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Abstract 

We are concerned with the design of programming languages that sup­
port the paradigm of component-oriented programming. Languages based 
on the accepted idea of combining modular and object-oriented concepts 
fail to provide adequate support. We argue that messages should be sep­
arated from methods to address this shortcoming. We introduce the con­
cept of stand-alone messages, give examples for its utility, and compare it 
to related approaches and language constructs. Besides leading to inter­
esting insights on the interaction of modular and object-oriented concepts, 
we believe that stand-alone messages. also provide a useful basis for further 
research on component-oriented programming· languages. 

1 Introduction 

Component-oriented programming replaces monolithic software systems with 
reusable software components and hierarchical component frameworks [Szy98]. 
Components extend the capabilities of frameworks, while frameworks provide 
execution environments for components. Both are developed by independent 
and mutually unaware vendors for late composition by third parties. Late com­
position requires that component-oriented software systems support dynamic 
and independent extensibility. Dynamic extensibility enables the addition of 
new components at run-time, while independent extensibility allows compo­
nents and frameworks from mutually unaware vendors to be composed. 

While current approaches to component-oriented programming are largely 
based on component models such as COM [Mic95] and CORBA [Obj99], re-
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cent research has focused on programming language support [BW98, BWOO, 
FF98, MS98, PucOO, Wec97}. Compared to the implicit support provided by 
these models, supporting component-oriented programming explicitly in pro­
gramming languages has two major advantages. First, it enables a seamless 
development process since analysis, design, and implementation can use the 
same basic concepts to describe a software artifact. Second, it allows compilers 
to perform extensive checking and to generate efficient code. Direct support for 
component-oriented programming can thus be expected to lead to more main­
tainable, reliable, and efficient systems. 

The minimal assumptions that frameworks and components make about each 
other are specified using interfaces. An interface is an abstraction of all possi­
ble implementations that can fill a certain role in the composed system [LG86J. 
We view interfaces as sets of messages (abstract operations) and implementa­
tions as sets of methods (concrete operations). Messages describe what effect is 
achieved by an operation, while methods describe how that effect is achieved. 
Multiple instances of an implementation can exist concurrently. We say that an 
implementation (or an instance) conforms to an interface if it provides methods 
for all messages in that interface. Interfaces are essential to component-oriented 
programming because they are the only form of coordination between compo­
nent and framework vendors and the only means by which third parties can 
validate compositions. 

A component-oriented programming language needs constructs to express 
interfaces and implementations and must also support dynamic and indepen­
dent extensibility. In programming languages, interfaces and implementations 
should be modeled as interface types and implementation types respectively. In 
this manner, we can define the conformance of an implementation to an interface 
by the conformance of the corresponding types. Dynamic extensibility requires 
some form of polymorphism that allows different instances of implementation 
types to be bound to the same interface types at run-time. Inclusion polymor­
phism [CW85] in object-oriented languages such as Java [GJSBOO] is one way 
to achieve this, although we prefer the term implementation polymorphism in 
this context. Independent extensibility requires some form of encapsulation that 
isolates components from their environment except for explicitly declared de­
pendencies. Sealed encapsulation constructs [Car89] in modular languages such 
as Oberon [RW92] are one way to achieve this. 1 Therefore, combining concepts 
from modular and object-oriented languages should be a viable approach to the 
design of component-oriented programming languages (Szy98]. 

However, simply embedding object-oriented concepts into a modular lan­
guage unchanged is insufficient. If a component has to implement multiple 
interfaces defined by independent frameworks, syntactic and semantic interface 
conflicts can occur. These conflicts preclude framework combination and thus 
violate the principle of independent extensibility. To avoid these conflicts, mes-

1 In analogy to Cardelli [Car89], we call an encapsulation construct open if neither visibility 
nor membership is restricted, closed if only visibility is restricted, and sealed if visibility and 
membership are restricted. Java's packages are closed in this sense, while modules in Oberon 
are sealed. 

2 



sages must be given unique identities independent of the types in which they 
participate. This contradicts the object-oriented paradigm in which messages 
only have unique identities within a type. We propose the concept of stand­
alone messages and discuss its ramifications for language design. In particular, 
we show that stand-alone messages simplify the integration of other desirable 
properties such as structural conformance. Separating the concepts of messages, 
methods, modules, and types opens a previously unexplored region of the design 
space for programming languages that seems well-suited for component-oriented 
programming. 

