vp).

If at this time, however, there is only one or two vehicles waiting on the minor
road, one may choose to extend the green. By doing so, one will typically need
to provide a longer yellow time (for speed v} which will lengthen the duration
of the interruption. In this case one should consider extending the green until

at least two or three (or more) vehicles are waiting on the minor road.

P N
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2.9. Right-of-way, priority rules, stop signs

Most traffic conflicts are resol&ed by legal rules of driver and pedes-
trian behavior which assign a right-of-way for every possible situation in
which two people may wish to use the same facility at the same time. A traffic
signal, in effect, alternates the right-of-way rules between different classes
of people so that people respond mostly to the signal and to other people in
the same class. They do not directly interact with people in other classes,
except‘that, when a signal first turns green, the first drivers are expected
to yield to anyone (of any class) already in the intersection, emergency ve-
hicles, or any potential cause of an accident,

. In the simple situations described so far, a tﬁo- or four-way intersection
with no turning traffic, the traffic signal eliminated all potential conflicts.
Generally, with possible turning movements and pedestrians, there will be con-
flicts, even with a traffic signal, and there will be rules to cover all such
conflicts. There will also be rules for intersections with no signals and
rules for changing lanes, merging, etc. The most basic rule, of course, is
that a driver must travel at a safe distance behind another vehicle traveling
in the same lane. In effect, he must '"yield"” to the vehicle ahead of him. In
any accident someone is considered to be "at fault." -

Many of the theoretical issues associated with turning movements are
aidpilar.tenthosacfar anwoohbozactuvnscofueirht-odawey »1 77 Frv ~nnFldandan

Many of the theoretical issues associated with turning movements are
similar to those for any other type of right-of-way rules for conflicting
traffic streams including those for unsignalized intersections. We will,
therefore, consider next some general issues of priority service with particular
emphasis first on an intersection with no signal and no turning traffic.

There is not much one can say about a four-way stop sign except that it
is quite inefficient relative to the usual criteria (but it is inexpensive to
install). One might use a four-way stop at an intersection where there are

sight restrictions (curves, buildings, etc.) which make it difficult for a
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driver, who would normally be expected to yield, from seeing when it would be
sa%e to cross the intersection if vehicles traveled at their normal speed in
the cross direction. A four-way stop might be used simply to eliminate the
possibility of high speed collisions. Sometimes, in residential areas, it is
used intentionally to hinder the flow of vehicles so that they will go elée—
where or in an attempt to reduce speeds.

In some cities.of the world, aggressive drivers can make a four-way inter-
section operate almost like a roundabout with four cars in the intersection at
near;y all times. They can achieve rather high flows, probably also quite a few
minor accidents. In most cities, however, there would be at most only two cars
in the intersection at a time altermating between directions 1 plus 3 and 2 plus
4 when there are queues waiting in all directions. In this case, the output
flow is not very high. There will be one vehicle served in each direction in
approximately the time it takes for a vehicle to cross the intersection in
directions 1 or 3 plus the corresponding time in directions 2 or 4. These
crossings, however, are at slow speed starting from a stopped position. The
outputs in all directions will be nearly equal, independént of the size of
the queues or the input flows q; -

If the output flow per direction is s* when there are queues in all di-
rections but there is a steady arriﬁal flow qy < s* in direction i , then

If the output flow per direction is s* when there are queues in all di-
rections but there is a steady arriﬁal flow qi < g% in direction i , then
there will_be essentially no queue in that direction. If there is a queue in
any direction, vehicles traveling in any other direction i where there is no
queue will, in effect, have "priority" as long as qa is less than s* , in ~
the sense that they will be delayed at most a time 1/s* .

If there is no queue in either directions 2 or 4 (i.e., 9y 9, < s%)
but there is a queue in direction 1 and/or 3, the excess capacity not used by
directions 2 and 4 is not wasted. A vehicle in direétion 1, for example, can

be followed by another vehicle in direction 1 if there is no vehicle waiting
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in direction 2 or 4 when the second vehicle in direction 1 moves up fo the
stop line. If, however, drivers strictly obey the law and come to a full
stop before following a vehicle in the same lane, the headway between such
vehicles is likely to be about four seconds (about twice that for vehicles
which are not required to stop). In particular, if 4, and q, are small
compared with s* , the output flow in direction 1 may be only about half the
saturation flow $; without the stop sign. Of course, if thefe are no queues
in any direction, each vehicle must come to a stop and may also be delayed
even though there may be very few potential wvehicle conflicts.

The most common method of resolving conflicts between two traffic streams
is to give one traffic stream thé right-of-way at all times. The second class
of vehicles must then seek gaps in the primary stream.

There is an enormous literature dealing with methods of measuring the
size of gap ﬁéeded for various maneuvers, the time intervals between gaps of
various sizes, the maximum rate at which secondary vehicles can be accommodated
(the capacity) and the queueing of secondary vehicles, as a function of various
characteristics of the primary stream. Attempts to develop some fairly compre-
hensive theory, however, have not been very successful, not so much because the
mathematics is too difficult, but because the number of potentially relevant
parameters needed to describe the physical situation is so large that no one
DIa.l.“fLém'd'C_Ita"Ia_COO“CI.I.LIl?.;uI‘C; pat-pecansc-cad-dutiocc-ol-potentrairy rcicvaur
parameters needed to describe the physical situation is so large that no one
wouid want to measure all the parameters needed to apply the theory.

One can describe some simple issues qualitatively with simple models, pro-
vided one is willing to give up the possibility of using the results for precise
numerical estimation. As a practical matter, one is not particularly concerned
with how the capacity or queueing depends on the distribution of gap sizes that
people wanf or if they will accept a shorter gap after they have waited a long

time, etc., because one does not have much control over these things, anyway.
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If one wants to know the capacity of some facility, one can measure it directly
easier than one can me?sure all the relevant parameters. The main practical
issue is whether or not one should introduce some other type of control, re-
verse thé priorities, install a traffic signal, or use a multiphase signal.

One objection to giving the right-of-way to one traffic stream is that
all the delays are imposed on the secondary stream. If one does not have a
traffic signal, however, such is an unavoidable consequence of any simple rule
which drivers can be expected to follow. A more serious problem is that if
the primary stream has gaps large enough to accommodate secondary vehicles, -
it also will typically have many more gaps larger than the minimum safe headway
between the primary wvehicles but not large enough to be used by the secondary
vehicles. If there is an insufficient number of gaps large enough to accommo-
date the secondary flow, one would like to compress some of these shorter head-
ways without changing the primary flow (i.e., the mean headway) and, in effect,
amalgamate several short excess headways into a headway large enough to accommo-
date a secondary vehicle. This is, in essence, what a traffic signal does. It
holds up a group of vehicles, creates a large gap and then releases the vehicles
at headways close to their minimum value. If the signal is undersaturated, it
does this in such a way that the long time output flow is equal to the input
flow. One might be able to induce a certain amount of 'clustering', however,
uged Lnus i salu aTway “vnac'cuct fuag-cime dacpuctikis-Fo~rguus~rve dietanpa-
flow. One might be able to induce a certain amount of "clustering', however,
without a signal. For example, if passing is prohibited over some distance
on the approach to an interseétion, this will tend to generate some larger
gaps ahead of slower cars (and shorter gaps ahead of drivers who would like
to drive faster but cannot pass). Of course, a traffic signal at some neigh-
boring intersection will also cause clusters.

Some of the issues can be formulated simply. Suppose the primary traffic

is time~independent and that one could measure
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¥(h) = fraction of headways less than h . (2.9.1)

This is evaluated by listing consecutive headways over soﬁe long time interval
and giving "gqual weight" to each 'headway in eﬁaluating the fraction, i.e., it
is the total number of headways less than h diﬁided by the total number of
all headways. If we smooth any graph of ¥(h) vs. h , we can also define a

probability density of the headways as

f(h) = dF(h)/dh . (2.9.2)

One cannot specify both F(h) and the flow q independently. If omne

L

observes a large number n of headways Hj in a total time

n
} H o,
j=1 J
the flow will be
o1 1 - 1
q=— - = — _ (2.9.3)

] H, =) H, J hf (h)dh fw[l - F(h)]dh
i2p 4 Rz d
3 j 0 0

the reciprocal of the mean headways.

