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Machine Learning Insights into the 3D Genome:  

Diversity and Gene Regulation in Human Populations 

Erin Nicole Gilbertson 

 

ABSTRACT 

The 3D organization of the human genome plays a crucial role in gene regulation, 

influencing interactions between genes and regulatory elements. Despite significant 

progress in genomics, the diversity of 3D chromatin contact patterns across human 

populations remains underexplored. This dissertation describes the use of machine 

learning to predict 3D chromatin contact maps from genome sequences, revealing new 

insights into genome architecture among diverse populations. In Chapter 1, I provide a 

literature review and overview of human population and regulatory genetics in relationship 

to the 3D genome with a focus on machine learning techniques. In Chapter 2, I present 

the results of my study using a machine learning model to predict 3D genome for 

thousands of individuals, uncovering substantial 3D genomic diversity, particularly within 

African populations. I also identified regions where 3D divergence occurs despite 

relatively low sequence variation, especially in areas under low functional constraint. In 

Chapter 3, I provide a perspective on my work and future directions. My findings 

underscore the importance of considering 3D genome organization in understanding 

gene regulation and its implications for health and disease. 
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CHAPTER 1: USING MACHINE LEARNING METHODS TO EXPLORE THE 

EVOLUTION OF GENE REGULATION 

Introduction 

Deciphering the three-dimensional (3D) organization of the genome is a crucial 

component of understanding the mechanisms of gene regulation. Chromatin, the complex 

of DNA and proteins within the nucleus, is not randomly arranged but is organized in a 

highly structured manner that influences gene expression and cellular function. The 

spatial arrangement of chromatin, including loops, domains, and compartments, 

modulates the proximity of regulatory elements such as enhancers and promoters, 

facilitating or inhibiting their ability to control gene expression. This 3D architecture is 

dynamic and changes in response to various cellular signals, playing a vital role in 

development, differentiation, and disease. 

Genetic variants that affect genome folding can alter chromatin interactions and 

cause disease. However, there is a lack of understanding of how 3D genome contacts 

vary within a species and when genetic variants will perturb 3D folding. Even though DNA 

sequence changes that influence genome folding can have massive regulatory impacts, 

current methods for interpreting non-coding variants do not consider this mechanism. 

Therefore, a comprehensive understanding of 3D chromatin contact patterns is essential 

for advancing our knowledge of gene regulation and its implications in health and disease. 

Machine learning has emerged as a powerful tool in genomics, enabling the 

analysis and interpretation of large and complex datasets. In the context of 3D genome 

organization, machine learning algorithms can be used to predict chromatin interactions, 
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identify regulatory elements, and infer the functional consequences of genetic variants. 

These models leverage vast amounts of genomic data to learn patterns and make 

predictions that would be difficult, if not impossible, to achieve through traditional 

methods. 

The integration of machine learning with genomic data has already led to 

significant advances in the field. For example, models such as Akita, DeepC, and Orca 

have been developed to predict 3D chromatin interactions from DNA sequence data, 

providing insights into the underlying principles of genome organization. These 

advancements have not only improved our understanding of chromatin dynamics but also 

hold the potential to uncover new regulatory mechanisms and therapeutic targets. 

To address the challenge of experimentally assaying chromatin interactions across 

diverse populations and tissues, I propose a machine learning approach to quantify 

variation in 3D chromatin contact patterns from genome sequence alone. This approach 

aims to understand the diversity of chromatin contact patterns in modern humans, 

hypothesizing that there are quantifiable differences in the 3D genome organization that 

constrain sequence evolution and contribute to regulatory variation. 

The primary objective of this dissertation is to explore the diversity of human 3D 

chromatin contact patterns using a machine learning approach. The following sections 

lay out the key concepts and references necessary to contextualize the work.  
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Human Population Genetics 

Genetic variation in human populations 

Genetic variation refers to differences in DNA sequences among individuals within a 

population. Understanding this variation is crucial for studying human evolution, 

population genetics, and disease mechanisms. This section provides an overview of the 

different types of genetic variation, the roles of mutation, recombination, and gene flow, 

and the mechanisms generating genetic diversity. 

Genetic variation can be classified into several types, each with distinct 

characteristics and implications for genome function and evolution. Single Nucleotide 

Polymorphisms (SNPs) are the most common type of genetic variation, involving a single 

base change in the DNA sequence. SNPs occur approximately once every 1,000 base 

pairs in the human genome and can have significant functional impacts, particularly when 

they occur in coding or regulatory regions (1000 Genomes Project Consortium et al. 2015; 

Karczewski et al. 2020). Insertions and Deletions (indels), which involve the addition or 

removal of small DNA segments, are less frequent than SNPs but can have substantial 

effects on gene function, especially if they cause frameshift mutations or alter regulatory 

elements (Karczewski et al. 2020). 

Structural Variants (SVs) encompass a wide range of large-scale genomic 

alterations, including deletions, duplications, inversions, and translocations. These 

variants can disrupt gene function and regulatory networks and are often challenging to 

detect due to their size and complexity. Recent advancements in sequencing 

technologies and computational methods have improved the detection and 
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characterization of SVs, highlighting their significant role in human genetic diversity 

(Collins et al. 2020). Copy Number Variants (CNVs), a subtype of SVs where segments 

of the genome are present in variable copy numbers among individuals, can influence 

gene expression levels and have been linked to various diseases and phenotypic traits 

(Telenti et al. 2016). Mobile Element Insertions (MEIs) include the insertion of 

transposable elements (TEs) into new genomic locations. TEs contribute to genome 

evolution and can impact gene function by disrupting coding sequences or regulatory 

regions. 

Genetic variation arises through mutation, recombination, and gene flow, each 

playing a crucial role in shaping the genetic landscape of human populations. Mutation is 

the primary source of new genetic variation. Mutations can occur spontaneously due to 

errors in DNA replication or be induced by environmental factors. The mutation rate varies 

across different regions of the genome and among populations, influencing genetic 

diversity and evolutionary trajectories (Besenbacher et al. 2019). Beneficial mutations 

may be subject to positive selection, while deleterious mutations can be eliminated 

through purifying selection. Neutral mutations, which do not affect fitness, can drift 

through the population, contributing to genetic diversity (Karczewski et al. 2020).  

Recombination shuffles genetic material during meiosis, creating new allele combinations 

and contributing to genetic diversity. Recombination rates are not uniform across the 

genome; they tend to occur more frequently at specific hotspots. These hotspots can vary 

between populations, affecting linkage disequilibrium patterns and genetic diversity 

(Pratto et al. 2014). This process can bring together beneficial alleles from different loci, 

facilitating adaptation and evolution. Recombination also breaks down linkage 



5 

 

disequilibrium, enhancing the potential for natural selection to act on individual alleles 

(Pratto et al. 2014). Gene flow introduces new alleles into a population through migration 

and interbreeding between populations. Gene flow plays a vital role in maintaining genetic 

diversity by introducing alleles from other populations. Gene flow can counteract the 

effects of genetic drift, which tends to reduce genetic diversity in small populations. 

Historical examples of gene flow, such as the admixture events between modern humans 

and Neanderthals, have left significant genetic footprints in contemporary human 

genomes (Nielsen et al. 2017). Understanding these mechanisms provides insights into 

the evolutionary history and genetic diversity of human populations. 

Genetic variation is distributed unevenly across human populations and 

geographic regions, reflecting complex histories of migration, selection, and drift. Studies 

like the 1000 Genomes Project (1KG) have illustrated how genetic diversity diminishes 

with geographical distance from East Africa, believed to be the origin of modern humans. 

This pattern, described by the "serial founder effect," occurs as successive groups 

migrate farther from their origin, each carrying only a subset of the genetic diversity of 

their source population (Ramachandran et al. 2005; 1000 Genomes Project Consortium 

et al. 2015). 

Several factors influence the distribution of genetic diversity. Smaller populations 

often exhibit less genetic diversity due to stronger effects of genetic drift, where random 

changes can have a more pronounced impact on the genetic structure (Charlesworth 

2009). Migration plays a critical role in introducing new genetic variations into populations. 

For example, the expansion of humans out of Africa and subsequent migrations have 

significantly shaped the genetic landscapes of modern populations (Cavalli-Sforza 1997). 
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Natural selection also affects genetic diversity, as certain genes may undergo selective 

pressures that enhance or reduce variation, such as those involved in disease resistance 

or skin pigmentation, reflecting adaptations to environmental challenges (Barreiro et al. 

2008). 

To effectively study and quantify genetic variation, researchers employ various 

metrics and methods that reveal how genetic differences are structured within and 

between populations. Heterozygosity measures the likelihood that two randomly chosen 

alleles at a locus are different, indicating the genetic diversity within a population. The 

fixation index, or FST, helps quantify genetic differentiation between populations, with 

higher values suggesting greater genetic variance among groups (Weir and Cockerham 

1984). Principal Component Analysis (PCA) is another critical tool, reducing the 

complexity of genetic data to visualize and analyze patterns of similarity and diversity 

across populations (Patterson et al. 2006). 

Advancements in genotyping and sequencing technologies have revolutionized 

our ability to capture detailed genetic variation at both the individual and population levels. 

These technologies are instrumental in identifying both common and rare genetic 

variants, providing a comprehensive picture of genetic diversity (1000 Genomes Project 

Consortium et al. 2015). Additionally, population genetic simulations offer a powerful 

approach to modeling the effects of evolutionary processes on genetic variation, helping 

researchers understand how mutation, recombination, and natural selection have shaped 

the genetic diversity observed in contemporary human populations (Hudson 2002; 

Rodrigues et al. 2024). 
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Methods for studying population genetics 

Genotyping arrays. Genotyping arrays, or SNP chips, are a cost-effective method for 

assessing genetic variation across populations. They target specific alleles, allowing for 

the analysis of thousands of SNPs simultaneously. This technology has facilitated large-

scale genetic studies and genome-wide association studies (GWAS), identifying genetic 

markers linked to various traits and diseases. However, genotyping arrays are limited to 

detecting a subset of known variants, potentially missing novel or rare variants that may 

be important in certain populations (McCarthy et al. 2008).  

 

Whole-genome sequencing. Whole-genome sequencing (WGS) offers a comprehensive 

method for analyzing genetic variation, providing the complete DNA sequence of an 

organism's genome at a single time. WGS has revolutionized genetics by allowing the 

discovery of new genetic variants, including SNPs, indels, and structural variations that 

are not covered by genotyping arrays. This method has become increasingly accessible 

and cost-effective, although it still represents a significant investment compared to other 

techniques (Goodwin et al. 2016).  

 

Population specific studies. Studying genetic variation in specific populations can reveal 

adaptations and evolutionary histories that are not evident in broader studies. Such 

research has highlighted the importance of including diverse populations in genetic 

research, as findings from one group may not be applicable to all. Population-specific 

studies have also identified unique genetic variants that contribute to disease risk or drug 
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response, which are critical for personalized medicine approaches (Bustamante et al. 

2011). 

Research initiatives focused on African populations are critical given Africa's status 

as the most genetically diverse continent. The Human Heredity and Health in Africa 

(H3Africa) initiative has been pivotal in enhancing the representation of African 

populations in genetic studies. This consortium has led to significant discoveries by 

sequencing genomes from diverse African populations, highlighting unique genetic traits 

and variants that are underrepresented in global databases (The H3Africa Consortium et 

al. 2014). Projects like the African Genome Variation Project continue to expand our 

understanding of genetic diversity and disease susceptibility unique to African 

populations, underscoring the need for a vast increase in genome sequencing efforts 

across the continent (Gurdasani et al. 2015). 

The genetic complexity of South Asian populations has been explored through 

projects like the GenomeAsia 100K Project. This initiative has cataloged extensive 

genetic variation across the region, which is influenced by a long history of migrations 

and complex social structures such as the caste system. The data derived from these 

studies are crucial for understanding the genetic basis of various diseases prevalent in 

South Asian populations and for developing targeted treatments (Wall et al. 2019). 

Admixed populations in the Americas, particularly those in Latin America, offer 

unique insights into the genetic outcomes of historical mixing between Indigenous 

peoples, Europeans, and Africans. Projects like the Mexican Biobank have been pivotal 

in cataloging the genetic diversity of the Mexican population, illuminating complex genetic 

structures and their implications for health and disease. Recent findings from this biobank 
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have shed light on fine-scale genetic ancestries and demographic histories across 

Mexico, enhancing our understanding of trait-relevant genetic variation (Sohail et al. 

2023). In addition, the "Genetics of Latin American Diversity (GLAD) Project" has made 

significant contributions by examining genetic diversity across various Latin American 

countries. This study has identified key genetic variants that influence health and disease 

in these populations, providing insights crucial for the development of medical treatments 

tailored to the genetic profiles of Latin American individuals. The GLAD project highlights 

the importance of studying recently admixed groups to better understand the complex 

interplay of genetic factors contributing to health disparities and treatment responses in 

these populations (Borda et al. 2023). 

 

Global projects. The endeavor to map human genetic diversity on a global scale has been 

propelled by a series of foundational projects, each building on the findings of the 

previous. The Human Genome Diversity Project (HGDP) set the early stage by focusing 

on indigenous populations to elucidate their genetic relationships and health patterns, 

providing vital insights into genetic risk factors and human migrations (Cavalli-Sforza 

2005). Following this, the International HapMap Project aimed to develop a haplotype 

map of the human genome, clarifying common patterns of DNA sequence variations. This 

project was pivotal in enabling genome-wide association studies, linking genetic 

variations to health, disease, and responses to drugs and environmental factors (Altshuler 

et al. 2005). 

Building on this groundwork, the 1KG Project expanded the scope by mapping 

detailed genetic variation among 2,500 individuals from 26 populations around the world. 
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This project provided a comprehensive resource that has been critical for understanding 

human diversity and its implications for medicine (1000 Genomes Project Consortium et 

al. 2015). More recently, the Simons Genome Diversity Project (SGDP) advanced these 

efforts by sequencing 300 genomes from 142 diverse populations, uncovering detailed 

patterns of human migration and ancient demographic histories, thus providing deeper 

insights into our evolutionary history (Mallick et al. 2016). 

 

Bias and inequity in population genetic studies 

Human population genetics has historically faced significant biases, particularly the 

oversampling of European populations. This bias has implications for genetic research 

and medical applications, limiting the generalizability of findings and potentially 

exacerbating health disparities. Studies have shown that genomic data from 

predominantly European cohorts have been overly represented in genetic research 

databases, which skews our understanding of human genetic diversity and disease 

susceptibility (Popejoy and Fullerton 2016). 

The implications of such biases are profound. They impact the accuracy of 

polygenic risk scores and other genetic tools that are increasingly used in personalized 

medicine. As these tools are based on data derived largely from European populations, 

their predictive power and relevance can be significantly diminished for individuals of 

other ancestries. This results in a healthcare gap, where non-European populations 

receive less benefit from advances in genomics (Martin et al. 2019). 
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In response to these challenges, there have been concerted efforts in the last few 

years to rethink how we cluster and label human cohorts in genetic studies. Recent 

initiatives aim to increase the diversity of genomic studies by including more 

underrepresented populations. Projects like the All of Us Research Program in the United 

States and the H3Africa initiative are examples of efforts to collect and analyze genetic 

data from a broader array of human populations (The H3Africa Consortium et al. 2014; 

Bick et al. 2024). 

These recent efforts are not only about increasing sample diversity but also involve 

re-evaluating the methodologies used to categorize and interpret genetic data. There is a 

growing recognition of the need to move beyond simplistic racial or geographical labels 

and instead consider a more nuanced understanding of genetic ancestry and its 

implications for health and disease (Diaz-Papkovich et al. 2019, 2023; Lewis et al. 2022). 

 

Gene Regulation and the 3D Genome 

Introduction to gene regulatory elements 

Gene regulatory elements are essential components of the genome that control the 

spatial and temporal expression of genes. These elements play a crucial role in 

development, differentiation, and the response to environmental stimuli. They orchestrate 

the complex regulation of gene expression through various mechanisms. Promoters, 

enhancers, silencers, and insulators are key regulatory elements that interact with 

transcription factors and other regulatory proteins to ensure precise gene expression 

regulation (Deplancke et al. 2016; Reilly and Noonan 2016; Long et al. 2016; Lambert et 
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al. 2018; Agrawal et al. 2018; Xu et al. 2022). This dissertation is primarily focused on 

diversity of the 3D conformation of the genome and impacts this may have on gene 

regulation. 

 

Transcription factors. Transcription factors (TFs) are proteins that bind to specific DNA 

sequences within regulatory elements to control gene expression. TFs can act as 

activators, enhancing the recruitment of the transcriptional machinery, or as repressors, 

inhibiting transcription. The activity of TFs is modulated by interactions with co-factors 

and other proteins, forming complexes that influence transcriptional activity. The binding 

of TFs to regulatory elements is a dynamic process that responds to cellular signals and 

environmental changes (Deplancke et al. 2016; Reilly and Noonan 2016; Lambert et al. 

