
UC Irvine
ICS Technical Reports

Title
Stand-alone messages : a step towards component-oriented programming languages

Permalink
https://escholarship.org/uc/item/7zk7x5w2

Authors
Frohlich, Peter H.
Franz, Michael

Publication Date
2000-06-06

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7zk7x5w2
https://escholarship.org
http://www.cdlib.org/

'. lotice: This M?-.t.erial
may be protected
hy copyright Law

··ne 17 U.S.C.)
Stand-Alone Messages:

A Step 'lowards Component-Oriented
Programming Languages

Peter H. Frohlich Michael Franz
phf@acm.org franz@uci.edu

Technical Report No. 00-18
Department of Information and Computer Science

University of California, Irvine
Irvine: CA 92697-3425, USA

June 06. 2000

Stand-Alone Messages:
A Step Towards Component-Oriented

Programming Languages

Peter H. Frohlich Michael Franz
phf@acm.org franz@uci.edu

Technical Report No. 00-18
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

June 06, 2000

Abstract

We are concerned with the design of programming languages that sup­
port the paradigm of component-oriented programming. Languages based
on the accepted idea of combining modular and object-oriented concepts
fail to provide adequate support. We argue that messages should be sep­
arated from methods to address this shortcoming. We introduce the con­
cept of stand-alone messages, give examples for its utility, and compare it
to related approaches and language constructs. Besides leading to inter­
esting insights on the interaction of modular and object-oriented concepts,
we believe that stand-alone messages. also provide a useful basis for further
research on component-oriented programming· languages.

1 Introduction

Component-oriented programming replaces monolithic software systems with
reusable software components and hierarchical component frameworks [Szy98].
Components extend the capabilities of frameworks, while frameworks provide
execution environments for components. Both are developed by independent
and mutually unaware vendors for late composition by third parties. Late com­
position requires that component-oriented software systems support dynamic
and independent extensibility. Dynamic extensibility enables the addition of
new components at run-time, while independent extensibility allows compo­
nents and frameworks from mutually unaware vendors to be composed.

While current approaches to component-oriented programming are largely
based on component models such as COM [Mic95] and CORBA [Obj99], re-

1

cent research has focused on programming language support [BW98, BWOO,
FF98, MS98, PucOO, Wec97}. Compared to the implicit support provided by
these models, supporting component-oriented programming explicitly in pro­
gramming languages has two major advantages. First, it enables a seamless
development process since analysis, design, and implementation can use the
same basic concepts to describe a software artifact. Second, it allows compilers
to perform extensive checking and to generate efficient code. Direct support for
component-oriented programming can thus be expected to lead to more main­
tainable, reliable, and efficient systems.

The minimal assumptions that frameworks and components make about each
other are specified using interfaces. An interface is an abstraction of all possi­
ble implementations that can fill a certain role in the composed system [LG86J.
We view interfaces as sets of messages (abstract operations) and implementa­
tions as sets of methods (concrete operations). Messages describe what effect is
achieved by an operation, while methods describe how that effect is achieved.
Multiple instances of an implementation can exist concurrently. We say that an
implementation (or an instance) conforms to an interface if it provides methods
for all messages in that interface. Interfaces are essential to component-oriented
programming because they are the only form of coordination between compo­
nent and framework vendors and the only means by which third parties can
validate compositions.

A component-oriented programming language needs constructs to express
interfaces and implementations and must also support dynamic and indepen­
dent extensibility. In programming languages, interfaces and implementations
should be modeled as interface types and implementation types respectively. In
this manner, we can define the conformance of an implementation to an interface
by the conformance of the corresponding types. Dynamic extensibility requires
some form of polymorphism that allows different instances of implementation
types to be bound to the same interface types at run-time. Inclusion polymor­
phism [CW85] in object-oriented languages such as Java [GJSBOO] is one way
to achieve this, although we prefer the term implementation polymorphism in
this context. Independent extensibility requires some form of encapsulation that
isolates components from their environment except for explicitly declared de­
pendencies. Sealed encapsulation constructs [Car89] in modular languages such
as Oberon [RW92] are one way to achieve this. 1 Therefore, combining concepts
from modular and object-oriented languages should be a viable approach to the
design of component-oriented programming languages (Szy98].