The arrival rate of headways less than h is equal to the arrival rate of
vehicles, q , times the fraqtion of these with headways less than h , i.e.,
qF(h) . If

- s - - - PR,

qF(h) . If

m(h) = average number of secondary vehicles that can be
served in a headway h ,

then the rate at which secondary vehicles can be accommodated (the capacity) is

a0

J m(h)£f(h)dh

capacity = g J n(h)£(h)dh = & ) (2.9.4)
0

o]

J hf(h)dh
0

This formula is deceptively simple. We have said nothing about probabilities
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of events, behavior of drivers, or the properties of the traffic stream other
:
than its headway distribution. The possibly complex dependence on driver be~

havior is absorbed in the (as yet unspecified) m(h) . If, for example, very

few headways are large enough for two vehicles to use the same gap, then m(h)

is either 0 or 1 for most values of h . If some driver is timid and seeks a
relatively large gap, he might let several gaps pass which another driver would
have accepted. 1In ghis case, the m(h), or equivalently, the average number of
gaps of size h which are accepted, actually depends on the history of previous
gap sizes. TFor example, if the previous headway was so large that even a timid
driver would ha&e accepted it, then one knows that the driver considering the
current headway 1s not a timid driver carried over from the previous headway.

If we make the rather naive assumption that the m(h) depends only on h ,
then the capacity (2.9.4) depends on the properties of the primary traffic only
through the distribution F(h) , not on the joint distributions of successive
headway. The formula would then apply even if the primary traffic had been
manipulated by any type of control strategy, by a traffic signal, for example,

which generated any well-defined distribution F(h) . One could, therefore,

use (2.9.4) to illustrate the effect of any control strategy on the capacity,

through its effect on the F(h) .

BEEL

Suppose, for example, that all drivers were, in effect, identical. No g
through its effect on the F(h) . :

Suppose, for example, that all drivers were, in effect, identical. No

PR Y——

driver would accept a headway less than some number h0 but everyone would i

accept one greater than h

ST E SO !

0" Furthermore, for headways larger than ho,

drivers would pass at intervals of time h1 until the headway terminated, i.e.,

the function m(h) is a step function as shown in figure 2.11.

j for h + (- Lh <h< h +3h
n(h) = 0 L 0 L, (2.9.5)

0 for h < hO

The capacity would then be
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4 —_—
3=
m(h)
ZL.
I—
o | t ] }
ho h°+hl h°+2h| h°+3hl

headway - h

Fig. 2.11 -~ Number of vehicles which can cross in a head-
way of duration h.
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capacity = q ) jlE(hy + 3h)) = Flhy + (3 = Dhy]
j=1 H
(2.9.6)

q jZL [1-Fhy+ G - Dh)] .

For uncontrolled light (small values of q/s) primary traffic, one might
postulate that traffic behaves like a Poisson process of rate q having a

headway distribution
1 - F(h) = exp(- qh) . . ' (2.9.7)

In this case

leP(-qho)

e (2.9.8)

capacity = q X exp (- qho -q(j - 1)h1) =
=1

J

Formulaé of this type appear in many traffic engiﬁeering books to describe
the capacity of two-way stop signs, yield signs, merge sectiomns, etc., but they
obviously are'ﬁot very accurate. To use the formula, one would need to know
some "effective'” average values of the parameters h0 and h1 in (2.9.5).
Nevertheless, the formula is useful to describe some qualitative causal rela-
tionships.

If in (2.9.8) we assume that q 1s "small” in the sense that qho << 1

tionships.

If in (2.9.8) we assume that q 1s "small" in the sense that qhO << 1
and th << 1, we can approximate (2.9.8) by expanding exp(-qho) and exp(-th)
in powers of qho, th to obtain

(1 - qh0 + ...)
capacity = gy b /2 F )

;.%I (1 - a(hy = /2 + ...] (2.9.9)

Ar the other extreme if ¢q is '"large' so that th is larger than about 2

or 3, we can expand the denominator of (2.9.8) in powers of the small quantity
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exp(-th) to obtain

capacity = q exp(—qho)i-q_exp,(-q(ho+hl)) + qexp(=q(hy*+ 2h )+ ... (2.9.10)

The interpretation and generalization of the épproximations (2.9.9) and
(2.9.10) to arbitrary F(h) and/or m(h) is quite straightforward. For
sufficiently large gaps in the primary traffic (small q) and a large queue of
secondary traffic, it is plausible to assume that the secondary traffic would
establish a steady flow through each gap, after some initial "start-up" time.
Indeed the first term of (2.9.9), l/hl » represents this steady flow. For
more general m(h), the hl should be interpreted as the mean headway between
secondary vehicles and l/hl as the mean steady flow through long gaps. This
‘would not be the "saturation" flow as at a traffic signal. Presumably each -
secondary vehicle must stop or at least check to make sure that no primary
vehicle is approaching the intersection. The h1 is likely to be gléser to

the headway at a four-way stop sign (with no cross traffic), i.e., about 4
seconds.

The second term of (2.9.9) is proportional to q , and the h0 - hl/2 repre-
sents the effective loss in time available to the secéndary stream caused by
each interruption of the flow by a primary vehicle (if the primary flow q 1is
so low that qh0 << 1). Obviously the secondary flow cannot exceed l/hl .

For some more general model, the form of (2.9.9) would be the same but with

so low that qh0 << 1). Obviously the secondary flow cannot exceed l/hl .
For some more general model, the form of (2.9.9) would be the same but with
(h0 - hi/2) replaced by the appropfiate average loss in time to the secondary
traffic per interruption by the primary traffic.

Since, for any particular intersection, one would need to make some field
observations to infer the appropriate values of h0 and h1 anyway, one might
as well observe directly the parameters most relevant to the question. If (for

qhO << 1) one were to construct a graph of the cumulative number of departures

of secondary vehicles vs. time (while there is a queue of secondary vehicles)
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noting on the graph each interruption due to a primary vehicle, the value of

l/h1 would be interpreted as the slope of the cumulative curve between inter-

';uptions.

Prs

The "theory" here merely predicts that the actual flow, i.e., the
mean siope of the cumulative curve over a long time period, should.differ from
1/h1 by an amount proportional to q ., i.e., the mean number of interruptionms

per unit time. The "effective value" of the (h0 - h1/2) could thus be

measured directly.

Of course, this situation with qho << 1 4is quite unlikely to occur at

a two-way stop sign, for example, because, if this happened, one would probably

interchange the priorities. Analogous situations, however, exist at a four-way

intersection where there is a queue in omne direction but light flow in the

cross direction.

At the other extreme, for exp(—qhi) << 1, the factor exp (—qho) in (2.9.10)
can be interpreted as the probability that the headway between primary vehicles
is larger thanmn h0 or equi&alent;y that it is large enough to accommodate at
least one secondary vehicle. This multiplied by q is the flow of such gaps.
The second term of (2.9.10) similarly represents the flow of gaps large enough
to accommodate at least two vehicles, the third term three vehicles, etc. For
exp(~qh1) << 1 , this series would converge very rapidly and, in most cases,
could be approximated by just the first term.
exp(mth) << 1 , this series would conveérge very rapraxy=-aluf-~rm-ufer tke_.m(h).
could be approximated by just the first term.

For more general headway distributions or more general forms for the m(h),
one can still decompose the capacity into a series of the type (2.9.10) with
the first term equal to the flow of gaps which can accommodate at least omne
secondary vehicle, the second term the flow of gaps which can accommodate at
least two vehicles, etc. The dependence of the individual terms of this series
on the properties of the primary traffic and the secondary traffic, however,

may be quite complex as compared with the approximations for qho << 1 ., The
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generalization of (2.9.9) depended on the secondary traffic only through the
effective values of hl and (h0 - h1/2) and it depended on the primary
traffic only throuéh the value of q (independent  of the shape of ‘the headway
distribution).