In the next section we illustrate the problem of interface conflicts in a Java­
like language. In Section 3 we develop the concept of stand-alone messages and 
show how it resolves interface conflicts. Section 4 discusses additional applica­
tions of stand-alone messages, and Section 5 surveys related work and compares 
it to our approach. Finally, in Section 6 we conclude with a summary of con­
tributions and an outline for future work. 

2 Interface Conflicts 

Software components often need to conform to multiple interfaces for techni­
cal or marketing reasons. Consider a component that presents the results of a 
database query within a compound document. On the technical side, instances 
of this component might have to react to notifications from the database man­
agement and the compound document framework to keep their presentation 
current. On the marketing side, the component might increase its potential 
market if it could be composed with different database management and com­
pound document frameworks. To support independent extensibility, it must be 
possible to develop components that conform to multiple interfaces even if those 
interfaces were defined by mutually unaware framework vendors. 

As a simple example for the problems caused by framework combination, 
we attempt to develop a Stack component that is usable across four different 
frameworks. We assume a Java-like programming language in which (closed) 
packages have been replaced by (sealed) modules. Mapping interface types to 
interfaces and implementation types to classes is appropriate in such a language. 
The first framework defines the following interface: 

module edu.uci.framework { 

} 

public interface Stack { 

} 

public void push (Object o); 
public void pop (); 
public Object top (); 
public boolean empty (); 

11 pre o i= null; post top = o 
11 pre..., empty 
11 pre ..., empty; post result i= null 
11 "no elements?" 

The designer of this interface followed the textbook definition of the abstract 
data type Stack closely, and developing a class that implements this interface is 
straightforward. The second framework defines the following interface: 

module gov.nsa.framework { 
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} 

public interface Stack { 

} 

public void push (Object o); 
public void pop (); 
public Object top(); 
public int size (); 

11 pre o ::/=null; post top= o 
I I pre size > 0 
I I pre size > O; post result ::/= null 
I I post result ~ 0 

Instead of relying on an empty message, this vendor chose to work with the size 
of the Stack. To support this interface as well, we have to add a size method to 
our class which is again straightforward. We can even define the empty method 
in terms of the new size method to avoid some redundancy. Note that this relies 
on empty· and size·= 0 expressing identical semantics. The third framework 
defines the following interface: 

module com.sun.framework { 

} 

public interface Stack { 

} 

public void push (Object o); 
public Object pop (); 
public boolean empty (); 

I I pre o ::/= null; post top = o 
11 pre -. empty; post result ::/= null 
11 "no elements?" 

Apart from simply removing the top element, the pop message in this interface 
also returns the top element. To support this interface as well, our class would 
have to implement two pop methods with different signatures.2 However, since 
the signatures differ only in their return types, Java's overloading mechanism 
does not allow us to do this. We have just encountered an example of a syntactic 
conflict between two interfaces. In our Java-like language, it is not possible to 
express a class that implements this third interface in addition to the first two. 
The fourth and final framework defines the following interface: 

module org.cthulhu.framework { 

} 

public interface Stack { 

} 

public void push (Object o); 
public void pop (); 
public Object top (); 
public boolean empty (); 
public int size (); 

I I pre o ::/= null; post top = o 
11 pre -. empty 
I I pre -. empty; post result ::/= null 
I I "no elements?" 
I I "how many pushes?" 

This interface is identical to the first interface, except for the additional size 
message. Unlike the size message in the second interface, this one returns the 
number of remaining push operations until some expensive internal restructuring 
occurs. 3 To support this interface as well, our class would have to implement two 
different size methods with identical signatures. However, since the signatures 
are identical, it is not possible to distinguish these messages. We have just 

2 Unlike the Java language specification [GJSBOOJ, we distinguish the name of a message 
from its signature (the list of parameter types + the return type). 

3 This information might be necessary in a framework with real-time constraints. Imple­
mentations based on incrementally growing arrays can supply it quite naturally. 
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encountered an example of a semantic conflict between two interfaces. In our 
Java-like language, it is not possible to express a class that implements this 
fourth interface in addition to the first two. 

AB our examples have shown, embedding object-oriented concepts unchanged 
into a modular language fails to address interface conflicts caused by framework 
combination. Note that Component Pascal [Obe97], Java [GJSBOO], Modula-
3 [CDG+91], and Oberon-2 [MW91), which are often regarded as "close ap­
proximations" of component-oriented programming languages [Szy98), follow a 
similar design. 