However, simply embedding object-oriented concepts into a modular lan­
guage unchanged is insufficient. If a component has to implement multiple
interfaces defined by independent frameworks, syntactic and semantic interface
conflicts can occur. These conflicts preclude framework combination and thus
violate the principle of independent extensibility. To avoid these conflicts, mes-

1 In analogy to Cardelli [Car89], we call an encapsulation construct open if neither visibility
nor membership is restricted, closed if only visibility is restricted, and sealed if visibility and
membership are restricted. Java's packages are closed in this sense, while modules in Oberon
are sealed.

2

sages must be given unique identities independent of the types in which they
participate. This contradicts the object-oriented paradigm in which messages
only have unique identities within a type. We propose the concept of stand­
alone messages and discuss its ramifications for language design. In particular,
we show that stand-alone messages simplify the integration of other desirable
properties such as structural conformance. Separating the concepts of messages,
methods, modules, and types opens a previously unexplored region of the design
space for programming languages that seems well-suited for component-oriented
programming.

In the next section we illustrate the problem of interface conflicts in a Java­
like language. In Section 3 we develop the concept of stand-alone messages and
show how it resolves interface conflicts. Section 4 discusses additional applica­
tions of stand-alone messages, and Section 5 surveys related work and compares
it to our approach. Finally, in Section 6 we conclude with a summary of con­
tributions and an outline for future work.

2 Interface Conflicts

Software components often need to conform to multiple interfaces for techni­
cal or marketing reasons. Consider a component that presents the results of a
database query within a compound document. On the technical side, instances
of this component might have to react to notifications from the database man­
agement and the compound document framework to keep their presentation
current. On the marketing side, the component might increase its potential
market if it could be composed with different database management and com­
pound document frameworks. To support independent extensibility, it must be
possible to develop components that conform to multiple interfaces even if those
interfaces were defined by mutually unaware framework vendors.

As a simple example for the problems caused by framework combination,
we attempt to develop a Stack component that is usable across four different
frameworks. We assume a Java-like programming language in which (closed)
packages have been replaced by (sealed) modules. Mapping interface types to
interfaces and implementation types to classes is appropriate in such a language.
The first framework defines the following interface:

module edu.uci.framework {

}

public interface Stack {

}

public void push (Object o);
public void pop ();
public Object top ();
public boolean empty ();

11 pre o i= null; post top = o
11 pre..., empty
11 pre ..., empty; post result i= null
11 "no elements?"

The designer of this interface followed the textbook definition of the abstract
data type Stack closely, and developing a class that implements this interface is
straightforward. The second framework defines the following interface:

module gov.nsa.framework {

3

}

public interface Stack {

}

public void push (Object o);
public void pop ();
public Object top();
public int size ();

11 pre o ::/=null; post top= o
I I pre size > 0
I I pre size > O; post result ::/= null
I I post result ~ 0

Instead of relying on an empty message, this vendor chose to work with the size
of the Stack. To support this interface as well, we have to add a size method to
our class which is again straightforward. We can even define the empty method
in terms of the new size method to avoid some redundancy. Note that this relies
on empty· and size·= 0 expressing identical semantics. The third framework
defines the following interface:

module com.sun.framework {

}

public interface Stack {

}

public void push (Object o);
public Object pop ();
public boolean empty ();

I I pre o ::/= null; post top = o
11 pre -. empty; post result ::/= null
11 "no elements?"

Apart from simply removing the top element, the pop message in this interface
also returns the top element. To support this interface as well, our class would
have to implement two pop methods with different signatures.2 However, since
the signatures differ only in their return types, Java's overloading mechanism
does not allow us to do this. We have just encountered an example of a syntactic
conflict between two interfaces. In our Java-like language, it is not possible to
express a class that implements this third interface in addition to the first two.
The fourth and final framework defines the following interface:

module org.cthulhu.framework {

}

public interface Stack {

}

public void push (Object o);
public void pop ();
public Object top ();
public boolean empty ();
public int size ();

I I pre o ::/= null; post top = o
11 pre -. empty
I I pre -. empty; post result ::/= null
I I "no elements?"
I I "how many pushes?"