If we keep the same form for m(h) as in (2.9.5) but admit an arbitrary
headway distribution F(h), the generalization 6f (2.9.10), i.e.; the series

(2.9.6) gives

capacity = q[l - F(ho)] + qfl - F(ho + hi)] + qf[l - F(h0 + 2hl)] + .. (2.9.1D)

which clearly shows that the capacity depends on the shape of F(*) as well as
the parameters ho and hl . If different drivers accept different sizé £aps,
however, the formulas are more complex.

There 1s another type of approximétion for the capacity which is sort of
a "mixture"”" of (2.9.9) and (2.9.11). If the primary traffic arrives in platoons.
or batches (possibly due to a traffic signal at some neighboring intersection),
then it might be reasonable to assume that all headways within the batches are
too short to accommodate any gecondary vehiclesf Indeed, one could define a
vehicle to be "in a batch" if it follows another vehicle with a headway less-
than h0 . The [1 - F(ho)] in (2.9.11) would then (by definition) be the frac-
tion of primary vehicles not in batches and q[l - F(ho)] the "flow of batches."
tnan *ﬁo“: “Ite Tic= f?na)]‘in‘14t§:1f7“WQu1u Loenl \Dy UeLLuliLlull) LE Lue Lidc—
tion of primary vehicles not in batches and q[l - F(ho)] the "flow of batches.”

If we now write (2.9.11) in the form .

[1 - F(hy + h)]
capacity = q[l - F(ho)] 1_+ [1- F(ho)]

(2.9.12)

[1 - F(h0 + 2h1)]

+ —+ ... 7
[T - ¥(hy)]

the first factor is the flow of batches and the second factor represents the
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average number of vehicles which can be accommodated in a headway which is

known to be at least h_ . If most headways larger than h_. can actually

0

serve several vehicles (as might be the case for traffic pulsed from a neigh-

0

boring traffic signal), then this second factor would be approximately (l/hl)

times the mean headway of those headways greater than h In any case, the

0"
formula (2.9.11) can be used to illustrate the consequences of compressing pri-
mary vehicles into platoons.

It is important to recognize here that if the secondary traffic must
cross more than one lane of primary traffic, the same type of theory applies
with q equal to the combined flow in all primary lanes, but the 1 -'F(ho),
in particular, represents the fraction of the gaps in the superimposed stream

with headway larger than hO . The hO , in furn, will also be larger for

multiple lanes than for a single lane. Since the factor éxp(-qho) in (2.9.8)

is such a rapidly decreasing function of qh, , a simple "rule of thumb" would

0
be that one will have considerably difficulty finding a suitable gap if qho

is larger than 3/2 or 2.
There are some very elaborate formulas for waiting times and queue lengths
of secondary traffic crossing a stream of primary traffic. The most critical
parameter in these formulas, however, is the capacity or actually the traffic {
intensity or degree of saturation. A simple rule of thumb is that one will £
bave..sienifirant_aneveineg_(3n_average aueue_length_of perhapns three or four qi
. wi
intensity or degree of saturation. A simple rule of thumb is that one will ?
have significant queueing (an average queue length of perhaps three or four q%
vehicles) if the-degree of saturation exceeds about 3/4. fo?
The "warrants'" for installing a traffic signal or, perhaps even more Woz
important, the "public pressure" are such that traffic signals are usually th%
installed at intersections (in most U. S. cities) for flows well below those oné
which could.be justified on the basis of capacities or delays. Although some a%
of the issues discussed above are conceptually important, one seldom needs to ini
evaluate capacities or delays with any precision because they are not actually Wig

meir e,

used as the basis for making a choice. i
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Although we have emphasized various "economic" criteria for choices (de-
lays, stops, etec.), it is difficult to put a price on "effort.”" A significant
fraction of drivers, given.a‘choice between two routeé crossing a highway, one
with a stop sién and the other with a signal, will choose the route with the
signal even though the average traﬁel time through the signal is ob&iously longer.
Also, drivers who must wait at a stop sign until four or fiﬁe cars haﬁe passed
on the primary road become quite irritated even though the waiting time may be
only ten or fifteen seconds. They may become even more irritated if they must

wait in queue for other drivers to find gaps. Maybe drivers would behave quite

"differently if each user of a signal had to pay his "fair share' of the cost of

maintaining the signal, or even a fraction of it. Certainly it is not obvious
that the public would accept the consequences of a transportation system de-

signed on the basis of measurable economic criteria alone.

2.10. Turning Traffic, Two-phase Signals

It is virtually impossible to analyze all the poséible situations which
can arise from turning traffic. Again the problem is not in the possibility
of developing models or formulas; the techniques of analysis are fairly
straightforward. The problem is that even for a standar& four-way intersection
which already required the introduction of possibly thirteen parameters, s; »
qi ’ Ii » L , we must now also specify tha fractions of left-turning traffic
which already required the introduction of possibly thirteen parameters, s; »

9 > Ii » L , we must now also specify the fractions of left-turning traffic

for each direction, and possibly also the fraction of right-turning traffic.
Worse yet, whereas ﬁith no turning traffic there was little interference between
the various traffic streams and the formulas for capacity and delays contained
only a few combiﬁations of these thirteen parameters, we now find that nearly
all of the original parameters plus all the new ones are potentially important
in some situations. Furthermore, if there are pedes;rians} they can interfere

with the turning traffic which, in turm, can interfere with the through traffic.
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Also the behavior of the traffic Is sensitive to the geometry of the intersectig, ¥
y 3

particularly whether or not there is room to store the turning vehicles which

may need to wait for opposing traffic or pedestrians. If there is no place to

wait, these vehicles may block the through traffic.

2

R BT NS P O g L A . N R

Traffic engineering books often describe various combinations of traffic moye. ¥ °

ments one might use for multi-phase signals. The Highway Capacity Manual also

contains some empirical recipes for the "average" reduction in capacity caused
by turning movements,lbut this is obviously a very naive description of their
effect. It would appear that local traffic engineers or consultants have, for
the most part, been left to devise their own special remedies to reduce conges-

tion at troublesome intersections. In most cases they do not have very many

options in their choice of geometry of lanes, turn bays, or whatever. If they
succeed in elimimating the problem,. no one will ask 1f there is a better solu-

tion. There is very little guidance in the transportation literature on the

relative advantages of various strategies.
For the intersection of two ome-way streets, turning vehicles do not typically

affect the capacity or delays very much. Indeed this is perhaps the main advantage:

of ome-way streets. The only possible blocking would be caused by pedestrians

interfering with the traffic. This would occur only on two of the four possible

pedestrian crossings at the downstream side of the one-way streets. If there is

only a small fraction of turning traffic giving at most one or two turning ve-

pedestrian crossings at the downstream side of the one-way streets. If there is

only a small fraction of turning traffic giving at most one or two turning ve-
hicles per cycle, one could eliminate some of the interference by moving these

pedestrian crossings about fifty feet downstream of the intersection so as to

R

leave space for one or two turning vehicles between the crossing and the inter-
section where they could wait for pedestrians without blocking the through lanes.

Generally, the complication with turning traffic is that turning vehicles

are distributed among the approaching vehicles in each direction. Vehicles

cannot pass each other within their lanes, but turning vehicles must typically
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yield to other types of traffic. If a turning vehicle must stay in a lane used
also by through traffic, it will block the lane‘to through traffic until it is

served. If one transfers the turning vehicle to some storage area (a turm bay),
ve-

one must provide space for the storage (usually adjacent to the intersection)

which might otherwise be used as a lane for through traffic.