2018). TFs bind to the regulatory sequences described below.  

 

Promoters. Promoters are DNA sequences where RNA polymerase binds to initiate the 

transcription of a gene. They are typically located upstream of the transcription start site 

and contain specific motifs recognized by transcription factors and RNA polymerase 

(Reilly and Noonan 2016; Chatterjee and Ahituv 2017). 

 

Enhancers. Enhancers are regulatory sequences that can be located far from the gene 

they regulate. They enhance the transcriptional activity of promoters by looping through 

the 3D genome architecture to come into proximity with their target promoters. Enhancers 

contain binding sites for transcription factors that facilitate the recruitment of the 
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transcriptional machinery (Reilly and Noonan 2016; Chatterjee and Ahituv 2017; Dean et 

al. 2021). 

 

Silencers. Silencers are DNA elements that can repress the transcription of a gene. They 

function by binding transcriptional repressors, which inhibit the recruitment of the 

transcriptional machinery or promote the formation of repressive chromatin structures 

(Segert et al. 2021; Pang et al. 2023). 

 

Insulators. Insulators are DNA elements that function in two main ways: as enhancer 

blockers and as chromatin barriers. Enhancer blockers prevent enhancers from activating 

promoters when positioned between them, ensuring that gene regulation remains specific 

and insulated from nearby regulatory elements. Chromatin barriers, also known as 

chromatin boundaries, prevent the spread of heterochromatin, thereby maintaining 

distinct chromatin domains. These two functions of insulators are mediated through 

largely distinct molecular pathways, reflecting the complexity of their roles in genome 

organization and gene regulation (Bell et al. 2001; Raab and Kamakaka 2010; Ghirlando 

et al. 2012; Phillips-Cremins and Corces 2013). 

 

Chromatin modifications. Chromatin modifications, such as histone modifications and 

DNA methylation, play a crucial role in regulating gene expression by altering chromatin 

structure and accessibility. Histone modifications, including methylation and acetylation, 

can either promote a more open chromatin structure, facilitating transcription, or lead to 

a more compact structure, repressing transcription. DNA methylation typically acts as a 
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repressive mark that inhibits transcription factor binding and promotes the formation of 

repressive chromatin (Reilly and Noonan 2016; Chatterjee and Ahituv 2017; Millán-

Zambrano et al. 2022). 

 

Chromatin remodeling. Chromatin remodeling complexes are proteins that reposition or 

restructure nucleosomes, making DNA more or less accessible to transcription factors 

and other regulatory proteins. These complexes use energy from ATP hydrolysis to slide, 

eject, or restructure nucleosomes, thereby modulating the accessibility of DNA to the 

transcriptional machinery (Ghirlando et al. 2012; Nodelman and Bowman 2021; Kamat et 

al. 2023). 

 

Disease implications of regulatory disruption 

Mutations in regulatory elements, such as enhancers and promoters, can lead to mis-

regulation of gene expression, contributing to various diseases. For example, mutations 

in enhancers have been linked to cancer, cardiovascular diseases, and 

neurodevelopmental disorders (Sanyal et al. 2012; Chatterjee and Ahituv 2017; Maurya 

2021). The disruption of these regulatory elements can cause aberrant gene expression, 

resulting in disease phenotypes. Recent studies have identified non-coding mutations 

associated with increased disease susceptibility and severity, underscoring the critical 

role of regulatory elements in maintaining normal cellular function (Quang et al. 2015; 

Zhang and Lupski 2015; Chatterjee and Ahituv 2017). GWAS have identified numerous 

non-coding variants associated with complex diseases. These variants often lie in 
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regulatory regions, highlighting the importance of regulatory elements in disease etiology 

(Maurano et al. 2012; Finucane et al. 2015).  

 

3D chromatin conformation in gene regulation 

Techniques for studying 3D genome structure. Chromosome Conformation Capture (3C) 

was the first method developed to study the 3D structure of chromatin. It captures a single 

chromatin interaction by crosslinking interacting DNA segments, digesting the DNA with 

a restriction enzyme, ligating the interacting fragments, and then using PCR to detect the 

ligated products. While 3C provided the first glimpse into chromatin interactions, it is 

limited to analyzing a single interaction at a time, making it low-throughput and not 

suitable for genome-wide studies (Dekker et al. 2002). 

Circular Chromosome Conformation Capture (4C) expanded upon 3C by allowing 

the detection of all chromatin interactions involving a specific genomic locus. In 4C, after 

the initial 3C procedure, the ligated DNA is further digested and circularized, enabling the 

use of inverse PCR to amplify interactions. This technique provides a comprehensive 

view of the chromatin environment around the focal locus, making it more informative 

than 3C for studying chromatin organization around specific loci (Simonis et al. 2006; 

Zhao et al. 2006). 

Chromosome Conformation Capture Carbon Copy (5C) further extended the 

capabilities of 3C by enabling the detection of multiple chromatin interactions 

simultaneously. 5C uses ligation-mediated amplification with a set of designed primers to 

capture and amplify interactions between multiple loci. This method allows for higher-
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throughput analysis of chromatin interactions, providing detailed interaction maps within 

selected genomic regions (Dostie et al. 2006). 

Hi-C represents a significant advance in the study of chromatin interactions by 

enabling genome-wide analysis of chromatin conformation. Hi-C captures interactions 

across the entire genome by crosslinking chromatin, digesting the DNA, ligating the 

interacting fragments, and sequencing the resulting chimeric molecules. The resulting 

data are represented as a contact matrix, showing interaction frequencies between all 

pairs of loci in the genome. Hi-C has revealed the presence of TADs, chromatin loops, 

and nuclear compartments, providing a comprehensive view of genome organization 

(Lieberman-Aiden et al. 2009). 

Several advanced versions of Hi-C have been developed to increase resolution or 

focus on specific aspects of genome organization. Micro-C improves the resolution of Hi-

C by using micrococcal nuclease instead of restriction enzymes to digest chromatin, 

allowing for finer mapping of chromatin interactions at the nucleosome level (Hsieh et al. 

2015). HiChIP, on the other hand, combines Hi-C with ChIP-seq to enrich for interactions 

involving specific proteins, such as transcription factors or histone modifications, 

providing targeted insights into protein-mediated chromatin interactions (Mumbach et al. 

2016). These technological advancements have expanded our understanding of 

chromatin architecture and its role in gene regulation, allowing researchers to study 

genome organization at increasingly detailed levels. 

 

Introduction to genome architecture. The organization of chromatin within the nucleus is 

fundamental to its function and regulation (Dekker and Mirny 2016; Ibrahim and Mundlos 
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2020). Chromatin is not randomly arranged but is structured into distinct, higher-order 

features that facilitate its various biological roles (Felsenfeld et al. 1996; Dixon et al. 

2016). The 3D structure of the genome is crucial for the regulation of gene expression 

(Ibrahim and Mundlos 2020). One of the key roles of 3D genome organization is to 

facilitate interactions between regulatory elements, such as enhancers, silencers, and 

insulators, and their target genes. These interactions are essential for the precise control 

of gene expression in response to developmental cues and environmental signals (Dean 

et al. 2021).  

The 3D folding of chromatin brings enhancers into proximity with their target 

promoters, allowing transcription factors and coactivators bound to the enhancer to 

interact with the transcriptional machinery at the promoter (Dekker and Mirny 2016; 

Robson et al. 2019). Similarly, the 3D genome structure can segregate elements 

neighboring insulators into distinct domains, ensuring that enhancers do not activate 

unintended genes and that silencers effectively repress their targets. This spatial 

organization is critical for maintaining proper gene expression patterns and preventing 

aberrant transcription (Ghirlando et al. 2012; Ghirlando and Felsenfeld 2016). Three key 

levels in this organization are chromatin loops, TADs, and nuclear compartments. 

 

Chromatin loops. Chromatin loops are formed and stabilized by protein complexes, such 

as cohesin and CCCTC-binding factor (CTCF), which create physical connections 

between distant genomic regions. The formation of chromatin loops is crucial for 

regulating gene expression by enabling or preventing the interaction between regulatory 

elements and gene promoters (Tolhuis et al. 2002; Nora et al. 2017; Grubert et al. 2020; 
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Misteli 2020; Jerkovic´ and Cavalli 2021). Cohesin plays a central role in loop formation 

through a process known as loop extrusion, where the cohesin complex moves along the 

chromatin fiber, extruding a loop until it is halted by CTCF, which binds to specific DNA 

motifs and acts as a barrier (Sanborn et al. 2015; Fudenberg et al. 2016). This mechanism 

is critical in the formation of topologically associating domains (TADs), which are 

essentially collections of chromatin loops that create self-interacting genomic regions. 

However, other mechanisms also contribute to chromatin looping, such as homotypic 

interactions between transcription factors and adaptor proteins. For example, the LIM 

domain-binding protein 1 (LDB1) can mediate chromatin looping through its interaction 

with multiple transcription factors, bringing distant regulatory elements into proximity 

without involving cohesin or CTCF (Deng et al. 2012; Krivega et al. 2014). 

 

TADs. TADs are segments of the genome that interact more frequently with each other 

than with adjacent regions, creating distinct 3D neighborhoods. TADs are not distinct from 

chromatin loops but rather represent an average of multiple loops created by cohesin and 

CTCF (Dixon et al. 2012). TADs help organize the 3D structure of the genome, ensuring 

that regulatory elements interact with their appropriate target genes while preventing 

inappropriate interactions (Ibrahim and Mundlos 2020; Misteli 2020; Acemel and 

Lupiáñez 2023). Within TADs, interactions between enhancers and promoters are more 

frequent, while interactions between regions in different TADs are relatively rare. This 

compartmentalization ensures that regulatory elements predominantly influence genes 

within the same TAD, contributing to the specificity and robustness of gene regulation. 

Disruptions in TAD boundaries can lead to changes in gene expression and are 
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associated with various diseases, including cancer, congenital disorders as well as 

common disease (Nora et al. 2012; Dixon et al. 2012; Sauerwald et al. 2020; McArthur 

and Capra 2021). The boundaries of TADs are often marked by binding sites for CTCF 

and are conserved across cell types and species, highlighting their functional importance 

in genome regulation (Dixon et al. 2012; Ibrahim and Mundlos 2020; Misteli 2020 p. 333; 

McArthur and Capra 2021; Acemel and Lupiáñez 2023). 

 

Compartmentalization. Compartmentalization contributes to the spatial organization of 

the genome, influencing gene expression patterns (Xiong and Ma 2019; Kim et al. 2020; 

Kamat et al. 2023).. The genome is segregated into active (A compartment) and inactive 

(B compartment) regions, reflecting differences in gene density, chromatin accessibility, 

and transcriptional activity. A compartments, which are gene-rich and transcriptionally 

active, tend to be located toward the interior of the nucleus. In contrast, B compartments 

are gene-poor, transcriptionally inactive, and are more frequently associated with the 

nuclear lamina, a structure at the nuclear periphery that anchors chromatin to the nuclear 

envelope. This association with the nuclear lamina helps to create a repressive 

environment, often seen in lamina-associated domains, which contribute to the radial 

positioning of heterochromatin and late-replicating DNA in the periphery of the nucleus 

(Briand and Collas 2020; Keough et al. 2020; Kamat et al. 2023). Furthermore, the 

compartmentalization of the genome is influenced by subnuclear structures and phase-

separated domains, which can be identified by methods such as Spatial Position 

Inference of the Nuclear genome (SPIN) (Wang et al. 2021). SPIN states help to delineate 

nuclear compartments based on their spatial positioning relative to nuclear structures like 
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speckles and the lamina. For example, certain SPIN states correspond to regions near 

nuclear speckles, which are more active, while others correspond to regions near the 

lamina, which are more repressive (Wang et al. 2021). 

 

Cell-type-specificity. These regulatory mechanisms are often cell-type specific, reflecting 

the unique transcriptional needs and environmental responses of different cell types(Kim-

Hellmuth et al. 2020; Qiu et al. 2021). Understanding how chromatin modifications and 

3D contacts contribute to cell-type-specific gene regulation is essential for elucidating the 

complexities of cellular function and identity (Zheng and Xie 2019; Song et al. 2020; Liu 

et al. 2023). The interplay between these organizational features is crucial for maintaining 

genome integrity and regulating gene expression. Disruptions in chromatin organization 

can lead to mis-regulation of genes and contribute to various diseases, including cancer, 

developmental disorders, and other genetic conditions.  

 

Integrating 3D genome data with phenotypic data. Linking 3D genome data with 

phenotypic outcomes involves integrating chromatin interaction maps with gene 

expression profiles and phenotypic data. This can be achieved through various 

approaches, such as eQTL mapping, GWAS, and multi-omics approaches. 

eQTL mapping identifies genetic variants that influence gene expression levels. By 

combining eQTL data with 3D genome maps, researchers can determine whether 

chromatin interactions affect the regulation of genes associated with specific traits. This 

integration helps to identify the regulatory architecture underlying complex traits and 

diseases, as it links genetic variants to their target genes through chromatin interactions. 
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Studies have shown that many eQTLs are located at or near chromatin interaction sites, 

emphasizing the importance of 3D genome organization in gene regulation (Javierre et 

al. 2016; The GTEx Consortium 2020). 

GWAS identifies genetic variants associated with phenotypic traits across large 

populations. Integrating 3D genome data into GWAS enhances the understanding of how 

non-coding variants affect gene regulation through chromatin interactions. For example, 

GWAS3D uses multiple genome-wide datasets to connect genetic variants with 

underlying regulatory mechanisms by analyzing high-dimensional chromatin interactions. 

This integration provides insights into the regulatory roles of SNPs and helps elucidate 

the mechanisms by which genetic variants contribute to phenotypic diversity and disease 

susceptibility (Li et al. 2013, 2022a). 

Another approach involves fine mapping with epigenetic information and 3D 

structure. Fine mapping using 3D chromatin interaction data is a powerful approach to 

pinpoint causal variants within regions of linkage disequilibrium. This method overlays 

GWAS data with chromatin interaction data to identify how genetic variants affect 

regulatory elements such as promoters and enhancers. This approach helps to identify 

tissue-specific regulatory mechanisms, and the causal variants associated with diseases. 

For example, using 3D chromatin maps, researchers have identified interactions between 

disease-related genes and enhancers, aiding in the fine mapping of complex traits and 

diseases (Hu et al. 2021b; Li et al. 2022b). 

Integrating 3D genome data with other omics data, such as transcriptomics, 

epigenomics, and proteomics, provides a more comprehensive view of gene regulation. 

These multi-omics approaches can reveal how chromatin interactions influence gene 
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expression, epigenetic modifications, and protein production, thereby linking 3D genome 

organization to phenotypic outcomes (Dekker et al. 2013; Dekker and Mirny 2016; Ibrahim 

and Mundlos 2020). Below is a selection of specific examples where 3D changes have 

been linked to phenotype and disease.  

 

Limb malformations. Disruptions in TAD boundaries have been linked to limb 

malformations (Boyling et al. 2022; Weischenfeldt and Ibrahim 2023). For instance, 

structural variants that alter TAD boundaries can lead to ectopic enhancer-promoter 

interactions, resulting in misexpression of genes critical for limb development. This mis-

regulation can cause congenital limb malformations (Lupiáñez et al. 2015). 

 

Cancer. Chromatin loops involving oncogenes have been associated with various 

cancers (Boyling et al. 2022; Weischenfeldt and Ibrahim 2023). For example, the 

formation of new chromatin loops can bring enhancers in proximity to oncogenes, driving 

their overexpression and contributing to tumorigenesis. Understanding these interactions 

provides insights into the mechanisms of cancer development and potential therapeutic 

targets (Hnisz et al. 2016; Jablonski et al. 2021). 

 

Neurodevelopmental disorders. Changes in 3D genome organization have also been 

implicated in neurodevelopmental disorders (Sánchez-Gaya et al. 2020; Hu et al. 2021a; 

Boyling et al. 2022; Weischenfeldt and Ibrahim 2023). For example, alterations in 

chromatin architecture at loci containing neurodevelopmental genes can affect their 

expression, leading to disorders such as autism and intellectual disability (Werling et al. 
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2016). These findings emphasize the importance of 3D genome studies in understanding 

the genetic basis of complex neurological conditions. 

 

Conclusion 

The study of 3D genome folding has unveiled critical insights into the structural 

organization of chromatin and its profound implications for gene regulation and 

phenotypic expression. The intricate architecture, comprising chromatin loops, TADs, and 

nuclear compartments, orchestrates the spatial proximity of regulatory elements and their 

target genes, thereby fine-tuning gene expression in response to various biological cues. 