This interface is identical to the first interface, except for the additional size
message. Unlike the size message in the second interface, this one returns the
number of remaining push operations until some expensive internal restructuring
occurs. 3 To support this interface as well, our class would have to implement two
different size methods with identical signatures. However, since the signatures
are identical, it is not possible to distinguish these messages. We have just

2 Unlike the Java language specification [GJSBOOJ, we distinguish the name of a message
from its signature (the list of parameter types + the return type).

3 This information might be necessary in a framework with real-time constraints. Imple­
mentations based on incrementally growing arrays can supply it quite naturally.

4

encountered an example of a semantic conflict between two interfaces. In our
Java-like language, it is not possible to express a class that implements this
fourth interface in addition to the first two.

AB our examples have shown, embedding object-oriented concepts unchanged
into a modular language fails to address interface conflicts caused by framework
combination. Note that Component Pascal [Obe97], Java [GJSBOO], Modula-
3 [CDG+91], and Oberon-2 [MW91), which are often regarded as "close ap­
proximations" of component-oriented programming languages [Szy98), follow a
similar design.

3 Stand-Alone Messages

In the Java-like language from Section 2, messages are declared within inter­
faces, while methods are declared within classes. Consequently, the identity of a
message is relative to the interface in which it is declared, whereas the identity of
a method is relative to the class in which it is declared. In the case of methods,
this form of identity is needed to support polymorphism. Consider the following
example:

edu.uci.framework.Stack stack = null;

stack = new edu.uci.components.ArrayedStack(16);
stack.push(new lnteger(l));

stack = new edu.uci.components.LinkedStack();
stack.push(new lnteger(l));

After we bind an instance of ArrayedStack to the reference stack, we expect
the message push to invoke the specific push method declared for ArrayedStack.
Similarly, after we rebind an instance of LinkedStack to the reference stack,
we expect the same message push invoke a different push method declared for
LinkedStack. Whenever the class of the instance bound to the stack reference
changes, we want the identity of the methods invoked through that reference to
change as well. In the case of messages, however, this form of identity is the
reason for the interface conflicts described in Section 2. Since the identity of a
message is only unique within an interface, combining two interfaces can result
in two messages that are not unique within the combined interface anymore.

In order to avoid interface conflicts, we must break the symmetry between
message and methods, both of which only have a unique identity within the
type (interface, class) in which they are declared. Since methods must keep their
relative identity to make polymorphism work, the only option is to decouple
the identity of messages from interfaces. If messages should not have a relative
identity to types anymore, the only reasonable scope in which they could be
declared is that of the module. We call messages that have a unique identity
relative to their declaring module stand-alone messages. The following example
suggests a syntax for stand-alone messages in our Java-like language:

5

module edu.uci.framework {
pubfiC message void push (Object o); 11 pre o I- null; post top = o
public message void pop (); 11 pre •empty
public message Object top (); I I pre • empty; post result I- null
public message boolean empty (); 11 "no elements?"
public interface Stack { push, pop, top, empty }

}

This example shows how the first interface from Section 2 is declared using
stand-alone messages. In particular, the last line of this example declares an
interface type that consists of the four messages push, pop, top, and empty.
However, note that this is very different from the original form of declaring
an interface; In an external module that imports edu:uci.framework, the type
edu.uci.framework.Stack would actually appear as follows:

interface edu.uci.framework.Stack {
edu.uci.framework.push, edu.uci.framework.pop,
edu.uci.framework.top, edu.uci.framework.empty

}
This implies that messages always have to be fully qualified in external modules:

edu.uci.framework.Stack stack = null;

stack = new edu.uci.components.ArrayedStack(16);
stack.edu .uci .framework.push(new lnteger(l));

To avoid excessive qualifications, we introduce an aliasing construct for import
declarations as found in Oberon [RW92]. A class that implements the interface
edu.uci.framework.Stack is then expressed as follows:

module com.factorial.cool.extension-{·
import fl = edu.uci.framework;
public class Coof Stack implements fl.Stack {

public void fl.push (Object o) { ... }
public void fl.pop () { ... }
public Object fl.top () { ... }
public boolean fl.empty () { ... }

}
}

To adapt this class to support all interfaces described in Section 2 we must
import the relevant modules and declare a method for each message required.
Since messages are always fully qualified, no interface conflicts can result. Note
that we can also add a mechanism that allows component vendors to associate a
single method with a number of messages to avoid some redundancy, especially
a large number of forwarding methods.