The distribution of turning vehicles in each direction can generally be
modeled quite accurately. TFor vehicles approaching the'inte:section in direc-
tion i , there should be a well-defined (observable) fraction Py of drivers
which wish to turn left and another fractiom pi which wish to turn right. If

there are several approach lanes in direction i , the 1 refers to the frac-

tion of all vehicles in all lanes: for directiom 1 . As the vehicles approach
the intersection, however, the left turning vehicles should all be in the left
lane and the right tufning vehicles in the right lane (if there is more than
one lane). Until these vehicles are possibly caught in queues of different‘

11 :
3ty lengths in different lames and jockey for positiom, it is reasonable to assume

tage that each vehic¢le in the combined traffic stream is equally likely to be a
turning vehicle, independent of what any other vehicle may do. Thus the be-
havior of any seqﬁence of consecutive vehicles can be modeled as independent
Bernoulli trials with probabilities Py and (1 - pi) for a left-turn or

not a left turn. (or p.. ', and 1 - p. - p! for a left turn, right turn, or
Bermoulli trials with probabilities Py and (1 - pi) for a left-turm or

not a left turm, (or Py» pi, and 1 - Py - pi for a left turm, right turn, or

no turn).

a. A F-C signal with no turn bays, single lane

To iilustrate some of the issues, we consider first one of the worst cases
es.
but assume that the p; are "small." Suppose that each approach has only omne

lane with no space anywhere for vehicles going straight to pass a turning vehicle

which is stopped. The critical directions are assumed to be directions 1 and

2. If the vehicles in these directions can be accommodated, those in directions
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3 and 4 will also. We will even disregard turﬁs érom directions 3 and 4. The
arrival rates in directions 3 and 4 are, however, assumed to be sufficiently

large that a driver turning left from directions l or 2, who must yield to the
traffic in directions 3 and 4, will almost certainly wait until almost the end
of the green interval to make his turn. He must wait until the queue vanishes

in direction 3 or 4 and can then turn only if he can find a sufficiently large

gap in the traffic stream. Even if he can find a gap, most of the greem interval

is likely to expire before he finds it.

A two-phase F-C signal will provide no response if a left-turning vehicle
appears and blocks a lane. Obviously, if we knew that a left-turning vehicle
were in the intersection from direction 1, it would be advantageous to do some-
thing immediately because no traffic can move in direction 1 until the vehicle
is either removed by switching the signal to direction 2 (after clearing the
intersection) or interrupting the flow in direction 3 to let =he vehicle
turn. For a F-C signal, part of the green interval will be wasted whenever

there is a left-turning vehicle.

For P, = 0 , we saw that the capacity of the intersection could be in-
creased by increasing the cycle time and thus reducing the fraction of time
L/C lost in switching. For 1 > 0, however, there will be some finite value
of the cycle time C which maximizes the capacity. If C 1is too small, one
ujl1Lsaeﬂd“f00*munhngimE-switpging,;he signal, but if C 1is too large, the
of the cycle time C which maximizes the capacity. If C 1is too small, one
will spend too much time switching the signal, but if C 1is too large, the
ith lane will be blocked after the first left—furning vehicle appears during
a green interval. Only an average of about l/pi vehicles will pass before
the traffic is blocked (independent of the length of the green interval) and
for C > « the long time average output flow will go to zero.

To obtain some estimate of the effect of P> Py > 0 on the capacity,
suppose that during a greem interval G, 1in directiom 1 there are 16, "slots"

in which the vehicles could leave. We will assume that vehicles can leave
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in‘the last two slots whether there are turning vehicles or not; they might
squeeze through the yellow, if necessary. In additiom, there will be a ve=-
hicle served in the first slot if it does not turn. There will be one served
in the second slot if neither.of the first two vehicles turms, and one in the
jth slot if nén; of the first j vehicles turns. The expected number of ve-

hicles to pass during the green interval would therefore be

e
7/
val e : ) 2 slGl-Z
number to leave = 2 + (1 - pl) + (17~ pl) + ...+ (1 = pl)
' 5. G _11 (2.10.1)
171
=1+[1-<1-p1> I3

for 51G1 3,2 .

If it is highly likely that there will be at least ome turning vehicle

among slGI vehicles, i.e., plslGl >> 1, this becomes approximately

number to leave = 1 + 1/p1 (2.10.2)

nearly independent of G1 . If, however, plslc1 <<1

_ ‘ ) (s,6; = 1)(s,6; = 2)p;
number to leave = 51G1 - 5

(2.10.3)

2
(slG1 - 1)(s1G1 - 2)(51G1--3)p1
+ 5 .

The first term of (2.10.3) is the number of vehicles to leave for P; = 0.
In the second term ome can interpret (s;G, - 2)p, as the probability that
The first term of (2.10.3) is the number of vehicles to leave for P = 0.
In the second term one can interpret (slG1 - 2)p1 as the probability that
the green interval will have,ong left-turning vehicle in the first (slG1 - 2)
slots. The factor (slG1 - 1)/2 4is then the average location of this vehicle
and the average number of slots blocked by the turning vehicle.
The average number of vehiqles which can leave per unit time in directioms

1l and 2 is

capacity = : Gl T Gz — . (2.10.4)

‘ SG-].- sG_]:-
2+[l—(1-pl)11_le"'[l—(l-Pz)zz Mz
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We could add to this the vehicles in directionms 3 and 4. But we are assuming
here that if the arrival rates q and 1, in direction 1 and 2 are near
capacity for their direction#, then the arrival rates in directions 3 aﬁd 4
are below capacity. The outputs in directions 3 and 4 would then be 3 and
'q, independent of G, and G, .

We could seek values of G, and G2 which maximize (2.10.4), but this
would likely give a split with either Gl and G2 equal to zero. This is not
what ome typically wishes to do. Perhaps one would like to maximize tﬁis with
respect to the cycle time C = Gl + G2 + L but with a specified ratio for the
outputs in the two directions (equal perhaps to ql/qz). It is somewhat easier,
however, to vary C with a fixed split. Suppose we let

G, = n(c-1),6 =(L=-n)C-L) _ (2.10.5)

1
and consider n as fixed.

To make.a preliminary estimate of the optimal C and to illustrate the
main issues, it is convenient to use the approximation (2.10.3) keeping only
the first two terms, and also to approximate the $;G; - 1 or s,G; -2 in the

second term by slnC .

capacity = [51” + 52(1 -ml - [sln +s,(1 - m]L/C
(2.10.6)

2.2 2 2
- [plsln +pys,(l =) ]c/2 .

Tha firet term nf (2.10.6) represents the combingd output if the signal
- [Plsln +p,s,(1 = M) jc/2 .

The first term of (2.10.6) represents the combined output if the signal
could operate at the saturation flows s, or s, at fractions n and
(1 = n) of the time. The second term corrects this for the fact that the
signal is idle a fraction L/C of the time. The third term represents the
approximate loss due to tuyrning traffic. To obtain an "optimal"” C , one must
balance the loss due to switching which is proportional to C-l against the
loss due to blocking which is proportiomal to C . The cycle time CO which

‘maximizes (2.10.6) for fixed n is
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. 2
c 2[s.n +s,(1 =] 1/
0 - 12 (2.10.7)
T - 22 2 2.0 e
[pysn” + pys, (1 = m)7]
giving a maximum capacity of approximately
capacity = [sin + 52(1 - mnl
(2.10.8)

1/2
2
{2[s1n +8,(1 - n)][plsfn2 + pzsg(l - n) ]L} .

As a second approximation for small P,;» Py, oOne should add to this an

amount of approximately
L - - L + 2
plsln[ZSln +3]/2 + pzsz(l n)[2s2(1 n) 31/

from other terms of (2.10.3) neglected in (2.10.6).

For a symmetric intersection with s1 = 52 = s, pl = P2 =p,n=1/2,

this gives

0 .__'2
< = 77 » (2.10.9)
(psL)
and

capacity = s [l - (psL)l/2 + p(sL + 3) + (2.10.10)

5 .o .

The sL represents the number of vehicles which would be served during a lost
time L, typically about five. The most interesting feature of this, however,
The sL represents the number of vehicles which would be served during a lost

time L, typically about five. The most interesting feature of this, however,

is that CO/L is proportional to p_l/2 and the (minimum) loss of capacity

due to blockage and switching is nearly proportiomal to pl/2 . These are very

sensitive to small values of p . With only five percent turning vehicles and

sL =5, CO/L would be only about four, giving a value for C_. of perhaps fifty

0
seconds, but already about a thirty percent (minimum) loss in capacity!. Actu-

ally this value of p is still not small enough for the approximation (2.10.10)

to be very accurate. If one uses (2.10.3) to evaluate the capacity, one will
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find that the loss in capacity is about thirty-three percent but, clearly, even
a small fraction of turning traffic can have serious consequences for this par-
ticular geometry. Even for p equal to one percent, the (minimum) loss in

capacity is about eighteen percent for CO/L about 9.