Experimental techniques such as Hi-C and its variants, along with integrative 

computational approaches combining 3D genome data with eQTL mapping and GWAS, 

have significantly enhanced our understanding of the functional landscape of the genome. 

Studies highlighting the role of 3D genome changes in limb malformations, cancer, 

and neurodevelopmental disorders further emphasize the crucial link between genome 

architecture and health. The ongoing integration of 3D genome data with multi-omics 

approaches promises to provide deeper insights into the molecular mechanisms 

underlying complex traits and diseases, paving the way for innovative therapeutic 

strategies and personalized medicine. 

The continued exploration of 3D genome folding not only enriches our 

comprehension of genetic regulation but also holds the potential to unlock new frontiers 

in biomedical research, fostering a holistic understanding of the genome's dynamic and 

multifaceted nature. 
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Evolution of Gene Regulatory Functions 

Evolutionary conservation of regulatory elements 

Comparative genomics is a powerful approach used to identify conserved regulatory 

elements across different species. By comparing genomes, researchers can pinpoint 

sequences that have been preserved throughout evolution, suggesting they play crucial 

roles in essential functional processes, like gene regulation. This method helps to 

understand the evolutionary pressures acting on regulatory elements and provides 

insights into their functions. It is important to distinguish between sequence conservation 

and functional conservation. While some regulatory elements show high sequence 

conservation, others may exhibit conservation at the functional level despite sequence 

divergence. For instance, enhancers that regulate the expression of key developmental 

genes can maintain their regulatory functions even if their sequences evolve (Woolfe et 

al. 2004; Pennacchio et al. 2006). 

Several techniques are employed in comparative genomics to identify conserved 

regulatory elements. Multiple sequence alignment involves aligning DNA sequences from 

different species to identify regions of similarity. Conserved sequences are often indicative 

of important regulatory elements. For example, the use of tools like MULTIZ and Clustal 

Omega allows researchers to perform high-quality multiple sequence alignments, 

revealing conserved regions that may function as enhancers or promoters (Blanchette et 

al. 2004; Pollard et al. 2006a; Sievers et al. 2011). In the UCSC Genome Browser, multiple 

sequence alignment methods are commonly used to compare genomes across different 

species. The browser utilizes tools like MULTIZ, TBA (Threaded Blockset Aligner), and 
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Cactus for genome alignments (Blanchette et al. 2004; Armstrong et al. 2020; Nassar et 

al. 2022). MULTIZ aligns multiple genomes by iteratively combining pairwise alignments 

and refines these alignments into blocks of highly conserved sequences (Blanchette et 

al. 2004). These blocks are then visualized to highlight conserved regulatory elements 

across species, aiding in the identification of functionally important genomic regions. 

Multiple sequence alignment is an early step in identifying regions of similarity 

across species, but the recognition of conserved regulatory elements often requires 

further analysis using more specialized tools. As the field has developed, additional tools 

have emerged to build on the results of multiple sequence alignments. Methods such as 

PhyloP and PhastCons, part of the PHAST (Phylogenetic Analysis with Space/Time 

models) suite, have become instrumental in detecting evolutionary conservation across 

genomes, particularly by assessing conservation across individual nucleotide positions 

and entire genomic regions. These tools help to identify functional elements by 

distinguishing them from neutrally evolving sequences (Siepel et al. 2005; Pollard et al. 

2010). 

 

Conserved regulatory elements. Recent advancements have improved our ability to 

identify conserved non-coding elements (CNEs). It is also important to recognize that 

many conserved elements identified in genome-wide studies are exons, which are critical 

not only for protein coding but can also have regulatory functions (Margulies et al. 2007). 

Early work demonstrated the significance of CNEs in regulatory functions through 

comparative genomics, showing their importance in gene regulation and evolutionary 

conservation (Bejerano et al. 2004; Siepel et al. 2005). The Zoonomia Consortium has 



26 

 

expanded on these efforts, using large-scale comparative genomics to identify and 

analyze CNEs across multiple species, providing further insights into how these 

conserved regions contribute to regulatory landscapes (Genereux et al. 2020). 

Phylogenetic footprinting identifies regulatory elements by comparing these non-

coding regions across multiple species. Regions that are highly conserved are likely to 

have regulatory functions (Blanchette and Tompa 2002; Ganley and Kobayashi 2007). 

Studies using phylogenetic footprinting have successfully identified conserved enhancers 

in the genomes of mammals, birds, and fish (Tagle et al. 1988; Loots et al. 2000). More 

recent advancements, such as the integrative framework for phylogenetic footprinting, 

have enhanced the accuracy and applicability of this method by optimizing orthologous 

data selection and reducing false positives (Glenwinkel et al. 2014; Liu et al. 2016). 

Promoters with conserved sequences and regulatory functions are also common. 

The promoter regions of housekeeping genes, which are required for basic cellular 

functions, tend to be highly conserved. For example, the promoter of the ribosomal RNA 

(rRNA) gene is conserved across different species, reflecting its essential role in ribosome 

biogenesis (Paule and White, 2000). 

Many enhancers are conserved across species, indicating their essential 

regulatory roles. For example, the Sonic hedgehog (Shh) limb enhancer is highly 

conserved among vertebrates and plays a critical role in limb development (Lettice et al. 

2002). Similarly, the even-skipped (eve) stripe 2 enhancer is conserved between 

Drosophila species and is crucial for proper segmentation during embryogenesis (Ludwig 

et al. 1998). Enhancers from the sponge Amphimedon queenslandica were shown to 

drive consistent, cell type-specific gene expression in zebrafish and mouse embryos, 
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despite the lack of sequence similarity. This study highlights the ancient and conserved 

nature of enhancer regulatory codes across the animal kingdom (Wong et al. 2020). An 

analysis of conserved non-coding elements in the genomes of 29 mammals identified 

thousands of conserved enhancers. While many of these enhancers are involved in 

developmental processes and exhibit high sequence conservation, there is significant 

turnover of enhancers between species. This turnover highlights the dynamic evolutionary 

changes in regulatory landscapes, suggesting that some enhancers are crucial for 

regulating key developmental genes, while others evolve rapidly to meet species-specific 

regulatory needs (Villar et al. 2015). 

 

Divergence of regulatory elements. Regulatory element divergence plays a role in 

adaptation and survival. Changes in regulation can contribute to fitness and 

environmental adaptability. For instance, regulatory elements diverge between humans 

and rhesus macaques due to changes in both cis and trans, contributing to species-

specific regulatory programs and adaptation (Hansen et al. 2023). Other studies have 

used CRISPR-based screens to map the functional impact of non-coding regulatory 

elements, highlighting their role in immune cell function and disease susceptibility 

(Catalinas et al. 2023). Other studies have shown that changes in regulatory regions can 

result in observable traits such as limb development, pigmentation, and morphological 

variations (Carroll 2008). For example, the divergence of regulatory elements has been 

linked to changes in the expression of genes involved in the development of specific 

morphological traits in various species (Wong et al. 2020). 



28 

 

Understanding how changes in regulatory elements drive species-specific traits 

and adaptations is crucial for elucidating the mechanisms behind evolutionary processes. 

These changes can provide insights into how different species develop unique 

characteristics and adapt to their environments. For example, human accelerated regions 

(HARs) are sequences that are conserved in vertebrates but show rapid evolution in 

humans. These regions, such as HAR2 are potentially involved in human-specific 

development in the limbs and brain (Pollard et al. 2006c, 2006b; Bird et al. 2007; 

Prabhakar et al. 2008; Capra et al. 2013). Recent studies have confirmed that HARs often 

function as enhancers that regulate neurodevelopmental genes, playing a significant role 

in human brain evolution (Capra et al. 2013; Whalen and Pollard 2022; Whalen et al. 

2023). These regions have been found to influence the expression of genes involved in 

neurogenesis and synaptic transmission, thereby contributing to the development of 

human-specific cognitive traits (Girskis et al. 2021; Whalen et al. 2023; Keough et al. 

2023; Pal et al. 2024). 

Human-specific deletions in conserved non-coding regions (hCONDELs) have 

been shown to affect regulatory elements that are conserved in other species, 

contributing to human-specific traits (McLean et al. 2011). Recent work has further 

explored these hCONDELs by examining conserved regions across diverse vertebrate 

genomes. They showed that hCONDELs are enriched in regions associated with 

neuronal and cognitive functions. Functional assessments revealed that many 

hCONDELs perturb transcription factor-binding sites in active enhancers, with some 

inducing gains of regulatory activity, particularly in genes related to neurodevelopment 

(Xue et al. 2023). 
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Mechanisms of regulatory evolution 

Sequence motifs. Evolutionary changes in transcription factor binding sites can 

significantly alter regulatory activity. The gain or loss of binding sites contributes to gene 

expression divergence, which can contribute to phenotypic variations among species 

(Dowell 2010; Diehl and Boyle 2018). Transcription factor binding sites in mammalian 

genomes exhibit both evolutionary conservation and divergence, reflecting their critical 

roles in maintaining and modifying gene regulatory networks (Schmidt et al. 2010; Villar 

et al. 2015).  

 

Chromatin accessibility. Chromatin dynamics contribute to regulatory evolution, as open 

chromatin regions correlate with active regulatory elements. However, closed chromatin 

regions that change across species also play a significant role, potentially indicating 

regions of repressive regulation that have evolved differently in various lineages (Gao et 

al. 2018; Peng et al. 2019). Variations in chromatin accessibility across different tissues 

and developmental stages provide insights into the role of chromatin dynamics in 

regulatory element function and evolution (Buenrostro et al. 2013; Corces et al. 2017; 

Gao et al. 2018). For instance, studies have shown that changes in chromatin 

accessibility in brain tissue between humans and chimpanzees are linked to differences 

in enhancer activity, which may contribute to species-specific cognitive traits (Prescott et 

al. 2015). Additionally, research comparing the chromatin landscapes of various 

mammalian tissues has demonstrated that shifts in accessibility are often associated with 

species-specific adaptations and evolutionary innovations (Degner et al. 2012; Shibata et 

al. 2012). 
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Epigenetic modifications. Epigenetic changes to DNA methylation and histone 

modifications are essential mechanisms that impact regulatory element activity. These 

modifications are associated with the underlying DNA sequences and influence gene 

expression across generations, playing a critical role in evolutionary processes. DNA 

methylation typically represses gene activity by adding methyl groups to cytosine 

residues, leading to a closed chromatin conformation. Histone modifications, such as 

acetylation and methylation, can either activate or repress gene expression depending 

on the specific modification and its context. The dynamic landscape of DNA methylation 

in the human genome reveals extensive variation in methylation patterns across different 

cell types and developmental stages. Comprehensive maps of human epigenomes 

highlight the evolutionary significance of epigenetic modifications in regulating gene 

expression and contributing to phenotypic diversity (Ziller et al. 2013; Roadmap 

Epigenomics Consortium et al. 2015). Recent studies have expanded our understanding 

of these mechanisms, demonstrating their roles in the evolution of regulatory elements in 

response to environmental factors and developmental processes (Reilly and Noonan 

2016). 

 

Regulatory variation in diverse human populations 

In addition to understanding how regulatory changes drive differences between species, 

it is equally important to study how such variations occur within a species. GWAS have 

identified numerous regulatory variants associated with complex traits and diseases, such 

as height, obesity, and coronary artery disease (Chatterjee and Ahituv 2017). These 
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variants often lie in non-coding regions and influence phenotypes by affecting gene 

expression. For instance, variants in the FTO gene are associated with obesity, while 

those in the 9p21 region are linked to coronary artery disease, despite the absence of 

any known genes in that region (Maurano et al. 2012; Zhang and Lupski 2015; Finucane 

et al. 2015). 

Different populations exhibit unique regulatory variants that contribute to 

phenotypic diversity. A notable example is the TRPM8 gene variant, which helps North 

Europeans adapt to cold temperatures but also increases susceptibility to certain 

conditions. This variant illustrates how population-specific regulatory elements can drive 

adaptation to local environments while influencing health (Chun and Fay 2011; Key et al. 

2018). 

Recent studies on diverse human populations have uncovered regulatory variants 

that influence chromatin accessibility and gene expression. These findings highlight the 

importance of genetic diversity in understanding phenotypic variation. For example, fine-

mapping studies of cis-regulatory variants in different populations have revealed how 

these variants contribute to phenotypic traits and disease susceptibility (Degner et al. 

2012; Tehranchi et al. 2019). 

 

Disease implications of regulatory disruption 

Mutations in regulatory elements, such as enhancers and promoters, can lead to mis-

regulation of gene expression, contributing to various diseases. For example, mutations 

in enhancers have been linked to cancer, cardiovascular diseases, and 
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neurodevelopmental disorders (Sanyal et al. 2012; Chatterjee and Ahituv 2017; Maurya 

2021). The disruption of these regulatory elements can cause aberrant gene expression, 

resulting in disease phenotypes. Recent studies have identified non-coding mutations 

associated with increased disease susceptibility and severity, underscoring the critical 

role of regulatory elements in maintaining normal cellular function (Quang et al. 2015; 

Zhang and Lupski 2015; Chatterjee and Ahituv 2017). GWAS have identified thousands 

non-coding variants associated with complex diseases. These variants often lie in 

regulatory regions, highlighting the importance of regulatory elements in disease etiology 

(Maurano et al. 2012; Finucane et al. 2015).  

 

Impact of evolution on 3D genome structure 

The 3D structure of the genome is shaped by evolutionary forces that act on both 

sequence and structural features, leading to conservation and divergence in genome 

folding patterns across species. Understanding these evolutionary changes provides 

insights into the functional constraints and adaptive flexibility of chromatin organization. 

Several studies have highlighted the role of 3D genome organization in 

evolutionary processes. For instance, in the cotton tribe (Gossypieae), genomic 

rearrangements have been linked to changes in 3D chromatin topologies, influencing 

gene regulation and species-specific traits (Li et al. 2022a). Similarly, research on 

vertebrates has shown that differences in chromosome length and organization can affect 

3D genome structure, impacting the frequency of long-range chromatin interactions and 

gene regulation (Li et al. 2022a). 
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Comparative genomics studies have revealed that certain aspects of 3D genome 

organization, such as TADs and specific chromatin loops, are highly conserved across 

species. For example, many TAD boundaries are preserved between humans and mice, 

suggesting that these structural features play essential roles in regulating gene 

expression and maintaining genome integrity. The conservation of these elements implies 

strong evolutionary constraints, likely due to their critical function in coordinating 

regulatory interactions and gene expression (Dixon et al. 2012). TAD boundaries that are 

stable across multiple cell types have been shown to be evolutionarily constrained and 

enriched for heritability. These stable TAD boundaries are associated with higher levels 

of CTCF binding and are enriched for housekeeping genes, suggesting their crucial role 

in maintaining genome function. This stability and heritability underscore the functional 

importance of these boundaries and their role in genome organization and regulation 

(McArthur and Capra 2021). 

Despite the conservation of certain elements, there are also significant differences 

in genome folding patterns between species. These differences can arise from species-

specific regulatory needs and adaptations. For instance, variations in enhancer-promoter 

interactions and the arrangement of regulatory elements reflect the unique evolutionary 

pressures and functional requirements of different organisms. These species-specific 

features highlight the adaptive potential of genome architecture and its role in facilitating 

diverse regulatory landscapes (Li et al. 2022a). A study on HARs, which are conserved 

genomic loci that evolved rapidly in the human lineage, reveals significant insights into 

genome folding and regulatory evolution. Using deep learning combined with chromatin 

capture experiments, researchers discovered that HARs are enriched in TADs with 
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human-specific genomic variants that alter 3D genome organization. This rewiring of 

regulatory interactions between HARs and neurodevelopmental genes suggests that 

enhancer hijacking may explain the rapid evolution of HARs, contributing to human-

specific traits (Keough et al. 2023). 

 

DNA Sequence-Based Machine Learning 

Historical context and motivation 

Early attempts to use machine learning in genomics faced significant challenges due to 

limited data and computational power. Initial models were often simplistic and struggled 

with the complexity of genomic data. Tasks such as predicting gene function or expression 

levels and protein structure were limited by the availability of using smaller models and 

datasets. Initial applications included the use of Hidden Markov Models (HMMs) for gene 

prediction and identifying protein secondary structures, as well as naive Bayes classifiers 

and two-layer Bayesian neural networks (BNNs) that utilized sequence-based features 

(Krogh et al. 1994; Baldi and Brunak 2001; Ding et al. 2012). Another early application 

involved the identification of transcription start sites and splice sites, which demonstrated 

the potential of machine learning to handle genomic data (Burge and Karlin 1997; 

Degroeve et al. 2002). The use of support vector machines (SVMs) and neural networks 

for these tasks further highlighted the growing utility of machine learning in genomics 

(Furey et al. 2000; Zhang 2002; Sonnenburg et al. 2006). The development of ensemble 

methods and decision trees for classifying gene expression data also played a significant 

role in early machine learning applications (Breiman 2001; Huang et al. 2010; Libbrecht 
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and Noble 2015; Angermueller et al. 2016), further laying the groundwork for more 

advanced techniques. 