Besides being useful in a pragmatic way, stand-alone messages also lead to
an interesting insight regarding language design. Consider the design space for
the identity of messages and methods in programming languages. As illustrated
in Table 1, both can have identities relative to either modules or types. In

6

Message E Type Message E Module
Method E Type Object-Oriented Component-Oriented
Method E Module ? Modular

Table 1: Language design space for messages and methods.

object-oriented programming languages such as Java [GJSBOO], the identities
of messages and methods are relative to types. As we have seen, this design
choice does not support independent extensibility because of interface conflicts.
In modular programming languages such as Oberon [RW92], the identities of
messages and methods (procedure headers and procedure bodies) are relative
to modules. While this design choice supports independent extensibility, it does
not support dynamic extensibility because modules lack run-time polymorpism.4

Using identities relative to types for messages and relative to modules for meth­
ods combines both of these drawbacks and also does not yield a practical design.
Stand-alone messages, however, lead to language designs in which the identity of
messages is relative to modules, while the identity of methods is relative to types.
Thus, they support both dynamic and independent extensibility and open a pre­
viously unexplored region in the design space for programming languages. We
believe that this region is well-suited for component-oriented programming, and
that stand-alone messages clarify the relationship between component-oriented
programming and modular and object-oriented concepts.

4 Additional Applications

We illustrate a number of additional applications for stand-alone messages, rang­
ing from language properties to software engineering considerations.

Interface Combination

Since the identity of stand-alone messages is relative to modules instead of types,
languages that support stand-alone messages have two useful properties regard­
ing the combination of interface types. First, any combination of interface ·types
results in an interface type. Second, any combination of interface types preserves
all constituent messages. As shown in Section 2, these properties do not hold
in Java [GJSBOO], leading to syntactic and semantic interface conflicts respec­
tively. C++ [StrOO] and Eiffel [Mey97] require additional language mechanisms
to approximate both properties (see Section 5).

4 Some modular programming languages do support polymorphism at compile-time or link­
time. In Modula-3, for example, multiple modules can export the same interface [CDG+91].
The decision about which implementation to use is deferred until build-time. Standard ML
provides similar capabilities [MTHM97].

7

Structural Conformance

Conformance of an implementation type A to an interface type B can either
be declared explicitly, as in Java [GJSBOO], or inferred based on a structural
property, such as A providing methods for all messages of B. Structural confor­
mance has a number of advantages, especially for software evolution [LBR98].
More importantly, a certain degree of structural conformance is required for
component-oriented programming [BW98]. However, structural conformance is
often seen as being "weaker" than declared conformance, because it can result
in "accidental" conformance relations that the programmer did not anticipate.
A typical example of this problem is an interface type Cowboy that includes a
message draw and arr interface type Shape that also includes a draw message,
presumably with different semantics. In a language that supports stand-alone
messages, accidental conformance of this kind is not possible. The draw messages
would be defined in different modules and would therefore be distinguishable.

The use of structural conformance has been proposed before. In Modula-3
[CDG+91] structural conformance is used by default, but reference types can be
branded to avoid accidental conformance. However, all brands in a composed
system (a "program" in Modula-3) must be unique, which can restrict indepen­
dent extensibility by mutually unaware vendors. The compound types proposal
for Java [BW98] uses declared conformance for individual interfaces and struc­
tural conformance for combined interfaces. Although backward compatible with
Java, compound types add additional rules to an already complex language and
do not address the problem of interface conflicts at all. Another proposal for
Java [LBR98] requires that interfaces for which structural conformance should
be used must extend an explicit marker interface Structural. In contrast to these
approaches, structural conformance with stand-alone messages does not require
any additional language constructs to avoid accidental conformance.