The more general formulas (2.10.7) and (2.10.8) have similar qualitative
behavior as the special case (2.10.9) and (2.10.10). Indeed ome can write
(2.10.7) and (2.10.8) in the latter form if one defines the p* and s* as
suitable weighted average of the Pys Py and Sy 8, respectively, specificaily

if

S*

"

s H + sz(l -u) .

2 2 2
Plzlli + stz(l - U)

3]

p* 2
[slu + Sz(l -u)7]

b. A F-C signal, multi-lane approach, no turn-bays

Suppose now that we had a two-lane approach inm direction 1 but no turn bays.
If there were also a two-lane approach in direction 3 with moderately heavy
traffic, it would be quite unlikely that a turning vehicle in direction 1
would find a gap in both lanes of direction 3 before the end of the green
interval. It is reasonable to assume, therefore, that a turning vehicle would
hlock the left lane until the end of the green interval. There are, however,
interval. It is reasonable to assume, therefore, that a turning vehicle would
block the left lane until the end of the green interval. There are, however,
other complicationé relating to the order in which vehicles are served.

Suppose, first, that when the red interval begins in direction 1 there are
no vehicles remaining in the queue from the previous cycle, and, as the queue
grows, vehicles distribute themselves between the two lanes so as to.keep the
queue lengths nearly equal at least until the first turning vehicle (if any)
joins the queue in the left lane. If a turning driver, when he joins the queue,
warns the vehicles behind him that he will turn left by flashing his turn sig-

nalaa. a subseduent driver in the left lane will know that he will be blocked
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until the end of the green interval. If the latter driver is not alsn turning
left, he would do better to join the queue in the right lane even if it is
longer. The same is true also for any subsequent non-turning vehicles which
might expect to be served in the right lane before the green interval expires.
If a second left-turn vehicle arrives during that cycle, it will, however,
join the queue in the left lane. This vehicle will likely manage to pass
during the subsequent green interval, provided all the through vehicles, wnich
arrived before it but after the first left-turn vehicle, moved to the right
lane leaving two consecutive left-—turn vehicles in the left lane. Unfortunately,
a third left-turning vehicle would probably not pass during the next green in-
terval and might be at the head of the line when the signal turns green the
second time, thereby blocking the lane for the enti¥e second green interval.
From the above (or an equivalent) starting state with no queue at the
start of red, we can easily evaluate the expected number of vehicles which can
be served in a green interval G1 . Suppose each lane has a saturation flow
31/2 with slGl/Z potential slots in time Gl’ and p, is the fraction of
turning vehicles in the combined arrival stream for both lanes. Analogous to
the argument in (2.10.1), we assume that two vehicles can pass the intersection
in the last two slots of each lane'whether they turn or not. Two vehicles will
pass in the first slots of the two.lanes if they are both through-vehicles,
with Drobabilitv‘,(l_—,n.)giﬁ l,:,?n&-,for n.,<<1 _.__Onlv.ome vehicle will___
pass in the first slots of the two.lanes if they are both through-vehicles,
with probability (1 - pl)2 =] - 2pl for Py <<1 , Only one vehicle will
pass (in the right lane) if one of the two vehicles wishes to turn, with proba-
bility 2p1(1 - pl) B 2p1 . We will neglect the probability that two consecu-
tive arriving vehicles both turn left. Vehicles will pass in each of the
second slots of the two lanes if the first four arriving vehicles are through-
vehicles with probability (1 - pl)4 , etc.

The number of vehicles to leave in the left lane is, therefore
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2 2[31G1/2-2]
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Vehicles can presumably leave the right lane in every slot so

P
s R - -
number to leave = SIGl 7 (slGl 2)(51Gl 4) + ... (2.10.11)

As compared with (2.10.3) we see that this number is essentially the same
as the combined numbers of two separate one-lane highways, each with saturation
flow sl/2 » the same fraction P of left-turn vehicles, and the same Gl .
This is valid only for "sufficiently small" p; since it is based on an expan-
sion in powers of P; to terms linear in P, - The result is not surprising
since, in effect, the two-lane approach behaves as if there were a fraction 2pl
of left-turn vehicles in the left lane and none in the right lane.

As for the single lane approach, there will be a cycle time CO which

maximizes the capacity. Indeed it is nearly the same as for a single lane with
the séme pj and the fractional loss in capacity due to switching and blocking
is also nearly the same. If the pj are not sufficiently small, one would ex-
the séme pj and the fractional loss in capacity due to switching and blocking
is also nearly the same. If the pj are not sufficiently small, one would ex-
pect the two-lane approach to have a smaller loss, but in the numerical example
above with p = five percent, the loss is about thirty-three percent for a single
lane but thirty—oné percent for two lanes.

For less than about five percent left-turns, models of the above type are
probably reasonable. The "optimal" cyecle time is in a reasonable range and, for
Through-

this cycle time, the majority of cycles will have no turning vehicles.

traffic would not avoid the left lane of a two-lane approach in fear of being
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blocked, although the effect of blocking on the capacity may be appreciable.

If the fractiom of left-turns is more than ten percent, but there is no
place to store the left-turning vehicles, one may wish to consider othef signal
strategies. The above model is probably still reasonable for p = ten percent.
The "optimal" cycle time is shorter than one would customarily use, but‘the
capacity is quite insensitive to moderate changes in the cycle time. The loss
in capacity increases only from about 31 percent tao 37 percent as p inéreases
from five percent to.lo percent. If,'for p much larger than this, however,
one does not reduce the cycle time to unrealistic values, there is a risk that

in some cycles there may be three left-turning vehicles. This would cause the

left lane to be blocked for the entire second green interval and cause additional

loss not included in the above formulas. Also, through traffic may avoid the
left lane and not take advantage of all the available slots.

Even if all through vehicles avoided the‘left lane, one could still serve
slG1/2 in the right lane and presumably two (left-turn) vehicles in the left
lane. If one had the same situation in direction 2, one would serve a total

of SIGI + 4 per cycle in directions 1 plus 2, giving a capacity of

s,.G, +4 s (s,L - 8)
171 _ 1 _ 1
G =5 1 ___EIE——_ . (2.10.12)

The s here refers to the two-lane flow so s,L is likely to be around

L B

The s here refers to the two-lane flow so le is likely to be around

10 or 12. This capacity is now an increasing function of C. As compared
with just the single right lanes, the effect of adding four vehicles per cycle
in the left lanes of directions 1l plus 2 is equivalent to subtracting four ve-

hicles from the amount le/Z that is lost from the right lane due to switch-

ing, but we still expect le/2 to be larger than 4.

Formally, (2.10.12) would be a maximum for C arbitrarily large (infinite),

but this would be equivalent to ﬁsing the left lane as a parking lot for turning
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v;hicles which are never served. Presumably one would interpret the "capacity"
as the maximum number of vehicles which could be served without causing any
class of vehicles to be oversaturated. In the present case we w&uld want the
cycle time to be short enough that we could serve the left-turning vehicles

in direction 1 at a rate of two per cycle while serving through vehicles at
a rate of SIGI/Z’ i.e.,

p
: 14
=P 515

As applied to (2.10.12) this means approximately that

le -8 (le ~ 8)

s,C < 8/p1 or ——;IE—— ~ P 3 .

Typically the factor in the brackets of (2.10.12) is between about 0.95 and
one for p < 20_percent.

The models for turning traffic described so far are relatively simple
because both the through vehicles and the turning vehicles in direction 1,
for example, respond only to the signal but do not depend explicitly on the
traffic behavior in any other directioms. Primarily it illustrates the fact
that even a small fraction of turning traffic (five percent or less) can
seriously affect fhe capacity of an intersection, pafticulatly one controlled
by a F-C signal. For larger values of 'p (ten percent or more) the conse-
secroas.y~ald.be varv_spusre, nossiblv a 50 percent loss in capacity.
by a F-C signal. For larger values of 'p (ten percent or more) the conse-
quences could be very severe, possibly a 50 percent loss in capacity.