The motivations for using machine learning in genomics were driven by several 

factors. The explosive growth in genomic data, particularly from projects like the Human 

Genome Project and various GWAS, created a need for advanced computational tools to 

analyze this type of data effectively (Collins and Fink 1995; Sollis et al. 2023). Machine 

learning provided a means to improve predictions of gene expression, identify regulatory 

elements, and understand the effects of genetic variants on phenotypes. Advances in 

computational power, algorithm development, and the availability of large annotated 

genomic datasets further supported the integration of machine learning into genomics, 

enabling researchers to tackle previously intractable problems (Libbrecht and Noble 

2015; Angermueller et al. 2016). The high-dimensionality and complexity of genomic data, 

which traditional statistical methods struggled to manage, necessitated the use of more 

sophisticated machine learning approaches (Libbrecht and Noble 2015; Angermueller et 

al. 2016). Furthermore, integrating various types of genomic data, such as sequence 

data, expression data, and epigenetic data, became essential to provide a comprehensive 

understanding of gene regulation and function (Ritchie et al. 2015; Libbrecht and Noble 

2015). There was also a growing recognition that non-coding regions of the genome play 

critical roles in gene regulation, requiring advanced tools to decipher their functions 

(ENCODE Project Consortium 2012; Roadmap Epigenomics Consortium et al. 2015; 

Davis et al. 2018; ENCODE Project Consortium et al. 2020). 
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Types of machine learning models 

Supervised learning involves training models on labeled datasets where each input is 

paired with a known output. This approach is commonly used for tasks such as 

classification and regression, where the goal is to predict specific outcomes based on 

input features. In genomics, supervised learning is applied to tasks like predicting 

transcription factor binding sites and identifying regulatory elements (Zeng et al. 2016; 

Schrider and Kern 2018; Smith et al. 2023). Common algorithms used in supervised 

learning for genomics include decision trees, K-nearest neighbors, SVMs, logistic 

regression, and neural networks (Libbrecht and Noble 2015; Angermueller et al. 2016). 

Convolutional neural networks (CNNs) are a type of neural network architecture 

that is particularly effective for supervised learning tasks, such as identifying patterns in 

DNA sequences that predict transcription factor binding sites and DNA-protein 

interactions (Zeng et al. 2016; Kelley et al. 2016, 2018). CNNs have also been used to 

predict 3D genome folding from DNA sequences, highlighting the importance of 

nucleotide-level features and enabling rapid in silico predictions (Fudenberg et al. 2020; 

Schwessinger et al. 2020).  

In contrast, unsupervised learning involves training models on unlabeled datasets 

to uncover hidden patterns or structures without predefined labels. This method is used 

for tasks such as clustering, dimensionality reduction, and association. In genomics, 

unsupervised learning is used to cluster gene expression profiles and discover new 

regulatory motifs (Oyelade et al. 2016). Common unsupervised learning algorithms 

include K-means clustering, hierarchical clustering, PCA, and neural networks as 

autoencoders (Libbrecht and Noble 2015). 
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Applications in genomic regulation 

Predicting gene expression. Understanding gene expression patterns is crucial for 

deciphering biological processes and disease mechanisms. Gene expression levels can 

reveal insights into cellular functions, tissue differentiation, and the molecular basis of 

diseases. Predicting gene expression can aid in the development of novel therapeutics 

by identifying target genes and pathways involved in disease. Moreover, accurate 

prediction models can facilitate personalized medicine by tailoring treatments based on 

individual gene expression profiles (Libbrecht and Noble 2015; Sasse et al. 2023). 

Recent advances in predicting gene expression include the development of CNN-

based models such as ExPecto, BigRNA, Xpresso, Basenji and Basenji2, which have 

significantly improved the accuracy of these predictions (Kelley et al. 2018; Zhou et al. 

2018; Agarwal and Shendure 2020; Kelley 2020; Celaj et al. 2023). Enformer, another 

deep learning model, leverages both proximal and distal regulatory elements for gene 

expression prediction (Avsec et al. 2021a). Additionally, multi-task learning frameworks 

like MTM are capable of predicting individualized tissue-specific gene expression profiles, 

which enhances personalized medicine approaches (He et al. 2023). 

 

Predicting regulatory mechanisms. Machine learning models have become invaluable 

tools in genomics, particularly for predicting regulatory mechanisms. These models, 

trained on epigenomic data, are adept at identifying enhancers and transcription factor 

binding sites, including genetic variants that impact chromatin accessibility and 3D 

conformation (Zeng et al. 2016; Kelley et al. 2016, 2018; Fudenberg et al. 2020; 

Schwessinger et al. 2020; Zhou 2021; Smith et al. 2023). Analyzing large datasets with 
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machine learning leads to the discovery of complex patterns and interactions that 

traditional methods might miss. This capability is crucial for understanding gene 

regulation at a detailed level, enabling researchers to predict how changes in DNA 

sequences can affect gene expression and ultimately influence phenotypes. Moreover, 

these predictions assist in identifying potential therapeutic targets and understanding 

disease mechanisms, making machine learning a powerful ally in precision medicine and 

functional genomics. This section includes descriptions of a non-exhaustive set of exciting 

applications of machine learning models to regulatory genetic data.  

High-throughput methods like Massively Parallel Reporter Assays (MPRA) are 

frequently used for the functional validation of predicted regulatory elements, providing 

critical insights into enhancer activity. These assays allow for the parallel measurement 

of thousands of sequences, helping to identify which DNA elements can drive gene 

expression (Smith et al. 2023; Gosai et al. 2023). The Malinois CNN model exemplifies 

this application of machine learning. It predicts enhancer activity by modeling MPRA 

results, thereby enhancing the prediction of regulatory elements from sequence data 

(Gosai et al. 2023). Additionally, Malinois can design synthetic cis-regulatory elements, 

leveraging unique sequence syntax to promote activity in target cell types while reducing 

off-target effects. MPRA-DragoNN is another model that uses deep neural networks to 

predict the activity of regulatory elements from MPRA data, further demonstrating the 

utility of machine learning in understanding enhancer landscapes (Movva et al. 2019; 

Whalen et al. 2023; Deng et al. 2024). This integration of machine learning and high-

throughput validation techniques highlights the power of combining computational and 

experimental approaches to decode the complexities of the genome. 
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Accurate prediction of transcription factor binding sites (TFBSs) is crucial for 

understanding gene regulation and its implications for cellular function and disease. 

Machine learning models, particularly those based on deep learning, have significantly 

advanced the prediction of TFBSs by leveraging large datasets and complex algorithms. 

Recent models have employed various innovative techniques to enhance the accuracy 

and interpretability of TFBS predictions. For example, DeepSTF integrates CNNs, an 

improved transformer encoder structure, and bidirectional long short-term memory 

(LSTM) networks. By combining DNA sequence and multiple types of DNA shape 

information, DeepSTF outperforms several state-of-the-art predictors in identifying 

TFBSs (Ding et al. 2023). Similarly, DNABERT-Cap, a transformer-based capsule 

network, uses bidirectional encoders to predict TFBSs. This model has shown high 

performance across multiple cell lines and provides robust cross-cell predictions, 

demonstrating its versatility and accuracy (Ji et al. 2021; Ghosh et al. 2024). Another 

example is DeepGenBind, a deep learning model specifically designed for predicting TF 

binding sites. It utilizes a dense neural network architecture to capture the complex 

interactions between TFs and DNA sequences, improving the understanding of 

transcriptional regulation (Wang et al. 2022).  

Machine learning models have become pivotal in predicting chromatin accessibility 

and histone modifications, which are essential for understanding gene regulation. These 

models leverage large datasets from assay for transposase-accessible chromatin 

(ATAC)-seq and chromatin immune-precipitation (ChIP)-seq experiments to analyze the 

state of chromatin and predict how genetic variants can influence regulatory regions. 
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One notable model is the Basset framework, which uses CNNs to learn the 

regulatory code of the accessible genome. Basset has shown great accuracy in predicting 

chromatin accessibility across different tissues by analyzing sequence data (Kelley et al. 

2016). Similarly, ExplaiNN combines the expressiveness of CNNs with the interpretability 

of linear models, making it possible to predict TF binding, chromatin accessibility, and de 

novo motifs while providing insights into model predictions (Novakovsky et al. 2023). 

 

Predicting 3D genome structure. In recent years, several machine learning methods for 

predicting 3D genome chromatin contact maps from sequence have been published. 

These include Akita and DeepC with similar CNN architectures to predict 1 Mb windows 

of contacts, and Orca with a hierarchical encoder/decoder structure to predict multi-range 

contacts from 1 to 256 Mb (Fudenberg et al. 2020; Schwessinger et al. 2020; Zhou 2021). 

Currently we have access large amounts of publicly available sequence data from 

hundreds of thousands of individuals, but only a handful of Hi-C maps. Thus, predicting 

Hi-C maps from sequence is a promising avenue to computationally close the gap in our 

understanding of 3D genome diversity. I use Akita, because it requires only sequence 

information as input, it has a flexible architecture, and I am supported by the original 

developers. Other methods for making cell-type specific predictions exist but they require 

additional genomic information beyond sequence. This approach enabled me to quantify 

the diversity of 3D genome organization and its contribution to both rare and common 

phenotypes, without the need for costly, time-consuming chromatin interaction assays 
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Recent advances 

Accuracy and interpretability. Recent advancements in machine learning algorithms have 

significantly enhanced the accuracy and interpretability of DNA sequence-based models. 

The introduction of deep learning models, such as Enformer and BPNet, has 

revolutionized the field by providing more precise predictions of gene expression and 

transcription factor binding. Enformer uses a multi-scale architecture and showed 

advancements in capturing both local and distal regulatory elements, achieving state-of-

the-art performance in predicting gene expression (Avsec et al. 2021a). Similarly, BPNet, 

which employs deep CNNs, has demonstrated superior accuracy in identifying 

transcription factor binding sites and elucidating regulatory grammar (Avsec et al. 2021b). 

Improvements in the interpretability of machine learning models have been crucial 

for using machine learning in genomics. One notable development is the application of 

SHAP (SHapley Additive exPlanations) values, which provide a unified framework to 

interpret model predictions by assigning importance scores to input features(Lundberg 

and Lee 2017). This method allows researchers to pinpoint specific nucleotide sequences 

that influence gene expression predictions, thereby linking genetic variants to potential 

functional outcomes (Levy et al. 2020; Tasaki et al. 2020; Yap et al. 2021). Another 

significant improvement is the use of attention mechanisms in transformer-based models 

like Enformer. These mechanisms enable models to attend to relevant regions of the input 

sequence, offering insights into the regulatory elements that contribute to gene 

expression changes. By visualizing which parts of the sequence the model focuses on, 

researchers can better understand the underlying biological processes (Avsec et al. 

2021a). 
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Generalizability. Recent advancements in the generalizability of machine learning models 

have significantly impacted the field of genomics. One key strategy has been the inclusion 

of diverse and large-scale datasets. A growing body of research has shown that models 

trained on data from a wide range of populations perform better across different genetic 

backgrounds. For instance, initiatives like the HGDP, 1KG and SGDP have provided 

valuable data that has been instrumental in training models capable of capturing the 

genetic diversity present across populations (Cavalli-Sforza 2005; 1000 Genomes Project 

Consortium et al. 2015; Mallick et al. 2016). These datasets have been crucial for 

developing models that can accurately predict genetic risk across different ancestries, 

which is essential for equitable healthcare (Wojcik et al. 2019). 

Another approach to enhancing generalizability involves developing ancestry-

aware models. These models are specifically designed to account for population 

stratification, which can bias predictions if not properly addressed. This approach 

addresses the long-standing issue of the underrepresentation of non-European 

populations in genetic studies and has shown promising results in improving prediction 

accuracy for diseases like Alzheimer's (Martin et al. 2017, 2019; Gyawali et al. 2023). 

DisPred, for example, separates ancestry from phenotype-specific information, improving 

prediction accuracy without requiring self-reported ancestry data (Gyawali et al. 2023). 

Applied to Alzheimer's disease genetics, DisPred outperformed existing models, 

demonstrating better prediction accuracy for minority populations. The framework's ability 

to handle individual-level heterogeneity highlights its potential for more equitable genetic 

risk assessments across diverse ancestries. 
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Recent advancements in transfer learning allow models trained on extensive 

datasets to be adapted for smaller, diverse datasets, improving their predictive 

performance. For instance, Enformer uses transfer learning to integrate both proximal 

and distal regulatory elements. By leveraging pre-trained representations on large-scale 

genomic datasets, Enformer captures complex long-range interactions and improves 

gene expression predictions across various cell types and conditions (Avsec et al. 2021a). 

This approach allows the model to apply learned features from one dataset to new, less 

annotated datasets effectively. Additionally, transfer learning has advanced genetic risk 

prediction across diverse populations. Recent studies have shown that transfer learning 

frameworks can leverage large European-ancestry dominated GWAS to pretrain and be 

fine-tuned to increase performance of genetic risk prediction in non-European cohorts 

(Tian et al. 2022; Zhao et al. 2022). These developments underscore the effectiveness of 

transfer learning in making genomic models more robust and adaptable across varied 

datasets and conditions. 

Despite these advances, significant challenges remain in ensuring the 

generalizability of machine learning models in genomics. One of the key issues is the 

need for more comprehensive and inclusive datasets that capture the full spectrum of 

human genetic diversity. Additionally, there is a growing recognition of the importance of 

incorporating environmental and lifestyle factors into models to better understand gene-

environment interactions. Future research is likely to focus on integrating multi-omics data 

and improving the interpretability of models to ensure they are not only accurate but also 

applicable across different populations and contexts. 
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Conclusion 

The history of machine learning models in genomics has been marked by significant 

advancements, addressing early challenges of limited data and computational power. 

Initial models like Hidden Markov Models and naive Bayes classifiers laid the groundwork, 

demonstrating the potential of machine learning in genomics. Today, advanced models 

such as Enformer and BPNet offer high accuracy and interpretability, leveraging deep 

learning architectures and interpretability tools like SHAP values. Improvements in 

generalizability through diverse datasets and population-specific models ensure robust 

applications across varied genetic backgrounds. These developments collectively 

enhance our understanding of gene regulation and pave the way for breakthroughs in 

personalized medicine and functional genomics. 

 

Conclusion 

Innovation 

I use machine learning to predict 3D chromatin conformation from genome sequence to 

understand its diversity in modern humans and across cell-types. I have generated 3D 

genome maps across much of the diversity of modern humans by leveraging a sequence-

based prediction framework. My results establish the baseline distribution of 3D genome 

structure and variation. This allows for interrogation of potentially disease implicated 

divergences and inform interpretation of changes to the 3D genome during development. 

Beyond making predictions on observed variation, I also to selectively mutate individual 

base pairs to observe their impact on the predicted contact maps. 
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Significance  

The study of 3D genome folding has unveiled critical insights into the structural 

organization of chromatin and its implications for gene regulation and phenotypic 

expression. The intricate architecture, comprising chromatin loops, TADs, and nuclear 

compartments, orchestrates the spatial proximity of regulatory elements and their target 

genes, thereby fine-tuning gene expression in response to various biological cues. 

Advanced techniques such as Hi-C and its variants, along with integrative approaches 

combining 3D genome data with eQTL mapping and GWAS, have significantly enhanced 

our understanding of the functional landscape of the genome. 

Moreover, the evolutionary conservation and divergence of 3D genome structures 

across species underscore the adaptive potential and functional constraints of chromatin 

organization. Studies highlighting the role of 3D genome changes in limb malformations, 

cancer, and neurodevelopmental disorders further emphasize the crucial link between 

genome architecture and health. The ongoing integration of 3D genome data with multi-

omics approaches promises to provide deeper insights into the molecular mechanisms 

underlying complex traits and diseases, paving the way for innovative therapeutic 

strategies and personalized medicine. 

The continued exploration of 3D genome folding not only enriches our 

comprehension of genetic regulation but also holds the potential to unlock new frontiers 

in biomedical research, fostering a holistic understanding of the genome's dynamic and 

multifaceted nature. 
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CHAPTER 2: MACHINE LEARNING REVEALS THE DIVERSITY OF HUMAN 3D 

CHROMATIN CONTACT PATTERNS 

Abstract 

Understanding variation in chromatin contact patterns across diverse humans is critical 

for interpreting non-coding variants and their effects on gene expression and phenotypes. 

However, experimental determination of chromatin contact patterns across large samples 

is prohibitively expensive. To overcome this challenge, we develop and validate a 

machine learning method to quantify the variation in 3D chromatin contacts at 2 kilobase 

resolution from genome sequence alone. We apply this approach to thousands of human 

genomes from the 1000 Genomes Project and the inferred hominin ancestral genome. 