Minimal Signatures

An interesting application of structural conformance is that signatures of mes­
sages can be typed in a "minimal" way to express certain invariants. Consider
a method that prints the top element of a Stack:

import f = edu.uci.framework;

/ / does not modify "s"
void print Top (f.Stack s) {

if !s.f.empty() { print(s.f.top());}
}

Instead of stating that print Top does not modify the Stack in a comment, we
could add anonymous interfaces to our language and define its signature as
follows:

void printT op (interface { f.empty,f. top} s)

8

Given this signature, only the empty and top messages could be sent to s, ensur­
ing that print Top does not modify the stack. 5 While not providing a complete
solution, this form of minimal signature specification can be used to address a
subset of component re-entrance problems [MSL99).

Design Guidelines

Stand-alone messages are also helpful as design guidelines during development.
For example, consider designing an interface for bounded stacks based on the
interface edu.uci.framework.Stack for unbounded stacks. The existing interface
provides the messages push, pop, top, and empty. The only message not yet
provided is full which indicates that no more elements can be pushed. This
reasoning leads to the following interface:

module edu.uci.framework.bounded {
import f = edu.uci.framework;

}

public message boolean full (); 11 "no more pushes?"
public interface Stack { full, f.push, f.pop, f.top, f.empty }

However, this interface does not capture the intended semantics accurately. Con­
sider the precondition associated with the push message in Section 3. It states
that push only fails if we pass null as a parameter, but for a bounded stack push
should also fail if the stack is full. This insight leads to the following interface:

module edu.uci.framework.bounded {
import f = edu.uci.framework;
public message void push (Object o); 11 pre --, full A o =I- null; post f.top = o
public message boolean full (); 11 "no more pushes?"
public interface Stack { push, full, f.pop, f.top, f.empty }

}

Focusing on messages and their semantics thus helped us to uncover an in­
consistency between the interfaces for bounded and unbounded stacks. While
developers can not be forced to design semantically consistent interfaces, we
believe that concentrating on messages facilitates this process.

Note how introducing a new push message enables us to express the semantic
difference between bounded and unbounded stacks. The interfaces for bounded
and unbounded stacks do not conform to each other, which is appropriate if
we intend to model behavioral subtyping [LW94]. However, both interfaces
do conform to the interface {f.pop, f.top, f.empty} and thanks to structural
conformance we can avoid explicitly introducing this "virtual supertype."

5 Discussion

We survey component models, programming conventions, design patterns, and
language constructs that could be used to resolve interface conflicts and compare
them to stand-alone messages.

5 This only holds if print Top can not cast the parameter to another type that exposes more
messages.

9

Component Models

Microsoft's COM is the component model that is most similar to our approach
[Mic95]. Instead of assigning unique identities to messages, COM assigns unique
identities to interface types. Instead of relying on a transparent naming conven­
tion for modules, COM associates an automatically generated globally unique
identifier (GUID) with each interface type. Contrary to most object-oriented
programming languages, COM allows an implementation type to conform to
multiple interface types without any conflicts. Combined interface types can
also be expressed using COM's category mechanism.

While we emphasize explicit programming language support and the associ­
ated advantages, the two approaches are equivalent as far as interface conflicts
are concerned. In particular, we could map stand-alone messages to singleton
COM interfaces and interface types to COM categories.

Programming Conventions

A variety of programming conventions can be suggested to address interface
conflicts. Defining naming conventions for messages is one of the simplest. The
message push in the interface Stack in the module edu.uci.framework could by
convention be named edu_ucLframework_Stack_push. While theoretically possi­
ble, we do not believe that such a convention is acceptable in practice. Ad­
ditional mechanisms for introducing short local names for messages would be
needed, complicating the resulting language. However, even if we accept this
complication, we must define new conventions on how names should be ab­
breviated if we are concerned about readability. More complex programming
conventions have been suggested as well [BWOO].

A general problem with programming conventions is that they are not en­
forcable by the compiler. This applies to programming languages based on
stand-alone messages as well, since we rely on module names that are unique
by convention. However, no form of "globally unique identity" can be achieved
without some convention, so our goal should be to make the conventions as
unintrusive and transparent as possible. We believe that, in light of these con­
siderations, conventions for module names are a good tradeoff.