For small p , a suitably designed V-A signal will work much more effi-
ciently. For the larger values of p it will generally be advantageous to
use a multiphase signal as described in section 2.1l or to comstruct turn
bays even if this means sacrificing a potential through-traffic lane on a

multi-lane approach.
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c. A V-A signal strategy

One of the deficiencies of a F-C signal, for small pj , is that it has

no way of detecting when a lanme is blocked by a turning vehicle. The cycle

' time must be kept relatively short to limit the time during which a turning

vehicle will block a lane. A V-A signal could be designed to detect a blocked
lane and take appropriate actiomn.

Ideally, one wpuld like to detect a turning vehicle as soon as possible
and remove it. If a detector had eyes, it hight obser@e a vehicle flashing
its turn signals; otherwise, one could not detect the vehicle at least until
the vehicle stops some place in the intersection to wait for an opportunity
to turn. Since different drivers will wait at différent locations in the

intersection, it seems impractical to place detectors in the intersection

~where they might also respond to other types of vehicle movements. If a de-

tector placed nmear the stop line (of the left lane for a multi-lane approach)

observes some minimum gap (say four seconds) after the signal has turnmed green

and at least one vehicle has already crossed the detector, but a second detector

further upstream indicates that the queue could not have vanished yet, then this

should imply that the lane is blocked (and has already been blocked for
several seconds). If the signal now switches to yellow and then to red, the
turning vehicle will be removed. The signal will then proceed to switch
besk.and forrb ju rbe usual _wav. when a aqueue vanishes or a left-turn ve-
turning vehicle will be removed. The signal will then proceed to switch
back and forth in the usual way, when a queue vanishes or a left-turn ve-
hicle blocks a lane.

To see the consequences of this strategy, we first assume that there
is negligible turning traffic in directions 3 and 4 but enough through traffic
in these directions that a turning driver would have difficulty finding a gap.

Suppose that the signal switches from direction 1 to 2 whenever either the
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queue vanishes in direction 1 or a lanme is blocked by a left—~turning vehicle
in direction 1. Similarly the signal.switches from direction 2 back to 1
whenever the queue vanishes in direction 2 or a lame is blocked by a left-
turning vehicle in direction 2. If there is a flow 9 in direction 1, a
fraction Py of turning vehicles, and the signal is undersaturated, then the
signal will switch from direction 1 to 2 at a long-time average rate of P9
due to left-turning vehicles. Similarly it will switch from direction 2 to 1
at an average rate of P9, due to turning vehicles.

The number of switches»from direction 1 to 2 must, of course, be equal
to the‘number of switches from direction 2 to 1 (if the signal returns to where
it stérted). If the 9 and/or q, are barely at the limit of saturatiom,
the queue in some direction will seldom vanish. The rate of switching from
direction 1 to 2 or vice-versa will, therefore, be the larger of P4, or
Pod, - 1if p1q1'> Pody s then direction 1 will reach saturation while direc-
tion 2 is undersaturated. The signal will switch from direction 2 to 1 at a
rate P,d, due to left-turning vehicles and at a rate P;9; = Py, because
the queue vanishes. Otherwise, the signal will be kept busy serving vehicles
either at a rate $1 of Sy

One could define four effective lost times per cycle depending on the
type of signal switching, each of which should be (nearly) independent of the
lametbs_nf_the ereen intervals, or therefore of the q, or
type of signal switching, each of which should be (nearly) independent of the

lengths of the green intervals, or therefore of the qj or pj .

from direction 1 to 2 because the queue vanishes, there will be a lost time,

say Ll » the same as for a V-A signal with pj = 0 . There will also be a

corresponding lost time L2 for switching back. One may prefer, however,

to define a lost time per cycle as done previously, L1 + L2 , since only the

sum is relevant. But we must now also consider a lost time Ll2 caused by a

L

switch from direction 1 to 2 for a left-turning vehicle and a lost time 29
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caused by a switch from direction 2 to 1 for a left-turning vehicle. Equiva-
lently, one may wish to measure‘only the four combinations Ll + L2 s Lll + L2,
L1 + L22 , and le + L22 . These lost times will depend on.the number of
lanes, location of detectors, width of the intersection, etc., but there is
not much point in trying to theofize about their values because, for any par-
ticular intersection, there is probably nothing one can do to change them. One
can measure them from piecewise linear approximations to the c¢umulative départure
curves as described in sections 2.1 and 2.2. We might expect the le to be
larger than the L1 because direction one will be blocked for a while before
the detector recognizes it. On the other hand, a turning vehicle which is
already in the intersection when the signal switches will clear during the _
yellow. We would expect, however, that all four lost times will be of comparab}e
magnitude.

We can now evaluate the capacitylof the intersection (for directions 1 and

2) in terms of these lost times. If the signal is at capacity and P9, > Py, s

the signal will spend a fraction of time 'ql/sl serving vehicles in direc~

‘tion 1 at the rate s; » 2 fraction qz/s2 serving vehicles in direction 2 at

~the rate s, and the rest of the time switching. The fraction of time lost in

2

cycles with a switch from direction 2 to 1 caused by a left turm in direction

i | . The fraction of time lost in cycles when the queue
2 is (le + Lzz)pzq2 e
cycles with a switch from direction 2 to 1 caused by a left turn in direction

i | . fraction of time lost in cycles when the queue
2 is (le + Lzz)pzq2 The fr

irecti i - t it
vanishes in direction 2 is (Lll + LZ)(qul P2q2) . Thus, at capacity

] = L) (p,4;, — P,9,)
1-gq,/s, —a,/s (L,, +L,,)p a4, + (Lll + 9 19 299
171 2'72 12 2872 (2.10.13)

T -L) .
pya; Ly + L) + Py2(Tyg = Iy

Of course,the "capacity" depends on ql/q2 and 51/52 but, for purposes

of comparison with the F-C signal, suppose q, = q, = 9,8 = S, = S,

and p1 = p2 = p'. The capacity would then be
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WL TRITE (LlISL i Lyg)ps/2 ) ' (2010'14)2

This is to be compared with the F-C signal capacity (2.10.10). The L .
in (2.10.10) is the lost time per cycle (two switche;) with a yellow time
based on the approach speed. The Lll + LZQ is also a lost time per cycle
potentially for a slower platoon speed but with some loss due to a delayed
response to blocking. The two 1oét times should be similar. The main dif-
ference between the two formulas, however, is that loss in capacity due to
turning traffic is proportional to the square root of the "small" dimension-
less parameter psL in (5.10.10) but to the first power of the analogous
parameter in (2.10.14). Besides, there is an extra factor of 1/2 in (2.10.14),
If the loss (psI..)l/2 is 20 percent in (2.10.10), it would be about (0.2)2/2
= two percent in (2.10.14). 1In the previous illustration with p = five per-
cent, (2.10.10) gave (psL)l/2 ~ 1/2 but the more accurate formulas gaQe a ioss
of only about 33 percent. The corresponding loss in (2.10.14) should be only
about 12 percent for a single lane approach.

In the above comparisons, we have not considered the traffic in direc-

tions 3 and 4 except to postulate that it hinders the left turns in directions

1 and 2. TFor a F-C signal, the capacity is so sensitive to the P, and P,

that if Py and Py were zero, but and q, were large enough to pre-

93

vratierurriroltzffis_ig. diyactinons 1 _and 2. we would likelv have q. and g,
L

that if Py and P, were zero, but and q, were large enough to pre-

%3
vent turning traffic in directions 1 and 2, we would likely have U, and 9y
longer than 9 and 4y - If there are turning vehicles from all four direc-
tions, we should interpret the directions 1 and 2 as the two cross directions
which are most critical for the given ratios ql/q3 and q2/q4 » and the given
values of the 1 and s; - These would not necessarily be the directions with
the larger values of qi/si as we would number them for P, = 0 . We could

then argue that if the flows ¢ and 45 could pass through the intersection,

1

q3 and q, could also, but the traffic in directions 3 and 4 would hinder
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the turns in directions 1 and 2 (and vice-versa).