3 Stand-Alone Messages 

In the Java-like language from Section 2, messages are declared within inter­
faces, while methods are declared within classes. Consequently, the identity of a 
message is relative to the interface in which it is declared, whereas the identity of 
a method is relative to the class in which it is declared. In the case of methods, 
this form of identity is needed to support polymorphism. Consider the following 
example: 

edu.uci.framework.Stack stack = null; 

stack = new edu.uci.components.ArrayedStack(16); 
stack.push(new lnteger(l)); 

stack = new edu.uci.components.LinkedStack(); 
stack.push(new lnteger(l)); 

After we bind an instance of ArrayedStack to the reference stack, we expect 
the message push to invoke the specific push method declared for ArrayedStack. 
Similarly, after we rebind an instance of LinkedStack to the reference stack, 
we expect the same message push invoke a different push method declared for 
LinkedStack. Whenever the class of the instance bound to the stack reference 
changes, we want the identity of the methods invoked through that reference to 
change as well. In the case of messages, however, this form of identity is the 
reason for the interface conflicts described in Section 2. Since the identity of a 
message is only unique within an interface, combining two interfaces can result 
in two messages that are not unique within the combined interface anymore. 

In order to avoid interface conflicts, we must break the symmetry between 
message and methods, both of which only have a unique identity within the 
type (interface, class) in which they are declared. Since methods must keep their 
relative identity to make polymorphism work, the only option is to decouple 
the identity of messages from interfaces. If messages should not have a relative 
identity to types anymore, the only reasonable scope in which they could be 
declared is that of the module. We call messages that have a unique identity 
relative to their declaring module stand-alone messages. The following example 
suggests a syntax for stand-alone messages in our Java-like language: 
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module edu.uci.framework { 
pubfiC message void push (Object o ); 11 pre o I- null; post top = o 
public message void pop (); 11 pre •empty 
public message Object top (); I I pre • empty; post result I- null 
public message boolean empty (); 11 "no elements?" 
public interface Stack { push, pop, top, empty } 

} 

This example shows how the first interface from Section 2 is declared using 
stand-alone messages. In particular, the last line of this example declares an 
interface type that consists of the four messages push, pop, top, and empty. 
However, note that this is very different from the original form of declaring 
an interface; In an external module that imports edu:uci.framework, the type 
edu.uci.framework.Stack would actually appear as follows: 

interface edu.uci.framework.Stack { 
edu.uci.framework.push, edu.uci.framework.pop, 
edu.uci.framework.top, edu.uci.framework.empty 

} 
This implies that messages always have to be fully qualified in external modules: 

edu.uci.framework.Stack stack = null; 

stack = new edu.uci.components.ArrayedStack(16); 
stack.edu .uci .framework.push( new lnteger(l) ); 

To avoid excessive qualifications, we introduce an aliasing construct for import 
declarations as found in Oberon [RW92]. A class that implements the interface 
edu.uci.framework.Stack is then expressed as follows: 

module com.factorial.cool.extension-{· 
import fl = edu.uci.framework; 
public class Coof Stack implements fl.Stack { 

public void fl.push (Object o) { ... } 
public void fl.pop () { ... } 
public Object fl.top () { ... } 
public boolean fl.empty () { ... } 

} 
} 

To adapt this class to support all interfaces described in Section 2 we must 
import the relevant modules and declare a method for each message required. 
Since messages are always fully qualified, no interface conflicts can result. Note 
that we can also add a mechanism that allows component vendors to associate a 
single method with a number of messages to avoid some redundancy, especially 
a large number of forwarding methods. 

Besides being useful in a pragmatic way, stand-alone messages also lead to 
an interesting insight regarding language design. Consider the design space for 
the identity of messages and methods in programming languages. As illustrated 
in Table 1, both can have identities relative to either modules or types. In 
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Message E Type Message E Module 
Method E Type Object-Oriented Component-Oriented 
Method E Module ? Modular 

Table 1: Language design space for messages and methods. 

object-oriented programming languages such as Java [GJSBOO], the identities 
of messages and methods are relative to types. As we have seen, this design 
choice does not support independent extensibility because of interface conflicts. 
In modular programming languages such as Oberon [RW92], the identities of 
messages and methods (procedure headers and procedure bodies) are relative 
to modules. While this design choice supports independent extensibility, it does 
not support dynamic extensibility because modules lack run-time polymorpism.4 