While patterns of 3D contact divergence genome-wide are qualitatively similar to patterns 

of sequence divergence, we find substantial differences in 3D divergence and sequence 

divergence in local 1 megabase genomic windows. In particular, we identify 392 windows 

with significantly greater 3D divergence than expected from sequence. Moreover, for 31% 

of genomic windows, a single individual has a rare divergent 3D contact map pattern. 

Using in silico mutagenesis we find that most single nucleotide sequence changes do not 

result in changes to 3D chromatin contacts. However, in windows with substantial 3D 

divergence just one or a few variants can lead to divergent 3D chromatin contacts without 

the individuals carrying those variants having high sequence divergence. In summary, 

inferring 3D chromatin contact maps across human populations reveals variable contact 

patterns. We anticipate that these genetically diverse maps of 3D chromatin contact will 
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provide a reference for future work on the function and evolution of 3D chromatin contact 

variation across human populations. 

 

Introduction 

Genetic and transcriptomic variation within and between human populations is extensive, 

and much of the phenotypic diversity across humans is the result of non-protein-coding 

variation (Storey et al. 2007; Ho et al. 2008; Novembre et al. 2008; Alemu et al. 2014; 

1000 Genomes Project Consortium et al. 2015; Mallick et al. 2016; ENCODE Project 

Consortium et al. 2020; The GTEx Consortium 2020). However, given the complex and 

incompletely understood control of gene regulation, linking non-coding variants to effects 

on gene expression and phenotypes remains challenging (Schipper and Posthuma 2022). 

Nonetheless, given the importance of variation in gene expression, quantifying the effects 

of non-coding genetic variants is key to advancing our understanding of gene regulation 

and disease. 

 The 3D spatial organization of chromosomes within the nucleus influences gene 

expression regulation through enhancer modulated transcription (Tolhuis et al. 2002; Tang 

et al. 2015). Quantifying 3D chromatin contact patterns has provided insights into 

chromatin structure and interactions within the nucleus (Dekker et al. 2017, 2023). For 

example, disruption of the structural organization and contacts of distal regulatory 

elements within the genome has been linked to complex diseases and genomic 

rearrangements, such as those observed in certain cancers (Roix et al. 2003; Zhang et 
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al. 2012; Maurano et al. 2012). Despite its importance, our knowledge of the breadth of 

3D genome variation across humans is limited. 

Previous studies have shown that 3D chromatin contact varies both within and 

among populations (McArthur et al. 2022; Li et al. 2023). However, experimental 

determination of chromatin interactions at large scale is expensive, especially at high 

enough spatial resolution to reveal differences in contacts between specific regulatory 

elements. This has limited the extent to which chromatin contact variation has been 

studied across individuals; often a single map is used to represent all individuals. Recent 

advances in machine learning methods have enabled the prediction of 3D genome 

chromatin contact maps from DNA sequences (Fudenberg et al. 2020; Schwessinger et 

al. 2020; Zhou 2021). These methods predict 3D chromatin contact based solely on 

sequence information, offering a promising approach to computationally study 3D 

genome variation. 

In this study, we used Akita (Fudenberg et al. 2020), a convolutional neural network 

that requires only DNA sequence information as input, to predict 3D contact maps for 

2,457 human individuals. We compared these contact maps between individuals and to 

the predicted map of an inferred ancestral hominin genome sequence. This revealed 

regions with significant divergence in 3D contact maps within and between populations. 

We found that 3D contact divergence genome-wide follows similar patterns as sequence 

divergence and that pressure to maintain 3D contact patterns has broadly constrained 

sequence evolution. However, 3D contact divergence is very different from sequence 

divergence at local scales (1 Mb and below) and is highest in regions under low functional 

and evolutionary constraint. We also used in silico mutagenesis to identify single 
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nucleotide variants with large effects on contact map variation. We find that rare 3D 

contact map divergence is often the result of a single large-effect variant, while common 

3D divergence usually is influenced by multiple variants. Our results establish the 

baseline distribution of 3D chromatin contact and variation in diverse populations. They 

also provide context in which to interpret new human 3D chromatin contact data and the 

effects of variants identified in disease cohorts on 3D chromatin contact. 

 

Results 

Accurate prediction of 3D contact maps for diverse individuals 

To quantify variation in the 3D genome of modern humans, we predicted chromatin 

contact maps for 2,457 unrelated individuals from the 1KG data (1000 Genomes Project 

Consortium et al. 2015) using Akita (Figure 2.1) (Fudenberg et al. 2020). As Akita was 

trained on the hg38 human reference genome and unphased Hi-C data, we generated 

“flattened” pseudo-haploid genome sequences for each individual by inserting all their 

single nucleotide variants (SNVs) into the hg38 human reference sequence 

(Supplemental Figure 2.1). Akita takes an approximately 1 Mb window of DNA sequence 

as input and outputs local 3D contact patterns for the input region at 2,048 bp resolution. 

We divided the genome into 1 Mb sliding windows, overlapping by half, and retained 

windows with 100% sequence coverage from the hg38 reference genome (N=4,873). We 

then used Akita to predict local chromatin contacts genome-wide for individuals from five 

continental populations and 26 sub-populations distributed across the globe defined by 

1KG (1000 Genomes Project Consortium et al. 2015). 
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To confirm that Akita performs well on individuals from different continents, we 

compared Hi-C data from the 4D Nucleome Project (4DN) to predicted maps for 11 

Africans, 2 Americans, 1 East Asian, and 1 European (Dekker et al. 2017). We focused 

on held-out windows from the Akita test set and scaled predictions to 10 kb resolution to 

be roughly comparable to the lower resolution of the experimental contact maps. The 

European individual (NA12878) was the basis for the GM12878 lymphoblastoid cell line 

which was used in the training of Akita. Its Hi-C library was also sequenced to the highest 

coverage (Supplemental Figure 2.2). Thus, it serves as an upper bound on the expected 

performance. Our predictions for the 11 African individuals were only slightly less accurate 

(mean Spearman's r = 0.43) than what was observed for Europeans (r = 0.48) (Figure 

2.1), and these approach the similarity observed between replicates in Hi-C (Fudenberg 

et al. 2020). While the accuracy for the East Asian (r = 0.37) and American (r = 0.36) 

individuals is somewhat lower, we believe this is due to low resolution and sequencing 

depth of the available experimental maps for these individuals. Filtered read count 

(retrieved from 4DN Data Portal) correlated with Akita prediction accuracy (Supplemental 

Figure 2.2; R2 = 0.25). Visual checks verify that the predicted and experimental contact 

maps share key patterns (Figure 2.1). These results confirm that Akita has learned to 

predict 3D contact maps in a way that is not specific to any single human or group and 

thus can be applied across individuals. 

 



51 

 

3D divergence differs from sequence divergence 

To explore how changes in 3D chromatin contacts relate to DNA sequence changes, we 

quantified levels of 3D divergence in all windows across the genome between modern 

humans from 1KG and the inferred hominin ancestor. We then compared sequence 

divergence from the ancestral sequence with 3D divergence from the ancestral map for 

each window. Correlation between sequence and 3D divergence across individuals for a 

window is generally low (mean Spearman's r = 0.113), and varies greatly across windows 

(SD = 0.20) (Figure 2.2, Supplemental Figure 2.3). Genome-wide average sequence 

and 3D divergence were only moderately correlated across individuals (Supplemental 

Figures 2.3, 2.4; R2 = 0.31 for 3D divergence, R2 = 0.34 for MSE). This aligns with our 

expectation that most sequence variants do not impact 3D chromatin contacts, and it 

shows that in most windows sequence divergence is not a proxy for 3D divergence. These 

relationships between sequence and 3D divergence are maintained across window sizes 

from 1 Mb to 65 kb (Supplemental Figure 2.3). 

 

African populations have the highest predicted 3D genome diversity 

African individuals have higher sequence diversity than non-African individuals (1000 

Genomes Project Consortium et al. 2015). We tested whether African individuals also 

have higher predicted 3D divergence from the ancestral state than in other individuals. 

We calculated 3D divergence from ancestral sequence for each window and took the 

mean across all genomic windows for each individual. 
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Mean genome-wide 3D divergence varies significantly among populations (Figure 

2.2, Supplemental Figure 2.4; Kruskal-Wallis: P = 2.34 ´ 10-145 for 3D divergence, 

Kruskal-Wallis: P = 3.96 ´ 10-160 for MSE). African individuals have significantly greater 

mean 3D divergence (0.0045) than individuals from all other populations (post-hoc 

Conover: P < 1.35 ´ 10-57), and non-African populations have on average 5% lower 3D 

divergence. While this trend is consistent with patterns of sequence divergence, the size 

of the difference is smaller: non-African individuals have approximately 20% fewer SNVs 

on average (1000 Genomes Project Consortium et al. 2015). 

 

Most variation in 3D chromatin contact patterns is shared across populations 

To explore the similarity of 3D contact maps within and between humans from different 

1KG populations, we hierarchically clustered individuals based on their pairwise 3D 

divergence from one another. Averaging 3D divergence over all 4,873 genomic windows, 

individuals largely clustered by population of origin (Figure 2.2). In contrast, clustering 

each window of the genome separately revealed patterns that did not follow global 

population relationships expected from sequence divergence. To summarize the patterns 

across windows, we computed the posterior probability of the tree derived from flattened 

sequence comparisons based on all of the window-specific 3D divergence trees using 

ASTRAL (Zhang et al. 2018; Rabiee et al. 2019). Branches leading to each modern 1KG 

population are not strongly supported, reflecting the sharing of contact patterns between 

individuals from different populations (Figure 2.2). In contrast, the branches leading to 

inferred human-archaic hominin and human-chimpanzee ancestors each have posterior 
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probabilities of 1.00. These results collectively indicate that 3D genome variation among 

modern humans is typically not stratified by population in any given genomic locus, but 

population structure emerges over longer evolutionary time periods and genomic 

distances. 

 

3D divergence is highest in regions with the lowest functional constraint 

To quantify local patterns of 3D divergence along the genome for each genomic window, 

we computed the 3D divergence of each 1KG individual from the ancestral map. The 

mean 3D divergence in each window is highly variable across the genome, with many 

distinct peaks and valleys in both the mean (Figure 2.3, Supplemental Figure 2.4) and 

standard deviation (Supplemental Figure 2.5). The distributions of 3D divergence for 

each chromosome are largely overlapping with slight, but statistically significant 

differences (Supplemental Figure 2.6; Kruskal-Wallis: P = 3.00 ´ 10-10). The median 3D 

divergence by chromosome ranges from 0.0014 to 0.0028. Such differences are likely 

due to variation in gene content, abundance of CTCF binding sites, and other genomic 

features across chromosomes, all of which can influence 3D genome organization. The 

majority of the top 10% most divergent windows are shared by all five continental 

populations (Supplemental Figure 2.7). Taken together, these results demonstrate that 

some windows harbor substantial 3D divergence among individuals, while others exhibit 

only slight variations on a widely shared contact pattern.  

Given the variation in 3D divergence from ancestral across the genome, we tested 

whether the level of 3D divergence associates with functional annotations or evolutionary 
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sequence conservation between species. We stratified the genomic windows into deciles 

based on increasing 3D divergence and quantified the gene count, CTCF site count 

(ENCODE Project Consortium et al. 2020), and PhastCons 100-way conserved elements 

(Siepel et al. 2005) distributions for each decile. 

Increasing 3D divergence consistently correlates with decreases in sequence 

identity, gene content, CTCF binding sites and PhastCons conserved bases (Figure 2.3). 

Conversely, recombination rate decreases with increasing 3D divergence (Figure 2.3). 

We also considered SPIN state (Wang et al. 2021; Kamat et al. 2023) predictions and 

repeat element annotations (Smit 1999; Genereux et al. 2020), but did not observe an 

overall trend in SPIN state or repeat element prevalence (Supplemental Figure 2.8). 

However, “Lamina” and “Lamina-like” SPIN states are more prevalent in higher 3D 

divergence windows, while active states are less prevalent (Supplemental Figure 2.8). 

We also compared the 3D divergence of windows containing SNPs that tag 45 common 

inversions and did not find a relationship between inversion tagging SNPs and 3D 

divergence (Supplemental Figure 2.8) (Giner-Delgado et al. 2019). These results 

indicate that regions with many functional elements or high sequence conservation overall 

have less 3D divergence, while those with less functional activity and conservation are 

more tolerant of variation in 3D contacts. This suggests that 3D chromatin contacts may 

contribute to evolutionary pressures on sequence divergence. 
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3D chromatin contact constrains sequence evolution 

Next, we explored whether the amount of 3D divergence between humans and the 

human-archaic hominin ancestor is more or less than expected given the observed 

sequence divergence. To estimate the expected 3D divergence distribution for each 

window, we generated 500 sequences with the number of sequence variants from the 

ancestral matched to the distribution across 1KG individuals and applied Akita to predict 

the resulting 3D genome divergence (Supplemental Figure 2.9) (McArthur et al. 2022). 

We preserved the tri-nucleotide context of all variants in each window for each sequence 

to account for variation in the mutation rate across sequence contexts. For each window, 

we compared the observed 3D divergence with the expected 3D divergence from the 500 

sequences with the matched level of nucleotide divergence. If the pressure to maintain 

3D chromatin contact patterns does not influence sequence divergence, the observed 3D 

divergence would be similar to the expected 3D divergence. If the observed 3D 

divergence deviates from the expected based on sequence divergence, higher observed 

3D divergence would suggest positive selection on variants causing 3D differences, while 

lower observed 3D divergence would suggest negative selection on variants causing 3D 

differences. 

The observed 3D divergence is significantly less than expected based on 

sequence divergence (Figure 2.4). 88.7% of windows have less 3D divergence than 

expected based on their sequence divergence (binomial test P < 2.23 ´ 10-308). Genome-

wide, the mean expected 3D divergence is 70% higher than the observed 3D divergence 

(t-test P = 1.68 ´ 10-74). This suggests that pressure to maintain 3D genome organization 

constrained sequence divergence in recent human evolution. This aligns with previous 
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studies that demonstrated depletion of variation at 3D genome-defining elements (e.g., 

TAD boundaries, CTCF sites) (Fudenberg and Pollard 2019; McArthur and Capra 2021), 

and it specifically supports maintenance of 3D chromatin contacts as a driver of sequence 

constraint. 

 

392 windows have significantly greater 3D divergence than expected 

Even though most windows have lower 3D divergence than expected, 392 out of the total 

4,873 windows have observed 3D divergence significantly greater (t-test P £ 0.05) than 

the 3D divergence expected based on sequence divergence (Figure 2.4). These windows 

usually have many individuals with high 3D divergence, and we refer to them as “3D 

divergent windows”. For example, a 3D divergent window on chromosome 1 

(chr1:88,604,672-89,653,248) exhibits a multi-modal 3D divergence distribution: a portion 

of the individuals fall within the expected 3D divergence levels and a portion are much 

more divergent (Figure 2.5). When stratified by populations, the vast majority of 3D 

divergent windows are divergent in all five continental populations, followed by African-

specific divergent windows and divergent windows specific to non-African populations 

(Figure 2.5, Supplemental Figure 2.10). In the example window, our predictions show a 

group of individuals with a notable loss in contact compared to the other group of 

individuals with contact maps similar to the ancestral map (Figure 2.5). Using lower 

resolution experimental data from the 4DN we confirmed the presence of both predicted 

patterns in experimental Hi-C maps (Figure 2.5). These results demonstrate that some 

genomic windows have substantial 3D genome variation within human populations. 



57 

 

In silico mutagenesis reveals that multiple SNVs contribute to common 3D genome 

variation 

To identify the variants underlying the differences observed in each 3D divergent window, 

we performed in silico mutagenesis. In silico mutagenesis is a computational technique 

that uses the ability of Akita to rapidly make predictions on any input DNA sequence to 

identify and interpret potential causal variants. First, we extracted 616,222 very common 

(non-ancestral allele frequency > 10%) 1KG SNVs from the 392 divergent windows. We 

focused on common variants because large numbers of individuals have divergent 3D 

contact patterns in these windows. We inserted these variants one-by-one into the 

human-archaic hominin ancestral genome and used Akita to generate chromatin contact 

predictions for the mutated sequences in each window. Next, we calculated 3D 

divergence between the ancestral and mutated contact maps (Figure 2.6) and quantified 

the effect of each SNV as the 3D divergence it produces from the ancestral map divided 

by the maximum 3D divergence between a modern human from ancestral for the window.  