Design Patterns

Certain design patterns can be used to resolve interface conflicts [GHJV95]. In
a variation of the Command pattern, "messages" are modelled as a hierarchy
of classes containing "parameter slots," while "message sends" are calls to a
universal dispatch method. The dispatch method performs explicit run-time
type-tests and calls the actual method corresponding to the dynamic type of
the "message." This approach relies on the compiler to generate unique type
descriptors for each class and thus prevents any conflicts between messages.
However, static type-checking is not possible to the desirable extent. 6

6 Interestingly, stand-alone messages were originally inspired by this design pattern from
the Oberon system [WG92]. Language constructs for messages appeared in Object Oberon

10

Variations of the Adapter, Bridge, and Proxy patterns can be used to map
multiple conflicting interface types to a single implementation type. The idea is
to insert additional forwarding classes between clients of an interface type and
its implementation type. Messages sent to the forwarding class are routed to
the corresponding method in the implementation. While this approach preserves
static type-checking, it can be tedious to write the required forwarding classes
without tool support.

Renaming Messages

In Eiffel, features inherited from ancestor classes can be renamed in a descendant
class to avoid name clashes [Mey97]. In our terminology, an implementation type
conforming to multiple interface types can explicitly choose new local names for
conflicting messages. Note that clients still use the messages declared in the
original interface type, but the messages are "rerouted" in a way similar to the
Adapter design pattern described above.

Although renaming can be used to resolve interface conflicts, the approach
has two major drawbacks. First, renaming clutters up the name space of the
implementation type. We may have to invent a new name for a message that is
less expressive than the original one, define naming conventions to keep readabil­
ity up, and repeat this "renaming excercise" whenever we want to conform to
an additional interface type. Second, renaming must be extended to combined
interface types in addition to implementation types. This becomes particularly
clumsy in terms of syntax if we also want to support anonymous interface types.

Explicit Qualification

C++ supports the explicit qualification of member functions by classes to avoid
name clashes [StrOO]. In our terminology, message sends can be qualified by the
implementation type in which a method should be invoked. As defined inc++,
this mechanism does not support implementation polymorphism as required for
component-oriented programming.

However, we can generalize the idea of explicit qualification by allowing
message sends to be qualified by interface types. Although this does not restrict
polymorphism anymore, even a qualified message of the form Stack. pop is not
necessarily unique, since multiple interface types with identical names could
exist. Therefore, qualification must be extended to include module names as
well, at which point the mechanism becomes equivalent to stand-alone messages,
except for the redundant interface type.

Overloading Messages

Overloading is a form of ad-hoc polymorphism [CW85] supported by a number
of programming languages such as Java [GJSBOOJ and C++ [StrOOJ. In our
terminology, overloading essentially encodes parts of the signature of a message

[MTG89], the protocols extension for Oberon [Fra95], and finally Lagoona [Fra97, FFOOJ.

11

within its name and uses contextual information available when a message is
sent to determine which actual message is being referred to.

Although overloading helps to avoid some interface conflicts, it has two major
limitations. First, semantic conflicts can not be avoided by overloading since
the semantics of a message can not be expressed by type systems in which type
checking is decidable [Sch95). Second, avoiding all syntactic interface conflicts
requires all combinations of parameter and return types to be distinct. This is
not generally possible in the presence of subtyping and the coercions it implies.

6 Conclusions

In this paper, we were concerned with the design of programming languages that
support the paradigm of component-oriented programming. The principles of
dynamic and independent extensibility led to the idea that component-oriented
languages can be designed by combining modular and object-oriented concepts.
However, we found that even an idealized language designed according to this
idea failed to support independent extensibility as soon as interface types were
combined. The key insight to circumvent this problem was recognizing that
messages can be separated from methods. While methods must have identi­
ties that are relative to implementation types, messagE:)s must have identities
that are independent of interface types. We introduced the concept of stand­
alone messages whose identities are relative to modules instead of types. We
showed that stand-alone messages lead to language designs that support the
combination of interface types as required. Additional examples also illustrated
the utility of stand-alone messages for component-oriented programming. We
compared stand-alone messages to related approaches and language constructs,
observing that they generally lead to simpler solutions.