Using identities relative to types for messages and relative to modules for meth­
ods combines both of these drawbacks and also does not yield a practical design. 
Stand-alone messages, however, lead to language designs in which the identity of 
messages is relative to modules, while the identity of methods is relative to types. 
Thus, they support both dynamic and independent extensibility and open a pre­
viously unexplored region in the design space for programming languages. We 
believe that this region is well-suited for component-oriented programming, and 
that stand-alone messages clarify the relationship between component-oriented 
programming and modular and object-oriented concepts. 

4 Additional Applications 

We illustrate a number of additional applications for stand-alone messages, rang­
ing from language properties to software engineering considerations. 

Interface Combination 

Since the identity of stand-alone messages is relative to modules instead of types, 
languages that support stand-alone messages have two useful properties regard­
ing the combination of interface types. First, any combination of interface ·types 
results in an interface type. Second, any combination of interface types preserves 
all constituent messages. As shown in Section 2, these properties do not hold 
in Java [GJSBOO], leading to syntactic and semantic interface conflicts respec­
tively. C++ [StrOO] and Eiffel [Mey97] require additional language mechanisms 
to approximate both properties (see Section 5). 

4 Some modular programming languages do support polymorphism at compile-time or link­
time. In Modula-3, for example, multiple modules can export the same interface [CDG+91]. 
The decision about which implementation to use is deferred until build-time. Standard ML 
provides similar capabilities [MTHM97]. 

7 



Structural Conformance 

Conformance of an implementation type A to an interface type B can either 
be declared explicitly, as in Java [GJSBOO], or inferred based on a structural 
property, such as A providing methods for all messages of B. Structural confor­
mance has a number of advantages, especially for software evolution [LBR98]. 
More importantly, a certain degree of structural conformance is required for 
component-oriented programming [BW98]. However, structural conformance is 
often seen as being "weaker" than declared conformance, because it can result 
in "accidental" conformance relations that the programmer did not anticipate. 
A typical example of this problem is an interface type Cowboy that includes a 
message draw and arr interface type Shape that also includes a draw message, 
presumably with different semantics. In a language that supports stand-alone 
messages, accidental conformance of this kind is not possible. The draw messages 
would be defined in different modules and would therefore be distinguishable. 

The use of structural conformance has been proposed before. In Modula-3 
[CDG+91] structural conformance is used by default, but reference types can be 
branded to avoid accidental conformance. However, all brands in a composed 
system (a "program" in Modula-3) must be unique, which can restrict indepen­
dent extensibility by mutually unaware vendors. The compound types proposal 
for Java [BW98] uses declared conformance for individual interfaces and struc­
tural conformance for combined interfaces. Although backward compatible with 
Java, compound types add additional rules to an already complex language and 
do not address the problem of interface conflicts at all. Another proposal for 
Java [LBR98] requires that interfaces for which structural conformance should 
be used must extend an explicit marker interface Structural. In contrast to these 
approaches, structural conformance with stand-alone messages does not require 
any additional language constructs to avoid accidental conformance. 

Minimal Signatures 

An interesting application of structural conformance is that signatures of mes­
sages can be typed in a "minimal" way to express certain invariants. Consider 
a method that prints the top element of a Stack: 

import f = edu.uci.framework; 

/ / does not modify "s" 
void print Top ( f.Stack s) { 

if !s.f.empty() { print(s.f.top());} 
} 

Instead of stating that print Top does not modify the Stack in a comment, we 
could add anonymous interfaces to our language and define its signature as 
follows: 

void printT op (interface { f.empty,f. top} s) 
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Given this signature, only the empty and top messages could be sent to s, ensur­
ing that print Top does not modify the stack. 5 While not providing a complete 
solution, this form of minimal signature specification can be used to address a 
subset of component re-entrance problems [MSL99). 