A single SNV is not sufficient to explain the 3D divergence observed in most of 

these windows. For example, the maximum 3D divergence explained by a SNV for each 

window is less than 10% of the overall 3D divergence (Figure 2.6, orange) in more than 

40\% of windows. We also find that summing the individual effects of all SNVs in a window 

does not recover substantially more of the observed 3D divergence from ancestral 

(Figure 2.6, grey). This suggests that the 3D divergence is not simply the result of additive 

combinations of the effects of common SNVs. To illustrate one of the strongest 3D-

modifying variants, a SNV on chromosome 7 decreases the strength of an insulating 

region, causing overall structure in the window to be much less defined (Figure 2.6). This 
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SNV explains 38% of the 3D divergence between an African individual and the ancestor. 

We also generated in silico predictions of 3D divergence for all SNVs > 10% non-ancestral 

allele frequency in 392 randomly selected windows that are less divergent than expected. 

Comparing to the 3D divergences for SNVs in the 392 divergent windows, we see an 

overall similar distribution; however, a larger fraction of SNVs in divergent windows cause 

high 3D divergence (0.06%) compared to the SNVs from non-divergent windows (0.03%) 

(Supplemental Figure 2.11).  

We designated the 176 variants that explain greater than 20% of the maximum 

observed 3D divergence in a window as “3D-modifying variants”. We quantified the 

number of 3D modifying variants overlapping CTCF peaks, genes, and conserved bases 

as called by phyloP (Figure 2.6) (Pollard et al. 2010). 82% of 3D modifying variants are 

found in CTCF binding sites and 60% are in conserved loci. Conversely, only 36% are 

found within genes. These results are qualitatively maintained when using different cutoffs 

on the 3D divergence explained (10, 20, 50 and 80%) (Supplemental Figure 2.12). Our 

results suggest that a single common 3D-modifying variant is rarely responsible alone for 

high 3D divergence, as the maximum impact common SNV for each window contributes 

modestly to the predicted 3D divergence. Furthermore, these variants predominantly 

occur at CTCF binding sites and conserved loci, rather than within genes. This 

underscores their potential significance of SNVs in combination in sculpting the 3D 

genomic architecture, especially considering the role of 3D chromatin contact in 

constraining sequence evolution. 
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31% of the genome has rare 3D genome variation 

In the previous section, we investigated windows in which there was common variation in 

3D chromatin contact patterns between individuals. We also observed a high occurrence 

of rare 3D genome variation—where one or a small number of individuals differ from a 

common contact pattern. To discern underlying patterns in windows with rare 3D 

divergence, we implemented a classification scheme based on clustering contact maps. 

Strikingly, the most prevalent pattern was a single individual harboring rare variation that 

distinguished them from the remainder of the cohort (Figure 2.7). This distinctive pattern 

was observed in approximately 31% of the windows (N = 1,494). Furthermore, the 

majority of windows exhibiting rare variation were primarily driven by individuals of African 

ancestry, characterized by substantial 3D divergence from all other individuals in the 

study cohort (Figure 2.7). The prevalence of individuals exhibiting rare variation in a 

substantial proportion of windows underscores the potential of individual-specific genomic 

alterations to shape 3D genome architecture. Additionally, the prominent contribution of 

individuals of African descent to windows with rare variation highlights the importance of 

considering diverse genetic backgrounds when studying 3D genomic diversity. 

 

Rare 3D genome variation is usually the result of a single large-effect variant 

To identify the variants contributing to the most prominent differences in 3D architecture 

in windows with rare 3D variation, we used in silico mutagenesis to test rare SNVs in the 

windows with rare 3D variation. We selected 12,175 variants that are private to the highly 

divergent individual (in the context of all 1KG individuals used in this study) to be inserted 
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these one-by-one into the hg38 human reference genome and calculated 3D divergence 

between the reference and mutated contact maps (Figure 2.6). We then quantified the 

effect of a SNV by calculating the percentage of the 3D divergence between the highly 

divergent individual from the reference maps that is generated by inserting the SNV alone 

into the reference sequence.  

In contrast to cases of common 3D divergence, the maximum effect SNV for each 

window often generates a large fraction of the observed 3D divergence from reference 

(Figure 2.7). In cases in which the 3D divergence induced by a single SNV is greater 

than 100%, this suggests other variants present in the window temper the effect of the 

maximum effect SNV and thus reduce the 3D divergence compared to the sequence with 

the SNV alone. We identified 1,482 variants that explain at least 20% of the 3D divergence 

between the rare individual and the reference genome. 71% of these 3D modifying 

variants are found in CTCF binding sites and 69% are in conserved loci. Conversely, only 

38% are found within genes (Figure 2.7). These results are qualitatively maintained at 

other cutoffs on 3D divergence explained (10, 20, 50 and 80%) (Supplemental Figure 

2.13). To illustrate this pattern, we highlight an example SNV that decreases the strength 

of an insulating region, causing overall structure in the window to be much less defined 

(Figure 2.7). This SNV explains 78% of the 3D divergence between an African individual 

and the ancestral genome. In contrast to our results in 3D divergent windows, these 

results suggest that rare 3D variation is often caused by a single, strongly 3D modifying 

variant. 
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Discussion 

Our study explores the interplay between genetic sequence variation and 3D chromatin 

contact patterns using machine learning to predict 3D chromatin contacts (Fudenberg et 

al. 2020) for thousands of modern humans from around the globe(1000 Genomes Project 

Consortium et al. 2015). Quantifying 3D chromatin contact on this scale is necessary to 

capture its variation across humans, but given the logistical and technical challenges of 

generating high-resolution Hi-C data at population-scale, this is not currently possible 

without computational methods. The perspective provided by our dataset enabled us to 

make several novel observations not seen in previous small-scale studies of human 3D 

chromatin contact diversity (Li et al. 2023). 

 

3D chromatin contact divergence vs. sequence divergence 

Our results show that 3D chromatin contact divergence follows similar genome-wide 

trends as sequence divergence. For example, African populations exhibited consistently 

higher average 3D divergence in comparison to other populations that experienced the 

out-of-Africa genetic bottleneck, which corresponds to Africans' greater sequence 

diversity (1000 Genomes Project Consortium et al. 2015). However, the correlation 

between 3D chromatin contact similarity and sequence divergence (R2 = 0.31) is only 

moderate, suggesting the existence of differing influences and regulatory mechanisms 

shaping the interplay between sequence divergence and 3D genome organization across 

diverse individuals. Indeed, quantification of local window-specific 3D divergence showed 

that 3D contact map variation in most genomic regions is shared across populations, and 
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no windows have contact map patterns that stratify by population. Moreover, it revealed 

that rare 3D contact variation is common—31% of windows have an individual with a rare 

divergent contact pattern. 

 

Influence of 3D chromatin contact on sequence evolution and functional constraint 

We also found that the observed 3D divergence between modern humans and the 

human-archaic hominin ancestor is significantly less than expected based on observed 

sequence divergence. This suggests that constraint imposed by the pressure to maintain 

3D chromatin contacts shaped sequence divergence during recent human evolution. The 

findings are consistent with prior studies indicating a depletion of variation at key 3D 

genome determining elements (Krefting et al. 2018; Fudenberg and Pollard 2019; Whalen 

and Pollard 2019; Sauerwald et al. 2020; McArthur and Capra 2021; McArthur et al. 2022) 

and suggest that pressure to preserve 3D chromatin contact contributes to sequence 

constraint in human evolution. By comparing the observed and expected 3D divergence 

derived from sequence divergence, we underscore the potential role of 3D genome 

organization in influencing recent human sequence evolution.  

Examining local patterns of 3D divergence along the genome revealed substantial 

variability, indicating varied tolerance for 3D divergence. Regions exhibiting elevated 3D 

divergence consistently had reduced gene content, fewer CTCF binding sites, and fewer 

conserved bases than other genomic windows. These results are consistent with previous 

work that investigated two cell lines and found variation along chromosomes that 

correlates with compartment, GC content, transcription rate and repeat element 
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prevalence (Gunsalus et al. 2023a). This pattern underscores the importance of 

maintaining 3D chromatin contacts, especially in regions with many functional elements. 

 

In silico mutagenesis identifies SNVs likely to drive 3D divergence 

Another strength of the sequence-based machine learning approach is that it enables 

rapid screening of the effects of individual genetic variants in different genetic 

backgrounds (McArthur et al. 2022; Gunsalus et al. 2023b; Brand et al. 2023). We used 

this in silico mutagenesis to unravel the influence of SNVs on 3D genome variation. We 

discovered that the 3D divergence in windows with common 3D variation was rarely the 

result of the independent additive effects of common SNVs. Instead, our analyses 

suggest that combinations of SNVs likely interact to produce much of the common 

variation in the 3D genome. In contrast, for windows with only rare 3D variation, a single, 

high-impact variant was often sufficient to produce the observed 3D divergence. This 

suggests that individual variants with strong impacts on 3D contact are rarely tolerated at 

high frequencies. However, the 3D-modifying variants observed in both types of windows 

predominantly influenced crucial functional sites such as CTCF binding sites and 

evolutionarily conserved loci. The sharp contrast in variant contributions to common and 

rare 3D variation underscores the complex mechanisms governing 3D chromatin contact 

and its variation. 
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Machine learning addresses challenges with experimental Hi-C 

Traditional Hi-C experiments often compromise resolution for coverage, resulting in 

representations that lack finer details pivotal for understanding 3D genome architecture 

at the scale of differences observed between healthy individuals. This drawback limits our 

ability to capture potentially functional chromatin interactions within larger structures and 

impedes comprehensive genomic comparisons. To overcome these limitations, our study 

harnesses Akita, an accurate machine learning prediction model. Akita demonstrates 

robust performance in generating local 3D contact patterns from DNA sequences at a 

higher resolution (2 kb), enabling a finer-scale analysis of chromatin interactions that 

compensates for limitations in available experimental data (Fudenberg et al. 2020). Our 

findings showcase Akita's efficacy in predicting 3D chromatin architecture not only in its 

original training data of European-derived cell lines, but also in diverse individuals, 

particularly among Africans. This ability to perform consistently across diverse individuals 

is critical, as it allows us to investigate chromatin organization in groups where Hi-C data 

is limited. Our research thereby offers a more comprehensive view of the 3D genome 

landscape, crucial for understanding chromatin organization and its functional 

implications. 

 

Limitations 

While our study increases understanding of chromatin contact variation, it is important to 

acknowledge several limitations due to current Hi-C data quality, resolution, and quantity. 

First, while we validate example predictions with experimental Hi-C data when possible, 
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the scope of our predictions means that we are not able to validate most given available 

data. Second, the Hi-C data used for training and validation of the prediction models are 

unphased and represent a combination of both alleles. As a result, the prediction model 

was trained on haploid sequences due to this lack of phased Hi-C data. In previous work, 

this approach has been demonstrated to accurately capture contact patterns (e.g., 

Fudenberg et al. 2020). While inferring allele-specific contact maps with phased SNV data 

is feasible in some cases, high-resolution haplotype-resolved contact maps are not 

readily available due to limits imposed by both the read depth needed to obtain high-

quality Hi-C data and the additional complexity required in analytical methods. Therefore, 

there is no clear approach for combining phased 3D map predictions in a way that would 

represent the haploid Hi-C data. Thus, we have focused our predictions and sequence 

comparisons on pseudo-haploid versions of the phased variant calls from the 1KG Phase 

3 data. Moving forward, we envision close integration between computational predictions 

and new experimental data for discovery and validation of the mapping between DNA 

sequence variation and 3D chromatin contact.  

Additionally, there are some limitations in the variant sets we consider. First, the 

1KG dataset, while extensive, does not encompass the entirety of human genetic 

diversity. Specifically, the African individuals included in 1KG do not capture more deeply 

divergent African lineages; expanding to additional datasets would further increase the 

genetic diversity covered (Mallick et al. 2016; Fan et al. 2023). Hence, future studies 

should aim to incorporate a wider array of individuals to provide a more comprehensive 

understanding of the interplay between 3D chromatin contact and genetic sequence 

divergence. Our study is also focused on SNVs, excluding larger structural variants, which 
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have been shown to contribute to 3D chromatin contact differences (Norton and Phillips-

Cremins 2017; Spielmann et al. 2018; Sánchez-Gaya et al. 2020). However, we show 

that the 3D modifying variants we discover do not tag large inversions (Supplemental 

Figure 2.8). We also note that the in silico mutagenesis analysis considers single SNVs 

at a time. Given the lack of additive effects observed in the commonly 3D divergent 

windows, future work is needed to evaluate the combinatorial impact of variants and test 

for interaction effects. Finally, our analysis did not explore the potential impact of 

differences between cell-types, which could influence the observed 3D chromatin contact 

patterns.  

Further validation of the relationships between sequence variation, 3D chromatin 

contact, and functional implications presented in this study will require additional data. 

We are optimistic that ongoing efforts to expand Hi-C data resolution, cell-type coverage, 

and availability will enable comprehensive understanding of the mechanisms and 

variation of chromatin organization and its functional outcomes. 

 

Conclusions 

Our study uses machine learning to map the relationship between genetic sequence 

variation and 3D chromatin contact across diverse human populations. Our findings pave 

the way for future research exploring the mechanisms governing chromatin organization 

and its functional implications in disease and evolution. 
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Methods 

Modern human and ancestral genomes 

All analysis was conducted using the GRCh38 (hg38) genome assembly and coordinates. 

Genetic variants in modern humans came from 1KG, Phase 3 from (1000 Genomes 

Project Consortium et al. 2015). The human-archaic hominin ancestral genome was 

extracted using ancestral allele calls for each position in the tree sequence from an 

ancestral recombination graph of modern and ancient humans with archaic hominins 

(Wohns et al. 2022). Tree sequences are an efficient data format for representing the 

ancestral relationships between sets of DNA sequences and were analyzed using tskit 

(Kelleher et al. 2018). We identified ancestral allele calls for every available position and 

used these to generate a VCF file. We retrieved ancestral allele calls for the human-

chimpanzee common ancestor from the Great Apes Genome Project (GAGP) (Prado-

Martinez et al. 2013). We then constructed full-length genomes for each modern 

individual and inferred ancestor based upon the genotyping information in their respective 

VCF file. We constructed the sequence for each 1KG individual's genome using GATK's 

FastaAlternateReferenceMaker tool (Van der Auwera and O’Connor 2020). If an 

individual had an alternate allele (homozygous or heterozygous), we inserted it into the 

reference genome to create a pseudo-haploid, or “flattened” genome for each individual 

(Supplemental Figure 2.1). To maintain the window and overlap size required by Akita, 

we included all SNVs, but not SVs, in these genomes. 
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3D chromatin contact prediction with Akita 

Akita is a CNN model designed and trained to predict 3D genome contacts at 2 kb 

resolution in approximately 1 Mb windows from one-hot encoded DNA sequence inputs. 

After the input genome sequences were prepared, we made predictions using Akita for 

~1 Mb (220 = 1,048,576 bp) sliding windows overlapping by half (e.g., 524,288–1,572,864, 

1,048,576–2,097,152, 1,572,864–2,621,440). Although Akita was trained simultaneously 

on Hi-C and Micro-C across five cell types in a multi-task framework to achieve greater 

accuracy, we focused on predictions in the highest resolution maps, human foreskin 

fibroblast (HFF) as in McArthur et al. 2022. Akita considers the full window, but predictions 

are generated for only the middle 917,504 bp. Each cell in the contact map predicted from 

an individual's DNA sequence represents physical 3D contacts between pairs of regions 

at 2,048 bp resolution. The predicted value in each cell quantifies the observed contact 

frequency over the expected contact frequency given the distance of the two genomic 

regions (log2(obs/exp)); comparing to expected contacts enables accounting for the 

distance-dependent nature of chromatin contacts. For all analyses, we only considered 

windows with 100% coverage in the hg38 reference genome for a total of 4,873 autosomal 

windows. Fudenberg et al., 2020 provides further details on the CNN architecture and 

training data used. 

 

Scaling 3D genome predictions 

To explore the sensitivity of our results to different window sizes, we compared predicted 

maps at the native prediction window size (1,048,576 bp) and four additional window 
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sizes (524,288, 262,144, 131,072, and 65,536 bp). These window sizes correspond to 

decreasing powers of two (220, 219, 218, 217, 216). We created sub-maps from the original 

1 Mb Akita predictions by dividing the predicted contact maps into smaller contact maps 

of each size. To maintain consistency with the previous analyses, the smaller windows 

overlap by half within the 1 Mb of the original predictions. 

 

3D and sequence genome comparisons 

After predictions were made on all 1 Mb windows for all individuals, we compared the 

resulting predictions using mean-squared error and Spearman and Pearson correlations. 

All measures are scaled to indicate divergence: high values represent difference and low 

values represent similarity. We subtracted the Spearman's rank correlation coefficient 

from one (1-r) to quantify 3D divergence (Gunsalus et al. 2023b). Some analyses 

compared 3D divergence with sequence divergence. To calculate the sequence 

divergence between two individuals, we counted the number of bases at which the two 

individuals differ in the 1 Mb window and divided by the total number of bases compared. 