We believe that the main contribution of this work is an improved under­
standing of how modular and object-oriented concepts interact and how they
can be combined to support component..,oriented programming. Our insight
that messages should be separated from methods can be viewed as another step
towards the separation of concepts subsumed by classes in traditional object­
oriented languages. Previous results in this direction include the separation of
interface types from implementation types [Sny86) and the separation of mod­
ules from types [Szy92), both of which are now widely accepted. We believe
that the concept of stand-alone messages will be useful as a basis for further
research on component-oriented programming languages.

We plan to continue our work on language support for component-oriented
programming. Our current focus is on formally defining the experimental pro­
gramming language Lagoona [Fra97, FFOO} which is based on stand-alone mes­
sages and on improving its prototype compiler. Additional areas of interest in­
clude the integration of stand-alone messages with Java, the implementation of
Lagoona on top of COM, techniques for efficient message dispatch, formal spec­
ifications in the presence of stand-alone messages, static guarantees on abstract
aliasing and representation exposure, and declarative and constraint-based ap-

12

proaches to the consistent integration and configuration of components and
frameworks.

Acknowledgements

We would like to thank Kimberly Haas, Ziemowit Laski, Jeffery von Ronne,
and Christian Stork for valuable comments on earlier versions of this paper. We
are also indebted to Wolfram Amme, Martin Biichi, Thomas Kistler, Riccardo
Pucella, Clemens Szyperski, and Marcellus Wallace for many fruitful discussions.
This work was partially supported by the National Science Foundation under
grant EIA-9975053.

References

[BW98) Martin Biichi and Wolfgang Weck. Compound types for Java. In
Proceedings of the ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA),
pages 362-373, Vancouver, Canada, October 1998. Published as
ACM SIGPLAN Notices 33(10).

[BWOO) Martin Biichi and Wolfgang Weck. Generic wrappers. In Proceed­
ings of the European Conference on Object-Oriented Programming
(ECOOP), pages 201-225, Cannes, France, June 2000. Published
as Lecture Notes in Computer Science 1850, Springer-Verlag.

[Car89) Luca Cardelli. Typeful programming. SRC Research Report 45,
Digital Systems Research Center, 130 Lytton Avenue, Palo Alto,
CA 94301, May 24, 1989.

[CDG+91) Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill
Kalsow, and Greg Nelson. (Modula-3) language definition. In Greg
Nelson, editor, Systems Programming in Modula-3, chapter 2, pages
11-66. Prentice-Hall, Englewood Cliffs, NJ, 1991.

[CW85) Luca Cardelli and Peter Wegner. On understanding types, data ab­
straction, and polymorphism. ACM Computing Surveys, 17(4):471-
522, December 1985.

[FF98) Matthew Flatt and Matthias Felleisen. Units: Cool modules for
HOT languages. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI),
pages 236-246, Montreal, Canada, June 1998.

[FFOO] Peter H. Frohlich and Michael Franz. The programming language
Lagoona. Technical report, Department of Information and Com­
puter Science, University of California, Irvine, CA 92697-3425,
2000. Forthcoming.

13

[Fra95] Michael Franz. Protocol Extension: A technique for structuring
large extensible software-systems. Software: Concepts €3 Tools,
16(2):14-26, July 1995.

[Fra97] Michael Franz. The programming language Lagoona: A fresh look
at object-orientation. Software: Concepts €3 Tools, 18(1):14-26,
March 1997.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Readi:qg, MA, 1995.

[GJSBOOJ James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification. Addison-Wesley, Reading, MA, 2nd edition,
2000. To be published. Draft available at http: I /www. j avasoft.
com/.

[LBR98] Konstantin Laufer, Gerald Baumgartner, and Vincent F. Russo.
Safe structural conformance for Java. Technical Report OSU­
CISRC-6/98-TR20, Department of Computer and Information Sci­
ence, The Ohio State University, Columbus, OH 43210-1277, June
1998.

[LG86] Barbara Liskov and John Guttag. Abstraction and Specification in
Program Development. MIT Press (McGraw-Hill), Cambridge, MA,
1986.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion
of subtyping. A CM Transactions on Programming Languages and
Systems, 16(6):1811-1841, November 1994.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction. Prentice­
Hall, Upper Saddle River, NJ, 2nd edition, 1997.

[Mic95] Iviicrosoft Corporation. The Component Object Model (Version
0.9), October 1995. Available at http://www.microsoft.com/
COM/.