Design Guidelines 

Stand-alone messages are also helpful as design guidelines during development. 
For example, consider designing an interface for bounded stacks based on the 
interface edu.uci.framework.Stack for unbounded stacks. The existing interface 
provides the messages push, pop, top, and empty. The only message not yet 
provided is full which indicates that no more elements can be pushed. This 
reasoning leads to the following interface: 

module edu.uci.framework.bounded { 
import f = edu.uci.framework; 

} 

public message boolean full (); 11 "no more pushes?" 
public interface Stack { full, f.push, f.pop, f.top, f.empty } 

However, this interface does not capture the intended semantics accurately. Con­
sider the precondition associated with the push message in Section 3. It states 
that push only fails if we pass null as a parameter, but for a bounded stack push 
should also fail if the stack is full. This insight leads to the following interface: 

module edu.uci.framework.bounded { 
import f = edu.uci.framework; 
public message void push (Object o ); 11 pre --, full A o =I- null; post f.top = o 
public message boolean full (); 11 "no more pushes?" 
public interface Stack { push, full, f.pop, f.top, f.empty } 

} 

Focusing on messages and their semantics thus helped us to uncover an in­
consistency between the interfaces for bounded and unbounded stacks. While 
developers can not be forced to design semantically consistent interfaces, we 
believe that concentrating on messages facilitates this process. 

Note how introducing a new push message enables us to express the semantic 
difference between bounded and unbounded stacks. The interfaces for bounded 
and unbounded stacks do not conform to each other, which is appropriate if 
we intend to model behavioral subtyping [LW94]. However, both interfaces 
do conform to the interface {f.pop, f.top, f.empty} and thanks to structural 
conformance we can avoid explicitly introducing this "virtual supertype." 

5 Discussion 

We survey component models, programming conventions, design patterns, and 
language constructs that could be used to resolve interface conflicts and compare 
them to stand-alone messages. 

5 This only holds if print Top can not cast the parameter to another type that exposes more 
messages. 
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Component Models 

Microsoft's COM is the component model that is most similar to our approach 
[Mic95]. Instead of assigning unique identities to messages, COM assigns unique 
identities to interface types. Instead of relying on a transparent naming conven­
tion for modules, COM associates an automatically generated globally unique 
identifier (GUID) with each interface type. Contrary to most object-oriented 
programming languages, COM allows an implementation type to conform to 
multiple interface types without any conflicts. Combined interface types can 
also be expressed using COM's category mechanism. 

While we emphasize explicit programming language support and the associ­
ated advantages, the two approaches are equivalent as far as interface conflicts 
are concerned. In particular, we could map stand-alone messages to singleton 
COM interfaces and interface types to COM categories. 

Programming Conventions 

A variety of programming conventions can be suggested to address interface 
conflicts. Defining naming conventions for messages is one of the simplest. The 
message push in the interface Stack in the module edu.uci.framework could by 
convention be named edu_ucLframework_Stack_push. While theoretically possi­
ble, we do not believe that such a convention is acceptable in practice. Ad­
ditional mechanisms for introducing short local names for messages would be 
needed, complicating the resulting language. However, even if we accept this 
complication, we must define new conventions on how names should be ab­
breviated if we are concerned about readability. More complex programming 
conventions have been suggested as well [BWOO]. 

A general problem with programming conventions is that they are not en­
forcable by the compiler. This applies to programming languages based on 
stand-alone messages as well, since we rely on module names that are unique 
by convention. However, no form of "globally unique identity" can be achieved 
without some convention, so our goal should be to make the conventions as 
unintrusive and transparent as possible. We believe that, in light of these con­
siderations, conventions for module names are a good tradeoff. 

Design Patterns 

Certain design patterns can be used to resolve interface conflicts [GHJV95]. In 
a variation of the Command pattern, "messages" are modelled as a hierarchy 
of classes containing "parameter slots," while "message sends" are calls to a 
universal dispatch method. The dispatch method performs explicit run-time 
type-tests and calls the actual method corresponding to the dynamic type of 
the "message." This approach relies on the compiler to generate unique type 
descriptors for each class and thus prevents any conflicts between messages. 
However, static type-checking is not possible to the desirable extent. 6 

6 Interestingly, stand-alone messages were originally inspired by this design pattern from 
the Oberon system [WG92]. Language constructs for messages appeared in Object Oberon 
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Variations of the Adapter, Bridge, and Proxy patterns can be used to map 
multiple conflicting interface types to a single implementation type. The idea is 
to insert additional forwarding classes between clients of an interface type and 
its implementation type. Messages sent to the forwarding class are routed to 
the corresponding method in the implementation. While this approach preserves 
static type-checking, it can be tedious to write the required forwarding classes 
without tool support. 