This was done only for windows with 100% coverage in hg38, as with the 3D chromatin 

contact predictions. 

 

Empirical distribution of expected 3D divergence 

We generated genomes with shuffled nucleotide differences to compute the expected 3D 

divergence in a window given the observed sequence divergence (Supplemental Figure 

2.9). This approach was adapted from (McArthur et al. 2022). We matched these shuffled 
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differences to the same number and tri-nucleotide context of the observed sequence 

differences between 1KG individual genomes and the inferred ancestral genome. The 

observed sequences differences were extracted from the individual from the set closest 

to the mean of the 3D divergence distribution for each population (HG03105 [African], 

HG01119 [American], NA06985 [European], HG00759 [East Asian], HG03007 [South 

Asian]). For each 1 Mb window of the genome (N = 4,873) we generated 500 shuffled 

sequences—100 for each population. We applied Akita to each of these shuffled 

sequences and calculated an empirical distribution of expected 3D divergence by 

comparing the contact maps of the shuffled sequences with the ancestral sequence. 

Finally, we compared the expected 3D divergence from this distribution to the observed 

ancestral-modern 3D divergence. The procedure for generating the null distribution from 

shuffled sequences has two caveats. First, tri-nucleotide context is commonly used to 

capture variation in mutation rate, but considering higher-order contexts would result in 

even better modeling of the mutational process (Aggarwala and Voight 2016). Second, it 

does not account for factors such as linkage disequilibrium and recombination rate that 

may vary between populations. This is appropriate for our application because our goal 

is to broadly survey the range of possible 3D contact variation and we construct null 

distributions for each population. 

 

Comparison of function and conserved elements with 3D divergence 

Evolutionary conservation estimates and genomic functional annotations were obtained 

from publicly available data sources. Gene annotations are from GENCODE version 24 
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(Frankish et al. 2019). CTCF binding sites were determined through ChIP-seq analyses 

from ENCODE (ENCODE Project Consortium 2012; Davis et al. 2018). We downloaded 

all CTCF ChIP-seq data with the following criteria: experiment, released, ChIP-seq, 

human (hg38), all tissues, adult, BED NarrowPeak file format. We excluded any 

experiments with biosample treatments. Across all files, CTCF peaks were concatenated, 

sorted, and merged into a single file; overlapping peaks were combined into a single 

larger peak. We quantified the number of CTCF ChIP-seq peaks per genomic window 

(peaks per window) and the number of CTCF peak base pairs overlapping each window 

(base pairs per window). Evolutionary constraint was quantified by PhastCons. The 

PhastCons elements (Siepel et al. 2005) were intersected with 1 Mb genomic windows. 

The overlap was quantified as the number of PhastCons base pairs per boundary 

regardless of score (base pairs per window). Conserved base pairs were identified by 

PhyloP (Pollard et al. 2010). PhyloP scores and PhastCons elements for multiple 

alignments of 100 vertebrate species were downloaded from the conservation track of the 

comparative genomics data group on the UCSC Genome Table Browser using the 

“phyloP100way” and “phastConsElements100way” tables respectively 

(https://genome.ucsc.edu/cgi-bin/hgTables). Recombination rate average annotations for 

1KG samples were also downloaded from the UCSC Genome Table Browser 

(https://genome.ucsc.edu/cgi-bin/hgTables). We retrieved positions of inversion tagging 

SNPs from the supplemental files of (Giner-Delgado et al. 2019). 

We used the pybedtools wrapper for BEDtools (Quinlan and Hall 2010; Dale et al. 

2011) to perform intersections of genomic regions for the above annotations (genes, 

CTCF peaks, PhastCons, recombination rate, inversions) with the 1 Mb windows used 

https://genome.ucsc.edu/cgi-bin/hgTables
https://genome.ucsc.edu/cgi-bin/hgTables
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for Akita predictions. These windows were stratified by mean 3D divergence from 

ancestral for all 1KG individuals and by the difference in the mean of the observed 

distribution of 3D divergence from the expected as described above. 

 

Shared divergent windows across populations 

The top 10% of windows for each 1KG population were chosen based on the mean 3D 

divergence from the ancestral for all individuals in the respective populations. Overlap 

was calculated using a python implementation of UpSet plots, a tool to visualize set 

overlaps (Lex et al. 2014; Nothman 2023). 

 

Hierarchical clustering of 3D chromatin contact maps 

All pairs of 1KG individuals were compared for each of the 4873 genomic windows. 

Pairwise 3D divergence score matrices for each 1 Mb window were used to cluster these 

individuals, plus the human-archaic hominin and human-chimpanzee ancestral genomes, 

using hierarchical clustering with complete linkage as implemented in scipy (Virtanen et 

al. 2020). The clustering generated dendrograms (“trees”) that describe the relationships 

between individuals. The Python API for ETE ToolKit was used to identify any trees that 

are monophyletic for a given population, meaning that any population clustered entirely 

and exclusively together. To establish support for known population patterns based on the 

3D divergence trees, we generated a baseline tree representing the sequence similarity 

of two inferred ancestors and 1KG individuals from all 1KG populations but the Americas 

(AMR) population, the African American Southwest (ASW) sub-population, and the 
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African Caribbean Barbados (ACB) sub-population which exhibit substantially more 

admixture than other 1KG populations (Li et al. 2008; Gravel et al. 2011; 1000 Genomes 

Project Consortium et al. 2015; Duda and Jan Zrzavý 2016; Bergström et al. 2020). This 

sequence tree was generated using the same flattened haploid sequences that were used 

to infer 3D chromatin contacts, and it produced similar patterns as expected from diploid 

comparisons. We used ASTRAL (Zhang et al. 2018; Rabiee et al. 2019) to calculate 

support for the branches of the baseline tree based on the trees for each window. This 

analysis treated the tree for each window as a ‘gene tree’ and the baseline tree as the 

‘species’ tree. 

 

In silico mutagenesis 

We estimated the effects of individual variants on 3D divergence using in silico 

mutagenesis (Figure 2.6). For commonly divergent windows, we identified common non-

ancestral alleles (AF>10%) among the 1KG individuals, consisting of 616,222 unique 

variants in 392 genomic windows. For each variant-window pair, we inserted the variant 

into the ancestral sequence for that window and calculated the 3D divergence between 

the ancestral map and the ancestral with variant map.  

We quantified the effects of variants via “explained 3D divergence”, dividing the 3D 

divergence for the variant by the maximum ancestral to 1KG 3D divergence for the 

window. Values near zero indicate that the variant explains minimal 3D divergence among 

the observed comparisons, while values near one indicate the variant explains most of 

the 3D divergence among observed comparisons. Values greater than one indicate that 
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variant creates more 3D divergence than observed among any ancestral to 1KG 

comparison, suggesting that other variants may “buffer” against the variant's effect. “3D-

modifying variants” were defined as variants that produced greater than 20% of the 

maximum observed 3D divergence in the window. However, we demonstrate that our 

results are robust to different thresholds (Supplemental Figure 2.12). 

We also applied our in silico mutagenesis approach to rare variants private to the 

highly divergent individual in each of the 1,494 windows with rare 3D variation. Private 

variants were defined at positions where only the divergent individual carried a copy of 

the alternate allele in the 1KG individuals used for the clustering analysis. We considered 

12,175 variants across the 1,494 windows. In this case, explained 3D divergence was 

calculated with respect to the hg38 reference genome as this analysis focuses on within 

human variation. 

 

Analysis of experimental Hi-C data 

We downloaded preprocessed cooler files from the 4DN Data Portal 

(https://data.4dnucleome.org) and quantified contacts at 10 kb resolution. Visualization 

was done using custom code adapted from Fudenberg et al. 2020, Gunsalus et al. 2023b 

and Brand et al. 2023. 

https://data.4dnucleome.org/
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Significance reporting 

The machine used to run analyses had a minimum value for representing floating 

numbers of 2.2250738585072014 ´ 10−308. Therefore, we abbreviate values less than 

this as 2.23 ´ 10−308. 

 

Data availability 

The publicly available data used for analysis are available in the following repositories: 

1KG VCFs (1000 Genomes Project Consortium et al. 2015): 

(ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/20

190312_biallelic_SNV_and_INDEL/) 

Human-chimpanzee ancestral alleles (Prado-Martinez et al. 2013): 

(https://eichlerlab.gs.washington.edu/greatape/data/Ancestral_Alleles/) 

 CTCF-bound open chromatin candidate cis-regulatory elements (cCREs) in all cell types: 

(https://screen.encodeproject.org/ > Downloads > Download Human CTCF-bound 

cCREs)  

phastCons elements and PhyloP scores were retrieved from the UCSC Genome Browser: 

(https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/phastConsElements100w

ay.txt.gz, 

https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/phyloP100way.txt.gz). 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/20190312_biallelic_SNV_and_INDEL/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/20190312_biallelic_SNV_and_INDEL/
https://eichlerlab.gs.washington.edu/greatape/data/Ancestral_Alleles/
https://screen.encodeproject.org/
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/phastConsElements100way.txt.gz
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/phastConsElements100way.txt.gz
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/phyloP100way.txt.gz
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Recombination rate annotations for 1KG samples were also downloaded from the UCSC 

Genome Table Browser: (https://genome.ucsc.edu/cgi-bin/hgTables, Recomb1000GAvg 

table). 

Inversion tagging SNPs: Supplemental table 12 from (Giner-Delgado et al. 2019). 

Experimental Hi-C available at the 4D Nucleome data portal: 

(https://data.4dnucleome.org/browse/?dataset_label=Hi-

C+on+lympoblastoid+cell+lines+from+1000G+individuals&experiments_in_set.experime

nt_type.experiment_category=Sequencing&experimentset_type=replicate&type=Experi

mentSetReplicate) 

 

Code availability 

All code used to conduct analyses and generate figures is publicly available on GitHub 

(https://github.com/egilbertson-ucsf/3DGenome-diversity). Akita is available from the 

basenji repository on GitHub 

(https://github.com/calico/basenji/tree/master/manuscripts/akita). 
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Figures 

 

Figure 2.1: Strategy for investigating 3D chromatin contact patterns in diverse 
humans.  
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(A) Schematic of the generation of genome-wide 3D contact maps for 2,457 unrelated 
individuals from five population groups defined by the 1000 Genomes Project. Akita is a 
deep neural network that takes approximately 1 Mb of DNA sequence as input and 
generates a 3D contact map of the window. The map consists of contacts for all pairs of 
2,048 bp regions within the window. We applied Akita to the DNA sequence of each 
individual in sliding windows overlapping by half across the genome. We discarded 
windows without full sequence coverage in the hg38 reference sequence, resulting in 
4,873 windows. We also applied Akita to an inferred human--archaic hominin ancestral 
sequence (Wohns et al. 2022). (B) Density of Spearman correlations between 
experimental and predicted contact maps at 10 kb resolution for windows in the Akita 
held-out test set of 413 windows across 15 individuals from 4 populations. This includes 
a European individual (GM12878) used as part of the Akita training data as a benchmark. 
The strong performance on African individuals suggests that Akita is accurate across 
populations. The lower performance on the East Asian and admixed American individuals 
is likely due to lower resolution of their experimental maps (Supplemental Figure 2.2). 
(C) Example experimental and predicted maps for a representative window on 
chromosome 8 (chr8:123,740,160-124,788,736) from an African individual. (D) Example 
predictions and comparisons of 3D chromatin contact maps between pairs of individuals 
on chromosome 5 (chr5:18,350,080-19,398,656). To quantify “3D divergence”, we 
calculated the Spearman correlation coefficient over the corresponding cells for a given 
pair of maps subtracted from 1. Low 3D divergence scores indicate high similarity 
between contact maps and high 3D divergence scores indicate low similarity between 
maps. We also compute the mean squared error (MSE) between contact maps 
(Supplemental Figure 2.4). 
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Figure 2.2: Genome-wide 3D divergence follows known population structure 
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(A) Distribution of Spearman correlation of pairwise SNV sequence divergence and 3D 
divergence between 1KG individuals and the human archaic-hominin ancestor for all 
4,873 windows. (B) Genome-wide average 3D divergence for each individual, stratified 
by continental and sub-continental 1KG populations. Color indicates super-population 
and hue indicates sub-population. (C) Genome-wide hierarchical clustering of 1KG 
individuals with the inferred human-archaic hominin ancestor, and the human-
chimpanzee ancestor using pairwise average genome-wide 3D divergence. Color 
indicates super-population. We plot 130 individuals who represent the overall patterns for 
visual simplicity. (D) Branch support (posterior probability) for the population tree inferred 
from 1KG sequences estimated using ASTRAL (Zhang et al. 2018) from the topologies of 
trees constructed for each window based on 3D divergence.   
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Figure 2.3: 3D Divergence is variable across the genome and highest in less 
functional regions. 
(A) Mean 3D divergence from the human-archaic hominin ancestor across 2,457 
individuals from 1KG for each of the 4,873 genomic windows. Each point represents the 
mean 3D divergence of all individuals from the ancestral genome for a single genomic 
window. The dotted line indicates the top 10% of 3D divergence. 3D divergences greater 
than 0.10 are plotted at 0.10 to aid visualization. (B) Average number of genes per window 
in deciles based on mean 3D divergence from the hominin ancestor (bin 1 has the lowest 
3D divergence and 10 highest). Bars indicate bootstrapped 95% confidence intervals. 
Gene annotations are from GENCODE version 24 in each 3D divergence decile. (C) 
Average number of CTCF binding sites per window. CTCF peaks come from merging 
CTCF ChIP-seq peaks across all cell types from the ENCODE Consortium. Visualized as 
in B. (D) Average PhastCons 100-way conserved bases (in kb) per window in each 3D 
divergence decile. Visualized as in B. (E) Average recombination rate (centimorgans/Mb) 
per window in each 3D divergence decile. Visualized as in B.  
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Figure 2.4: 3D divergence is lower than expected in 89% of genomics windows, but 
392 have significantly greater 3D divergence than expected.  
Mean observed 3D divergence between 1KG individuals and the human-archaic hominin 
ancestor compared to 3D divergence expected from the amount of sequence variation. 
The expected 3D divergence distribution for a window is based predicted 3D genome 
contact maps for 500 simulated sequences for each window (Methods). Points above the 
line represent windows more divergent than expected, which suggests more observed 
variants that alter 3D divergence than expected. Points below represent windows less 
divergent than expected, which suggests constraint on sequence variation to maintain 3D 
chromatin contact patterns. Observed 3D divergence is significantly less than the mean 
expected 3D divergence based on sequence (O < E) for 88.7% of windows (N = 4322; 
binomial-test P < 2.23 ´ 10-308). The mean expected 3D divergence is on average 70-
times higher than the observed 3D divergence (t-test P = 1.68 ´ 10-74). Nonetheless, we 
identified 392 windows with observed 3D divergence distributions significantly greater 
than the 3D divergence expected based on sequence divergence (O > E; t-test P <= 
0.05). 3D divergence scores greater than 0.02 are plotted at 0.02 for visualization.  
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Figure 2.5: Experimental Hi-C data confirms predicted contacts in highly divergent 
windows.  
 