[MS98] Leonid Mikhajlov and Emil Sekerinski. A study of the fragile base
class problem. In Proceedings of the European Conference on Object­
Oriented Programming (ECOOP), pages 355-382, Brussels, Bel­
gium, July 1998. Published as Lecture Notes in Computer Science
1445, Springer-Verlag.

[MSL99] Leonid Mikhajlov, Emil Sekerinski, and Linas Laibinis. Develop­
ing components in presence of re-entrance. In Proceedings of the
World Congress on Formal Methods in the Development of Com­
puting Systems (FM), pages 1301-1320, Toulouse, France, Septem­
ber 1999. Published as Lecture Notes in Computer Science 1709,
Springer-Verlag.

14

[MTG89] Hanspeter Mossenbock, Josef Templ, and Robert Griesemer. Ob­
ject Oberon: An object-oriented extension of Oberon. Technical
Report 109, Institute of Computer Systems, Eidgenossische Tech­
nische Hochschule, Zurich, Switzerland, June 1989.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.
The Definition of Standard ML. MIT Press, Cambridge, MA, re­
vised edition, 1997.

[MW91] Hanspeter Mossenbock and Niklaus Wirth. The programming lan­
guage Oberon-2. Structured Programming, 12(4):179-195, 1991.

[Obe97] Oberon microsystems. Component Pascal Language Definition,
September 1997. Available at http://www. oberon. ch/.

[Obj99] Object Management Group. The Common Object Request Bro­
ker: Architecture and Specification (Version 2.3.1), October 1999.
Available at http://www. omg. org/.

[PucOOJ Riccardo Pucella. The design of a COM-oriented module system. In
Proceedings of the Joint Modular Languages Conference (JMLC),
Zurich, Switzerland, September 2000. To be published in Lecture
Notes in Computer Science, Springer-Verlag.

[RW92] Martin Reiser and Niklaus Wirth. Programming in Oberon: Steps
Beyond Pascal and Modula. Addison-Wesley (ACM Press), Wok­
ingham, England, 1992.

[Sch95] Michael I. Schwartzbach. Polymorphic type inference. Lecture Se­
ries LS-95-3, Basic Research in Computer Science, Department of
Computer Science, University of Aarhus, Denmark, June 1995.

[Sny86] Alan Snyder. Encapsulation and inheritance in object-oriented pro­
gramming languages. In Proceedings of the ACM SIGPLAN Con­
ference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), pages 38-45, Portland, OR, November
1986. Published as ACM SIGPLAN Notices 21(11).

[StrOOJ Bjarne Stroustrup. The C++ Programming Language. Addison­
Wesley, Reading, MA, special edition, 2000.

[Szy92] Clemens Szyperski. Import is not inheritance-why we need both:
Modules and classes. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), pages 19-32, Utrecht,
The Netherlands, June 1992. Published as Lecture Notes in Com­
puter Science 615, Springer-Verlag.

[Szy98J Clemens Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley (ACM Press), Harlow, England,
1998.

15

[Wec97)

(WG92)

Wolfgang Weck. Inheritance using- contracts and object composi­
tion. In Wolfgang Weck, Jan Bosch, and Clemens Szyperski, editors,
Proceedings of the Workshop on Component-Oriented Programming
(WCOP), number 5 in TUCS General Publications, pages 105-112,
Turku Center for Computer Science, Lemminkaisenkatu 14, FIN-
20520 Turku, Finland, September 1997.

Niklaus Wirth and Jiirg Gutknecht. Project Oberon: The Design of
an Operating System and Compiler. Addison-Wesley (ACM Press),
Wokingham, England, 1992.

16

	20141104122422102_0001
	20141104122422102_0002
	20141104122422102_0003
	20141104122422102_0004
	20141104122422102_0005
	20141104122422102_0006
	20141104122422102_0007
	20141104122422102_0008
	20141104122422102_0009
	20141104122422102_0010
	20141104122422102_0011
	20141104122422102_0012
	20141104122422102_0013
	20141104122422102_0014
	20141104122422102_0015
	20141104122422102_0016
	20141104122422102_0017
	20141104122422102_0018