For the vehicle-actuated strategy described ébove, one may need to make

some nontrivial modifications for Py » Py >0 . If the signal responds only
to turning vehicles in directions 1l and 2, turning vehicles in directions 3
and 4 would block lanes in these directions for a time dictated by the green
intervals for directions 1 and 2. In addition, traffic in directions 3 and 4
would.be interrupted by the signal switches. In this case the capacity in
directions 3 and 4 would be comparable with (perhaps even less than) that for
a F-C signal operating with the mean cycle time for directions 1 and 2 and
the fractions p3', P, of the turning traffic. Even.for p3 and P, equal
to five percent or so, the capacity in directions 3 and 4 might be reduced

by 30 to 50 percent. Even if the capacity is sufficient, the stochastic
queueing in directions 3 and 4 might be unacceptably large.

If all the p, are small, an alternative strategy would be to switch the
signal whenever there is blocking in any direction. This would mean that the
signal switches from directions l! 3 to' direction 2, 4 at a rate P19 + p3q3,
and at a rate Py, + .9, from directions 2, 4 to 1, 3 due to turning ve-
hicles. 1If the forger is the larger rate, the capacity would be defined by a
relation similar to (2.10.13) but with P1q; » Pyd, replaced by P19y + Pd5»
p2q2 + p4q4, respectively. |
teracTba-sifizrarico €zv.tbz_s-~pacitvw.af pquA,=;5q§1 aoplu_ta ejrhpIITﬁnoJ§18r
p2q2 + p4q4, respectively.

These_formulas for the capacity of a V-A signal apply to either single or
multiple lane approaches with.the P;Sy and s, interpreted as the values
for combined traffic of all approach lanes in direction i. In order that
turning traffic have only a "small" effect on the capacity, it is necessary
that pisiLi , for some suitable lost times Li’ bé small compared with 1.

For a single lane siLi .might be about five or six; but for a two-lane approach,
it would be ten or twelve. Thus, a "small Py really means small compared

with maybe 0.1, not 1.
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Clearly the V-A‘strategy proposed here is questiomable for pis much
above five percent, particularly on multilane approaches. One certainly
cannot profiﬁably switch the signal every time any driver wishes to turn
left if this means that the signal can serve only about five cars per lane
per phase. If the p; are too large, one cannot even guarantee that this
V-A strategy is better than a F-C strategy. The F-C strategy would have
the advantage for a multilane approach that it could serve two-left turning
vehicles from the same direction per green interval, potentially four ve-

hicles in the same signal switch for directioms,l plus 3, for example.

d. Left-turn bays

We have seen that left-turning vehicles can significantly reduce the ca-
pacity of either a F-C or V-A signal, particularly if there is five percent
or more left turns. If, because of this, a signal becomes oversaturated or
generates excessive queues, one can (a) ban left-turms, (b) add more lanes,
(¢c) use a multiphase signal, or (d) construct left-turn bays.

The most common option (if the p; are not too large) is to provide
turn bays for storage. The main advantage of this over adding more lanes
for through traffic is that a single length of road lane converted into turn
bays will provide turn bays for both directions 1 and 3 (or 2 and 4) simul-
taneously. The turning traffic in a turn bay for direction 1 will not need
bays will provide turn bays IOr ‘potn alfections : &na o5 Or < ana &)} -simbi-
taneously. The turning traffic in a turn bay for direction 1 will not need
to use the downstream continuation of the turning lane. Consequently, this
downstream section can be used as a turn bay for direction 3.

It is difficult to formulate any well-defined criteria for the addition

of turn bays because the typical number of lanes needed with no turn bays in

directions 1 and 3, for example, is likely to be an even number (2 or 4) while

the corresponding number of lanes with turn bays is likely to be an odd number

(3 or 5). If there are physical constraints which virtually prohibit making

a road more than two lanes wide (for two-way traffic), one has no choice, but
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this would be a rare situation. Most roads have either a shoulder lame or a
parking lane. One can usually take some of the shoulder lane or ban parking,
restripe the lanes and squeeze in a turning lane of some reasonable length.
This should certainly increase the capacity of the‘intersection, but these
benefits must be balanced against possible issues of safety, construction cost,
etc. |

If, on the other hand, one had a four-lane road with two-lane approaches in
directions 1 and 3 but no turn bays, we saw that, for sufficiently large Py and
Py > the two left lanes in directions 1 and 3 might be blocked so frequently
_that only left~turning vehicles would use them. In this case, each of these

left lanes might serve only two (left-turning) vehicles per cycle. They would }

each behave almost like turn bays but on separate lanes. One might better use
just one of these two lanes for turm bays for both directions 1 and 3 and give
the extra lane to the through traffic in direction 1 of 3. (Unfortunately, it
doesn't dq much good to gi&e just half a lane to each direction). Or perhaps
one could take some of the shoulder lane or parking lane and squeeze in a fifth

lane for a turn bay.

If, "at capacity" all traffic movements must be accommodated, the capacity
of an intersection with turn bays will be constrained by the condition that the
turning vehicles must be served. The capacity for the through traffic can be
increased by increasing the cycle time (which would happen automatically for a
turning vehicles must be served. The capacity for the through traffic can be
increased by increasing the cycle time (which would happen automatically for a
V-A signal driven by the through traffie), but increasing the cycle time will
decrease the rate at-which the signal can serve the turning traffic. If there
are turn bays in all four directionms and thg signal can serve only two turning
vehicles pér direction per cycle, it would be necessafy that the arrival rate

of turning traffic per cycle be less than two, i.e.,

p.q.C <2 for i=1,2, 3,4, (2.10.15)

i1 —
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in which C 1is either the fixed cycle time for a F-C signal or the mean cycle
time for a V-A signal (driven by the through traffic).

If Lt is the appropriate average lost time per cycle for the through

traffic with the turn bays for the turning traffic,'then a fraction Lt/C of
time is used for switching the signal, which limits the capacity of the through
lanes. The through flows are (1 - Pi)qi and we can number the directions so
that the dominant directions are numbered 1 and 2, i.e., (1 - Pl)ql/sl>

(1 - p3)q3/s3 and (1 - pz)qz/s2 > (1 - p4)q4/s4 . The condition that all

»

flows can be served is that
[

L P.q.L ‘
t t .
1 -( - Pl)ql/sl - (1 - P2)qz/52 > = > _27E__ for all i, (2.10.16)

In the hypothetical case of a symmetric intersection with 9; =9, 5; =5

and either P; =P for all i or Py =Py =P and P3 = Py = 0, (2.10.16)

simplifies to

2q 1
- Ty EeeE (2.10.17)

The term -p 1in the denominator represents the contribution to the'capacity
from the two vehicles per direction which are in the turn bay. It is of little
consequence compared with the other terms and would not even be there if Py =
P, =P and Py =P, = 0 . The main feature of the formula is that it again
contains the characteristic dimensionless product psLt which 1s not neces-
P, =P and Py =P, = 0 . The main feature of the formula is that it again
contains the characteristic dimensionless product psLt which 1s not neces-
sarily small for reasonably small values of p .

This is to be compared with the analogous formulas (2.10.10) for a F-C
signal and (2.10.14) for the specially designed V-A signal with no turn bays.
The Lt in (2.10.17) is probably somewhat larger than the L in (2.10.10)
because the intersection will be wider with a turn bay,but perhaps comparable

with the in (2.10.14). The main difference is that (2.10.17) has

Lig T Ly

a factor 1/4 where (2.10.14) has a factor 1/2 . This is due essentially to
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the fact that the turn bay serves two left-turn vehicles in directions 1 and 2
per signal switch, but the V-A signal serves only one. Actually (2.10.14)

applies only for Py = =0 . For Py =P, =P the turn bays could serve

Py
four left-turn vehicles per signal switch and (2.10;17) would still be valid,
but the V-A signal would switch for only one vehicle and the factor of 1/2

would be replaced by ome.

For typical accgptable cycle times of at least 40 seconds and q = 1/5 sec—l
per lane, the comstraint (2.10.15) would mean that the pi's should be less than
25 percent for a one-line apprecach and 12 percent for a two—lane approach. Thus
the p's are limited to about the same range (somewhat larger) with turm bays as
without, but an intersection with turn bays can accommodate comnsiderably higher

flows (for the same p's) than without turn bays.