 
 
 
 



85 

 

(A) Distributions of the 3D divergence between humans and the archaic hominin ancestor 
(orange) and the expected 3D divergence (gray) 3D divergence for an example highly 
divergent window. Dotted lines represent the mean of the respective distributions. (B) 
Sharing of highly divergent windows among 1KG super-populations. Bars indicate the 
number of highly divergent windows present in each combination of populations indicated 
by the dot matrix. Population combinations with fewer than 10 windows are not plotted; 
see Supplemental Figure 2.10 for the full plot. (C) Example predicted maps for two 
African Yoruba individuals at the example window, one with low 3D divergence from the 
ancestor (NA18522; 3D divergence = 0.0002) and one with high 3D divergence 
(NA18486; 3D divergence = 0.031). The predicted maps are scaled to 10 kb resolution to 
be comparable to the resolution of the experimental Hi-C maps. The dotted lines highlight 
strong contacts. (D) Experimentally determined Hi-C contact maps for this example 
window for the two Yoruba individuals. These experimental maps confirm the predicted 
high 3D divergence and contact pattern differences.  
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Figure 2.6: Most common divergent windows cannot be explained by a single 
nucleotide variant.  
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(A) We used in silico mutagenesis to estimate the contribution of individual SNVs to 3D 
genome differences in highly divergent windows. First, we extracted common—non-
ancestral allele frequency (AF) > 10%—1KG SNVs (red stars) from the 392 windows with 
significantly greater 3D divergence across individuals than expected. We inserted the 
variants one-by-one into the human-archaic hominin ancestral genome and used Akita to 
generate chromatin contact predictions for the mutated sequences. Next, we calculated 
3D divergence between the ancestral and mutated contact maps. (B) Distribution of single 
SNV effects for the maximally disruptive SNV per window (gray) and for the linear sum of 
all SNV effects (orange). SNV effects are calculated as the percent of maximum 3D 
divergence in a window between any 1KG individual and the ancestor that is observed in 
the mutated map. Variants that produce greater than 20% of the maximum observed 3D 
divergence in the window were designated 3D-modifying variants (N = 176). (C) Example 
SNV that recapitulates some, but not all, of the observed 3D divergence from ancestral 
in a 3D divergent window. The tracks below the contact map show locations of genes 
(blue), CTCF binding sites (green) and phastCons elements (purple). (D) Number of the 
176 3D modifying variants that are in CTCF binding peaks, genes, and conserved bases 
(phyloP).  
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Figure 2.7: Genomic windows with rare variation in 3D contact patterns are 
common.  
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(A) Hierarchical clustering of individuals based on pairwise 3D divergence for an example 
window in which one individual is highly divergent from all others. The contact map for 
the divergent individual is shown in the top right. (B) Number of windows with rare 3D 
divergence stratified by continental origin of the rare individual. In total, 31% of windows 
in the genome have a rare divergent 3D contact pattern. (C) Distribution of single SNV 
effects estimated from in silico mutagenesis for the maximally disruptive SNV per window. 
SNV effects are calculated as the percent of maximum 3D divergence observed between 
a 1KG individual and the hg38 reference for a given window. (D) Number of the 3D 
modifying variants that are within CTCF binding peaks, genes, and conserved bases 
(phyloP). (E) Example of a single SNV that recovers the 3D divergence observed in the 
individual with rare 3D variation from A when placed into the reference sequence. The 
tracks below the contact map show the locations of genes (blue), CTCF binding sites 
(green) and phastCons elements (purple). The star represents the position of the tested 
SNV; it is red when the alternate allele is present and unfilled with the reference allele is 
present.  
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Supplemental Figures

 

Supplemental Figure 2.1: Generating “flattened” genome sequences.  
We constructed full-length genome sequences for each 1KG individual based on their 
genotyping information and for two ancestral sequences: human-archaic hominin and 
human-chimpanzee. Here, we illustrate a schematic of the procedure used. (1) If an 
individual had an alternate allele (homozygous or heterozygous), we inserted it into the 
reference genome to create a pseudo-haploid, or “flattened” genome for each individual 
(highlighted in orange boxes). (2) We also do this for ancestral alleles from both the 
human-archaic hominin and human-chimpanzee ancestors (highlighted in grey boxes) to 
facilitate appropriate comparisons. (3) We run Akita on each processed genome 
sequence separately and then compare the resulting contact maps.  
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Supplemental Figure 2.2: Correlation between read count and prediction accuracy.  
Filtered read count in millions moderately correlated with genome-wide average 
Spearman's r (predicted vs experimental) for 15 individuals for which we have 
experimental Hi-C data and Akita predictions at 10 kb resolution.  
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Supplemental Figure 2.3: 3D divergence estimates at different window sizes.  
(A) To explore the sensitivity of our results to different window sizes, we compare 
predicted maps at five scales (220—216 bp). 3D divergence between 1KG individuals and 
the human-archaic hominin ancestor for all 1KG individuals increases on average with 
decreasing window size. (B) Distribution of Spearman correlation of pairwise SNV 
sequence divergence and 3D divergence between 1KG individuals and the human 
archaic-hominin ancestor for each window size. The low correlation between sequence 
and 3D divergence is not sensitive to window size. (C) The relationship between genome-
wide average sequence and 3D divergence from the human–archaic hominin common 
ancestor for each 1KG individual at ~1 Mb window size. This correlation is primarily driven 
by the increased 3D divergence in African samples; when these are removed the 
correlation decreases substantially (R2 = 0.02). Variation in correlation strength by 
population suggests that the relationship between sequence divergence and 3D genome 
organization is complex and may be influenced by population-specific factors. (D) The 
relationship between genome-wide average sequence and 3D divergence from the 
human–archaic hominin common ancestor for each of 130 1KG individuals at the five 
different window sizes. As sequence divergence is relatively constant with changes in 
window size, the genome-wide correlation between sequence and 3D divergence 
decreases with decreasing window size due to the increase in 3D divergence.  
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Supplemental Figure 2.4: MSE recapitulates divergence patterns calculated using 
3D divergence.  
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(A) The relationship between genome-wide average sequence difference and 3D MSE 
from the human--archaic hominin common ancestor for each 1KG individual. (B) 
Genome-wide average 3D MSE for each 1KG individual, stratified by continental and sub-
continental populations. Color indicates super-population and hue indicates sub-
population. (C) Mean of genome-wide 3D MSE from the human-archaic hominin ancestor 
across 4,873 genomic windows of 2,457 individuals from 1KG. Each point represents the 
mean MSE of all individuals from the ancestral genome for a single genomic window. All 
points greater than 0.010 are clipped to 0.010 for visualization
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Supplemental Figure 2.5: Genome-wide standard deviation of 3D divergence 
between all 1KG individuals.  
Standard deviation of genome-wide 3D divergence from the human-archaic hominin 
ancestor across 4,873 genomic windows of 2,457 individuals from 1KG. Each point 
represents the standard deviation of 3D divergence of all individuals from the ancestral 
genome for a single genomic window. All points greater than 0.10 are clipped to 0.10 for 
visualization. 
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Supplemental Figure 2.6: Chromosome distributions of 3D divergence.  
Mean 3D divergence from the human-archaic hominin ancestor across the 22 autosomal 
chromosomes of 2,457 individuals from 1KG. Each point represents the mean of 3D 
divergence of all individuals from the ancestral genome for a single genomic window on 
the specified chromosome. All points greater than 0.10 are clipped to 0.10 for 
visualization.  
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Supplemental Figure 2.7: Upset plot of population representation in top 10% 3D 
divergent windows. 
Unique and shared top 10% divergent windows among 1KG super-populations. Bars 
indicate the number of windows and the dot matrix indicates the populations represented 
by each set.  
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Supplemental Figure 2.8: SPIN state and repeat element content across 3D 
divergence deciles.  
(A) SPIN states as in Wang et al. 2021, from the HFF cell line. The number of base pairs 
assigned to each SPIN state across all windows in a given decile of 3D divergence. (B) 
The number of RMSK repeat element base pairs of each repeat family is shown according 
to presence each decile of 3D divergence. (C) The distribution of 3D divergence from the 
ancestor for windows with (orange) and without (grey) inversion tagging SNPs.  
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Supplemental Figure 2.9: Generating empirical distribution of expected 3D 
divergence. 
To evaluate whether 3D genome organization constrained sequence divergence, we 
estimated the null distribution of expected 3D divergence based on sequence differences 
between the 1KG (HG03105 [African], HG01119 [American], NA06985 [European], 
HG00759 [East Asian], HG03007 [South Asian]) and human-archaic hominin ancestral 
genomes. We shuffled observed nucleotide differences (stars) while preserving tri-
nucleotide context (colored rectangles) and predicted 3D genome organization for 100 
shuffled sequences for each window. This is done with variants from each of 5 individuals 
for a total of 500 shuffled sequences per window. If there is no sequence constraint to 
maintain 3D organization, observed 3D divergence would equal the expected 3D 
divergence (O = E). Alternatively, observing more 3D divergence than expected would 
suggest positive selection on sequence changes that cause 3D divergence (O > E). 
Finally, observing less 3D divergence than expected would suggest negative pressure on 
sequence changes that cause 3D divergence (O < E).  
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Supplemental Figure 2.10: Full upset plot for more divergent than expected 
windows.  
Unique and shared divergent windows among 1KG super-populations. Bars indicate the 
number of windows and the dot matrix indicates the populations represented by each set.  
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Supplemental Figure 2.11: Distributions of 3D divergence from in silico 
mutagenesis on common variants from the 392 divergent windows and 392 non-
divergent windows.  
The distribution of 3D divergence from the ancestor induced by a SNV in the 392 
divergent windows (orange) and 392 randomly selected non-divergent windows (grey). 
All points greater than 0.000005 are clipped to 0.000005 for visualization. The overall 
distribution of 3D divergence for SNVs from less divergent windows is qualitatively similar 
to that from divergent windows, as expected, since we anticipate that most SNVs do not 
influence 3D divergence. However, we observe that a larger fraction of SNVs in divergent 
windows cause high 3D divergence (0.06%) compared to the SNVs from non-divergent 
windows (0.03%).  
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Supplemental Figure 2.12: Genomic annotations for 3D modifying variants in 
divergent windows are consistent across cutoffs.  
Number of the 3D modifying variants that are in CTCF binding peaks, genes, and 
conserved bases (phyloP) at 4 different 3D divergence explained cutoffs: 10% (n = 245), 
20% (n = 176), 50% (n = 66) and 80% (n = 13).  
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Supplemental Figure 2.13: Genomic annotations for 3D modifying variants in 
windows with rare 3D divergence are consistent across cutoffs.  
Number of the 3D modifying variants that are in CTCF binding peaks, genes, and 
conserved bases (phyloP) at 4 different 3D divergence explained cutoffs: 10% (n = 1,485), 
20% (n = 1,482), 50% (n = 1,432) and 80% (n = 1,178)
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CHAPTER 3: FINAL THOUGHTS AND FUTURE DIRECTIONS 

Summary of key findings 

This dissertation has explored the diversity of 3D chromatin contact patterns across 

human populations using machine learning methods to predict these interactions from 

genome sequence data, which is easier and less costly to generate than directly 

measuring 3D genome folding via chromatin capture assay. A critical finding of this 

research is the identification of significant variation in 3D genome organization among 

different individuals, with African populations exhibiting the highest levels of 3D genome 

diversity. This observation aligns with previous studies on sequence diversity but 

introduces a new dimension by examining the spatial organization of the genome. 

The study also reveals that 3D chromatin contact divergence does not strongly 

correlate with sequence divergence. This dissociation is particularly evident in specific 

genomic regions where 3D divergence is significantly greater than expected based on 

sequence variation alone. These findings suggest that 3D genome structure is subject to 

distinct evolutionary pressures that may not be captured by sequence data alone, 

highlighting the importance of considering 3D chromatin architecture in studies of human 

genetics and gene expression variation. 

Moreover, the research underscores the functional implications of 3D chromatin 

variation, particularly in regions with low functional constraint. These regions, where 3D 

divergence was found to be highest, may indicate that such areas are more permissive 

to 3D changes without disrupting essential functions. This flexibility in chromatin 

organization could allow for regulatory innovation, though this is more likely due to a lack 
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of purifying selection rather than direct evidence of adaptive processes. This insight 

contributes to our understanding of how gene regulation can vary and evolve within 

different human populations, emphasizing the potential for 3D genome variation to 

influence regulatory landscapes. 

 

Significance of the work 

The findings of this dissertation contribute to the field of genomics, particularly in the study 

of 3D genome folding by leveraging machine learning to predict 3D chromatin structures 

from sequence data. This work addresses a significant gap in our understanding of 3D 

genome diversity. The ability to generate 3D genome maps for over 2,400 diverse humans 

from all major continental populations provides a foundational resource for future studies 

investigating the relationship between genome structure, gene regulation, and phenotypic 

diversity. 

While the direct links between 3D genome organization and gene expression 

across populations remain to be fully elucidated, the implications of this work extend 

beyond 1D genomic studies. By providing a deeper understanding of 3D chromatin 

structure across diverse human populations, this research highlights the substantial 

shared 3D genome variation that exists among populations. These findings underscore 

the idea that human genetic diversity exists on a continuous spectrum rather than within 

discrete population groups. Recognizing the full scope of this diversity is crucial for 

advancing our understanding of genome functionality and avoiding the creation of artificial 

or arbitrary group labels.  
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The integration of 3D genome data into broader genomic studies promises to 

reveal specific regulatory mechanisms, such as how enhancer-promoter interactions vary 

across different populations, potentially explaining population-specific gene expression 

patterns. This approach could also illuminate the evolutionary pressures that have shaped 

chromatin architecture over time, offering insights into how these 3D structures have 

influenced genetic adaptation and survival. Furthermore, by examining the spatial 

organization of the genome, we may uncover patterns that contribute to phenotypic 

diversity, revealing how 3D genome organization impacts traits and disease susceptibility 

across diverse human populations. Collectively, these findings could significantly 

enhance our understanding of the complex relationship between genome structure and 

function. 

 

Challenges and limitations 

Despite the significant contributions of this research, several challenges and limitations 

should be acknowledged. One of the primary challenges was the reliance on current 

machine learning models, which, while powerful, have inherent limitations in accurately 

predicting 3D chromatin interactions across different cell types and contexts. These 

models are trained on existing data, which is limited by resolution and cell-type availability. 

Data availability and resolution also posed limitations. Although the use of machine 

learning allowed for the prediction of 3D chromatin contact maps across many individuals, 

the resolution of these maps is still limited compared to what can be achieved with high-

resolution experimental techniques like Hi-C. The availability of more comprehensive and 



107 

 

higher-resolution experimental data would enable more accurate predictions and a better 

understanding of 3D genome diversity. 

Moreover, while the predicted 3D folding patterns have been shown to be generally 

accurate, the validation of these predictions at the individual level remains a crucial step. 

Validation through experimental methods, such as high-resolution chromatin 

conformation capture techniques, is necessary to confirm the accuracy of these 

predictions and to ensure that the inferred structures correspond to the true chromatin 

organization in various cell types and conditions. However, even if the 3D predictions are 

validated, the current work does not directly link these folding patterns to gene 

expression. Thus, further research is needed to establish a connection between the 

variation in 3D structures and gene expression variation. 

 

Future directions 

There are several promising directions for future research that build on the findings of this 

dissertation. First, expanding the diversity of the populations studied is essential. 

Including more underrepresented groups, particularly from regions with high levels of 

genetic diversity, such as Africa, Oceania, and South Asia, will provide a more complete 

picture of global 3D genome variation. 

Second, integrating 3D genome data with other -omics data, such as gene 

expression patterns, epigenetic modifications, and protein levels, is another crucial step 

towards uncovering the intricate regulatory networks that drive phenotypic diversity and 

disease. Multi-omics approaches can offer a more holistic understanding of how 3D 
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genome organization influences gene regulation and phenotype. Exciting future work will 

include directly linking these 3D genome changes to changes in gene regulation. The 

work presented here will provide an important foundation that can be combined with new 

gene expression data in 1KG individuals from the MAGE dataset (Taylor et al. 2024) to 

prioritize regions of the genome for further experimentation.  

Third, advancing machine learning models to improve the accuracy of 3D 

chromatin contact predictions is also a critical area for future research. Developing 

models that can account for cell-type-specific interactions and integrating additional 

layers of genomic information, such as histone modifications and transcription factor 

binding sites, will enhance the predictive power and applicability of these tools. In 

addition, these models should be paired with experimental validation to confirm the 

predicted chromatin structures and their functional relevance. 

Finally, future studies could focus on characterizing the effects of 3D chromatin 

changes on various aspects of genome function, such as 1D chromatin states, gene 

expression, and transcription factor binding. Understanding how changes in 3D genome 

architecture influence these factors will provide deeper insights into the regulatory 

mechanisms that underlie phenotypic diversity and could inform the development of new 

therapeutic strategies. Applying these approaches to disease-specific studies holds 

significant potential. By focusing on diseases where regulatory disruptions are known to 

play a role, such as cancer and neurodevelopmental disorders, researchers can uncover 

new insights into disease mechanisms. Predicting how genetic variants influence 3D 

chromatin structure will be invaluable in identifying novel biomarkers and therapeutic 

targets. 
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Concluding remarks 

In conclusion, this dissertation has provided insights into the diversity of 3D chromatin 

contact patterns across human populations and their implications for gene regulation and 

disease. The use of machine learning to predict 3D genome structures represents a 

significant advancement in the field, offering new avenues for exploring the relationship 

between genome organization and phenotype. 

The findings of this study underscore the importance of considering 3D genome 

organization in genetic research and personalized medicine. By expanding our 

understanding of how 3D chromatin structures vary across populations, we can better 

appreciate the complexity of gene regulation and its role in human health and disease.  

As we move forward, the integration of 3D genome data with other genomic and 

phenotypic data, the development of more sophisticated predictive models, and the 

application of these tools to disease research will continue to drive the field toward a more 

comprehensive understanding of the human genome. The potential for this research to 

contribute to personalized medicine and targeted therapies is immense. Key to realizing 

this potential will be the validation of predicted 3D structures, integration with clinical data, 

and the development and validation of models that connect 3D genome organization with 

regulatory functions. Ultimately, fostering collaborations across disciplines will be 

essential in translating these insights into clinical practice, promising a future where the 

full complexity of the genome is harnessed to improve human health. 
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