Renaming Messages 

In Eiffel, features inherited from ancestor classes can be renamed in a descendant 
class to avoid name clashes [Mey97]. In our terminology, an implementation type 
conforming to multiple interface types can explicitly choose new local names for 
conflicting messages. Note that clients still use the messages declared in the 
original interface type, but the messages are "rerouted" in a way similar to the 
Adapter design pattern described above. 

Although renaming can be used to resolve interface conflicts, the approach 
has two major drawbacks. First, renaming clutters up the name space of the 
implementation type. We may have to invent a new name for a message that is 
less expressive than the original one, define naming conventions to keep readabil­
ity up, and repeat this "renaming excercise" whenever we want to conform to 
an additional interface type. Second, renaming must be extended to combined 
interface types in addition to implementation types. This becomes particularly 
clumsy in terms of syntax if we also want to support anonymous interface types. 

Explicit Qualification 

C++ supports the explicit qualification of member functions by classes to avoid 
name clashes [StrOO]. In our terminology, message sends can be qualified by the 
implementation type in which a method should be invoked. As defined inc++, 
this mechanism does not support implementation polymorphism as required for 
component-oriented programming. 

However, we can generalize the idea of explicit qualification by allowing 
message sends to be qualified by interface types. Although this does not restrict 
polymorphism anymore, even a qualified message of the form Stack. pop is not 
necessarily unique, since multiple interface types with identical names could 
exist. Therefore, qualification must be extended to include module names as 
well, at which point the mechanism becomes equivalent to stand-alone messages, 
except for the redundant interface type. 

Overloading Messages 

Overloading is a form of ad-hoc polymorphism [CW85] supported by a number 
of programming languages such as Java [GJSBOOJ and C++ [StrOOJ. In our 
terminology, overloading essentially encodes parts of the signature of a message 

[MTG89], the protocols extension for Oberon [Fra95], and finally Lagoona [Fra97, FFOOJ. 
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within its name and uses contextual information available when a message is 
sent to determine which actual message is being referred to. 

Although overloading helps to avoid some interface conflicts, it has two major 
limitations. First, semantic conflicts can not be avoided by overloading since 
the semantics of a message can not be expressed by type systems in which type 
checking is decidable [Sch95). Second, avoiding all syntactic interface conflicts 
requires all combinations of parameter and return types to be distinct. This is 
not generally possible in the presence of subtyping and the coercions it implies. 

6 Conclusions 

In this paper, we were concerned with the design of programming languages that 
support the paradigm of component-oriented programming. The principles of 
dynamic and independent extensibility led to the idea that component-oriented 
languages can be designed by combining modular and object-oriented concepts. 
However, we found that even an idealized language designed according to this 
idea failed to support independent extensibility as soon as interface types were 
combined. The key insight to circumvent this problem was recognizing that 
messages can be separated from methods. While methods must have identi­
ties that are relative to implementation types, messagE:)s must have identities 
that are independent of interface types. We introduced the concept of stand­
alone messages whose identities are relative to modules instead of types. We 
showed that stand-alone messages lead to language designs that support the 
combination of interface types as required. Additional examples also illustrated 
the utility of stand-alone messages for component-oriented programming. We 
compared stand-alone messages to related approaches and language constructs, 
observing that they generally lead to simpler solutions. 

We believe that the main contribution of this work is an improved under­
standing of how modular and object-oriented concepts interact and how they 
can be combined to support component..,oriented programming. Our insight 
that messages should be separated from methods can be viewed as another step 
towards the separation of concepts subsumed by classes in traditional object­
oriented languages. Previous results in this direction include the separation of 
interface types from implementation types [Sny86) and the separation of mod­
ules from types [Szy92), both of which are now widely accepted. We believe 
that the concept of stand-alone messages will be useful as a basis for further 
research on component-oriented programming languages. 

We plan to continue our work on language support for component-oriented 
programming. Our current focus is on formally defining the experimental pro­
gramming language Lagoona [Fra97, FFOO} which is based on stand-alone mes­
sages and on improving its prototype compiler. Additional areas of interest in­
clude the integration of stand-alone messages with Java, the implementation of 
Lagoona on top of COM, techniques for efficient message dispatch, formal spec­
ifications in the presence of stand-alone messages, static guarantees on abstract 
aliasing and representation exposure, and declarative and constraint-based ap-
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proaches to the consistent integration and configuration of components and 
frameworks. 
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