If P, and were zero, one would not need a turn bay in directions 2 and

Py
4. 1Indeed, we should not have one, because the turn bay would increase the width
of the intersection and possibly increase the lost time in switching from direction

1 to 2. For sufficiently small Py and p; ome might therefore build a turn bay for

directions 1 and 3 but not for directions 2 and 4. In this case, it would clearly

be preferable to have a V-A signal that switches from direction 2 to directiom
1 whenever direction 2 or 4 is blocked by a turning vehicle ﬁhan to have a
F-C signal. 1In this case the signal would switch from direction 2 to 1 at a
rate p,q, +p,q, due to turning vehicles but, presumably, the mean cycle
F-C signal. 1In this case the signal would switch from direction 2 to 1 at a
rate Pyd, + p4q4 due to turning vehicles but, presumably, the mean cycle
time would be constrained also by the condition qulc <2 or p3q3C <2 as
in (2.10.15). Thus, at capacity, the latter condition wculd dictate the mean
rate of switching, the larger of plql/2 or p3q3/2 , provided this is larger
than Pyd, + p4q4 .

If the signal is kept busy at all times except while switching, and
(r - Pl)ql/Sl > (1 - P3)q3/s3 , q2/s2 > q4/s4 , the analogue of thevéonditions

(2.10.13) or (2.10.16) would be of the form
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- - - > 1,°

L - (1 =pplay/s; = a,/s,” L (pyd, +P,9,)
T 1 (2°10-18)

in which Lél is the mean lost time per cycle if the signal switches because

of a left turn vehicle in direction 2 or 4 and L! is the mean lost time per

cycle if the signal switches because it must return to directionl to accommo-

date the turning traffic in directions 1 or 3 (provided this term is Positiva)-
If Lég = Lé » the condition (2.10.18) would be independent of p2 and

P, - The cycle time, and therefore the capacity, would be determined by the

turning vehicles in directions 1 and 3. If, as expected, the Lé > Lé be-

2
cause of the time lag in detecting a turning vehicle, the capacity would de-
crease somewhat with increasing Py and P, ¢ As compared with the relation

(2.10.16) with a turn bay in directions 2 and 4, (2.10.16) has a factor

(1 - pz) multiplying the qz/s2 which results from the fact that the turm

bay can accommodate the flow p of turning vehicles leaving omly (1- pz)q2

2%2
for the through lane. On the other hand, the Lt in (2.10.16) may be larger

than the Lé in (2.10.18). Chances are that there is little difference in

the two strategies 1f p,q, + p,q, < i-p q, and L P,9, . The loss in ca-
212 474 2 171 2 7373

pacity due to turning traffic in directions 2 and 4 for a F-C signal could,

however, be considerably larger under these conditions, with no turnm bays in

directions 2 and 4.

however, be considerably larger under these conditions, with no turn bays in

directions 2 and 4.

e. Stochastic queueing

Most of the discussion above on turning traffic relates to the capacities.
One could derive detailed formulas for queues lengths and delays in any of
the above models, but the formulas would be so complex and contain so many
parameters that they would only obscure the main issues.

There is a whole sequence of possible strategies with increasing cost

to accommodate increasing traffic ; stop signs, F-C or V-A with or without
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turn bays, or multiphase signals. Whether 6ne uses a signal or not is likely
to be based on safety, custom, politics, etec., rathe: than any measurable.
economic criteria. The choice among possible signél strategies depends on
delays, in some qualitative sense, but the delays are so sensitive to the
capacity that the first consideration should be whether or not the capacity
for some signal strategy is sufficient to accommodate the (peak) flows for
all traffic movements. If it is, one might then recognize that, if the
demand for any movement is more than.about 80 percent of the maximum sérvice
rate for tha%lmovement, then stochastic effects may cause appreciable delay

" (residual queues of three or four vehicles for a F-C signal or large fluctua-
tions in cycle times for a V-~A sigmnal).

. If the fractions of turning vehicles pj are small (less than 10 percent),
one is not particularly concerned with providing good service to the turning
thicles for their sake. We do not want to encourage mofe turning movements
by making them too easy. We are mostly concerned with minimizing the damage
they cause to others. Unfortunately, most strategies to minimize the damage
give preferential service to the tﬁrning vehicles to prevent them from blocking
the through traffic.

We will comment here only briefly on some of the queueing aspects of the
strategies described above, more or less in order.

We will comment here only briefly on some of the queueing aspects ot the
strategies described above, more or less in order.

If there is only a single lane approach, no turn bay, and no room to pass
stopped vehicles, vehicles will form a single lane queue. They will be served
in order of their arrival whether they turn left or go straight. For a F-C
signal, turning traffic will not only cause a substantial reduction in capacity,
it will also generate a larger variance rate for the departures. The residual
queue will still have a form similar to (2.3.7) but with a p determined by

the reduced number served per green interval, and with an increased ID
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A V=A signal which switches for each turning vehicle, or each vanishing
queue will have comsiderably larger capacity (for sufficiently small pj) .
Unlike the F-C sigmal, it will automatically adjust to changing flows, parti-
tioning the.green intervals between the two phases so as to keep the queues from

growing in any direction, if possible. The signal switchings for turning ve-

hicles increase the lost time in switching and, therefore, reduce the capacity.
They also cause both a residual queue and unequal cycle times, both of whiéh
cause 1increased stochastic delays. For flows close to capacity, the green in-
terval in one of the directions will terminate with a turning vehicle nearly
every cycle. The stochastic queueing in that direction will be even larger than
for a hypothetical F-C signal with the same degree of saturation for that direc-
tion.

For multilane approaches or turn bays, the queue behavior is more compli-
cated because the left~turn and through vehicles from the same directions are
partially or completely separated. The vehicles are not necessarily served in
order of their arrivals, and it 1s possible to form a large queue of one without
the other, in particular for the turning vehicles. For a two-lane approach with
no turn bays and sufficiently small pj s the through traffic would use both
lanes. The turning vehicles would reduce the capacity, but turning vehicles
and through vehicles would be served almost in order of their arrival if each
driver is clever enough to try to minimize his trip time. The queue behavior of
and through vehicles would be served almost in order of their arrival 1if each
driver is clever enough to try to minimize his trip time. The queue behavior of
a F-C or V-A signal would be analogous to that of a hypothetical single lane
approach with the same Sy and P; -

An intersection with turn bays clearly has a larger capacity than omne
without turn bays, but the same number of through lanes. The capacity of the
system, however, is restricted by the service rate of one of the turn bays, i.e.,
by (2.20.15). At capacity, one of the turnbays and two of the through traffic

directions will be at capacity because, in an attempt to maximize the flow of
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through‘traffic‘which can be accommodated in direction l, for example, one might
first increase the green interval for direction 1 by varying the split with direc~-
tion 2 until the through traffic in direction 2 is at capacity, then one would
increase the cycle time to reduce the loss in switching until ome of the turning
movements 1is at capacity.

In section d there was no discussion of whether the signal was F-C or V-A.
In the latter case, the signal would presumably be ariven by the through traffic
in directions 1 and 2. The split between directions 1 and 2 would automatically
adjust to changes in the flows in;these two directions; but as the flows increase,
so will the mean cycle time. If the mean cycle time becomes too large, however,
one of the turning movements will become oversaturated. In theory, the capacity
would be the same for both the F-C and V-A signal if all directions have turn
bays and the F-C green intervals are properly split. In essence, the signal is
serving four independent traffic streams simultaneously in each green interval.
In the two directions for through traffic, the maximum number of vehicles that
can be served per cycle is proportional to the green interval, but in the turn
lanes the maximum is assumed to be two (independent of the green interval).

We saw in section 2.3 that a F-C signal serving stationary flows 9 with
no turning vehicles would cause stochastic queues in all directions. If the 9y
were sufficiently close to saturation (1 - ql/s1 - q2/s2 << i) the residual
queues would be very large but ome could balance the deterministic and stochasg}c
were sufficiently close to saturation (1 - ql/s1 - q2/s2 << i) the residual
queues would be very large but one could balance the deterministic and stochastic
queueing by choosing a sufficiently la